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Abstract Similarly to traditional database views, WebViews can be

A WebViewis a web page automatically created from base data in two forms:thua_l or materialized Virtual WebViews are
typically stored in a DBMS. Given the multi-tiered architecture COMPuted dynamically on-demand, whereas materialized
behind database-backed web servers, we have the option ofVebViews are precomputed. In the virtual case, the cost
materializing a WebView inside the DBMS, at the web server, or t0 compute the WebView increases the time it takes the
not at all, always computing it on the fly (virtual). Since WebViews web server to service the access request, which we will
must be up to date, materialized WebViews are immediately refer to as thequery response time On the other hand,
refreshed with every update on the base data. In this paper wein the materialized case, every update to base data leads
compare the three materialization policies (materialized inside the 1o an update to the WebView, which increases the server
DBMS, materi_alized at the web server _anq virtual) analytically, load. Having a WebView materialized can potentially give
through a detailed cost model, and quantitatively, through eXtens'VesignificantIy lower query response times, compared to the

experiments on an implemented system. Our results indicate that_. -
g . . virtual approach. However, it may also lead to performance
materializing at the web server is a more scalable solution and can . . . .
degradation, if the update workload is too high.

facilitate an order of magnitude more users than the virtual and o . : .
materialized inside the DBMS policies, even under high update | he decision whether to materialize a WebView or not, is

workloads. similar to the problem of selecting which views to material-
ize in a data warehouse [GM95, Gup97, Rou98], known as
: theview selection problemThere are, however, many sub-

1 Introduction stantial differences. First of all, the multi-tiered architecture
There is no doubt that the Web has penetrated our lives.of typical database-backed web servers raises the question
From reading the newspaper and shopping online, to searchof whereto materialize a WebView. Secondly, updates are
ing for the best prices on books or airplane tickets, the Web performedonline at web servers, as opposed to data ware-
is increasingly being used as the means to do everyday taskshouses which are usually off-line during updates. Thirdly,
One common denominator for most of these activities, is that although both problems aim at decreasing query response
the web pages we access gemerated dynamicallyisually  times, warehouse views are materialized in order to speed
due topersonalizatiofBBC*98]. Personalized web pages, up the execution of a few, long analytical (OLAP) queries,
that are created from base data, are one of the many instanceghereas WebViews are materialized to avoid repeated exe-
of WebViewslIn general, we define WebViews as web pages cution of many small OLTP-style queries. Finally, the gen-
that are automatically generated from base data, which areeral case of the WebView materialization problem has no
typically stored in a DBMS. constraints, whereas most view selection algorithms impose

. o some resource constraints (e.g. maximum storage or main-
*Prepared through collaborative participation in the Advanced Telecom- . .
munications/Information Distribution Research Program (ATIRP) Consor- tenance window limits [KR99])_
tium sponsored by the U.S. Army Research Laboratory under the Federated N the next section we briefly describe the architecture

Laboratory Program, Cooperative Agreement DAAL01-96-2-0002. of typical database-backed web servers, followed by some
t Also with the Institute for Systems Research, University of Maryland. motivating examples of WebViews
Also with the Institute for Advanced Computer Studies, University of '
Maryland.

1.1  Architecture

When only servicing requests for static pages, the web server
simply parses user requests, reads the appropriate files from
In the P di f the ACM SIGMOD International a disk and sends them to the clients that requested them
gon]‘eererr?gee?)nlrll/?asn%gerenent of Data, Dallrz;se,r'rllg;gg,aUSA (Figure. 1a). . UsuaIIy,. copies of the requested pages are
May 14 - 19, 2000 cachedin an intermediate node, th@oxy, or at the client

site in anticipation of future requests on the same pages. By
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3 1.2  Motivation

Client Client There are many examples of WebViews other than personal-
Ere ized web pages. A search at an online bookstore for books by
! a particular author returns a WebView that is generated dy-
Web server _Ej ! Web server namically; a query on a cinema server generates a WebView
i that lists the current playing times for a particular movie; a
" Application Server request for the current sports scores at a newspaper site re-
1 turns a WebView which is generated on the fly. Except for
DBMS —Ej generating web pages as a result of a specific query, Web-
! Views can also be used to produce multiple versimesyg
(a) Static pages | (b) Dynamic pages of the same data. An emerging need in this area is for the
ability to support multiple web devicesspecially browsers
Figure 1: Multi-tier architecture for web servers with limited display or bandwidth capabilities, such as cel-

lular phones or networked PDAs.
Although there are a few web servers that support arbi-

replicating pages at the proxy or at the cliemeb caching trary queries on their base data, most web applications “pub-

strives to eliminate unnecessary data transmissions acrosdsh” a relat|ve!y small set opredefinecor parameterlzed
the network [Mal98]. WebViews, which are to be generated automatically through

) ) DBMS queries. A weather web server, for example, would

On the other hand, in order to serve dynamically generat- yost probably report current weather information and fore-
ed pages\/ebViewy the web server has to be interfacedto & gt for an area based on a ZIP code, or a city/state combina-
relational database (Figure 1b). In this case, after parsing theiion. Given that weather web pages can be very popular and
user requests, the web server sends the corresponding queny o the update rate for weather information is not high, ma-
to the DBMS, often times via a middleware layer, the appli- teriglizing such WebViews would most likely improve per-
cation server [Gre99]. Then, the query results are send backgrmance. In general, WebViews that are a result of arbitrary
to the web server, which formats them in html and transmits 4 eries, are not expected to be shared, and hence need not be
the resulting web page to the client that requested it. Sinceqnsidered for materialization. This category would include,
these web pages are generated dynamically, they are usuakq example, WebViews that were generated as a result of a
ly marked “non-c.acheable” and thus cannot be copied at thequery on a search engine. On the other hand, predefined or
proxy or at the client. parameterized WebViews can be popular and thus should be

Existing database-backed web servers, that publish dy-considered for materialization in order to improve the web
namically generated pages, support either virtual or peri- server’s performance.
odically refreshed WebViews, depending on whether users Personalized WebViews can also be considered for mate-
can tolerate stale results or not. For example, at the onlinerialization, if first they are decomposed intch&rarchy of
auction site eBayhtp://www.ebay.com ) we have both WebViews. Take for example a personalized newspaper. It
types of WebViews. The summary pages for each auction can have a selection of news categories (only metro, interna-
category, which contain a list of all the available items to- tional news), a localized weather forecast and a horoscope
gether with the highest bid values, are periodically refreshed page (for Scorpio). Although this particular combination
every few hours. This means that they can easily become outmight be unique or unpopular, if we decompose the page
of date. On the other hand, the WebViews for the individual into four WebViews, one for metro news, one for interna-
items are virtual, and are always computed on the fly. tional news, one for the weather and one for the horoscope,

Given the multi-tiered architecture of web servers, there then these WebViews can be accessed frequently enough to
are two more WebView materialization options that can Merit materialization.
guarantee fresh results and have not yet been used: material-
izing inside the DBMSind materializingat the web server ~ Stock server example
For the former, we can use the DBMS to also store the query One motivating example, which we will use throughout the
results in the form omaterialized view$GM99], whereas paper, is that of a stock web server. Such a system can
for the latter, we can use the web server’s disk to store Web- have three types of WebViews: summary pages, individual
Views as files [LR99]. By materializing inside the DBMS company pages and personalized portfolio pages. Summa-
we avoid expensive recomputation, whereas by materializ- ry pages list companies either by industry group (e.g. con-
ing at the web server, we also eliminate the latency of going sumer goods, financial, transportation, utilities) or by activ-
to the DBMS every time, which could lead to DBMS over- ity (e.g. most active, biggest gainers, biggest losers). Indi-
loading [Sin98]. However, in order to guarantee freshness vidual company pages have the latest stock price, graphs at
for both cases, the materialized WebViews need to be imme-various time-scales (from intra-day to multi-year charts) and
diately refreshed with every update on the base data. pointers to news articles about the company. Finally, person-
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alized portfolio pages are expected to have a list of the stocksmajor differences. The most important ones are the multi-
that one owns, along with calculations for their current value tiered architecture of database-backed web servers, which
and profits/losses, based on the latest stock prices. raises the question efhereto materialize, and the need to
The aforementioned WebViews display a wide variety of perform updates at the web sereeiling, as opposed to data
access and update patterns. For example, the summary pagesarehouses in which updates are usually off-line. WebView
based on industry groups are typically less update-intensivematerialization is also different from the traditional web
than the summary pages based on stock activity (e.g. biggestaching techniques, since it is targeted at dynamically
gainers). Even WebViews of the same category can exhibitgenerated pages and guarantees that the WebView is always
substantially different access or update characteristics. Forup to date. Finally, WebView materialization is performed at
example, individual company WebViews are expected to the webserver whereas web caching is done at tients
follow the popularity of the company: heavily traded stocks or at proxies.
will correspond to WebViews that are accessed frequently There is some recent work on cachiignamic web data
and are also update-intensive. The Active Cachescheme [CZB98] supports caching of
Existing stock web servers typically generate all of their dynamic web objects at proxies. This is done by allowing
WebViews on the fly, which results in really poor response Servers to supply cache applets to be executed on cache
times at peak hours. Materialization can improve perfor- hits at the proxies without contacting the server. In [IC97]
mance dramatically by precomputing popular WebViews the authors present tHynamicWeb cachehich has the
and keeping them up to date in the background, instead ofability to cache dynamic web pages at the server the first
repeating their generation with every request. Although the time they are created, and in [LISD99] they provide an
personalized portfolio WebViews are obviously too specif- API which allows application programs to explicitly add,
ic to be considered for materialization, both the WebViews delete and update cached data. Finally, [CID99] describes
for individual companies and the summary WebViews are an algorithm to identify which cached objects are affected
candidates for materialization, even under high update ratesby a change to the underlying data. Unfortunately, none of
The reason for this is that even if, for example, a stock price the aforementioned papers deals with sktectionproblem:
is updated 10 times a second, it is beneficial to precomputeidentifying which dynamic data to cache and which not to
WebViews that are based on it, if they are accessed morecache.

often (e.g. 20 times a second). Although there is a lot of recent literature on building
and maintaining web sites [CFP99, AMM98, FF88,
1.3  Contributions FLM98], there is little work on the performance issues

Inthi r we consider the full trum of materialization associated with WebViews. [MMM?98] provide an algorithm
S paper we considerthe Iull Spectrum ol materialization 4, support client-side materialization of WebViews, and

choices f(?[LWEbVIE:N? |n”a dat'abased-bta(':lkzd Wetb Serdvelr;[ryvf[sm%, AMR"98] present algorithms to maintain them
compare them analytically using a detaiied cost modet Ina incrementally. In [LR99], we presented preliminary results

accounts for both the inherent parallelism in multitasking that materializing WebViews at the web server is often times
systems and also for the fact that updates on the base dat%etter than computing them on the fly. However, we did not

are to be done concurrently W't.h the accesses. we haVeconsider materialization inside the DBMS, as we do in this
implemented all flavors of WebView materialization on an

. . paper.
industrial streng_th databqse-backed web server (WebMat) [FLSY99] consider the problem of automatically optimiz-
and ran extensive experiments. We then compared the.

. R . e ing the run-time management of declaratively specified web
various materialization choices quantitatively. Our results 9 g y sp

. LN sites. Although they report considerable speedup rates from
showed that the policy of materializing at the web server view materialization, they dismiss it on the grounds of space

\S/ﬁ?lljef SUIB:St?;tt')altlz :Jter;[:: rtr:]:tr;rtir;ﬁzior:hei}rrw t}';(;’ tﬁnthQat; heoverhead. We believe that storage overhead is not an issue
al policy ete g1ns € ’ when it comes to web servers since it refers to disk space

except for a very limited number of cases. and not main memory.

The rest of the paper is organized as follows. In the next Finally, by materializing WebViews, we allow the web

section we give an Overview Of. relatecj }Nork. Section 3 server to scale up well under peak workloads, by serving
presents the three materialization policies and compares,

h ticallv. In Section 4 di h Its of slightly stale data. This is one way of performimgb
them anay‘uca y. _ectlon We discuss the Tesults of - ntent adaptatiorto improve server overload behavior.
our experiments, and in the last section we present our

lusi [AB99] propose to resolve the overload problem by adapting
conciusions. delivered content to load conditions.

2 Related Work 3  WebView materialization strategies

As we mentioned earlier, although the decision whether The WebMat system is our implementation of a database-
to materialize a WebView or not, is similar to the view backed web server that can support all flavors of WebView
selection problem in data warehouses, there are a fewmaterialization. It has three software components:vthb
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<html><head>
<title>Biggest Losers</title>

name | curr | prev [ diff [ volume

[ name | curr | prev | diff |

AMZN | 76 ] 79| -3] 8.06M AOL 111 115 -4 </head><body>
AOL 111 | 115 -4 | 13.29M EBAY 138 | 141 -3 <h1>Biggest Losers</h1><p>
EBAY | 138 | 141| -3 | 2.16M AMZN | 76| 79| -3
IBM 107 | 107 0| 8.8IM <table>
IFMX 6 6 0 1.42M <tr><td> name <td> curr <td> diff
LU 60 61 -1 | 10.98M <tr><td> AOL <td> 111 <td> -4
MSET 88 90 2 23.49M <tr><td> EBAY <td> 141 <td> -3
ORCL 45 26 1 9.19M <tr><td> AMZN <td> 76 <td> -3
T 43 44 1| 597™ </table>
YHOO | 171 | 173 | -2 | 7.10M
Last update on Oct 15, 13:16:05
</body></html>
(a) source (b) view (c) WebView
Table 1: Derivation path for the stock server example
server theDBMSand theupdater Each of them typically Formally, if S; is the set of sources, we define tipeery
spawns a lot of processes or threads that run in parallel. operator Q, such thatQ(S;) = wv;, wherev; is the view

The web server services the access requests. Dependingorresponding to the query results. Moreover, we define the
on the materialization policy, it may execute a query at the formatting operator, such that(v;) = w;, wherew;
DBMS or read a file from disk. The DBMS computes is a WebView, the result of formatting view; into html.
answers to queries, or applies updates to tables. Finally,If we want to associate a view; with the set of sources
the updater runs in the background and services the updatdhat generated it, we use the inverse query oper@tot:
stream. It supplies the DBMS with updates to the base tablesv; = Q~1(S;). Similarly, to associate a WebView with the
and may also cause the refresh of derived data inside theview it was generated from, we use the inverse formatting
DBMS, or write the new version of a WebView to disk, by operatorF—1: w; = F~1(V;). Finally, since there can be a
executing the appropriate quérst the DBMS, formatting  hierarchy of views, we exten@ to take as argument other

the results in html, and saving them to a file. views, if necessary. So, for example, in the general case
One important property of the WebMat systentrsns- ~ We haveQ(S;) = v}, Q(v}) = vZ, ..., Q(u}™") = v,

parency clients sending access requests to the web serverw; = F(v}'). If n = 1, we have dlat schema
do not have to know what kind of materialization a Web-  All WebViews have the same derivation path regardless

View has, if any. of the materialization policy. The only difference among
the three policies is that the materialized strategies choose to
3.1 WebView Derivation Path cache (and keep consistent) parts of the intermediate results,

whereas in the virtual strategy everything is computed from
scratch. In the next sections, we describe the three policies
in detail.

Before describing the materialization policies in detail, we
give an overview of the derivation path for each WebView.
First, a set of base tables, theurcesis queried, and, then,
the query results, theiew, are formatted into an html page,
the WebView 3.2 Virtual Policy

Table 1 illustrates how WebView derivation works for the In the virtual policy, everything is computed on the fly.
summary pages from the stock server example. In order,To produce a WebViewwv; we would need to query the
for example, to generate the WebView for the biggest losers, DBMS and format the results in html. Therefore, the cost
we start from the base table with all the stocks (the source), of accessing WebView; would be:
and issue a query to get the ones with the biggest decrease

(the view) and, then, format the query results into html (the Avire(wi) = Cqueny(S:i) + Crormar(vi) Q)
WebView). —_— ——

. @dbms @web server

We will use s; to denote a source table, arff] =

{si1,8i,. .., 5, } for a set of sources. Similarly, we will  wherev; = 7' (w;) is the view from which the WebView
usev; for a view, andVi = {vi,,vi,,...,vi, } for a set ), isgenerateds; = Q' (v;) is the set of sources needed to
of views. Finally, we will usew; for a WebView, and  answer the querfiquen(S;) is the cost to query the sources,
Wi = {wi,, wi,, ..., w;, } for a set of WebViews. and, Crormat(vs) is the cost of formatting view; into htm.

1 . We notice that the query part of the access cost is executed at
It should be noted that the query is exactly the same as the one used by, . .
the web server to generate virtual WebViews and, as such, we do not needtn® DBMS, whereas the formatting part is performed at the

to duplicate any DBMS functionality at the updater. web server.
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Since nothing is being cached under the virtual policy, whereas in the recomputation case, the cost to upgate
whenever there is an update on the base tables that produce
the WebView, we only need to update the base tables. Cupdatd Vi) = CauerSk) + Cstore(vr) (6)

Therefore, the cost of an update to souges: whereS;, = Q! (vy) is the set of sources needed to answer

the query that corresponds to viewy, and Csiore(vi) IS
vir i) = j 2 . .
Urire(s5) = Cupdand ;) (2) the cost to store the query results inside the DBMS, which
@dbms includes the cost to delete the previous “version”vpf

Although the incremental refresh is expected to have the
lowest cost, there are classes of views which cannot be
updated incrementally and thus must be recomputed every
time.

We realize that, like the virtual case, the formatting of the
uery results during accesses can be done in parallel with
he updating of the sources and the materialized views, as
they are done at different processes (the former is being done
at the web server, while the latter is done at the DBMS).
Ei—|owever, there is a possible source of data contention
© Bhtween the gueries executed during the servicing of the
access requests and the updates of the sources or of the
materialized views, since they are all done at the DBMS.

wheres; is one of the base tables that are used to produce
WebVieww;, ors; € Q~(F~(w;)), andCypgatd i) is the
cost to update table;.

We realize that the formatting of the query results during
accesses can be doireparallel with the updating of the
sources, as they are done at different processes (the forme
is being done at the web server, while the latter is done at
the DBMS). However, we also realize that there is a possible
source of data contention between the query phase during th
accesses and the updates, since they both have to be don
the DBMS.

3.3 Materializing inside the DBMS

When materializing inside the DBMS (theatdb policy) 3.4 Materializing at the web server

we save the results of the query that is used to generateWwhen we materialize a WebView at the web server (the

the WebView. To produce the WebView, we would need to matweb policy) we do not need to query the DBMS or

access the stored results and format them in html. Therefore perform any further formatting in order to satisfy user

the access cost for WebViewy; in this case is: requests. We simply have to read it from disk, which makes
the cost of accessing a WebView rather small:

Anatav (wz) = Cacces{”i) + Cformat(Ui) (3)
—_— Y ) = ;
@dbms @web server Amatweb (wz ) Cread(wz ) (7)

@web server
wherev; = F~1(w;) is the view from which the WebView
w; is generated, an@acces{v;) is the cost of accessing the il disk
materialized view;. We notice that, similarly to the virtual as afile to disk. . o
policy, the first part of the access cost is executed at the Because of the no staleness requirement, the materialized

DBMS, whereas the formatting part is performed at the web WePView needs to be kept up to date all the time. This
server. means that on every update to one of the base tabldmat

Since we assumed a no staleness requirement, the store@rOduce tthehWegV|ew, _\;ve ha\ﬁ t(f) retgrj]enera:)te the V\/tebV|e\(/jv
query results need to be kept up to date all the time. This rom scratch and save it as a file for the web server to read.

leads to an immediate refresh of the materialized views So the cost of an update to SOuGES:
inside the DBMS with every update to the base tables they

whereClreaq(w;) is the cost to read); which has been saved

are derived from. So the cost of an update to soujas: Unatwen(87) = &m@ * Z M
@dbms €Y7 @dbms
Unatan(5;) = Cupdatds;) + Z Cupdatd vk (4) + Z Crormat(v) + Cwrite(wr) — (8)
N vievj , vk EV; @u;)’dater
@dbms

whereV; is the set of views that are affected by the update
whereCypdatds;) is the cost to update soureg, V; is the totables;, orV; = {vy|s; € Q7 (vp)}, v = FH(wy) is
set of materialized views that are affected by the update tothe view that generates WebViaw,, S, = Q="' (vy,) is the
tables;, or V; = {vn|s; € Q! (vm)}, and,Cupgad vk IS set of sources needed to answer the query that corresponds
the cost to update the materialized viey There are two  to view vy, andCuwie(wy,) iS the cost to write the WebView
options for updating the materialized view: incremental wy, to disk.
refreshandrecomputationFor the incremental refresh case, We realize that the handling of user requests and the

the cost to updatey, is simply: updates can be done entirely in parallel. Moreover, parts of
the execution of an update can also be done in parallel, since
Cupdatd Vi) = Crefresi(Vk) (5) the work is distributed among the DBMS and the updater
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| web server| DBMS | updater| | web server| DBMS | updater|

| |

L vie [ v [ VvV | | [ virt ] [ V] |

[mab [ v [ V ] | [_matdb | [ V] |

| matweb || Vi | | | | matweb || | v | Vv ]
(a) Accesses (b) Updates

Table 2: Work distribution among processes for each policy

processes. However, there is some data contention, mainlywhich w; is derived. IfWW is the set of all WebViews at
between theaeadw;) and thewrite(w;) operations which the web server, we want to partitidii into three disjoint

both involve the web server’s disk. setsWeirt, Waatar aNdWoatwen, SUCh that the average query
response time is minimizedi¥,;,+ would contain all the
3.5 The selection problem WebViews under the virtual policy¥pata Would contain all

The choice of materialization policy for each WebView has the WebViews materialized inside the DBMS, afthatwes

a big impact on the overall performance. For example, would contain all the WebViews materialized at the web
a WebView that is costly to compute and has very few server. Finally, letSy;,. be the set of sources that have to
updates, should be materialized to speed up access requestBe queried to generate the WebViewslii,., OF Syire =

On the other hand, a WebView that can be computed fast @' (F ' (Wyirt)), and similarlyS,..a» the set of sources
and has much more updates than accesses, should not bé&at have to be queried to generate the WebViewi$'igas,
materialized, since materialization would mean more work andSnacwes the set of sources needed for generatingses-

than necessary. We define the WebView selection problem Since we are minimizing the average query response time,
as following: in order to calculate the total cost we simply need to identify

for each policy how much the concurrent updates influence
For every WebView at the server, select the ma-  the access requests. Table 2 lists which subsystems are

terialization strategy (virtual, materialized inside involved when servicing (a) access or (b) update operations
the DBMS, materialized at the web server), which under each policy. For example, when a WebView is
minimizes the average query response timen accessed under the@t  policy, both the web server and the
the clients. We assume that there is no storage DBMS are involved (Table 2a, first line). The same holds
constraint. for thematdb policy (second line), whereas for accessing

) ] o WebViews under thenatweb policy only the web server
The assumption that there is no storage constraint is not;q required (third line). On the other hand, the DBMS

unrealistic, since storage means disk space (and not maing yequired for servicing updates under all three policies

memory) for both materialization policies (inside the DBMS (Table 2b), whereas the updater processes are involved only
or at the web server) and also WebViews are expected 10 \nder thematweb policy (Table 2b, third line). We clearly

be relatively small. With the average web page at 30KB goq hat the DBMS is used at all times, except for when
[AW97], a single S0GB hard disk for example could hold - 5-cegsing a WebView which is materialized at the web

approximately 1.5 million pages. In this paper, we also gener This means that the database server can become the
assume a no staleness requirement, i.e. the WebViews musfyjeneck of the system, and thus the load on the DBMS is
always be up to date. expected to dominate the average query response time.

. Let TC be the total cost for servicing access requests,
3.6  Costaggregation which is the amount that we want to minimize. Obviously,
In order to solve the WebView selection problem, except TC will include the access costs for the WebViews in our
for the cost functions presented in Sections 3.2 - 3.4, system, but it must also include the influence to the access
we will need to aggregate the access and update costscosts from the updates that are executed concurrently. As
taking into account the frequencies with which they occur. \we mentioned earlier, the DBMS is expected to be the
Unlike traditional materialized view applications, updates in pottleneck of the system, so we isolate from the update costs
a database-backed web server antine, executing in the  the parts that are executed in the DBMS. Formally, we use

background while the server is processing access requestsy, () to select from cost’ the part that is executed in the
However, since the objective of the WebView selection pBMS. From Eq. 2, we have thatipmd Uvirt) = Uyire, and

problem is to minimize thaverage query response timee  from Eq. 4, Tabmd Unatab) = Unatan- TO 9€t7abmdUnatwen)
expect the aggregate cost formulas to be more sensitive tofrom Eq. 8 we simply ignore the parts that are executed in
the access costs than the update costs. the updater processes (third term).

Let f,(w;) be theaccess frequencfor WebView w;,
and f,,(s;) be thefrequency of update®r sources;, from
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] | | time o || tme | R
M1 T I \I /I, I [ \ I \I\ / f T \

query sources
update query sources format update ’ access format update W R
source results source update mat view results source format
mat view results
a)virt  policy b) matdb policy c) matweb policy

Figure 2: Staleness measurement

Putting it all together, we have that the total cost for the web server sends the reply back to the user and not the

servicing access requests is: time the user receives the reply.
Figure 2(a) illustrates the minimum staleness under the
TC = ) fa(wi) X Anaswer(wi) virtual policy (virt ), which is
W € Whatwen
+ Z b X fu(sk) X Tdbmd Unatweb(5k)) MSrize = \T“pdate(sj ),+\T querd Si) + Tf‘”m"’“(v"),
Sk € Snatweb before request during request
+ Z fa(wi) X Avizs (wi) For the materialized inside the DBMS policynétdb ),
w; €Woire Figure 2(b) gives us
+ Y fulsi) X Uyire(s0) 9
8i ESyire MShatar = Tupdate(sj) + Trefresh('Ui) + Taccesévi) + Tformat('Ui)
+ Z fa(wj) % Amatdb(wj) befor;rrequest duringvrequest
J Wmacdb . . . ..
wic Finally, Figure 2(c), illustrates that the minimum staleness
+ Z fu(85) X Unatan(s;) when materializing a WebView at the web serveratweb
87 € Snasan policy) is
Where b = 0, |f inrt — Wmatdb = @, and b = 1' MSn = T S + T S + T (%
otherwise. The meaning df is that when we only have aeweb ~ upcaid 57) que‘rf( 2 formai l)l
WebViews materialized at the web server, the cost of before request
updating them in the background using the DBMS does +  Twite(wi) + Tread(w;)
—— ——r

not have a direct impact on the average query response
time. However, when we have WebViews that are either
virtual or materialized inside the DBMS, the cost of updating By comparing the three minimum staleness formulas, we
the matweb WebViews in the background will influence have:

the average query response time of the andmatdb

WebViews. MSiatab — MSyire = Trefresh('Ui) + Tacces{'Ui) - Tquery(Si)

MSiatweb — MSyire = Twrite(wi) + Tread(wi)

before request  during request

3.7 Staleness calculation

Although, at first sight, the virtual policy would seem to Under light load conditions, we expect to have the virtual
provide the most up to date responses, this misconceptionpolicy to have slightly lower minimum staleness than the
is quickly cleared away if we consider the basis of our other two policies: MS;ire < MSiatwer < MSiacab-
freshness measurement to be the time oféipdy instead of However, this will not hold when the load at the server
the request. Using the time of the reply is more meaningful, increases. As we will see later in the experiments section,
since that is the time when the users get to access the answeall policies do not scale up in the same way. Specifically, the
to their query. We calminimum stalenessMS, the time matweb policy can support at least 10 times more requests
it takes for an update to propagate to the user, or, in otherthan the other two policiexift , matdb ), since it allows
words, the time between the reply to a WebView request and for more parallelism between the access and update requests.
the time of the last database update that affected this reply.This means that as the load at the system increasesrthe

All points of time refer to the web server in order to avoid andmatdb policies will reach the heavy load mark much
network delays, so the time of the reply is actually the time faster than thanatweb policy. After that point, the time
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to service access requests increases dramatically and affectway, the handling of the WebView access requests was done
the minimum staleness (Figure 3). In general, although exclusively from within the apache processes, resulting in an
under light server loads, the minimum staleness is aboutorder of magnitude improvement in performance [LROOa].
the same for all policies, as the load increases in the serverWe used perl DBI (version 1.08) and the Informix DBD
the matweb policy is expected to have the least minimum (version 0.60) to communicate to the DBMS, from within

staleness, since it scales better. Apache, as well as from the updater processes. We kept
the connections to the databgsersistent so that we did
_ mat-web not have to establish a new connection with every request,
mat-db virtual

which gave us another order of magnitude improvement

in performance. Finally, we also instrumented Apache to
measure the time it takes for the server to service each query

Minimum Staleness

request. Note that we made our measurements of query
response time at thserver thus eliminating any network
latency.

Server Load

Figure 3: Minimum staleness under heavy loads Updater We had 10 updater processes running in the
background. Informix does not have native support for
materialized views, so for thmatdb policy, we stored the

3.8 Discussion materialized views as tables, and had the updater issue an

As mentioned during the presentation of the materialization update SQL statement whenever there was an update on the

strategies, there is a lot phrallelismin a database-backed base data. It should be noted that most DBMS products

web server. For example, the formatting of the query results that support materialized views, also store them as relational

at the web server can be done in parallel with the updates att@bles (e.g. Oracle [BD98]).

the DBMS. In a single-processor machine, this parallelism

means that we are ab_le to recover _idle time due to /O yargware We used a SUN UltraSparc-5 with 320MB of

blocking or data contention by performing other useful tasks. memory, a 3.6GB Seagate Medalist disk as our server, and,
Furthermore, we expect that the virtual and the material- 5 cjyster of 22 SUN Ultra-1 workstations as clients. All of

ized inside the DBMS policies make the database server theihe machines were on the same local area network and were
bottleneck, since every request (accesses and updates alik§)nning Solaris 2.6.

has to query the DBMS. For accesses, this means that each
user request has to go through an extra layer of software,

communicating data back and forth. On the other hand, the Workload — Unless noted otherwise, in each experiment we
materialized at the web server policy breaks this bottleneck, had 1000 WebViews that were defined over 10 source tables

by performing a lot of the work in the background (the up- (100 per table). The queries corresponding to the WebViews

dater processes) and relying on the web server alone to serVere selections on an indexed attribute, which returned 10
vice user requests. This was verified by our experiments, lUPles each. The WebView size in html was 3KB. Each
which we present in the next section. experiment was executed for 10 minutes. Finally, the update
operations were changing the value of one attribute at the
4  Experiments source table.

As we mentioned earlier, the WebMat system consists of 4.1  Scaling up the access rate

three software components: the web server, the DBMS and), this group of experiments we increased the access request

the updater. We used the Apaéheeb server, version a6 from 10 requests per second up to 100 requests per

1.3.6 and the Informix Dynamic Server with Universal Data  ggcond and measured the average query response time under

Option ver. 9.14. The updater was written in Perl. the three different materialization policies: virtuglr( ),
materialized inside the DBMSr(atdb ) and materialized at

Web server extensions In order for the web server to the web servemjatweb).

generate pages dynamically, we need to execute scripts A load of 10 access requests per second should correspond

that communicate with the DBMS. To avoid the overhead to a “moderate” load at the server of about 0.8 million

of creating a new Unix process with every access requesthits per day. On the other hand, 100 requests per second

(which is what happens with cgi-bin), we used thed perl should correspond to a rather “heavy” load at the web
package ver. 1.19 on top of the Apache web server. Thisserver of about 8.6 million hits per day. For comparison,
our department’s web servehitfp://www.cs.umd.edu )

2Apache is the most popular web server according to the February 2000
Netcraft Web Server Survey, with a 58% market share. The survey is 9€ts about 95,000 re_queStS per day. or 1-1. reql.JGSt per
available online abttp://www.netcraft.com/survey/ second, whereas the widely popular online auction site eBay
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1.5+ 1.59
Query Query
Response 14 Response 14
Time (sec) Time (sec)
0.5 0.5
0 0
10 25 35 50 100 10 25 35 50
Ovirt 0.0393]0.3543|0.9487|1.4877|1.8426 Ovirt 0.09604 |0.51774|1.05175|1.59493
Omat-db  |0.0477] 0.323 |0.9198|1.4984|1.8697 Omat-db  |0.33903|0.84658 | 1.3145 |1.83115
Hmat-web |0.0026|0.0028|0.0039|0.0096|0.1891 W mat-web | 0.00921|0.00459 | 0.00576 | 0.05372
Access Rate (requests/sec) Access Rate (requests/sec)
(a) No updates (b) 5 updates/sec

Figure 4: Scaling up the access rate

(http://www.ebay.com ) gets about 50 million hits per  products with native support for materialized views, if
day or 580 requests per second on aveté@etober 1999). they use relational tables to store the materialized views.
We run two sets of experiments: one with no updates, and However, when we also have updates (Figure 4b), except for
one with 5 updates/sec. The access and the update requestipdating the source tables, threatdb policy has to refresh
were distributed uniformly over all 1000 WebViews. Each the materialized views as well. This means that the DBMS
experiment was scheduled to run for 10 minutes and was (Which is the bottleneck) will become significantly more
repeated three times: in the first one, all WebViews were loaded, which results in a substantial drop in performance
kept virtual, in the second one all were materialized inside for the matdb policy, compared to theirt  policy. For
the DBMS and in the last one they were materialized at the example at 25 requests/sec, although with no updates the
web server. We report the average query response times pefatdb policy is 9.69% faster than thért  policy, when
WebView as they were measured at the web server. At thewe have 5 updates/sec, thiat policy is 63.53% faster
95% confidence level, the margin of error was 0.14% - 2.7% than thematdb policy.
for thevirt  policy, 0.17% - 3.16% for thenatdb policy
and 1.3% - 6.5% for thenatweb policy. 4.2 Scaling up the update rate
Figure 4a depicts the results of our experiments with no In this group of experiments we increased the update rate up
updates and Figure 4b when we have 5 updates/sec. Wg0 25 updates/sec, while the access rate was constant at 25
immediately notice that thenatweb policy has average requests/sec. Each experiment was scheduled to run for 10
query response times that are consistently at least an ordeminutes and was repeated three times, one for each policy
of magnitude (10 - 230 times) less than those ofine  or (virt , matdb andmatweb). We report the average query
matdb policies. This was expected, as tmatweb policy, response times per WebView in Figure 5.
in order to service a request, simply reads a file from disk
(even if the updater process is running in the background,

constantly updating this file), whereas under thg , 1
matdb policies we have to compute a query at the DBMS 1.2
for every request (even if the WebView is materialized inside 1
the DBMS, we still have to access it). Furthermore, since the Reaponce °°]
web processes are “lighter” than the processes in the DBMS, Time (sec) ]
thematweb policy scales better than the other two. 0.2

Figure 4a also shows that thaért and thematdb T [ 5 [10]15] 20 2
policies have similar query response times. This is explained Dvirt __ |0.354/0.51810.636/0.724/0.812/0.877
by the fact that although theatdb policy had precomputed mmatwsb]o.00510.00510 041000610 0E[0.008
the query results, the cost of accessing them is about the Update Rate (updates/sec)
same as the cost of generating them from scratch, using
thevirt  policy. This will also be true for other DBMS Figure 5: Scaling up the update rate

30f course, eBay does not have just one plain SUN UltraSparc-5to serve  Qur first observation is that the average query response
all these hits, but, rather, they rely on many machines. A simple search on time remains practically unchanged for timatweb policy
the ebay.com domain, lists 478 machines, out of which 35 have the word . . .
“cgi” as part of their name and are most probably used to serve dynamically despite the updates. The reason behind this is that, as

generated web pages. predicted by the total cost formula of Eq. 9, the cost of the
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Query 0.3 Query 0.6
Response Response
Time (sec) 0.27 Time (sec) 0.41
0.1 0.24
0 0
100 1000 2000 100 1000 2000

Ovirt 0.191387 | 0.345614 | 0.403253 Ovirt 0.200242 | 0.399725 | 0.599306

Omat-db 0.054166 | 0.294979 | 0.414375 Omat-db | 0.084057 | 0.524963 | 0.857055

Emat-web| 0.002983 | 0.002867 | 0.003537 H mat-web| 0.003385 | 0.003459 | 0.007814

Number of views Number of views
(a) No updates (b) 5 updates/sec

Figure 6: Scaling up the number of WebViews

accesses under thmatweb policy is not affected by the  with 5 updates/sec, the crossover point where \tiie

updates, since they are done at the background by anothepolicy outperforms thenatdb policy is even earlier, at 1000

process, the updater. WebViews, whereas for 2000 WebViews, thiet  policy
The second observation is that timeatdb policy is gives 43% faster query response times than rtegdb

performing significantly worse than thirt  policy in the policy.

presence of updates. This is explained by the fact that

updates under thmatdb policy lead to extra work at the 4.4  Scaling up the WebView size

DBMS in order for the materialized views to be kept up to  The size of a WebView can increase in two ways: (a)

date. On the other hand, since the queries are not expensivepy increasing the number of tuples in each view, or (b)

the gain from precomputing is negligible. As a result, the by increasing the size of the resulting html page. We

virt  policy gives 56% - 93% faster query response times investigated both options in this group of experiments.

compared to thenatdb policy in the presence of updates.

4.3  Scaling up the number of WebViews

In this group of experiments we varied the number of
WebViews in the system. We ran one set of experiments

with 100 WebViews, a second set with 1000 WebViews and rewporse ]
a third set with 2000 WebViews. In all experiments, the Time (sec) 041
aggregate access rate was 25 requests / sec. Each experiment

1+

0.8

0.2+

ran for 20 minutes and was repeated three times, one for each 0 10 20

policy (virt , matdb andmatweb). In all experiments, Dvirt 0517742 0.770037

we modified the view definition for 10% of the WebViews: oot
instead of a simple selection, they were defined as a join on View Selectivity

the index attribute between two tables, resulting in a more

expensive generation query. Figure 7: Scaling up the view size

Figure 6a depicts the results of our experiments with
no updates and Figure 6b when we have 5 updates/sec. In the first set of experiments, we increased the number
In the no update case, when the number of WebViews is of tuples in a WebView from 10 to 20. The access rate
small, thevirt  policy performs substantially worse than was 25 requests/sec, and we also had 5 updates/sec. The
thematdb policy (3.5 times worse for 100 WebViews, and experiment run for 10 minutes, and was repeated 3 times,
21% worse for 1000 WebViews), since the time to compute one for each policy. We report the average query response
the WebView generation query is not negligible. However, time per WebView in Figure 7. We can see that although the
as the number of views increases, so does data contentiontesponse time increases for thiet andmatdb policies,
The matdb policy will exhibit more data contention than it does not double: there is a 50% increase for\he
thevirt  policy, because the number of materialized views policy and a 15% increase for tineatdb policy. Moreover,
is much higher than the number of source tables. Eventuallythe response time for theatweb policy remains virtually
(when the number of WebViews is 2000), the performance unaffected, since all the “extra work” generated from the
of thevirt  policy will be better than that of thenatdb increase in the view size is executed at the updater process
policy, even for expensive queries. If we consider the case and does not have a direct effect on the web server.
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WebView Size (KB) Updates
Figure 8: Scaling up the html size Figure 9: Verifying the cost model

In the second set of experiments, we increased the size of Figure 9 depicts the results of our experiments. For
the html page (WebView) from 3KB to 30KB. The access each experiment, we report the average query response time
rate was 25 requests/sec, and we also had 5 updates/sec. Thg WebViews under thevirt  policy (left, light-colored
experiment run for 10 minutes, and was repeated 3 times,column) and the average query response timenfatweb
one for each policy. We report the average query responsewWebViews (right, dark-colored column). As we showed in
time per WebView in Figure 8. Again we see that the section 4.2, the average query response time for WebViews
response times for thart andmatdb policies increase.  under thematweb policy changes very little with increases
However, unlike the previous experiment, in this case, the in the update workload, which agrees with the total cost
response time for theatweb policy increases significantly.  formula and the results from this experiment. Rant
This is explained by the fact that a big change in the WebViews however, there is a significant increase in the
WebView size (from 3KB to 30KB) is actually affecting the average query response time when there are updates, which
web server, since it will have to spend more time reading the also agrees with our formula. The case of updates on
files from disk. virt  WebViews (second pair of columns) has 27% higher

) ) o average query response times compared to the no updates
4.5 Zipfvs uniform access distribution case. When the updates are matweb WebViews (third
In all of our experiments, we used a uniform distribution pair of columns) the increase in average query response
for the access rates. We ran two sets of experiments whera@ime is even higher: 236% compared to the no updates
the access rates followed a Zipf distribution with a theta of case. The reason for this is that the updates omitisveb
0.7 as suggested in [BCPY] and compared them against \WebViews are using the DBMS, which has adverse effects
the uniform distribution case (due to lack of space we do on the performance ofirt  access queries. This was
not include the graphs, the reader is referred to [LROOb]). clearly predicted by the total cost formula, since we included
We saw that the query response times are significantly lowerthe cost of updates anatweb WebViews in the case where
(11% - 23%) under the Zipf distribution for all policies. This  there are other types of WebViews in the system (second line
is due to the fact that there is more reference locality in the of Eq. 9,6 = 1). The reason for such a big difference in
Zipf workload than in the uniform case. Therefore, by using our case is that except for putting more load on the DBMS,
a uniform distribution in our experiments, we exposed the ypdates omatweb WebViews also compete againsit
WebMat system to a “worst case” scenario for the accessqueries for resources inside the DBMS. In the caserof
requests. updates, this did not happen, because both the queries and

. the updates were referring to the same tables.
4.6  Verifying the cost model

In the final set of experiments we tried to verify the total 5
cost formula from Eq. 9. We had 1000 WebViews (500

of them were kept virtual and 500 were materialized under WebView materialization can speed up the query response
the matweb policy), with an aggregate access rate of 25 times of database-backed web servers significantly. How-
requests / sec. We ran four experiments. In the first one, ever, the multi-tiered architecture of typical web servers and
we had no updates. In the second experiment, updates wer¢he need for online updates raise new issues, when compared
made only to the 500irt WebViews, at an aggregate rate to the view selection problem in data warehouses. In this
of 5 updates / sec. In the third experiment, updates werepaper, we compared three materialization policies: virtual
made only to the 50@natweb WebViews, at a rate of 5  (virt ), materialized inside the DBMS3r(atdb ) and mate-
updates / sec. Finally, in the last experiment, both types of rialized at the web servematweb), both analytically and
WebViews had updates, with an aggregate rate of 5 upd / secquantitatively. We developed a detailed cost model that takes

Conclusions
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into consideration the parallelism inherent in real systems, [CZB98]
and examined the effects of each policy on the staleness of
WebViews and on the query response times. We also im-

plemented an industrial strength database-backed web servelFFK 98]

(WebMat) and run extensive experiments.

The results from our experiments show that thatweb
policy scales better than the other two, giving at least 10
times faster query response times, since it avoids going to[FLM98]
the DBMS on every access request. This is true even under
high access / update workloads, which makesntfa¢web

policy the preferred choice on heavily loaded servers. On [FLSY99]

the other hand, thmatdb policy was better than thert

policy only for a very limited number of cases: when the
number of WebViews was small (100) or when the update
rates were low 5 updates/sec). Even for cases where the [GM95]
gueries are expensive, precomputing them usingrtatlb
policy usually leads to a decrease in performance (compared

to thevirt

case) except for when the number of WebViews

is small, or when there are no updates.
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