A Survey on the Java-based Approaches for Web Database Connectivity1

Stavros Papastavrou’, Panos K. Chrysanthis?, George Samaras®, Evaggelia Pitoura*

Abstract

The undeniable popularity of the web makes the efficient
accessing of distributed databases from web clients an
important topic. Various methods for web database
integration have been proposed but recently there is an
increasing interest on those based on Java-based ones. This is
due to the inherent advantages of Java, which supports
platform independence and secure program execution, and
produces a small size of compiled code. In this experimental
paper, we evaluate all currently available Java-based
approaches. These include Java applets, Java Sockets,
Servlets, Remote Method Invocation, CORBA, and Mobile
Agents. To this end, we implemented a Web client accessing a
remote database using each of these approaches and compared
their behavior along the following important parameters: (1)
performance expressed in terms of response time under
different loads, (2) transparency of communication expressed in
terms of complexity of networking API, and (3) extensibility
expressed in terms of ease of adding new components.

Keywords: Distributed Databases, WWW, Java Mobile Agents,
Distributed Objects, CORBA

1. INTRODUCTION

Providing efficient access to distributed databases from
Web clients using a Web browser [2] is crucial for the
emerging database applications such as E-Commerce.
Several methods for Web database connectivity and
integration have been proposed such as CGI scripts, active
servers pages, server side include, databases speaking http,
external viewers or plug-ins, proxy-based, and HyperWave
[4]. However, there is an increasing interest in those that are
Java-based due to the inherent advantages of Java [l1],
namely, platform independence support, secure program
execution, and production of a small size of compiled code.

Several Java-based methods are currently available for
Web database integration but in the best of our knowledge,
there is no quantitative comparison of them. This
experimental paper contributes such a comparison.
Specifically, it evaluates six approaches, namely, Java
JDBC applet, Java Sockets [7], Serviet [T], Remote Method
Invocation (RMI) [7], CORBA [9], and Java mobile agents
(JMA) [3]. Each approach differs in the way the client
establishes connection with remote database servers.

For our evaluation, we used each of these approaches
to implement a Web client accessing a remote database and

! This work was partially supported by NSF grants IRI-9502091 and IIS-
9812532, and AFOSR award F49620-98-1-043.

2 Computer Science Dept., Univ. of Pittsburgh, PA 15260, USA.
3 Computer Science Dept., Univ. of Cyprus, Nicosia, Cyprus.
4 Computer Science Dept., Univ. of loannina, Ioannina, Greece.

compared their behavior along the following important
parameters: (1) performance expressed in terms of response
time under different loads, (2) transparency of
communication expressed in terms of complexity of
networking API, and (3) extensibility expressed in terms of
ease of adding new components. Further, we characterized
these approaches in terms of the total development effort
based on lines of code at both the client and the server side
in conjunction with the two latter parameters, namely,
transparency and extensibility.

In the next section, we briefly describe our testbed. In
Sections III to IV, we elaborate on the characteristics of
each approach when comparing them along the dimensions
of communication transparency and extensibility. In section
VI, we present our performance evaluation results.

II. EXPERIMENTAL TESTBED

Two design principles were adopted in the selection of the
various components during the development of the testbed.
First, our Web clients should be lean with the purpose of
allowing fast downloads and therefore increasing support
for wireless and mobile clients. Second, no a-priori
configuration of the Web client should be necessary to run
the experiments in order to maintain portability, and
therefore support arbitrary clients.

For every approach, our Web client program was a
Java applet, which was installed on a Web server machine
along with an html page. Every experiment was initiated by
first pointing to the html page from a remote client
computer (Figure 1). After the Java applet was initialized at
the client computer, queries were issued through the
applet's GUI and executed at the remote database server.
Our remote database server, a 3-table relational Microsoft
Access database, was installed on the same machine with
the Web server. The communication between the server and
the client computer was a wireless LAN at 1.2Mbps.

In all cases, the client establishes Web database
connectivity through a middleware program typically
running on the Web server machine. For the Java JDBC
applet, we used a type 3 JDBC driver in accordance to our
design criteria. In this case, the middleware corresponds to
the middle-tier gateway of the type 3 JDBC driver [8]. In
the case of JMA, the middleware is a local stationary agent
that provides the information necessary for a mobile agent
to load the appropriate JDBC driver and connect to the
database server. In our experiments, we used DBMS-aglets
[6]. In all other cases, we developed the middleware
program, which plays the role of an application server that
uses a JDBC-ODBC bridge driver to connect to the
database server. For more details, see [5].

290 10™ Mediterranean Electrotechnical Conference, MEleCon 2000, Vol. I

0-7803-6290-X/00/$10.00 ©€2000 IEEE

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 19:25:53 UTC from IEEE Xplore. Restrictions apply.

[3] JDBC-ODBC call

[1] App:e: Web
[2] Connecton Server
& submission of -
i query Middle-
Client | ware
‘[4] Query results—1

Figure 1: Basic configuration

III. TRANSPARENCY OF COMMUNICATION

The dimension of the transparency of communication deals
with the level of abstraction of communication between the
client and the server side, in other words, between the client
and the middleware program. The approaches can be
broadly classified as (1) non-RPC ones, that do not support
any clear remote method invocation mechanism, and (2)
RPC ones with clear remote method invocation semantics.
The Java Sockets and Servlets are non-RPC approaches in
which information between the client and the middleware
program is exchanged using streams of data. Java JDDC
applets, RMI, CORBA and JMA are all RPC approaches.

Table 1 compares the transparency of communications
of the discussed approaches based on the complexity of the
networking API employed by each approach. Clearly, the
RPC approaches involve less complex networking APIs and
hence more transparent client/server communication.

The CORBA approach offers the highest level of
communication transparency since it requires knowledge of
neither URLs nor port numbers to establish database
connectivity. It only requires the reference name with
which the application server was registered at the server
site. One level lower (high) is the RMI approach, which
requires the URL of the database server along with the
reference name of the application server. Similar to the
RMI approach, the Java JDBC Applet approach requires the
URL of the database server, and a data source name, which
identifies the database itself. In this same level is the IMA
approach. Mobile agents identify remote. host machines
with their URL, and interact with other agents using their
unique identifiers. One level below (low) is the Servlet
approach requiring a URL, the servlet name, and the type of
operation to be executed by the particular servlet. Finally,
as expected, the approach with the Jowest communication
transparency is the socket approach, which requires
knowledge of the IP and of the port number of the
application server.

IV. EXTENSIBILITY

We define extensibility to be: (a) the ability of adding new
components to an approach (e.g., a new application server
object attached to a local or a remote database) and binding
them with the existing ones at the server site; and (b) the
level of modifications needed at the client part that will
enable the client to utilize newly added components. We
classified the various approach in terms of extensibility as
highest, high, average and low (Table 1).

The approaches with the highest degree of extensibility
are the CORBA and JMA. In the one based on CORBA, the
application server and the client applet can bind to a newly

High
16¢

Total effort Lowest Highest High Low Lowest

Table 1: Effort of development

added component by only using its reference name. As
opposed to other approaches, new components need not be
necessarily located at the Web server machine in order for
the client to bind to them.

The JMA approach is inherently very extensible since
mobile agents were designed to autonomously collect
information and exploit any newly added servers in order to
complete their execution plan. Moreover, the Web client
need not be aware of the existence of new servers.

The high extensibility of the JDBC applet approach is
due to the type 3 JDBC driver used. Of all the JDBC
drivers, type 3 drivers are the most extensible because of
their middle-tier gateway that maps client applet’s database
requests to any local or remote database calls. The Web
client only needs to name the newly added databases.

The servlet approach also offers high extensibility.
Servlets execute in the context of the Web server and can
call (explicitly) other servlets within the same context. This
means new servlets can be added without any Web client
modification. The client applet can also call explicitly a
new servlet using as a reference the URL, the new servlet’s
name and the type of operation that must be executed by it.

Because of their similarities, one might have expected
that RMI and CORBA approaches would exhibit the same
degree of extensibility. However, compared to the CORBA
approach, the RMI approach is much less extensible for
three reasons. First, new components must be written only
in Java. Second, new components are identified, besides of
their reference name, with an additional URL. Lastly, the
client applet cannot bind to new components that reside on
URLs other than the Web server. Clearly, RMI also offers
lower extensibility than the Java JDBC applet approach.

Finally, the approach with the Jowest degree of
extensibility is the socket one. For any new component, a
new socket must be created, bound and managed either at
the side of the application server or at the Web client.

V. EFFORT OF DEVELOPMENT

The effort of development basically combines the
dimensions of transparency of communications and
extensibility, and quantifies them in terms of lines of code.
In Table 1, the lines of code for each approach are
normalized with a constant ¢

The approaches with the lowest effort of programming
are the Java JDBC applet and the CORBA. The applet
approach combines the fewer relative lines of code, high
level of network transparency and an average extensibility,
while the CORBA approach offers the highest transparency
and extensibility with relative small code size.

The high extensibility and transparency of the JMA
approach comes with a premium in terms of lines of code.
Mobile agents involved significant programming. The RMI
approach is the opposite of the JMA one. It requires a

10™ Mediterranean Electrotechnical Conference, MEleCon 2000, Vol. I 291

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 19:25:53 UTC from IEEE Xplore. Restrictions apply.

relatively low number of lines of code and offers average
extensibility.

The Servlet and Socket approaches involve the most
effort of development, given their large number of lines of
code and their low transparency and extensibility.

VI. PERFORMANCE EVALUATION

For our performance evaluation, we measured the average
response time for our Web client (a) to query the remote
database for the first time, (b) to query the remote database
for a number of subsequent times. Querying the remote
database for the first time differs from subsequent queries
because the first query involves the additional overhead of
establishing the communication link between the client and
the remote database.

The other significant issue that we considered in our
experiments is the size of the query result. Query result size
directly affects the response time in two ways. First, in the
amount of time spent for the query to execute, and second,
in the transport time for the results to reach the client. We
adjusted the size of the query result by changing the
complexity of the SQL statement issued through the client
applet. For our experiments we measured average response
times for a wide range of query result sizes, beginning from
128 bytes (8 tuples) up to 64 kilobytes (1000 tuples). For
each approach, a sufficient number of runs were performed
in order to obtain statistically significant results [11]. Below
we first focus on the experiments for small query results
(128 bytes) and then discuss how the response time of the
different approaches is affected by the query size.

Graph 1 shows the average response time for the initial
and subsequent queries in each approach. For the initial
query, the non-RPC approaches have by far the lowest
response time. This can be explained by the fact that their
initialization phase does not engage any special package
loading or handling by the client. Compared to the Socket
approach, the Servlet approach performs slightly worse
because (a) the communication between the client and the
servlet is marshaled by the Web server, and (b) by
executing as a Web server thread, the servlet receives less
CPU time than the socket application server. Thus, servlets
respond slower to requests and require more time to
assemble and return the query results.

From the RPC approaches, the JMA approach offers
the best performance for a single (initial) query. Significant
part of its cost (around 2 seconds) is due to the process of
dispatching the DBMS-aglet from the client applet to the
aglet router on the Web server and from there to the
database server. In the case of the CORBA approach, the
first query is slightly more expensive than the one in the
JMA approach because of the overhead of initializing the
necessary ORB classes and the binding to the application
server. This overhead is quite significant (around 3.20
seconds) which can be clearly seen by comparing the
response time of the initial and subsequent queries.
Following the CORBA approach is the Java JDBC
approach in which the response time of the initial query is
increased by a considerable amount of time by the
downloading of the JDBC driver from the Web server.

Socket Serviet JMA Corba Applet RM!
JoeC

Graph 1: Performance of all approaches for initial and subsequent query
(128 bytes result size)

To our surprise, the RMI approach performs by far the
worst for the initial query. We expected the RMI approach
to exhibit better performance because, as opposed to the
other RPC approaches, it does not involve the loading of
any specific package during initialization time. The only
way to explain this behavior is to attribute the increased
response time to the interpreted method of RMI calls when
binding the client applet to the application server.

For subsequent queries, the performance of the
CORBA and RMI approaches dramatically improves, and
becomes close to the best performance exhibited by the
Socket approach. The reason is that the client applet is
already bound to the remote application server and only a
remote procedure call on the application server is required
to query the database. For a similar reason, the Java JDBC
applet approach also exhibits a significant performance
improvement for subsequent queries - the JDBC driver is
already downloaded. and initialized at the client applet.
Having the DBMS-aglet already connected to the remote
database and ready to process a new query on behalf of the
client applet, the JIMA approach also improves its response
time for subsequent queries. However, this response time is
the worst from all the other approaches. We attribute this to
two reasons. First, the two required messages to implement
subsequent queries have to be routed through the aglet
router, and second, a mobile agent is not a stand-alone
process and it does not receive full CPU time.

On the other hand, the Java Servlet approach improves
only slightly its performance because the steps for
executing a subsequent query do not differ from the ones
for the initial query. The minor improvement is due to the
fact that any subsequent URL connections from the client
applet to the Web server require less time since the address
of the Web has already been resolved in the initial query.

In order to better illustrate the scalability of each
approach, we plotted in Graph 2 the average time required
by each approach to query the database for a number of
consecutive requests using the formula: For n consecutive
queries, the average time required is the sum of (a) the
average response time for one initial query, and (b) n-1
times the average response time for a subsequent query.

As shown in Graph 2, the socket approach is the most
efficient for any number of consecutive queries. Despite its

292 10® Mediterranean Electrotechnical Conference, MEleCon 2000, Vol. I

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 19:25:53 UTC from IEEE Xplore. Restrictions apply.

20

18.0

18.0

14.0

120

10.0

8.0

6.0

40

20

0.0

12 3 4 6 € 7 8 0 10 11 12 13 W 15 18 17 18 19 20 21 22 23 24 25 28 27 28 29 30

L Consecutive Querles

Graph 2: Average performance for up to 30 consecutive queries (128 bytes of

result size)

good performance for initial queries, the Servlet approach
does not scale well since the response time for subsequent
queries almost matches the response time for initial queries.
Likewise, the JMA approach scales very badly given that its
response time for subsequent queries is the worst of all the
approaches. The CORBA, Java JDBC applet, and RMI
approaches appear to scale well, however, the RMI
approach appears less attractive due to its worst
performance of all the approaches for initial queries.

Graph 3 illustrates the sensitivity of each approach to
the size of query results. Due to space limitations, we show
here only the results for subsequent queries. The results for
initial queries are similar.

The first striking observation is that the response time
of the Java JDBC applet and JMA approaches increases
exponentially with query result sizes larger than 20KB.
The Java JDBC applet approach performs by far the worst
for increased result size. This can be explained by the fact
that in JDBC rows from a query result are retrieved one at a
time. Specifically, to retrieve one row from the query result,
the client must call a method on a Java ResultSet object,
which is mapped on the remote database server through the
Gateway. Consequently, for a large size of query result, a
large number of those remote calls have to take place. In
that case, large query results not only increase dramatically
the response time but they also increase the Internet traffic.

The bad scaling of the JMA approach can be explained
in the same way as the bad performance of the Servlet
approach. Both mobile agents and servlets do not execute as
stand-alone processes, and therefore, they do not receive
full CPU time and heavily depend on the supporting
execution environment. The other RPC approaches exhibit
acceptable performances (close to linear for sizes above
20KB) with the CORBA approach being slightly better. As
indicated above, the implementation of RPC calls in
CORBA is much faster compared to RMI’s one.

VII. CONCLUSIONS

In this experimental paper, we have implemented,
evaluated, and compared all currently available Java-based
approaches for Web database connectivity. Our comparison
was based on the performance of query processing, the
transparency of communication and extensibility.

250
e SoCKEt

200 —@— Serviet f
—a&— Corba

150 —3¢— RMI
—8—JMA / /

100 —@— Applet JDBC

o Wa
0 %
5KB 10KB 20KB 64KB
Graph 3: Subsequent Query

The results of our comparison showed that the CORBA
approach is the most transparent to communication,
extensible and easy to develop, while its performance is
comparable to the best performing approach that employs
sockets. Hence, it offers the best promise for the
development of large Web applications.

In our study, we confirmed the desirable properties of
the emerging mobile agents technology, that is, of high
extensibility and transparency at a relatively low
development effort. But, at the same time, our study
provided an insight to potential scalability problems with
the currently available mobile agent implementations. The
JMA approach cannot support interactions that require
movement or exchange of large amounts of data such as
large number of consecutive queries with increased size of
query result. Hence, it is necessary to develop more
efficient mobile agent infrastructures, if the full potential of
mobile agents is to be explored. As part of our future work,
we investigate the possibility of merging mobile agents and
the CORBA technology in order to facilitate a scalable and
efficient Web database connectivity.

REFERENCES

[1] E..Anuff. Java Sourcebook. Whiley Publishing, 1996.

[2] S.P. Hadjiefthymiades and D. I. Martakos. A Generic
Framework for the Development of Structured Databases on
the WWW. Fifth Int’l WWW Conference, May 1996.

[3] C. G. Harrison, D. M. Chessm, A. Kershenbaum. Mobile
Agents: Are they a good idea? Research Report, IBM
Research Division, 1994,

[4] G. Helmayer, G. Kappel, and S. Reich. Connecting Databases
on the Web: A Taxonomy of Gateways. Eighth Int’l DEXA
Conference, Sept. 1997.)

[5] S. Papastavrou, P.K. Chrysanthis, G. Samaras, and E. Pitoura.
An Evaluation of the Java-based Approaches for Web
Database Connectivity. CSD Technical Report. University of
Pittsburgh, Mar.2000.

[6] S.Papastavrou, G. Samaras, and E. Pitoura. Mobile Agents
for WWW Distributed Database Access. Fourteenth IEEE
Int’l Conference on'Data Engineering, Feb. 1999,

[71 Sun Microsystems Inc., Java Development Kit,
<http://java.sun.com/jdk>.

[8] Sun Microsystems Inc., JDBC drivers,
<http://java.sun.com/products/jdbc/drivers.html>,

[9] Visibroker for Java: Programmer’s Guide, Version 3.0.
Borland, <http://www.visigenic.com>.

10" Mediterranean Electrotechnical Conference, MEleCon 2000, Vol. 1 293

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 19:25:53 UTC from IEEE Xplore. Restrictions apply.

http://java.sun.com/jdk
http://java.sun.com/products/jdbddrivers.html
http://www.visigenic.com

