
WebView Materialization�

Alexandros Labrinidisy Nick Roussopoulosz

Department of Computer Science Department of Computer Science
University of Maryland, College Park University of Maryland, College Park

labrinid@cs.umd.edu nick@cs.umd.edu

Abstract
A WebViewis a web page automatically created from base data
typically stored in a DBMS. Given the multi-tiered architecture
behind database-backed web servers, we have the option of
materializing a WebView inside the DBMS, at the web server, or
not at all, always computing it on the fly (virtual). Since WebViews
must be up to date, materialized WebViews are immediately
refreshed with every update on the base data. In this paper we
compare the three materialization policies (materialized inside the
DBMS, materialized at the web server and virtual) analytically,
through a detailed cost model, and quantitatively, through extensive
experiments on an implemented system. Our results indicate that
materializing at the web server is a more scalable solution and can
facilitate an order of magnitude more users than the virtual and
materialized inside the DBMS policies, even under high update
workloads.

1 Introduction
There is no doubt that the Web has penetrated our lives.
From reading the newspaper and shopping online, to search-
ing for the best prices on books or airplane tickets, the Web
is increasingly being used as the means to do everyday tasks.
One common denominator for most of these activities, is that
the web pages we access aregenerated dynamically, usually
due topersonalization[BBC+98]. Personalized web pages,
that are created from base data, are one of the many instances
of WebViews. In general, we define WebViews as web pages
that are automatically generated from base data, which are
typically stored in a DBMS.
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Similarly to traditional database views, WebViews can be
in two forms:virtual or materialized. Virtual WebViews are
computed dynamically on-demand, whereas materialized
WebViews are precomputed. In the virtual case, the cost
to compute the WebView increases the time it takes the
web server to service the access request, which we will
refer to as thequery response time. On the other hand,
in the materialized case, every update to base data leads
to an update to the WebView, which increases the server
load. Having a WebView materialized can potentially give
significantly lower query response times, compared to the
virtual approach. However, it may also lead to performance
degradation, if the update workload is too high.

The decision whether to materialize a WebView or not, is
similar to the problem of selecting which views to material-
ize in a data warehouse [GM95, Gup97, Rou98], known as
theview selection problem. There are, however, many sub-
stantial differences. First of all, the multi-tiered architecture
of typical database-backed web servers raises the question
of whereto materialize a WebView. Secondly, updates are
performedonline at web servers, as opposed to data ware-
houses which are usually off-line during updates. Thirdly,
although both problems aim at decreasing query response
times, warehouse views are materialized in order to speed
up the execution of a few, long analytical (OLAP) queries,
whereas WebViews are materialized to avoid repeated exe-
cution of many small OLTP-style queries. Finally, the gen-
eral case of the WebView materialization problem has no
constraints, whereas most view selection algorithms impose
some resource constraints (e.g. maximum storage or main-
tenance window limits [KR99]).

In the next section we briefly describe the architecture
of typical database-backed web servers, followed by some
motivating examples of WebViews.

1.1 Architecture

When only servicing requests for static pages, the web server
simply parses user requests, reads the appropriate files from
a disk and sends them to the clients that requested them
(Figure 1a). Usually, copies of the requested pages are
cachedin an intermediate node, theproxy, or at the client
site in anticipation of future requests on the same pages. By
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Figure 1: Multi-tier architecture for web servers

replicating pages at the proxy or at the client,web caching
strives to eliminate unnecessary data transmissions across
the network [Mal98].

On the other hand, in order to serve dynamically generat-
ed pages (WebViews), the web server has to be interfaced to a
relational database (Figure 1b). In this case, after parsing the
user requests, the web server sends the corresponding query
to the DBMS, often times via a middleware layer, the appli-
cation server [Gre99]. Then, the query results are send back
to the web server, which formats them in html and transmits
the resulting web page to the client that requested it. Since
these web pages are generated dynamically, they are usual-
ly marked “non-cacheable” and thus cannot be copied at the
proxy or at the client.

Existing database-backed web servers, that publish dy-
namically generated pages, support either virtual or peri-
odically refreshed WebViews, depending on whether users
can tolerate stale results or not. For example, at the online
auction site eBay (http://www.ebay.com ) we have both
types of WebViews. The summary pages for each auction
category, which contain a list of all the available items to-
gether with the highest bid values, are periodically refreshed
every few hours. This means that they can easily become out
of date. On the other hand, the WebViews for the individual
items are virtual, and are always computed on the fly.

Given the multi-tiered architecture of web servers, there
are two more WebView materialization options that can
guarantee fresh results and have not yet been used: material-
izing inside the DBMSand materializingat the web server.
For the former, we can use the DBMS to also store the query
results in the form ofmaterialized views[GM99], whereas
for the latter, we can use the web server’s disk to store Web-
Views as files [LR99]. By materializing inside the DBMS
we avoid expensive recomputation, whereas by materializ-
ing at the web server, we also eliminate the latency of going
to the DBMS every time, which could lead to DBMS over-
loading [Sin98]. However, in order to guarantee freshness
for both cases, the materialized WebViews need to be imme-
diately refreshed with every update on the base data.

1.2 Motivation

There are many examples of WebViews other than personal-
ized web pages. A search at an online bookstore for books by
a particular author returns a WebView that is generated dy-
namically; a query on a cinema server generates a WebView
that lists the current playing times for a particular movie; a
request for the current sports scores at a newspaper site re-
turns a WebView which is generated on the fly. Except for
generating web pages as a result of a specific query, Web-
Views can also be used to produce multiple versions (views)
of the same data. An emerging need in this area is for the
ability to support multiple web devices, especially browsers
with limited display or bandwidth capabilities, such as cel-
lular phones or networked PDAs.

Although there are a few web servers that support arbi-
trary queries on their base data, most web applications “pub-
lish” a relatively small set ofpredefinedor parameterized
WebViews, which are to be generated automatically through
DBMS queries. A weather web server, for example, would
most probably report current weather information and fore-
cast for an area based on a ZIP code, or a city/state combina-
tion. Given that weather web pages can be very popular and
that the update rate for weather information is not high, ma-
terializing such WebViews would most likely improve per-
formance. In general, WebViews that are a result of arbitrary
queries, are not expected to be shared, and hence need not be
considered for materialization. This category would include,
for example, WebViews that were generated as a result of a
query on a search engine. On the other hand, predefined or
parameterized WebViews can be popular and thus should be
considered for materialization in order to improve the web
server’s performance.

Personalized WebViews can also be considered for mate-
rialization, if first they are decomposed into ahierarchyof
WebViews. Take for example a personalized newspaper. It
can have a selection of news categories (only metro, interna-
tional news), a localized weather forecast and a horoscope
page (for Scorpio). Although this particular combination
might be unique or unpopular, if we decompose the page
into four WebViews, one for metro news, one for interna-
tional news, one for the weather and one for the horoscope,
then these WebViews can be accessed frequently enough to
merit materialization.

Stock server example

One motivating example, which we will use throughout the
paper, is that of a stock web server. Such a system can
have three types of WebViews: summary pages, individual
company pages and personalized portfolio pages. Summa-
ry pages list companies either by industry group (e.g. con-
sumer goods, financial, transportation, utilities) or by activ-
ity (e.g. most active, biggest gainers, biggest losers). Indi-
vidual company pages have the latest stock price, graphs at
various time-scales (from intra-day to multi-year charts) and
pointers to news articles about the company. Finally, person-
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alized portfolio pages are expected to have a list of the stocks
that one owns, along with calculations for their current value
and profits/losses, based on the latest stock prices.

The aforementioned WebViews display a wide variety of
access and update patterns. For example, the summary pages
based on industry groups are typically less update-intensive
than the summary pages based on stock activity (e.g. biggest
gainers). Even WebViews of the same category can exhibit
substantially different access or update characteristics. For
example, individual company WebViews are expected to
follow the popularity of the company: heavily traded stocks
will correspond to WebViews that are accessed frequently
and are also update-intensive.

Existing stock web servers typically generate all of their
WebViews on the fly, which results in really poor response
times at peak hours. Materialization can improve perfor-
mance dramatically by precomputing popular WebViews
and keeping them up to date in the background, instead of
repeating their generation with every request. Although the
personalized portfolio WebViews are obviously too specif-
ic to be considered for materialization, both the WebViews
for individual companies and the summary WebViews are
candidates for materialization, even under high update rates.
The reason for this is that even if, for example, a stock price
is updated 10 times a second, it is beneficial to precompute
WebViews that are based on it, if they are accessed more
often (e.g. 20 times a second).

1.3 Contributions

In this paper we consider the full spectrum of materialization
choices for WebViews in a database-backed web server. We
compare them analytically using a detailed cost model that
accounts for both the inherent parallelism in multitasking
systems and also for the fact that updates on the base data
are to be done concurrently with the accesses. We have
implemented all flavors of WebView materialization on an
industrial strength database-backed web server (WebMat)
and ran extensive experiments. We then compared the
various materialization choices quantitatively. Our results
showed that the policy of materializing at the web server
scales substantially better than the other two, and that the
virtual policy is better than materializing inside the DBMS,
except for a very limited number of cases.

The rest of the paper is organized as follows. In the next
section we give an overview of related work. Section 3
presents the three materialization policies and compares
them analytically. In Section 4 we discuss the results of
our experiments, and in the last section we present our
conclusions.

2 Related Work

As we mentioned earlier, although the decision whether
to materialize a WebView or not, is similar to the view
selection problem in data warehouses, there are a few

major differences. The most important ones are the multi-
tiered architecture of database-backed web servers, which
raises the question ofwhereto materialize, and the need to
perform updates at the web serveronline, as opposed to data
warehouses in which updates are usually off-line. WebView
materialization is also different from the traditional web
caching techniques, since it is targeted at dynamically
generated pages and guarantees that the WebView is always
up to date. Finally, WebView materialization is performed at
the webserver, whereas web caching is done at theclients
or at proxies.

There is some recent work on cachingdynamic web data.
The Active Cachescheme [CZB98] supports caching of
dynamic web objects at proxies. This is done by allowing
servers to supply cache applets to be executed on cache
hits at the proxies without contacting the server. In [IC97]
the authors present theDynamicWeb cachewhich has the
ability to cache dynamic web pages at the server the first
time they are created, and in [LISD99] they provide an
API which allows application programs to explicitly add,
delete and update cached data. Finally, [CID99] describes
an algorithm to identify which cached objects are affected
by a change to the underlying data. Unfortunately, none of
the aforementioned papers deals with theselectionproblem:
identifying which dynamic data to cache and which not to
cache.

Although there is a lot of recent literature on building
and maintaining web sites [CFP99, AMM98, FFK+98,
FLM98], there is little work on the performance issues
associated with WebViews. [MMM98] provide an algorithm
to support client-side materialization of WebViews, and
[Sin98, AMR+98] present algorithms to maintain them
incrementally. In [LR99], we presented preliminary results
that materializing WebViews at the web server is often times
better than computing them on the fly. However, we did not
consider materialization inside the DBMS, as we do in this
paper.

[FLSY99] consider the problem of automatically optimiz-
ing the run-time management of declaratively specified web
sites. Although they report considerable speedup rates from
view materialization, they dismiss it on the grounds of space
overhead. We believe that storage overhead is not an issue
when it comes to web servers since it refers to disk space
and not main memory.

Finally, by materializing WebViews, we allow the web
server to scale up well under peak workloads, by serving
slightly stale data. This is one way of performingweb
content adaptationto improve server overload behavior.
[AB99] propose to resolve the overload problem by adapting
delivered content to load conditions.

3 WebView materialization strategies
The WebMat system is our implementation of a database-
backed web server that can support all flavors of WebView
materialization. It has three software components: theweb
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name curr prev diff volume

AMZN 76 79 -3 8.06M
AOL 111 115 -4 13.29M
EBAY 138 141 -3 2.16M
IBM 107 107 0 8.81M
IFMX 6 6 0 1.42M
LU 60 61 -1 10.98M
MSFT 88 90 -2 23.49M
ORCL 45 46 -1 9.19M
T 43 44 -1 5.97M
YHOO 171 173 -2 7.10M

name curr prev diff

AOL 111 115 -4
EBAY 138 141 -3
AMZN 76 79 -3

<html><head>
<title>Biggest Losers</title>
</head><body>
<h1>Biggest Losers</h1><p>

<table>
<tr><td> name <td> curr <td> diff
<tr><td> AOL <td> 111 <td> -4
<tr><td> EBAY <td> 141 <td> -3
<tr><td> AMZN <td> 76 <td> -3
</table>

Last update on Oct 15, 13:16:05
</body></html>

(a) source (b) view (c) WebView

Table 1: Derivation path for the stock server example

server, theDBMSand theupdater. Each of them typically
spawns a lot of processes or threads that run in parallel.

The web server services the access requests. Depending
on the materialization policy, it may execute a query at the
DBMS or read a file from disk. The DBMS computes
answers to queries, or applies updates to tables. Finally,
the updater runs in the background and services the update
stream. It supplies the DBMS with updates to the base tables
and may also cause the refresh of derived data inside the
DBMS, or write the new version of a WebView to disk, by
executing the appropriate query1 at the DBMS, formatting
the results in html, and saving them to a file.

One important property of the WebMat system istrans-
parency: clients sending access requests to the web server
do not have to know what kind of materialization a Web-
View has, if any.

3.1 WebView Derivation Path

Before describing the materialization policies in detail, we
give an overview of the derivation path for each WebView.
First, a set of base tables, thesources, is queried, and, then,
the query results, theview, are formatted into an html page,
theWebView.

Table 1 illustrates how WebView derivation works for the
summary pages from the stock server example. In order,
for example, to generate the WebView for the biggest losers,
we start from the base table with all the stocks (the source),
and issue a query to get the ones with the biggest decrease
(the view) and, then, format the query results into html (the
WebView).

We will use si to denote a source table, andSi =

fsi1 ; si2 ; : : : ; sing for a set of sources. Similarly, we will
usevi for a view, andVi = fvi1 ; vi2 ; : : : ; ving for a set
of views. Finally, we will usewi for a WebView, and
Wi = fwi1 ; wi2 ; : : : ; wing for a set of WebViews.

1It should be noted that the query is exactly the same as the one used by
the web server to generate virtual WebViews and, as such, we do not need
to duplicate any DBMS functionality at the updater.

Formally, if Si is the set of sources, we define thequery
operatorQ, such thatQ(Si) = vi, wherevi is the view
corresponding to the query results. Moreover, we define the
formatting operatorF , such thatF(vi) = wi, wherewi
is a WebView, the result of formatting viewvi into html.
If we want to associate a viewvi with the set of sources
that generated it, we use the inverse query operatorQ�1:
vi = Q�1(Si). Similarly, to associate a WebView with the
view it was generated from, we use the inverse formatting
operatorF�1: wi = F�1(Vi). Finally, since there can be a
hierarchy of views, we extendQ to take as argument other
views, if necessary. So, for example, in the general case
we haveQ(Si) = v1i , Q(v1i ) = v2i , . . . ,Q(vn�1i ) = vni ,
wi = F(vni ). If n = 1, we have aflat schema.

All WebViews have the same derivation path regardless
of the materialization policy. The only difference among
the three policies is that the materialized strategies choose to
cache (and keep consistent) parts of the intermediate results,
whereas in the virtual strategy everything is computed from
scratch. In the next sections, we describe the three policies
in detail.

3.2 Virtual Policy

In the virtual policy, everything is computed on the fly.
To produce a WebViewwi we would need to query the
DBMS and format the results in html. Therefore, the cost
of accessing WebViewwi would be:

Avirt(wi) = Cquery(Si)| {z }
@dbms

+Cformat(vi)| {z }
@web server

(1)

wherevi = F�1(wi) is the view from which the WebView
wi is generated,Si = Q�1(vi) is the set of sources needed to
answer the query,Cquery(Si) is the cost to query the sources,
and,Cformat(vi) is the cost of formatting viewvi into html.
We notice that the query part of the access cost is executed at
the DBMS, whereas the formatting part is performed at the
web server.
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Since nothing is being cached under the virtual policy,
whenever there is an update on the base tables that produce
the WebView, we only need to update the base tables.
Therefore, the cost of an update to sourcesj is:

Uvirt(sj) = Cupdate(sj)| {z }
@dbms

(2)

wheresj is one of the base tables that are used to produce
WebViewwi, or sj 2 Q�1(F�1(wi)), andCupdate(si) is the
cost to update tablesj .

We realize that the formatting of the query results during
accesses can be donein parallel with the updating of the
sources, as they are done at different processes (the former
is being done at the web server, while the latter is done at
the DBMS). However, we also realize that there is a possible
source of data contention between the query phase during the
accesses and the updates, since they both have to be done at
the DBMS.

3.3 Materializing inside the DBMS

When materializing inside the DBMS (thematdb policy)
we save the results of the query that is used to generate
the WebView. To produce the WebView, we would need to
access the stored results and format them in html. Therefore,
the access cost for WebViewwi in this case is:

Amatdb(wi) = Caccess(vi)| {z }
@dbms

+Cformat(vi)| {z }
@web server

(3)

wherevi = F�1(wi) is the view from which the WebView
wi is generated, andCaccess(vi) is the cost of accessing the
materialized viewvi. We notice that, similarly to the virtual
policy, the first part of the access cost is executed at the
DBMS, whereas the formatting part is performed at the web
server.

Since we assumed a no staleness requirement, the stored
query results need to be kept up to date all the time. This
leads to an immediate refresh of the materialized views
inside the DBMS with every update to the base tables they
are derived from. So the cost of an update to sourcesj is:

Umatdb(sj) = Cupdate(sj) +
X

vk2Vj

Cupdate(vk)

| {z }
@dbms

(4)

whereCupdate(sj) is the cost to update sourcesj , Vj is the
set of materialized views that are affected by the update to
tablesj , or Vj = fvmjsj 2 Q�1(vm)g, and,Cupdate(vk) is
the cost to update the materialized viewvk. There are two
options for updating the materialized viewvk: incremental
refreshandrecomputation. For the incremental refresh case,
the cost to updatevk is simply:

Cupdate(vk) = Crefresh(vk) (5)

whereas in the recomputation case, the cost to updatevk is:

Cupdate(vk) = Cquery(Sk) + Cstore(vk) (6)

whereSk = Q�1(vk) is the set of sources needed to answer
the query that corresponds to viewvk, andCstore(vk) is
the cost to store the query results inside the DBMS, which
includes the cost to delete the previous “version” ofvk.
Although the incremental refresh is expected to have the
lowest cost, there are classes of views which cannot be
updated incrementally and thus must be recomputed every
time.

We realize that, like the virtual case, the formatting of the
query results during accesses can be done in parallel with
the updating of the sources and the materialized views, as
they are done at different processes (the former is being done
at the web server, while the latter is done at the DBMS).
However, there is a possible source of data contention
between the queries executed during the servicing of the
access requests and the updates of the sources or of the
materialized views, since they are all done at the DBMS.

3.4 Materializing at the web server
When we materialize a WebView at the web server (the
matweb policy) we do not need to query the DBMS or
perform any further formatting in order to satisfy user
requests. We simply have to read it from disk, which makes
the cost of accessing a WebViewwi rather small:

Amatweb(wi) = Cread(wi)| {z }
@web server

(7)

whereCread(wi) is the cost to readwi which has been saved
as a file to disk.

Because of the no staleness requirement, the materialized
WebView needs to be kept up to date all the time. This
means that on every update to one of the base tablessj that
produce the WebView, we have to regenerate the WebView
from scratch and save it as a file for the web server to read.
So the cost of an update to sourcesj is:

Umatweb(sj) = Cupdate(sj)| {z }
@dbms

+
X

vk2Vj

Cquery(Sk)| {z }
@dbms

+
X

vk2Vj

Cformat(vk) + Cwrite(wk)| {z }
@updater

(8)

whereVj is the set of views that are affected by the update
to tablesj , orVj = fvmjsj 2 Q�1(vm)g, vk = F�1(wk) is
the view that generates WebViewwk, Sk = Q�1(vk) is the
set of sources needed to answer the query that corresponds
to view vk, andCwrite(wk) is the cost to write the WebView
wk to disk.

We realize that the handling of user requests and the
updates can be done entirely in parallel. Moreover, parts of
the execution of an update can also be done in parallel, since
the work is distributed among the DBMS and the updater
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web server DBMS updater

virt
p p

matdb
p p

matweb
p

web server DBMS updater

virt
p

matdb
p

matweb
p p

(a) Accesses (b) Updates

Table 2: Work distribution among processes for each policy

processes. However, there is some data contention, mainly
between theread(wi) and thewrite(wi) operations which
both involve the web server’s disk.

3.5 The selection problem

The choice of materialization policy for each WebView has
a big impact on the overall performance. For example,
a WebView that is costly to compute and has very few
updates, should be materialized to speed up access requests.
On the other hand, a WebView that can be computed fast
and has much more updates than accesses, should not be
materialized, since materialization would mean more work
than necessary. We define the WebView selection problem
as following:

For every WebView at the server, select the ma-
terialization strategy (virtual, materialized inside
the DBMS, materialized at the web server), which
minimizes the average query response timeon
the clients. We assume that there is no storage
constraint.

The assumption that there is no storage constraint is not
unrealistic, since storage means disk space (and not main
memory) for both materialization policies (inside the DBMS
or at the web server) and also WebViews are expected to
be relatively small. With the average web page at 30KB
[AW97], a single 50GB hard disk for example could hold
approximately 1.5 million pages. In this paper, we also
assume a no staleness requirement, i.e. the WebViews must
always be up to date.

3.6 Cost aggregation

In order to solve the WebView selection problem, except
for the cost functions presented in Sections 3.2 - 3.4,
we will need to aggregate the access and update costs,
taking into account the frequencies with which they occur.
Unlike traditional materialized view applications, updates in
a database-backed web server areonline, executing in the
background while the server is processing access requests.
However, since the objective of the WebView selection
problem is to minimize theaverage query response time, we
expect the aggregate cost formulas to be more sensitive to
the access costs than the update costs.

Let fa(wi) be theaccess frequencyfor WebView wi,
andfu(sj) be thefrequency of updatesfor sourcesj , from

which wi is derived. IfW is the set of all WebViews at
the web server, we want to partitionW into three disjoint
setsWvirt,Wmatdb andWmatweb, such that the average query
response time is minimized.Wvirt would contain all the
WebViews under the virtual policy,Wmatdb would contain all
the WebViews materialized inside the DBMS, and,Wmatweb

would contain all the WebViews materialized at the web
server. Finally, letSvirt be the set of sources that have to
be queried to generate the WebViews inWvirt, or Svirt =

Q�1(F�1(Wvirt)), and similarlySmatdb the set of sources
that have to be queried to generate the WebViews inWmatdb,
andSmatweb the set of sources needed for generatingWmatweb.

Since we are minimizing the average query response time,
in order to calculate the total cost we simply need to identify
for each policy how much the concurrent updates influence
the access requests. Table 2 lists which subsystems are
involved when servicing (a) access or (b) update operations
under each policy. For example, when a WebView is
accessed under thevirt policy, both the web server and the
DBMS are involved (Table 2a, first line). The same holds
for the matdb policy (second line), whereas for accessing
WebViews under thematweb policy only the web server
is required (third line). On the other hand, the DBMS
is required for servicing updates under all three policies
(Table 2b), whereas the updater processes are involved only
under thematweb policy (Table 2b, third line). We clearly
see that the DBMS is used at all times, except for when
accessing a WebView which is materialized at the web
server. This means that the database server can become the
bottleneck of the system, and thus the load on the DBMS is
expected to dominate the average query response time.

Let TC be the total cost for servicing access requests,
which is the amount that we want to minimize. Obviously,
TC will include the access costs for the WebViews in our
system, but it must also include the influence to the access
costs from the updates that are executed concurrently. As
we mentioned earlier, the DBMS is expected to be the
bottleneck of the system, so we isolate from the update costs
the parts that are executed in the DBMS. Formally, we use
�dbms(C) to select from costC the part that is executed in the
DBMS. From Eq. 2, we have that�dbms(Uvirt) = Uvirt, and
from Eq. 4, �dbms(Umatdb) = Umatdb. To get�dbms(Umatweb)
from Eq. 8 we simply ignore the parts that are executed in
the updater processes (third term).
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Figure 2: Staleness measurement

Putting it all together, we have that the total cost for
servicing access requests is:

TC =
X

wk2Wmatweb

fa(wk)�Amatweb(wk)

+
X

sk2Smatweb

b� fu(sk)� �dbms(Umatweb(sk))

+
X

wi2Wvirt

fa(wi)�Avirt(wi)

+
X

si2Svirt

fu(si)� Uvirt(si) (9)

+
X

wj2Wmatdb

fa(wj)�Amatdb(wj)

+
X

sj2Smatdb

fu(sj)� Umatdb(sj)

where b = 0, if Wvirt = Wmatdb = ;, and b = 1,
otherwise. The meaning ofb is that when we only have
WebViews materialized at the web server, the cost of
updating them in the background using the DBMS does
not have a direct impact on the average query response
time. However, when we have WebViews that are either
virtual or materialized inside the DBMS, the cost of updating
the matweb WebViews in the background will influence
the average query response time of thevirt andmatdb
WebViews.

3.7 Staleness calculation
Although, at first sight, the virtual policy would seem to
provide the most up to date responses, this misconception
is quickly cleared away if we consider the basis of our
freshness measurement to be the time of thereply instead of
the request. Using the time of the reply is more meaningful,
since that is the time when the users get to access the answer
to their query. We callminimum staleness, MS, the time
it takes for an update to propagate to the user, or, in other
words, the time between the reply to a WebView request and
the time of the last database update that affected this reply.
All points of time refer to the web server in order to avoid
network delays, so the time of the reply is actually the time

the web server sends the reply back to the user and not the
time the user receives the reply.
Figure 2(a) illustrates the minimum staleness under the
virtual policy (virt ), which is

MSvirt = Tupdate(sj)| {z }
before request

+Tquery(Si) + Tformat(vi)| {z }
during request

For the materialized inside the DBMS policy (matdb ),
Figure 2(b) gives us

MSmatdb = Tupdate(sj) + Trefresh(vi)| {z }
before request

+Taccess(vi) + Tformat(vi)| {z }
during request

Finally, Figure 2(c), illustrates that the minimum staleness
when materializing a WebView at the web server (matweb
policy) is

MSmatweb = Tupdate(sj) + Tquery(Si) + Tformat(vi)| {z }
before request

+ Twrite(wi)| {z }
before request

+ Tread(wi)| {z }
during request

By comparing the three minimum staleness formulas, we
have:

MSmatdb �MSvirt = Trefresh(vi) + Taccess(vi)� Tquery(Si)

MSmatweb �MSvirt = Twrite(wi) + Tread(wi)

Under light load conditions, we expect to have the virtual
policy to have slightly lower minimum staleness than the
other two policies: MSvirt � MSmatweb � MSmatdb.
However, this will not hold when the load at the server
increases. As we will see later in the experiments section,
all policies do not scale up in the same way. Specifically, the
matweb policy can support at least 10 times more requests
than the other two policies (virt , matdb ), since it allows
for more parallelism between the access and update requests.
This means that as the load at the system increases, thevirt
andmatdb policies will reach the heavy load mark much
faster than thematweb policy. After that point, the time
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to service access requests increases dramatically and affects
the minimum staleness (Figure 3). In general, although
under light server loads, the minimum staleness is about
the same for all policies, as the load increases in the server,
the matweb policy is expected to have the least minimum
staleness, since it scales better.

mat-web
virtualmat-db

Server Load

Mi
nim

um
 S

tal
en

es
s

Figure 3: Minimum staleness under heavy loads

3.8 Discussion

As mentioned during the presentation of the materialization
strategies, there is a lot ofparallelismin a database-backed
web server. For example, the formatting of the query results
at the web server can be done in parallel with the updates at
the DBMS. In a single-processor machine, this parallelism
means that we are able to recover idle time due to I/O
blocking or data contention by performing other useful tasks.

Furthermore, we expect that the virtual and the material-
ized inside the DBMS policies make the database server the
bottleneck, since every request (accesses and updates alike)
has to query the DBMS. For accesses, this means that each
user request has to go through an extra layer of software,
communicating data back and forth. On the other hand, the
materialized at the web server policy breaks this bottleneck,
by performing a lot of the work in the background (the up-
dater processes) and relying on the web server alone to ser-
vice user requests. This was verified by our experiments,
which we present in the next section.

4 Experiments
As we mentioned earlier, the WebMat system consists of
three software components: the web server, the DBMS and
the updater. We used the Apache2 web server, version
1.3.6 and the Informix Dynamic Server with Universal Data
Option ver. 9.14. The updater was written in Perl.

Web server extensions In order for the web server to
generate pages dynamically, we need to execute scripts
that communicate with the DBMS. To avoid the overhead
of creating a new Unix process with every access request
(which is what happens with cgi-bin), we used themodperl
package ver. 1.19 on top of the Apache web server. This

2Apache is the most popular web server according to the February 2000
Netcraft Web Server Survey, with a 58% market share. The survey is
available online athttp://www.netcraft.com/survey/

way, the handling of the WebView access requests was done
exclusively from within the apache processes, resulting in an
order of magnitude improvement in performance [LR00a].
We used perl DBI (version 1.08) and the Informix DBD
(version 0.60) to communicate to the DBMS, from within
Apache, as well as from the updater processes. We kept
the connections to the databasepersistent, so that we did
not have to establish a new connection with every request,
which gave us another order of magnitude improvement
in performance. Finally, we also instrumented Apache to
measure the time it takes for the server to service each query
request. Note that we made our measurements of query
response time at theserver, thus eliminating any network
latency.

Updater We had 10 updater processes running in the
background. Informix does not have native support for
materialized views, so for thematdb policy, we stored the
materialized views as tables, and had the updater issue an
update SQL statement whenever there was an update on the
base data. It should be noted that most DBMS products
that support materialized views, also store them as relational
tables (e.g. Oracle [BD+98]).

Hardware We used a SUN UltraSparc-5 with 320MB of
memory, a 3.6GB Seagate Medalist disk as our server, and,
a cluster of 22 SUN Ultra-1 workstations as clients. All of
the machines were on the same local area network and were
running Solaris 2.6.

Workload Unless noted otherwise, in each experiment we
had 1000 WebViews that were defined over 10 source tables
(100 per table). The queries corresponding to the WebViews
were selections on an indexed attribute, which returned 10
tuples each. The WebView size in html was 3KB. Each
experiment was executed for 10 minutes. Finally, the update
operations were changing the value of one attribute at the
source table.

4.1 Scaling up the access rate

In this group of experiments we increased the access request
rate from 10 requests per second up to 100 requests per
second and measured the average query response time under
the three different materialization policies: virtual (virt ),
materialized inside the DBMS (matdb ) and materialized at
the web server (matweb ).

A load of 10 access requests per second should correspond
to a “moderate” load at the server of about 0.8 million
hits per day. On the other hand, 100 requests per second
should correspond to a rather “heavy” load at the web
server of about 8.6 million hits per day. For comparison,
our department’s web server (http://www.cs.umd.edu )
gets about 95,000 requests per day or 1.1 request per
second, whereas the widely popular online auction site eBay
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Figure 4: Scaling up the access rate

(http://www.ebay.com ) gets about 50 million hits per
day or 580 requests per second on average3 (October 1999).

We run two sets of experiments: one with no updates, and
one with 5 updates/sec. The access and the update requests
were distributed uniformly over all 1000 WebViews. Each
experiment was scheduled to run for 10 minutes and was
repeated three times: in the first one, all WebViews were
kept virtual, in the second one all were materialized inside
the DBMS and in the last one they were materialized at the
web server. We report the average query response times per
WebView as they were measured at the web server. At the
95% confidence level, the margin of error was 0.14% - 2.7%
for the virt policy, 0.17% - 3.16% for thematdb policy
and 1.3% - 6.5% for thematweb policy.

Figure 4a depicts the results of our experiments with no
updates and Figure 4b when we have 5 updates/sec. We
immediately notice that thematweb policy has average
query response times that are consistently at least an order
of magnitude (10 - 230 times) less than those of thevirt or
matdb policies. This was expected, as thematweb policy,
in order to service a request, simply reads a file from disk
(even if the updater process is running in the background,
constantly updating this file), whereas under thevirt ,
matdb policies we have to compute a query at the DBMS
for every request (even if the WebView is materialized inside
the DBMS, we still have to access it). Furthermore, since the
web processes are “lighter” than the processes in the DBMS,
thematweb policy scales better than the other two.

Figure 4a also shows that thevirt and thematdb
policies have similar query response times. This is explained
by the fact that although thematdb policy had precomputed
the query results, the cost of accessing them is about the
same as the cost of generating them from scratch, using
the virt policy. This will also be true for other DBMS

3Of course, eBay does not have just one plain SUN UltraSparc-5 to serve
all these hits, but, rather, they rely on many machines. A simple search on
the ebay.com domain, lists 478 machines, out of which 35 have the word
“cgi” as part of their name and are most probably used to serve dynamically
generated web pages.

products with native support for materialized views, if
they use relational tables to store the materialized views.
However, when we also have updates (Figure 4b), except for
updating the source tables, thematdb policy has to refresh
the materialized views as well. This means that the DBMS
(which is the bottleneck) will become significantly more
loaded, which results in a substantial drop in performance
for the matdb policy, compared to thevirt policy. For
example at 25 requests/sec, although with no updates the
matdb policy is 9.69% faster than thevirt policy, when
we have 5 updates/sec, thevirt policy is 63.53% faster
than thematdb policy.

4.2 Scaling up the update rate

In this group of experiments we increased the update rate up
to 25 updates/sec, while the access rate was constant at 25
requests/sec. Each experiment was scheduled to run for 10
minutes and was repeated three times, one for each policy
(virt , matdb andmatweb ). We report the average query
response times per WebView in Figure 5.
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0 5 10 15 20 25

Figure 5: Scaling up the update rate

Our first observation is that the average query response
time remains practically unchanged for thematweb policy
despite the updates. The reason behind this is that, as
predicted by the total cost formula of Eq. 9, the cost of the
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Figure 6: Scaling up the number of WebViews

accesses under thematweb policy is not affected by the
updates, since they are done at the background by another
process, the updater.

The second observation is that thematdb policy is
performing significantly worse than thevirt policy in the
presence of updates. This is explained by the fact that
updates under thematdb policy lead to extra work at the
DBMS in order for the materialized views to be kept up to
date. On the other hand, since the queries are not expensive,
the gain from precomputing is negligible. As a result, the
virt policy gives 56% - 93% faster query response times
compared to thematdb policy in the presence of updates.

4.3 Scaling up the number of WebViews

In this group of experiments we varied the number of
WebViews in the system. We ran one set of experiments
with 100 WebViews, a second set with 1000 WebViews and
a third set with 2000 WebViews. In all experiments, the
aggregate access rate was 25 requests / sec. Each experiment
ran for 20 minutes and was repeated three times, one for each
policy (virt , matdb and matweb ). In all experiments,
we modified the view definition for 10% of the WebViews:
instead of a simple selection, they were defined as a join on
the index attribute between two tables, resulting in a more
expensive generation query.

Figure 6a depicts the results of our experiments with
no updates and Figure 6b when we have 5 updates/sec.
In the no update case, when the number of WebViews is
small, thevirt policy performs substantially worse than
thematdb policy (3.5 times worse for 100 WebViews, and
21% worse for 1000 WebViews), since the time to compute
the WebView generation query is not negligible. However,
as the number of views increases, so does data contention.
The matdb policy will exhibit more data contention than
thevirt policy, because the number of materialized views
is much higher than the number of source tables. Eventually
(when the number of WebViews is 2000), the performance
of the virt policy will be better than that of thematdb
policy, even for expensive queries. If we consider the case

with 5 updates/sec, the crossover point where thevirt
policy outperforms thematdb policy is even earlier, at 1000
WebViews, whereas for 2000 WebViews, thevirt policy
gives 43% faster query response times than thematdb
policy.

4.4 Scaling up the WebView size

The size of a WebView can increase in two ways: (a)
by increasing the number of tuples in each view, or (b)
by increasing the size of the resulting html page. We
investigated both options in this group of experiments.
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virt 0.517742 0.770037

mat-db 0.846578 0.97494

mat-web 0.004592 0.004068

10 20

Figure 7: Scaling up the view size

In the first set of experiments, we increased the number
of tuples in a WebView from 10 to 20. The access rate
was 25 requests/sec, and we also had 5 updates/sec. The
experiment run for 10 minutes, and was repeated 3 times,
one for each policy. We report the average query response
time per WebView in Figure 7. We can see that although the
response time increases for thevirt andmatdb policies,
it does not double: there is a 50% increase for thevirt
policy and a 15% increase for thematdb policy. Moreover,
the response time for thematweb policy remains virtually
unaffected, since all the “extra work” generated from the
increase in the view size is executed at the updater process
and does not have a direct effect on the web server.
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Figure 8: Scaling up the html size

In the second set of experiments, we increased the size of
the html page (WebView) from 3KB to 30KB. The access
rate was 25 requests/sec, and we also had 5 updates/sec. The
experiment run for 10 minutes, and was repeated 3 times,
one for each policy. We report the average query response
time per WebView in Figure 8. Again we see that the
response times for thevirt andmatdb policies increase.
However, unlike the previous experiment, in this case, the
response time for thematweb policy increases significantly.
This is explained by the fact that a big change in the
WebView size (from 3KB to 30KB) is actually affecting the
web server, since it will have to spend more time reading the
files from disk.

4.5 Zipf vs uniform access distribution
In all of our experiments, we used a uniform distribution
for the access rates. We ran two sets of experiments where
the access rates followed a Zipf distribution with a theta of
0.7 as suggested in [BCF+99] and compared them against
the uniform distribution case (due to lack of space we do
not include the graphs, the reader is referred to [LR00b]).
We saw that the query response times are significantly lower
(11% - 23%) under the Zipf distribution for all policies. This
is due to the fact that there is more reference locality in the
Zipf workload than in the uniform case. Therefore, by using
a uniform distribution in our experiments, we exposed the
WebMat system to a “worst case” scenario for the access
requests.

4.6 Verifying the cost model
In the final set of experiments we tried to verify the total
cost formula from Eq. 9. We had 1000 WebViews (500
of them were kept virtual and 500 were materialized under
the matweb policy), with an aggregate access rate of 25
requests / sec. We ran four experiments. In the first one,
we had no updates. In the second experiment, updates were
made only to the 500virt WebViews, at an aggregate rate
of 5 updates / sec. In the third experiment, updates were
made only to the 500matweb WebViews, at a rate of 5
updates / sec. Finally, in the last experiment, both types of
WebViews had updates, with an aggregate rate of 5 upd / sec.
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Figure 9: Verifying the cost model

Figure 9 depicts the results of our experiments. For
each experiment, we report the average query response time
of WebViews under thevirt policy (left, light-colored
column) and the average query response time formatweb
WebViews (right, dark-colored column). As we showed in
section 4.2, the average query response time for WebViews
under thematweb policy changes very little with increases
in the update workload, which agrees with the total cost
formula and the results from this experiment. Forvirt
WebViews however, there is a significant increase in the
average query response time when there are updates, which
also agrees with our formula. The case of updates on
virt WebViews (second pair of columns) has 27% higher
average query response times compared to the no updates
case. When the updates are onmatweb WebViews (third
pair of columns) the increase in average query response
time is even higher: 236% compared to the no updates
case. The reason for this is that the updates on thematweb
WebViews are using the DBMS, which has adverse effects
on the performance ofvirt access queries. This was
clearly predicted by the total cost formula, since we included
the cost of updates onmatweb WebViews in the case where
there are other types of WebViews in the system (second line
of Eq. 9, b = 1). The reason for such a big difference in
our case is that except for putting more load on the DBMS,
updates onmatweb WebViews also compete againstvirt
queries for resources inside the DBMS. In the case ofvirt
updates, this did not happen, because both the queries and
the updates were referring to the same tables.

5 Conclusions

WebView materialization can speed up the query response
times of database-backed web servers significantly. How-
ever, the multi-tiered architecture of typical web servers and
the need for online updates raise new issues, when compared
to the view selection problem in data warehouses. In this
paper, we compared three materialization policies: virtual
(virt ), materialized inside the DBMS (matdb ) and mate-
rialized at the web server (matweb ), both analytically and
quantitatively. We developed a detailed cost model that takes
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into consideration the parallelism inherent in real systems,
and examined the effects of each policy on the staleness of
WebViews and on the query response times. We also im-
plemented an industrial strength database-backed web server
(WebMat) and run extensive experiments.

The results from our experiments show that thematweb
policy scales better than the other two, giving at least 10
times faster query response times, since it avoids going to
the DBMS on every access request. This is true even under
high access / update workloads, which makes thematweb
policy the preferred choice on heavily loaded servers. On
the other hand, thematdb policy was better than thevirt
policy only for a very limited number of cases: when the
number of WebViews was small (100) or when the update
rates were low (<5 updates/sec). Even for cases where the
queries are expensive, precomputing them using thematdb
policy usually leads to a decrease in performance (compared
to thevirt case) except for when the number of WebViews
is small, or when there are no updates.
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