
Generating dynamic content at database-backed web servers"
cgi-bin vs mod_perl

Alexandros Labrinidis
labrinid@cs, umd. edu

Nick Rous-sopoulos t
nick@cs.umd.edu

Depar tment of Compu te r Science and Institute for Sys tems Research,
Univers i ty o f Maryland, Col lege Park, M D 20742

Abstract

Web servers are increasingly being used to deliver
dynamic content rather than static HTML pages. In
order to generate web pages dynamically, servers
need to execute a script, which typically connects
to a DBMS. Although CGI was the first approach
at server side scripting, it has significant perfor-
mance shortcomings. Currently, there are many al-
ternative server side scripting architectures which
offer better performance than CGI. In this paper, we
report our experiences using mod_perl, an Apache
Server module, which can improve the performance
of CGI scripts by at least an order of magnitude.
Except for presenting results from our experiments,
we also briefly describe the implementation of an
industrial strength database-backed web site that we
recently built and give a quick overview of the var-
ious server-side scripting mechanisms.

1 Introduction

In less than 10 years from its debut in the early 90s,
the Web has changed our lives dramatically. From
comparing prices and shopping online, to viewing
realtime stock quotes and managing our bank ac-
counts, the Web is increasingly being used as the
means to do everyday tasks. One common denom-
inator for all these activities is the need to gener-
ate dynamic content [B+98]. Personalization, fre-
quent updates, and searching/querying capabilities

tAlso with the Institute for Advanced Computer Studies,
University of Maryland.

are the most common reasons behind dynamically
generated web pages.

In order to generate dynamic content, web
servers need to execute a program, through some
server-side scripting mechanism. This script typ-
ically connects to a DBMS, performs a query, re-
trieves the results, and formats them in HTML in
order to be returned to the user. Although cgi-bin
was the first approach at running programs at the
web server, it was not designed to handle the de-
mand for dynamic content creation that web servers
face today.

A plethora of server-side scripting mechanisms
have been proposed to replace cgi-bin [Gre99,
Ma198, FLM98]). One popular mechanism is
mod_perl, which is a module that can be used with
the Apache Server to support efficient CGI-like
server-side scripting.

Instead of having a program that generates
HTML, the various forms of annotated HTML
embed scripting commands within an HTML doc-
ument. The web server parses and executes these
commands, before the final HTML page is sent
to the user. The most popular annotated HTML
approaches are three. 1) PHP [PHP] is free,
open source software with many features and sup-
port for practically all DBMS platforms. PHP
also supports persistent database connections. 2)
Active Server Pages [ASP] is Microsoft's solu-
tion to server-side scripting and is supported by
the Internet Information Server, Microsoft's Web
server. ASP scripts can connect to SQL Server,
Access, Oracle, Informix or any ODBC-compliant
database. 3) JavaServer Pages [JSP] is SUN's ap-

26

r

S I G M O D Record , Vol. 29, No. 1, M a r c h 2000

http://crossmark.crossref.org/dialog/?doi=10.1145%2F344788.344794&domain=pdf&date_stamp=2000-03-01

proach to server-side scripting, that uses XML-
like tags and scriptlets written in Java to encapsu-
late the logic that generates content for the page.
JavaServer Pages can be used together with the Java
Servlets architecture.

Java Servlets [SRV] are another approach at dy-
namic content generation. They are protocol and
platform independent server-side components writ-
ten in Java. Servlets dynamically extend Java
enabled servers.

There is no simple answer when deciding which
server-side scripting mechanism is best for a partic-
ular setting. However, if moving from or upgrading
an existing CGI-based application, then the solution
which dramatically improves performance and has
the smallest migration cost is clearly mod_perl.

In the next section we present the various CGI-
based server-side scripting mechanisms in more de-
tail. In Section 3, we describe the implementa-
tion of a real-life application, and in Section 4
we present the results of performance experiments
comparing cgi-bin to mod_perl. Finally, we discuss
our conclusions in the last section.

2 Server-Side CGI Scripting

2.1 The CGI protocol

CGI 1 is a simple protocol that specifies the way in
which user-defined scripts that run at the web server
can communicate with users' browsers. Scripts that
follow the CGI protocol are called CGI scripts. A
CGI script operates in a rather straightforward way.
First, it gets invoked by the web server, reads the
user's input, which was typically submitted through
an HTML form, and parses it. Then it does what-
ever processing is required and, finally, the script
generates an HTML page that is returned to the user
(Figure 1).

The CGI protocol dictates how form data
should be passed from the web server to the
script. Specifically, the data must be trans-
formed into one long string of name-value pairs
like: "namel=valuel&name2=value2&... .", after
the values have been URL-encoded by converting
spaces to + signs and special characters to %xx

~CGI is short for Common Gateway Interface.

l m i encode
= form data j .---..-------l~ [read & parse'l

L user input J

I perform
processing l

1

Client Web Server CGI script

Figure 1: Execution of a CGI script

sequences, where xx is the ASCII value for the
given character. For example, the = sign should be
converted to %3d (see [Gun96] for more details).
When a CGI script is activated, it must parse this
long string into name-value pairs, doing the inverse
transformations.

The CGI protocol also mandates that the stan-
dard output of the script is forwarded to the user.
This means that the CGI script is expected to print
the necessary HTTP headers first, followed by the
results page in HTML.

Finally, it should be pointed out that the CGI pro-
tocol does not specify how the scripts are to be in-
voked by the server. Also, the CGI protocol does
not restrict the choice of programming language for
writing the scripts. The ability to use one's favorite
programming language is one of the main reasons
behind the popularity of CGI scripts.

2.2 The cgi-bin invocation mechanism

The cgi-bin invocation mechanism was adopted in
the implementation of CGI scripts by the first web
servers (CERN & NCSA). Each time the server
needs to run a CGI script, it has to spawn a new
process, setup the CGI environment, run the script,
and send the script's standard output to the user's
browser (Figure 2).

This approach to server side-scripting has some
advantages. First of all, since it follows the CGI
protocol, the choice of programming language is
not restricted. The second big advantage to fork-
ing a new processes for every CGI script is that it

S I G M O D Record , Vol. 29, No. 1, M a r c h 2000 27

i clier~ request

web server process
\

" ~ CGI script

open c l o s e \
db conn db conn\

fork new prec. cleanup

client

l
request

~ ' ~ cG= script

time

Figure 2: cgi-bin script invocation

provides an easy separation between the web server
and application scripts; "bad" programs will not
crash or slowdown the server.

There are however many disadvantages to using
the cgi-bin invocation mechanism, the most impor-
tant of which is the poor performance of the web
server, especially under high loads. Forking a new
process for every CGI script has a big operating sys-
tem overhead. Moreover, each script is expected
to have an initial setup phase, in order for exam-
pie to establish a connection to the DBMS, initial-
ize variables, etc. Since the lifespan of CGI scripts
is typically very small, all this setup overhead is
"wasted" and has to be repeated with every script.
To overcome this performance problem, a num-
ber of solutions have been proposed like FastCGI
[FCG], which attempts to eliminate the process
spawning overhead and mod_perl, which incorpo-
rates the CGI scripts inside the Apache Server, as
we see in more detail in the next section.

Finally, another disadvantage of the cgi-bin
approach are the long and ugly URLs like
http:#www.as'.umd.edu/cgi-bin/search.pl that must
be used.

2.3 The mod_perl invocation mechanism

Mod_perl [MP] is a server scripting module for the
widely popular 2 Apache web server [AS]. CGI
scripts on a mod_perl-enabled Apache Server run

XAccording to the December 1999 Netcrafl Server Survey,
an estimated 54.5% of web sites over the world use the Apache
Server [NSS99].

within the server processes (Figure 3), thus elimi-
nating the overhead of spawning a new process with
every client request. Furthermore, the scripts can

CGI e s ~ t | |

open close
db conn db corm

web server process
CGt script !

|ii~ili~;~;~;i|iiiii!il;i;!:~!!i~i;~;!iiiiiiii!!ii:!~[i~!~!;|

lime

Figure 3: mod_perl script invocation

store state information across multiple invocations
and can, for example, maintain open connections to
the DBMS, thus avoiding the cost of establishing a
connection with every request (Figure 4). Overall,
the mod_perl approach minimizes the setup over-
head for serving CGI scripts.

I client I client t client
lrequest ~request lrequest

~-q ~processing weblii!~CG;!~;i~!~tserver process iiiiCGi!iiii:~ ./H

open close
db conn db conn

time

Figure 4: mod_perl script invocation (with
persistent database connections)

The Apache Server is well designed and very ro-
bust, so that, although mod_perl scripts run within
the server processes, "bad" scripts cannot crash the
web server. For example, each script can service
at most MaxRequestsPerChiM requests, after which
it must be reloaded, thus cleaning up any possible
memory leaks it may have had.

Another advantage of the mod_perl approach is
that CGI scripts have access to the Apache Server
internals via an API, which increases their function-
ality. A direct consequence of this is being able
to get rid of the ugly URLs that were required by
the cgi-bin approach. For example we can eas-
ily have http://www.cs.umd.edu/search instead of
http:#www.cs.umd.edu/cgi-bin/search.pl.

28 S I G M O D Record , Vol. 29, No. 1, M a r c h 2000

One last advantage of mod_perl is the ease of mi-
gration from existing CGI scripts which were writ-
ten to work with cgi-bin. Since most of these scripts
were written in Perl or C, the transition is straight-
forward [CMP].

The mod_perl approach has only one disadvan-
• tage: the choice of programming language is some-

what restricted, since it has to be Perl or C. How-
ever, we do not believe this to be a real problem as
these two languages are the most popular ones for
writing CGI scripts.

3 A real-life application

In this section, we briefly present our experiences
from implementing the dbgrads ,system [DBG],
a real-life application on a database-backed web
server. The dbgrads system is a searchable database
of students that have a background in databases and
will be graduating soon. It is intended to be used
by prospective employers from academia or indus-
try around the world in order to locate candidates
for their job openings.

3.1 Software checklist

Before building the dbgrads system, we had to in-
stall a few software packages first: the web server,
the DBMS and a few Perl modules. All of the soft-
ware was free and publicly available.

Web server We used the Apache Server [AS],
version 1.3.9, which, except for being free, is fast,
efficient, portable, well supported, stable, reliable,
extensible, easy to administer and has many fea-
tures [SM99]. After having installed the Apache
Server, we installed the mod_perl module [MPG]
version 1.21.

DBMS We chose MySQL [MSQ, YRK99] ver-
sion 3.22.27 as the database server, primarily
because it is free, light-weight and can run as
a normal user process (i.e. without super-user
privileges) thus minimizing any possible security
risks. In order for our scripts to communi-
cate with the MySQL database server, we used
the Perl DBI module, a generic Perl interface

to relational DBMSs, combined with the DBD
(Database Driver) module for MySQL (both avail-
able from CPAN [CPN]).

Perl Perl version 5.004 [PRL] was already in-
stalled in our system, as well as the CGI.pm mod-
ule [CGP, Ste98], which is a very useful library for
writing CGI scripts in Perl.

3.2 Implementation

Writing code for a database-backed web server is
similar to any other code development •project, with
one notable difference being the need for rapid pro-
totyping and short turn-around times. For that rea-
son, although it is important to come up with an
initial design document outlining the functionality
of the entire system, most probably there will be a
lot of revisions to it by the end of the project. Also,
since the web application is to be released to the en-
tire world, special care should be taken to guaran-
tee security, thus preventing attacks to the system.
Finally, care must also be taken so that the web ap-
plication can handle all possible errors internally,
without the user ever having to see the generic Error
Message page that most web servers have.

One big advantage to using the Apache Server
with the mod_perl module is that we can have vir-
tual URLs'. We can, for example, specify that
the URL http://www.acm.org/mysearch will corre-
spond to a dynamically generated document (as
opposed to a static HTML page), that was com-
puted by a special, user-defined, content handler
Perl function [SM99].

One big advantage to using the Perl DBI/DBD
modules, is that we are not tied to a particular
DBMS vendor and can, almost effortlessly, switch
to a different database server. For example, the
q u o t e () function, part of the DBI library, serves
to this purpose by correctly quoting SQL strings.

Due to space limitation, we cannot present more
information on the dbgrads system. However, for
more details on the implementation of a database-
backed web site, the reader is referred to [Gre99],
[SM99], and [CT98].

S I G M O D Record , Vol. 29, No. 1, March 2000' 29

4 Experiments

For our experiments, we used the Apache Server
vet~ston 1.3.6 and, instead of MySQL, the Informix
Dynamic Server with Universal Data Option ver.
9.14. Both the web server and the DBMS run on the
same machine, a SUN UltraSparc-5 with 320 MB
of main memory and a 3.6 GB Seagate Medalist
disk, running Solaris 2.6. Multiple clients were
generated through multi-threading on another SUN
machine, which was on the same local area network
to minimize network variations. Each client per-
formed about 60 requests, one after the other.

I,,e,. plain web ~r~lr - - mod_ped enabled server I

2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 17 18 19 20

number of clients

Figure 5: Delivery of static HTML pages

First of all we tried to see if there is any differ-
ence between the plain Apache web server and the
mod_perl-enabled Apache Server, as far as deliv-
ery of static HTML pages is concerned. The results
from our experiments are in Figure 5. The x-axis
is the number of concurrent clients, and the y-axis
is the time it takes for all clients to complete their
request workload. We can see that the mod_perl-
enabled Apache Server performs equally well with
the plain server. In other words, the added func-
tionality and the increased footprint do not affect
the performance of static content delivery.

Figure 6 has the results from the second experi-
ment, where we compared cgi-bin with mod_perl on
dynamically generated web pages (that correspond
to results from SQL queries). We studied two vari-
ations of mod_perl: plain mod_perl and mod_perl+,
where the database connections are kept persistent.
As expected, the mod_perl approach outperforms
cgi-bin by at least an order of magnitude. Specif-

900 . :

80O

~ 700

600

0
q.

. - - ; - . - - ~

number of clients

Figure 6: Comparison of cgi-bin to mod_perl

ically, the performance of plain mod_perl is about
10 times better than that of cgi-bin, whereas the per-
formance of mod_perl+ is about 20 times better than'
that of cgi-bin. This means that just by keeping the
database connections persistent we cut the response
times in half.

300

250

200

150

100

50

0

o "

.°.°"°'""°*

°°'° f

5 10 15 20 25 30 35 40 45 50

numbe¢ of ©llenta

Figure 7: Scaling experiment

In our last experiment, we scaled up the number
of concurrent clients and measured the performance
of mod_perl, mod_perl+ (mod_perl with persistent
db connections) and static (static HTML pages,
served by a mod_perl-enabled Apache Server). Al-
though the performance of static pages is, as ex-
pected, the most scalable solution, both mod_perl
variants scale well, with the mod_perl+ approach
giving consistently the best performance for dy-
namically generated web pages.

30 S I G M O D Record, Vol. 29, No. 1, March 2000

5 Conclusions

In this paper we presented a brief overview of the
various server-side scripting mechanisms that are
used to generate dynamic web content. We also
discussed some details from the implementation of
a real-life application on a database-backed web
server. Finally, we presented experiments to sup-
port that the cgi-bin script invocation mechanism
is at least an order of magnitude slower than
mod_perl, and should thus be abandoned.

References

[AS] Apache Server home page.
hnp : //www. ap ache.o rg/http d. html.

[ASP]

[B+98]

Active Server Pages help page.
http://www. 4guysfromrolla.cong.

Phil Bernstein et al. "The Asilomar Re-
port on Database Research". SIGMOD
Record, 27(4), December 1998.

[CGP] CGI.pm home page.
http.'//s'tein, c sh l. o rg/WWWZs'o ftw are/
CGl/cgi_docs.html.

[CMP]

[CPN]

[CT98]

[DBG]

[FCG]

[FLM98]

Quick guide for moving from CGI to
mod_perl, http ://perL apache.org/dist/
cgi_to_mod_perl.html.

Comprehensive Perl Archive Network.
hnp : //www. cpan. o rg.

Tom Cbxistiansen and Nathan Torking-
ton. "Perl Cookbook". O'Reilly & As-
sociates, August 1998.

dbgrads home page.
http : //www. acm. o rg/s'i g moWdbg rads.

FastCGI home page.
http://www.fastcgi.com.

Daniela Florescu, Alon Y. Levy, and Al-
berto O. Mendelzon. "Database Tech-
niques for the World-Wide Web: A Sur-
vey". SIGMOD Record, 27(3):59-74,
September 1998.

[Gre99]

[Gun96]

[JSP]

[Ma198]

[MP]

IMPG]

[MSQ]

[NSS99]

[PHP]

[PRL]

[SM99]

[SRV]

[Ste981

[YRK99]

Philip Greenspun. "Philip and Alex's
Guide to Web Publishing". Morgan
Kaufmann, June 1999. Available at
http://http://photo.net/wtr/thebook/.

Shishir Gundavaram. "CGI Program-
ming on the World Wide Web". O'Reilly
& Associates, First edition, March 1996.
Out of print, available at
http.'//www.oreilly.com/openbook/cgi/.

JavaServer Pages.
hnp://java.sun.com/products/j.~p.

Susan Malaika. "Resistance is Fu-
tile: The Web Will Assimilate Your
Database". Data Engineering Bulletin,
21(2):4--13, June 1998.

mod_perl home page.
http://perl.apache.org.

mod_perl development guide.
http : //pe rI.apache, o rg/g uide.

MySQL home page.
http://www.mysql.com.

Netcraft Server Survey, Dec. 1999.
http://www.netcraft.condsurvey.

php home page.
http : //www.php. net.

Perl home page.
http://www.perl.com.

Lincoln Stein and Doug MacEachem.
"Writing Apache Modules with Perl and
C". O'Reilly & Associates, April 1999.

Java Servlets API.
http://java.sun.com/products/servlet.

Lincoln Stein. "The Official Guide to
CGI.pm". John Willey & Sons, April
1998.

Randy Jay Yarger, George Reese, and
Tim King. "MySQL and mSQL".
O'Reilly & Associates, August 1999.

SIGMOD Record, Vol. 29, No. 1, March 2000 31

