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Abstract

Scalable performance is perhaps the most desirable
property in any Internet service implementation in the
face of unpredictable surges in demand. In our previ-
ous work, we have proposed a data access protocol
group two-phase locking (g-2pl), that scales well when
the data contention levels are relatively high. In re-
ality, a system may experience severe data contention
only a fraction of the total time. In this paper, we pro-
pose three optimizations to the g-2pl protocol, such
that its performance is superior to other comparable
protocols under all system scenarios.

1 Introduction and Motivation

The emergence and initial deployment of several
electronic commerce (e-commerce) applications has
spurred the need for high performance distributed
data servers. Several big corporations such as IBM,
JCPenny and Walmart are continuing to build their
e-business infrastructure with the assumption that
a large percentage of their customers will increas-
ingly shop on-line. Currently, most consumers tend
to browse items virtually on the web to mainly do
price comparisons or availability, but shop physically
in stores. This trend will change as people gain more
confidence in the e-commerce infrastructure. It is an-
ticipated that in the future, e-commerce sites will con-
nect a large number of clients that will access these
sites over high speed wide area networks. Further,
these e-commerce sites will serve a very large volume of
transactions that may not have predictable data access
patterns. Thus an important challenge is to design
data server systems that can scale, and perform well
in a dynamic environment as the environment shifts
from a “virtual browse, physical buy” to a “virtual
browse and buy” environment. In the Internet envi-
ronment, the network delays between the server and
clients are relatively large, and under high data con-
tention environments, this can lead to a throughput
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bottleneck. Systems need to scale with the number
of clients, the geographic span of the network as well
as with the data contention levels [2]. In recent years
there has been a research thrust in exploring mecha-
nisms to hide the network latency and other processing
delays in innovative data access protocols.

Client caching of data items and locks is a popu-
lar mechanism that has been proposed to reduce the
network latency overheads. In local area networks
(LAN) environments, three families of caching algo-
rithm have been proposed to preserve data consistency
in the presence of concurrent requests, all derived
from the widely used strict two-phase locking proto-
col (2PL) [6], namely, Server-based 2PL, Optimistic
2PL and Callback Locking [11, 18, 13, 17, 4, 9]. While
caching can significantly improve performance [8], the
marginal gains decrease rapidly as the network speed is
increased and when data items are frequently updated
rendering the caches invalid. In fact, the server-based
2PL (s-2pl) protocol was found to have the best per-
formance in situations with high data contention in
LANs [7]. Further, in a high-speed wide area net-
work (WAN) environment, efforts should be focused
on reducing the number of sequential message passing
rounds (since each round can incur a significant de-
lay, even if the transmission time is negligible) rather
than the data transmission time. Our strategy, em-
bodied in the group two-phase locking (g-2pl) pro-
tocol [1, 2] assumes a stronger inter-client coopera-
tion, intra-transaction caching at the clients and mes-
sage grouping. While the group 2PL protocol outper-
formed other comparable protocols under high data
contentions, its performance was comparatively poorer
when the data contention was low. In this paper, we
propose three optimizations to the g-2pl protocol that
enables it to exhibit scalable performance under the
entire range of data contention levels, at different net-
work latencies and with a larger number of clients.

In the next section, we provide a brief description of
the g-2pl protocol, followed by Section 3 that proposes
three optimizations to provide scalable performance.



Section 4 describes our simulation framework followed
by Section 5 containing numerical results and their
analysis.

2 Data Access Protocols

In this section, the s-2pl and g-2pl protocols are
briefly reviewed and they are quantitatively compared
in the following section. Although we do not deal
with the recovery aspects of the g-2pl protocol here,
it is assumed that the sites follow the standard pro-
tocol adopted by the s-2pl protocol where each site
uses Write-Ahead Logging (WAL) and garbage col-
lects its log once the data are made permanent at the
server [14].

2.1 The s-2PL Protocol

In the basic server-based two-phase locking (s-2pl)
protocol, a data-server preserves data consistency by
following the stérict two-phase locking protocol [6]. The
s-2pl protocol ensures data consistency as defined
by serializability which requires the concurrent, in-
terleaved, execution of requests to be equivalent to
some serial, non-interleaved, execution of the same
requests [3]. In the s-2pl protocol, each transaction
goes through a growing phase and a shrinking phase.
During the growing phase, a transaction requests data
items which are shipped to it after the data-server ac-
quires a lock on them. In the shrinking phase, all
the locks are released when the transaction is either
aborted or committed and all modified data items are
returned to the data-server. The clients are not al-
lowed to cache locks across transaction boundaries and
a client can be viewed as executing one transaction at
a time. A variation of s-2pl that allows caching of
locks across transaction boundaries is called caching
2PL (c-2PL) protocol [18, 9, 7, 8]. For brevity, in the
rest of the paper we focus only on the s-2pl protocol
but the results can be extended to the c-2PL protocol.

Access to some data may be done in a shared fash-
ion, with multiple clients reading the data item simul-
taneously. However, in the interest of strict consis-
tency, while multiple clients may read the data simul-
taneously, no client may write on it. Hence, locks are
distinguished into read (shared) and write (exclusive)
types and a client cannot acquire a write lock on a
data item until the clients reading the data have re-
leased their shared locks and vice versa. If the data-
server cannot acquire a lock on a data item because
another transaction is holding a conflicting lock on the

same data, the request is enqueued and the requesting
transaction is forced to wait until the lock is released.

2.2 The g-2PL Protocol

The core of the g-2pl protocol [1, 2] is to apply
grouping of messages sent to multiple sites to the s-2pl
protocol, thus reducing the message passing rounds.
Grouping of actions involving a single site has been
previously used successfully in other situations (e.g.,
in group commit [5, 10] multiple transactions are com-
mitted and acknowledged at a single site). Specifi-
cally, the lock (data) granting and release messages are
grouped as follows. The data-server collects the lock
requests for each data item and creates a forward list
(FL) of all the clients that have pending lock requests
for that data item. When a lock becomes available,
the lock is granted to the first client on the forward list
and the data item is sent to the client along with the
forward list. When a transaction commits, the client
sends the new version of the committed data items
to the clients next on the respective forward lists. A
copy of the forward list is also sent with each data
item. If the transaction aborts, the client forwards
the unchanged data to the next client. Finally, when
the last client on the forward list terminates, it sends
the new version of the data to the data-server with the
outcome of each transaction executed on the clients on
the forward list.

Thus the lock release message of the previous client
is combined with the lock grant message of the next
client, thereby eliminating one sequential message re-
quired by the s-2pl protocol. While the data items
have been sent out to a group of clients, the server
continues to collect requests. We define the period
during which the server does not possess the lock on a
data item and collects requests as the collection win-
dow for the data item. Once the lock is returned and
a data-server receives and installs the new version of a
data item in the database, the previous collection pe-
riod ends, a new forward list is created, using which,
the server dispatches the data item to the first client
on the new forward list. Initially at start-up time and
during periods of extremely light loading, the forward-
list will contain a single client.

For each data item required in the shared mode by
multiple (reading) clients, a copy of the data item is
sent to each of the reading clients. At the same time,
it also sends a message containing the data item and
the list of the shared-mode clients to the next client C}
on the forward list that requires exclusive access. In
this way, Cj is enabled to execute and update the data
item concurrently with the reading clients. However,



C; cannot release its updates until it receives a release
message from all the reading clients. As before, if there
are no waiting transactions that need exclusive access,
the release messages are returned to the server. This
is termed the MRIW (Multiple Reads One Write) op-
timization. To improve performance further, the for-
ward list for each data item may be created according
to one of several ordering rules (such as First-in First
Out (FTFO), Order by transaction priority, Order by
the number of locks held by each transaction, serve
read requests first, etc.). Since we showed in [2] that
the effect of the various re-ordering schemes is minimal
at less than 1% from the FIFO case, the default rule
adopted here is FIFO. We next describe a deadlock-
avoidance FL ordering rule that is an integral part of
the g-2pl protocol.

2.2.1 Deadlock avoidance by FL reordering

Two-phase locking protocols are susceptible to dead-
locks [6], and so is the g-2pl protocol. However, in
the case of the g-2pl protocol, some deadlocks can
be avoided by intelligently creating the forward lists.
Specifically, some deadlocks can be avoided if in each
of the forward lists, the order of the transactions is the
same. Formally, the forward list for each data item
can be represented by a transaction precedence graph.
The transaction precedence graph is a directed graph
which determines the order in which each data item
will move from one client site to another. In order to
ensure linear ordering, transaction precedence graphs
need to be made consistent. That is, two transactions
T; and T; must follow the same order < T;,T; > or
< T};,T; > in every precedence graph involving 7T; and
T;. The precedence graph is consistent with the lock
granting order and hence the serialization order.
Clearly, this reordering of requests does not re-
quire predeclaration and because it occurs within a
collection window, the problem of starvation is not
encountered. In the worst case, some transactions
will be pushed towards the end of the forward list but
they will have the chance to access the data. In the
case that such reordering of forward lists is not pos-
sible, some transactions may have to be aborted and
restarted. Repeated (cyclic) restarts can be avoided
in a similar way using an aging mechanism as in dead-
lock detection algorithms. It should be stressed that
all these reordering computations are done while the
server is waiting for the data items to be returned
from the clients in the previous window. Thus, these
computations do not increase the transaction block-
ing time on a lock and in fact increases the utilization
of data-server CPU while reducing the transaction re-

sponse time.

3 Read Optimizations

There are two related issues associated with read-
only transactions and the g-2pl protocol. The first
concerns a potential deadlock situation caused by read-
only dependencies and the other is the response time
of read-only transactions. This potential deadlock sit-
uation is better illustrated using an example.
Example: Consider two transactions
ty : ready(z) ready(y) and ¢y : readsz(y) reada(x) both
of which request data items « and y for reading in a se-
rial manner but in the opposite order. As soon as the
data-server gets the requests ready(z) and reads(y),
it will release z to 1 and y to t3. Now, both transac-
tions have one data item and will not release it until
they commit or abort. Subsequently, the data-server
will get the requests ready (y) and reads(z) but neither
data item can be released until ¢; or t5 either commits
or aborts returning z and y back to the server respec-
tively. This is a deadlock situation where #; waits for
ty to release the read lock for y and t5 waits for ¢ to
release the read lock for x. The only way to resolve
the situation is to abort one of the transactions.

The second issue concerns the response time of
read-only accesses. The data server responds to the
next set of requests only when the data item (and lock)
is returned back to it by the previous set of clients.
This can unnecessarily delay read requests that have
no conflict with the previous requests. In this sec-
tion, three main optimizations are proposed, each of
which contributes towards improving the performance
of the g-2pl scheme. They try to reduce the number of
read-read deadlocks as much as possible, and dispatch
reads as soon as possible. A few other optimizations,
which did not produce expected improvements are also
discussed, with possible reasons for their poorer show-
ing. The schemes mentioned ensure that g-2pl, with
its read optimizations always performs better than s-
2pl, and increase the performance gains by grouping
even further.

3.1 Basic Read Optimization

The g-2pl-robasic protocol is the first and most ob-
vious read optimization. When a read request arrives
at the server, the server checks if the last forward list
sent was read-only (A forward list is read-only if it
consists only of read lock requests). Since read locks
are shared, it makes sense to dispatch this read re-
quest immediately, provided that there are no writes



requests for that data item at the server waiting to be
dispatched. Write locks are exclusive, and a read re-
quest following the write can only be serviced after the
write lock is released. Thus, in this optimization, when
aread request for a data item arrives, if the server finds
that the previous forward list for that data item was
read-only, and that no write is waiting to be serviced
for that data item (the wait list is empty), then the
server dispatches the read request immediately.

The server in this case has to keep track of whether
the previous forward list was read-only. However as a
copy of the forward list that was sent out last is kept
at the server site, this involves just a simple check.
Whenever possible, the server dispatches read requests
immediately, keeping track of any such read requests
that it may have sent out by appending them to the
copy of the forward list. All this work is being carried
out in the spare time of the server when it is wait-
ing for the forward list to return to it after all the
requests have been serviced. Thus the slightly extra
overhead entailed by the server does not decrease its
performance.

3.2 LastWrite Read Optimization

The g-2pl-rorw protocol, like g-2pl-robasic services
and dispatches read requests immediately when the
previous forward list for that data item was read-only,
and the waiting list does not contain any writes. Ad-
ditionally, it also forwards these reads when the previ-
ous forward list was a read-write (RW) list consisting
of both read and write requests, and having trailing
reads (that is a bunch of read requests at the end of
the forward lists), and the last write in the RW list
has released its lock and indicated this to the server.
The forward list at this instant consists only of read
requests, and the server can take advantage of this to
forward new read requests immediately.

In this method, the client with the last write in
a RW list, if it has trailing reads following it, sends a
message TRAILING READS to the server. The server
on getting this message, can treat the forward list as if
it was read-only, and forward read requests. Though
this method involves the overhead of an extra message
from the client with the last write, it improves the
overall response time relative to g-2pl-robasic, espe-
cially in environments with write requests, where such
RW forward lists with trailing reads occur frequently.
Again, the server is able to fit in the overhead associ-
ated with the immediate dispatch of reads in the time
when it is waiting for the forward list to return.

3.3 Reordered-read Optimization

The reordering of requests in the waiting list to
avoid deadlocks, that is carried out in g-2pl (See pre-
vious section) permits reads that come in later to pos-
sibly reach the front of the wait list. In such a case, it
is possible to forward reads even if a write exists in the
waiting list for that data item. Thus read requests are
serviced and forwarded immediately either if no writes
exist in the waiting list, or if the read request reaches
the front of the waiting list due to reordering, and the
previous forward list was either read-only, or now con-
sists only of trailing reads. If read requests frequently
reach the front of the wait list, there is a possibility
of starvation of the writes already in the wait list. To
avoid this, only a certain number of reads are allowed
to be forwarded immediately per forward list - wait list
cycle. The number of read requests that are forwarded
immediately by the server are observed to increase,
leading to corresponding extra book-keeping for the
server, but this is in the server’s spare time, when it
would otherwise have been idle and unutilized.

3.4 Other Read Optimizations

If the forward list is read-only frequently, then the
probability of being able to forward new read request
that arrive increases. To ensure that the forward list
was read-only often, we can split the forward lists, ei-
ther (i) forwarding leading reads and keeping the trail-
ing read-write part behind at the server, or (ii) for-
warding the leading read-write part and keeping the
trailing reads behind at the server, or (iii) a combi-
nation of both. However, our simulation experiments
have shown that the optimizations that involve split-
ting the forward list do not provide good performance.
It was observed that keeping requests behind at the
server increases the average response times, far out-
weighing any performance advantages that might have
been gained by having read-only forward lists more of-
ten. For these reason and due to space limitations we
will not discuss these optimizations further.

4 Simulation Testbed

In order to evaluate the performance of the s-
2pl, the g-2pl and its three read-only optimizations,
namely, g-2pl-robasic, g-2pl-rorw, and g-2pl-roreorder,
discrete event simulation models of all protocols were
developed using the C' programming language. We
consider a data-server database system, with a single
server and multiple clients connected by a high speed
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Figure 1: Percentage of Aborts Vs Propogation La-
tency (50 clients, Read Probability=0.6)

network. In this paper, we make the simplifying as-
sumption that the network latency between any two
sites (server-client, client-client) and in either direction
is the same, and no site and communication failures
occur. Also, we use the terms propagation latency and
network latency inter-changeably in this paper.

All clients are assumed to be identical and run
transactions that have the same statistical profile. The
multi-programming level at each client is assumed to
be one. Further, at the end of each transaction, it is
replaced with another transaction at that client site
after some idle time that is uniformly distributed be-
tween a given minimum and maximum values. Each
transaction accesses between 1 and N data items uni-
formly. These data items are drawn from a pool of M
data items that reside at the data server. M is pur-
posely kept small to emulate hot data access. Each
data access may be of the type read with a given read
probability p,. and of the type write with a probability
pw = 1 — p,. The transaction execution is sequential,
i.e., requests for data items are generated sequentially,
with each request being generated only after the pre-
vious request has been granted and some think time
(for computations) has elapsed. In our model, this
computation time is uniformly distributed between a
given minimum and maximum values.

In the s-2pl implementation, deadlocks are detected
by computing wait-for-graphs and aborting the trans-
actions necessary to remove the deadlocks, which is
the typical implementation found in commercial sys-
tems. In order to avoid the use of tunable timeouts,
we use deadlock avoidance, that is, deadlock detection
is initiated when a lock cannot be granted. However,
we have also implemented adaptive deadlock detection

# Servers 1

# Clients varying

7t hot data items 25

Tx execution pattern Sequential
Multiprogramming level at clients 1

# data items accessed by a transaction 1-5
Percentage of read accesses 0-100%
Network latency 1-750
Computation Time / database operation | 1-3

Idle Time between transactions 2-10

Table 1: Simulation Parameters

and compared it with both fixed periodic deadlock de-
tection and deadlock avoidance in order to assert the
impact of the selected deadlock detection scheme on
our experimental results. It was observed that the
deadlock avoidance algorithm provides better perfor-
mance than the other two schemes (Figure 1). The
simulation model assumes that the computation cost
at the data server to reorder the forward lists as well
as computing the wait-for-graphs is the same. Ta-
ble 1 summarizes all the experimental parameters and
the corresponding range of values of the performance
study.

After eliminating the transient phase, each simu-
lation run terminated after 100,000 transactions were
committed. For each set of parameters, the simula-
tions were run for 5 different seed numbers in order
to obtain statistically significant results. The simula-
tion results presented in the next section have relative
precision less than 1%.

5 Performance Analysis

Transaction Response Time

Figures 2 to 7 show the average transaction re-
sponse time plotted against the network latency for
different values of read probability — 0.0, 0.6, 0.8, 0.9,
0.95 and 1.0. The system had 50 clients accessing 25
hot data items uniformly.

For a transaction profile with no reads in it (Fig-
ure 2), g-2pl performs upto 11% better for lower prop-
agation latencies(1-50) as seen in LANs or smaller
MANSs, and upto 20% better for longer latencies(>100)
as in larger MANs and WANS, in terms of response
times than the s-2pl scheme. The improvement is par-
ticularly high for higher propagation latencies. The
behaviour of the various read optimizations is iden-
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Figure 2: Response Time Vs Propagation Latency for
Read Probability=0.0 (50 clients)

tical to that of g-2pl, as there are no reads for this
instance.

When there are about 60% reads in the system (Fig-
ure 3), g-2pl performs 20% better than s-2pl for lesser
latencies, and 25% better for longer propagation la-
tencies. At this stage, the g-2pl read optimizations
perform close to g-2pl. As there are an almost equal
number of reads and writes in the system, conditions
in which we get a read-only forward list, or when the
forward-list consists only of trailing reads are quite
infrequent. Thus, the gain obtained from the read op-
timizations if any, is insignificant.

For a higher read probability of 0.8 (Figure 4), g-
2pl performs 20% for smaller networks and 28% for
larger MANs and WANS better than s-2pl. With 80%
reads in the system, the read-optimizations start show-
ing their effects. g-2pl-robasic, g-2pl-rorw and g-2pl-
roreorder show improvements of 1.3%, 1.4% and 2.4%
respectively over g-2pl. As each of these optimiza-
tions adds a further condition to forward reads imme-
diately, we see the gradual increase in performance.
With these optimizations, g-2pl performs upto 30%
better than s-2pl.

When we observe the results for 90% reads (Fig-
ure 5), for lower propagation latencies, g-2pl without
any optimizations is slightly inferior to s-2pl. The rea-
son is that more read requests are submitted to the
server and at a faster rate that lead to more read-
only deadlocks and hence more delays. For the higher
propagation latencies however, g-2pl has a response
time about 20% better than s-2pl. When the read-
optimizations are factored in, g-2pl always performs
better than s-2pl: g-2pl-robasic is 17-29.5% better
than s-2pl, g-2pl-rorw is 17-29.8% better, while g-2pl-
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Figure 3: Response Time Vs Propagation Latency for
Read Probability=0.6 (50 clients)

roreorder is 17-30.3% better, with lesser improvements
for shorter propagation latencies, and greater improve-
ments for longer latencies. The improved response
time is particularly marked for higher propagation la-
tencies.

Similarly when there are 95% reads (Figure 6), g-2pl
performs only slightly better than s-2pl, giving maxi-
mum improvements of 8%. The addition of the read
optimizations however improves performance up to
25.5%, 26%, and 26.5% for the robasic, rorw, and rore-
order optimizations relative to s-2pl. The marginal
difference in performance between the various read op-
timizations for these higher read probabilities can be
explained to the fact that at higher read probabilites,
read-only forward lists occur frequently enough. The
conditions in which reads can be forwarded immedi-
ately by the latter two optimizations are hence rela-
tively the same as that for robasic.

Finally, when there are only reads in the system
(Figure 7), g-2pl normally suffers due to grouping of
reads. Not only do we observe read-read deadlocks,
but g-2pl has a response time thats up to 70% less
than s-2pl. The addition of the read optimizations en-
ables immediate dispatch of reads, and no grouping
takes place. Thus, not only are the read-only dead-
locks avoided, but g-2pl with the read-optimizations
has response times similar to s-2pl. Thus, we see that
with the read optimizations, g-2pl always performs
better than or equal to s-2pl in terms of response time,
irrespective of the read probability, getting improve-
ments of up to 30% relative to s-2pl.

Figure 8 summarizes our results for propagation la-
tency of 250 time units. It plots the average response
time against different values of read probability. For
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Figure 6: Response Time Vs Propagation Latency for
Read Probability=0.95 (50 clients)

Figure 4: Response Time Vs Propagation Latency for
Read Probability=0.8 (50 clients)
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Figure 7: Response Time Vs Propagation Latency for
Read Probability=1.0 (50 clients)

high data contention conditions (left part of the fig-
ure), g-2pl and its optimizations perform the best,
in this example about 18%. For low data contention
conditions and more specifically for read probabilities
higher than 95%, the g-2pl read optimizations still per-
form better than s-2pl and exhibit the same perfor-
mance under read-only conditions.

Thus far, we have demonstrated that g-2pl and its
optimizations scale with the network latency and for
all data contention conditions. In order to assert the
scalability properties of g-2pl and its optimizations
with repect to the number of clients, we studied how
the average response time increases with the number
of clients for a specific data contention conditions. Fig-
ure 9, for example, shows the average response time
for propagation latency 500 units and read probabil-
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clients, propagation latency = 250)
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Figure 9: Response Time Vs Number of Clients (Read
probability=0.25, propagation latency = 500)

ity of 0.25. As it was expected, both s-2pl and g-2pl
and its optimizations grow almost linearly with the
number of clients. However, it has been observed that
the slope of the graphs for the g-2pl variants is always
smaller than that of s-2pl which clearly indicates that
the g-2pl variants also exhibit better scalability with
respect to the number of clients.
System Throughput

Figure 10 compares the relative throughput of the
different protocols as the number of clients is increased
for a read probability of 0.75 and for propagation la-
tency of 500. The s-2PL protocol thrashes around 8-
9 clients. Although g-2pl grows slower than s-2PL,
it scales much better, and its throughput keeps in-
creasing up to 600 clients. As the number of clients
increases, the grouping also increases, and the bene-
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Figure 10: Throughput Vs Number of Clients (Read
probability=0.75, propagation latency = 500)

fits associated with this grouping causes throughput
to improve too. Similar behavior has been observed
for all read probabilities except for read probability
1.0. when in g-2PL the reads are penalized due to
grouping. Thus, for read probability 1.0, the roles are
reversed and s-2PL exhibits better throughput up to
650 clients.

Clearly, the three g-2PL read optimizations elim-
inate any read penalty. For high read probabilities,
they service and forward read requests immediately
more often, and thus their initial behaviour tends
more towards s-2pl for 30 or fewer clients. However,
they exhibit better behavior than s-2PL, showing a
dip around 12-13 clients and 8% higher throughput at
peak. Beyond 30 clients, it seems that as the num-
ber of clients and the effects of grouping increase the
behavor of the three read optimizations matches and
improves slightly over g-2pl. Of these optimizations,
g-2PL-roreoder seems to exhibit the best performance.

6 Conclusions

Most global Internet systems have a pressing need
for scalability. Since the demand for services is ex-
tremely bursty, it is hard to dimension the capacity
of servers, network and storage elements needed for
a specific service. Scalable protocols that are able to
effectively hide the network latency and other process-
ing delays will go a long way to mitigate the problems
faced by various service providers. Towards this end,
several data shipping access protocols have been pro-
posed including our group two-phase locking (g-2PL)
protocol.



While the g-2PL protocol outperformed other com-
parable protocols under high data contentions, its per-
formance was comparatively poorer when the data
contention was low, that is, in predominantly read-
only situations. Since a majority of transactions on
the Internet fall in the read category, it is clear from
a practical standpoint that any scalable data sharing
protocol must address this scenario well. With this
motivation, in this paper, we present three read opti-
mizations to the original g-2PL protocol that enables it
to exhibit scalable performance under the entire range
of data contention levels, at different network laten-
cies and with a larger number of clients. The results
of our experiments confirmed that the g-2PL protocol
with its read optimizations consistently outperforms
the s-2PL protocol, while adding only a minor level of
complexity to the system. The performance gains in
response time are quite large, at about 30% under the
server-based two phase locking protocol.

It seems that the cooperative aspect of g-2PL, in
conjunction with its superior performance over other
data shipping protocols, can be used as a core data ac-
cess protocol in Internet peer-to-peer (P2P) systems.
We are currently extending this work for such P2P
environments.
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