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Abstract

In the near future, different database sites will be interconnected via gigabit networks, forming a very powerful
distributed database system. In such an environment, the propagation latency will be the dominant component of the
overall communication cost while the migration of large amounts of data will not pose a problem. Furthermore,
computer systems are expected to become even more reliable than today’s systems with long mean time between failures
and short mean time to repair. In this paper, we present implicit yes-vote (IYV), a one-phase atomic commit protocol,
that exploits these new domain characteristics to minimize the cost of distributed transaction commitment. [YV
eliminates the explicit voting phase of the two-phase commit protocol, hence reducing the number of sequential phases of
message passing during normal processing. In the case of a participant’s site failure, ['YV supports the option of forward
recovery by enabling partially executed transactions that are still active in the system to resume their execution when the
failed participant is recovered. © 2000 Elsevier Science B.V. All rights reserved.
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them as if the transaction has never existed. This is
achieved by employing an atomic commit protocol
(ACP) that executes a commit or an abort opera-
tion across multiple sites as a single logical oper-
ation. The simplest and most studied ACP is the
two-phase commit protocol (2PC) [17,22].

Commit processing consumes a substantial
amount of a transaction’s execution time [30] and
any delay in making and propagating the final
decision reduces the level of concurrency and ad-
versely affects the performance of a DDBS. The

1. Introduction and motivation

Transactions in a distributed database system
(DDBS) access data located at different sites. Part
of the correctness of a distributed transaction is to
ensure its atomicity which requires that all the
transaction’s effects either persist at all the sites the
transaction has visited or are obliterated from
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system performance is also degraded by having to
abort partially executed transactions due to com-
munication and site failures, in particular just be-
fore a commit decision is made. In other words, an
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efficient ACP should reach a final decision with
minimum communication delay and should allow
partially executed transactions to resume their
execution on a failed participant when the partic-
ipant recovers. Owing to the relatively low data
transfer rates of traditional networks, current
ACPs have been designed with the focus on min-
imizing the amount of data to be transferred and
the number of messages to be exchanged while
current database management systems do not
support forward recovery of atomic transactions.
However, future DDBSs are expected to be-
come even more reliable than today’s systems ex-
ecuting on computers with relatively long mean
time between failures and short mean time to repair
interconnected via high speed networks. These
networks will support data transfer rates in the
order of gigabits per second. In such gigabit-net-
worked DDBSs, the propagation latency will be
the dominant component of the overall commu-
nication cost while the migration of large amounts
of data will not pose a problem [7,8,21]. That is,
the size of messages in a database protocol will be
less of a concern than the required number of
rounds or sequential phases of message passing.

Given this observation, we are prompted to ask

the following two questions:

1. Is it possible to improve the performance of the
2PC by permitting large messages; that is, can
we reduce the number or rounds of messages
in the 2PC?

2. Is it possible to support forward recovery, i.e.,
recover partially executed transactions after a
failure by not placing any limitations on the size
of a message?

In this paper, we present implicit yes-vote (IYV),

a one-phase ACP, that combines the properties

implied in both of the above two questions. [YV is

targeted for environments with fixed number of
high performance coordinators or application
servers. IYV improves on the current ACPs by
exploiting the performance and reliability proper-
ties of future gigabit-networked DDBSs. Specifi-
cally, IYV eliminates the explicit voting phase of
the 2PC by overlapping the participants’ votes
with the execution of transactions’ operations,
hence reducing the number of sequential co-ordi-
nation messages during normal commit process-

ing. The underlying system assumption in 1YV is
that all sites employ strict two-phase locking pro-
tocol (S-2PL) for concurrency control [16,10],
which is the most commonly used protocol.

In the case of a participant failure, IYV sup-
ports the option of forward recovery by enabling
partially executed transactions to resume their
execution on a failed participant when the par-
ticipant recovers. By assuming context free
transactions at the participants, > forward recov-
ery is achieved through a low-cost replication of
the redo log records that are generated during the
execution of a transaction’s operations at both the
transaction’s coordinator and the participants,
and by propagating the read locks that are held by
the transaction at a participant to the transac-
tion’s coordinator. Thus, forward recovery in IYV
can be thought of as an instance of forward re-
covery proposed for distributed computations,
e.g., [15]. As opposed to forward recovery in
distributed processes, participants in 1YV do not
asynchronously checkpoint their local states and
after a participant failure, non-failed participants
do not have to partially rollback for the entire
distributed transaction to reach a consistent state
from which the transaction can resume its execu-
tion. Here, a transaction’s view of the database
state at a failed participant is reconstructed, if the
local execution state of the transaction residing at
its coordinator site is unaffected. In this respect,
forward recovery in IYV is not the same as the
notion of partial recovery in extended transac-
tions, such as in nested transactions where a failed
subtransaction may be rolled back and re-exe-
cuted by design [27]. In 1YV, distributed trans-
actions are traditional, unstructured transactions
which are executed in a distributed manner by the
database system.

The rest of the paper is structured as follows. In
Section 2, we overview the 2PC and its two com-
mon variants as well as previously proposed one-

2 A transaction is said to be context free at a participant if
each operation execution at the participant is not a function of
the previously executed operations invoked by the same
transaction [19]. For example, read operations using a common
cursor are not independent where the cursor is part of the
context of the invoking transaction.
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phase ACPs. In Section 3, the IYV protocol is
introduced and its behavior in the presence of
failures is discussed in detail. In Section 4, we
discuss the applicability of IYV and its assump-
tions. In Section 5, we apply the presumed abort
2PC (PrA) optimization [25,26] to IYV, motivated
by the fact that PrA has been widely implemented
[12] and adopted by the ISO OSI-TP [36] and X/
Open DTP [11] standards. We also propose a read-
only optimization that can be combined with IYV
and its PrA optimization to further reduce their
cost for read-only transactions and extend IYV to
the multi-level transaction execution model [5,26].
In Section 6, we compare IYV with those proto-
cols discussed in Section 2. Unlike the traditional
way of evaluating the performance of ACPs which
is based on counting the number of messages and
forced log writes, in Section 7, we evaluate these
different commit protocols in terms of the number
of sequential messages and forced log writes that
are required to reach a decision point and to re-
lease all the locks held by transactions as in [33,34].
Section 8 concludes this paper.

2. Background and related work

In a distributed database system, data are typ-
ically stored in disjoint partitions at different sites.
This data distribution is transparent to a distrib-
uted transaction that accesses data by submitting
database operations to its coordinator which is
assumed to be, without loss of generality, the
transaction manager of the site where the trans-
action has been initiated. In this paper, we assume
that a transaction is a partial order of read (R) and
write (W) operations that are confined within a
begin (B) and a commit (C) or an abort (A4)
transaction management primitives.

When a coordinator receives an operation on a
data item, it sends the operation to the appropriate
site for execution. If the coordinator receives an
abort request from the transaction, it sends an
abort request to all the participants, i.c., the sites
participating in the execution of the transaction.
On the other hand, when the coordinator receives
a commit request from the transaction, it initiates
an atomic commit protocol.

As shown in Fig. 1, the basic 2PC [17,22], as
the name implies, consists of two phases, namely
a voting phase and a decision phase. During the
voting phase, the coordinator of a distributed
transaction requests all the sites participating in
the transaction’s execution to prepare to commit
whereas, during the decision phase, the coordi-
nator either decides to commit the transaction if
all the participants are prepared to commit (voted
“yes”), or to abort if any participant has decided
to abort (voted “no”). If a participant has voted
“yes”, it can neither commit nor abort the
transaction until it receives the final decision from
the coordinator. When a participant receives
the final decision, it complies, acknowledges the
decision and releases all the resources held by
the transaction (i.e., releases the locks held by the
transaction, removes the transaction control
block from its table, etc.). The coordinator
completes the protocol when it receives ac-
knowledgments from all the participants and
forgets about the transaction by removing any
entry associated with the completed transaction
from its protocol table. The protocol table is
stored in main memory and for each transaction,
the coordinator records the identities of the sites
that need to participate in the commitment of the
transaction and the progress of the protocol once
it is initiated.

The resilience of 2PC to system and communi-
cation failures is achieved by recording the

Coordinator Participant
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Fig. 1. The basic two-phase commit protocol.
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progress of the protocol in the logs of the coor-
dinator and the participants (see Fig. 1). The co-
ordinator is required to force-write a decision
record prior to sending the final decision to the
participants. Since a force-write ensures that all the
log records are written into a stable storage that
sustains system failures, the final decision is not
lost in the case of a coordinator failure. Similarly,
each participant force-writes a prepared record
before sending its vote and a decision record before
acting on and acknowledging a final decision.
When the coordinator completes the protocol, it
writes an end record without forcing it into stable
storage, indicating that all participants have re-
ceived the final decision and the log records per-
taining to the transaction can be garbage collected
when necessary.

The basic 2PC protocol is also referred to as the
presumed nothing 2PC (PrN) [23] because it treats
all transactions uniformly, whether they are to be
committed or aborted, requiring information to be
explicitly exchanged and logged at all times.
However, in case of a coordinator’s failure, there is
a hidden presumption in PrN by which the coor-
dinator considers all active transactions at the time
of the failure as aborted transactions. This pre-
sumption allows a coordinator in 2PC not to re-
cord the beginning of the protocol in the stable log
and hence not to force-write any log records prior
to the decision phase. (Note that a force-write in-
volves a disk access that suspends the protocol
until the disk access is completed.) If a participant
inquires the coordinator about an active transac-
tion after the coordinator has failed and recovered,
the coordinator, not remembering the transaction,
will direct the participant to abort the transaction
by presumption.

The presumed abort PrA is a 2PC variant that
reduces the cost associated with aborted transac-
tions by making the abort presumption of PrN
explicit [25,26]. When the coordinator of a trans-
action decides to abort the transaction, in PrA, the
coordinator discards all information about the
transaction from its protocol table and submits an
abort message to all the participants without log-
ging an abort decision, as opposed to PrN. After a
coordinator failure, if a participant inquires about
the outcome of a transaction, the coordinator, not

finding any information regarding the transaction
will direct the participant to abort the transaction
by presumption. Furthermore, in PrA, the coor-
dinator of a transaction does not require abort
acknowledgments from the participants because it
can discard all information pertaining to the
transaction from its protocol table without them.
Since the participants are not required to ac-
knowledge abort decisions, they do not have to
force-write abort log records. Instead, they write
(non-forced) abort records in the log buffer in
main memory. Hence, in the case of abort, PrA
saves a forced log write at the coordinator’s site
and a forced log write and an acknowledgment
message from each participant. For the commit
case, the cost of PrA remains the same as in the
PrN.

Assuming that a transaction is most probably
going to commit if it has finished its execution and
issued a commit request, the PrC variant [26] was
designed to reduce the cost associated with com-
mitting transactions. Instead of interpreting miss-
ing information about transactions as abort
decisions which is the case in PrA, in PrC, coor-
dinators interpret missing information about
transactions as commit decisions. However, in
PrC, the coordinator of a transaction has to force-
write an initiation log record before submitting the
prepare to commit message to the participants.
The initiation record ensures that missing infor-
mation about the transaction will not be wrongly
mis-interpreted as a commit case after a coordi-
nator’s site failure. Thus, this record is necessary
for the correctness of this 2PC variant. In addition,
the initiation record contains the identities of the
participants that are needed for recovery. In the
case of PrN and PrA, this information is recorded
in the decision log record.

To commit a transaction, the transaction’s co-
ordinator force-writes a commit record to logically
eliminate the initiation record, then sends out the
commit decision to all the participants and dis-
cards any information about the transaction.
When a participant receives the commit message, it
writes a non-forced commit record and commits
the transaction. Since the coordinator can discard
all information about a committed transaction
without the acknowledgments of the participants,
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a participant does not have to acknowledge a
commit decision.

To abort a transaction, on the other hand, the
transaction’s coordinator does not have to force an
abort record. Instead, the coordinator submits the
abort decision to all the participants and waits for
their acknowledgments. Once the coordinator re-
ceives the acknowledgments, it discards all infor-
mation pertaining to the transaction from its
protocol table and writes a non-forced end record.
Each participant, in this case, has to force-write an
abort record and then acknowledges the coordi-
nator. As far as the total message count and forced
log writes are concerned, the cost to abort a
transaction remains the same as in the PrN * while
the cost to commit a transaction is reduced by a
forced log write and an acknowledgment message
from each participant on the expense of an extra
forced log write at the coordinator (i.e., the initi-
ation record).

PrA and PrC are usually coupled with the
read-only optimization [25,26,30]. In this optimi-
zation, a participant votes read-only if it has
executed only read operations. Using this opti-
mization, a participant can release all the locks
held by the transaction once it votes. Further-
more, a read-only participant does not participate
in the second phase of these protocols and hence
it does not have to know about the outcome of
the transaction. Also, a participant does not have
to write any log records regarding a read-only
transaction. If a transaction is read-only (i.e., all
the operations it has submitted to all the partic-
ipants are read operations), the coordinator, in
both PrA and PrC, treats the transaction as an
aborted one. This is because it is cheaper to abort
than to commit a read-only transaction with
respect to logging. Recall that a coordinator
does not write any log records in PrA whereas
abort records are written in a non-forced manner
in PrC. (For a new read-only optimization see
[4.5])

Another optimization that eliminates a partici-
pant from the voting phase is the unsolicited vote

3 The forced abort record in PrN is replaced by a forced
initiation record in PrC.

(UV) optimization [35]. In this optimization, if a
participant knows when it has executed the last
operation pertaining to a transaction, it does not
have to wait for a prepare to commit message.
Instead, it sends its vote in its own initiative once it
recognizes that the transaction has no more op-
erations to process. In the case that all the par-
ticipants can send unsolicited votes, this
optimization completely eliminates the explicit
voting phase of 2PC and becomes a one-phase
ACP.

The early prepare protocol (EP) combines the
UV with PrC [33,34]. Since PrC requires the
identities of the participants to be explicitly re-
corded at the coordinator’s log in a forced ini-
tiation record, the number of forced initiation
records pertaining to a transaction is equal to
the number of participants that executed the
transaction in EP. This is because the initiation
record has to be updated and force-written each
time a new participant is involved in the execu-
tion of the transaction. Furthermore, since EP
does not make any assumptions about the last
operation of a transaction submitted to a par-
ticipant, the participant has to prepare the
transaction each time it executes an operation for
the transaction and prior to acknowledging the
operation. This means that the number of forced
prepared records pertaining to a transaction at a
participant is equal to the number of operations
submitted by the transaction and executed by the
participant.

Another one-phase atomic commit protocol
that builds on EP is the coordinator log protocol
(CL) which assumes that transactions are most
probably going to commit and are (very) short
(i.e., transactions deal with small amount of data)
[33,34]. CL eliminates the need for the forced
logging activities required by EP at the partici-
pants’ sites by having the coordinators maintain
the logs and using distributed write-ahead logging
(DWAL) [13]. That is, the stable log of a partici-
pant is distributed (i.e., scattered) across multiple-
coordinator sites. The CL protocol also eliminates
the need for the initiation log records of EP at the
coordinators at the expense of requiring from a
coordinator to communicate with all the partici-
pants in the system during its recovery after a
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failure. This is in order to determine the set of
active transactions prior to the coordinator’s fail-
ure and to abort them instead of wrongly assum-
ing their commitment.

As it will become apparent in the rest of the
paper, the IYV protocol combines the advantages
of UV, EP and CL while alleviating most of their
disadvantages.

3. The implicit yes-vote protocol

In this section, we present the details of our
protocol and discuss what kind of information is
needed to be logged and where (see Fig. 2). Then,
in Section 3.2, we discuss the recovery aspects of
IYVv.

3.1. Description of IYV

As in the case of all the other protocols, a co-
ordinator records information pertaining to the
execution of a transaction in its protocol table in
main memory. Specifically, a coordinator keeps
for each transaction the identities of the partici-
pants and any pending request at a participant.

Each participant maintains a recovery-coordi-
nators’ list (RCL) that contains the identities of the
coordinators that have active transactions at its
site and must be contacted during the recovery of
the participant after a failure. In order to survive
failures, an RCL is kept in the stable log. Thus,
when a participant receives the first operation of a
transaction, if the identity of the coordinator of
the transaction is not already in its RCL, the
participant adds it to its RCL, force-writes the
RCL in its log and then executes the operation. In
order to avoid searching the entire RCL in the case
that all the coordinators in the system are active at
a participant, an all-active flag (AAF) is used. A
participant sets AAF once it force-writes an RCL
containing the identities of «ll the coordinators
and does not consider the RCL as long as the AAF
is set.

An operation submitted by a transaction can be
either an update or a read operation. Following the
S-2PL, before the execution of an operation, a
participant places a write lock on each data item

COORDINATOR PARTICIPANT STATE
%)
[ Write non-forced ~ "~ """ " Active =77 7]
ACKOp(l) |redologrecord(s)
Tttt TTTTTTTTTTTo Prepared |
Write non-forced
redo log record(s) Op(2)
Write non-forced Active "~ ]
ACKOp(2) |redologrecord(s) |
Prepared
‘Write non-forced
redo log record(s)
MY Op(n)
[ Write non-forced ~~ """ 77 Active "7
Transaction Requested ACKOp(n) Jredologrecords) |
Abort Prepared
Write non-forced
redo log record(s)
Write forced Abort
log record {
[ Write non-forced ~~ 40 e
Abort log Aborting
record
ACK __f----====mmmmmmmmm oo
/ Aborted
Write non-forced
End log record
(a) Abort case
COORDINATOR PARTICIPANT STATE
%
[ Write non-forced ~~ """ " Acive 7
ACKOp(l) Jredologrecord(s) |
Prepared
‘Write non-forced
redo log record(s) Op(2)
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ACKOp(2) |redologrecord(s) ________________|
Prepared
Write non-forced
redo log record(s\ A
Write non-forced . Active =" 7]
Transaction Requested ACKOp(m) fredologrecord(s) |
Commit Prepared
Write non-forced
redo log record(s)
Write forced 3
Commit log record Commit
Write aan‘farz;ca """"" Committing ~ |
mmit 1oy
record
% """"""""""" Comiitted ™~ |
Write non-forced
End log record

(b) Commit case

Fig. 2. The IYV coordination messages and log writes.

that is to be updated and a read lock on each data
item that is to be read by the operation. The locks
are kept in a lock table in main memory and are
held until the commit time of the transaction.
Once an operation is executed successfully, the
participant acknowledges (ACK) the coordinator
with a message that contains the results of the
operation. In 1YV, in order to provide for the
option of forward recovery, the participant also
includes all the read locks that have been acquired
during the execution of the operation. For an
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update operation, a participant also includes in the
acknowledgment message all the redo log records
that have been generated during the execution of
the operation with their corresponding local log
sequence numbers (LSNs). * As shown in Fig. 2, a
participant does not force its log into stable stor-
age prior to acknowledging an operation. Once a
participant acknowledges an operation, it implic-
itly enters a prepared to commit state with respect
to the invoking transaction. While in this state, the
participant cannot unilaterally commit or abort
the transaction until it receives a final decision. On
the other hand, a participant returns to an active
state with respect to the transaction when it re-
ceives a new operation. If a participant fails to
process an operation, it aborts the transaction and
sends a negative acknowledgment (NACK) to the
transaction’s coordinator.

When a coordinator receives an ACK for a
write operation from a participant, it writes a non-
forced log record containing the received redo
records along with the participant’s identity.
Hence, the coordinator’s log contains a partial
image of the redo part of each participant’s log
which can be used to reconstruct the redo part of a
participant’s log in case it is corrupted due to a
system failure. The coordinator also records any
read locks included in an ACK message along
with the identity of the participant in a partici-
pants’ lock table (PLT) which is part of its pro-
tocol table. As a result, the coordinator’s PLT
contains a partial image of the lock table of each
participant. The PLT is used in the case of a
participant failure in order to enable the partici-
pant to recover its state exactly as it was prior to
the failure requiring both read and write locks,
thereby allowing partially executed transactions
that are still active in the system to forward
recover and resume their execution after the par-
ticipant has recovered without violating serializ-
ability (see Section 4).

If the coordinator receives either an abort re-
quest from a transaction or a negative acknowl-
edgment regarding the transaction from a

“The LSNs can be uniquely identified using increasing
integers that are preceded by (logical) site numbers.

participant, the coordinator decides to abort the
transaction. Once the coordinator decides to abort
the transaction, it force-writes an abort log record
and then, sends an abort message to all the par-
ticipants. On the other hand, when the coordinator
of a transaction receives a commit primitive from
the transaction, it waits for the acknowledgments
of the transaction’s pending operations and then
commits the transaction. On a commit decision,
the coordinator force-writes a commit log record
prior to sending commit messages to the partici-
pants. In either case, the decision log record in-
cludes the identities of all the participants.

When a participant receives a commit (abort)
message regarding a transaction, it writes a non-
forced commit (abort) log record and commits
(aborts) the transaction, releasing all the transac-
tion’s resources. A participant acknowledges a
decision message only after the corresponding de-
cision log record is placed into stable storage as a
result of a subsequent force-write or flush of the
log onto stable storage. If the transaction was the
last active transaction submitted by its coordina-
tor, the participant resets its AAF if it is set, de-
letes the transaction’s coordinator from the RCL,
force-writes the updated list in its log and then
acknowledges the message.

Finally, when the coordinator receives the ac-
knowledgment of the decision message from all the
participants, it writes a non-forced end log record
and discards all information pertaining to the
transaction from its protocol table including the
locks in PLT, knowing that no participant will
inquire about the transaction’s status in the future.
We summarize the IYV protocol in Fig. 3.

3.2. Recovery in IYV protocol

As shown in Fig. 4, IYV is resilient to both
communication and site failures. As is the case in
the basic 2PC and all its variants, site and com-
munication failures are detected by timeouts. In
the following two subsections, we discuss the cor-
rectness of IYV in the presence of failures. Our
discussion also serves as an informal prove of
correctness which is similar to the prove of cor-
rectness of the basic 2PC [10].



816

Y.J. Al-Houmaily, P.K. Chrysanthis | Journal of Systems Architecture 46 (2000) 809-833

Coordinator’s Protocol
For each transaction initiated locally

o For each database operation, submit the operation to an appropriate participant and update the participants list if
necessary.

— If a negative acknowledgment is received (Abort):
1. Force-write an abort record.
2. Submit an abort message to all participants.
3. Write a non-forced end record when all the participants acknowledge the abort message.
— Else (the transaction is implicitly prepared at the participant that executed the operation):
1. Write any redo records received from the participant with their corresponding LSNs into the log and any
read locks into the PLT.
2. Acknowledge the operation to the transaction.
3. Wait for the next operation to be submitted by the trar

e When a Commit primitive is received from the transaction:

1. Force-write a commit record.

2. Submit a commit message to all participants.

3. Write a non-forced end record when all the participants acknowledge the message.
4

. Discard all information about the transaction from the protocol table including the locks in PLT.
o When an Abort primitive is received from the transaction:

1. Force-write an abort record.

2. submit an abort message to all participants.

3. Write a non-forced end record when all the participants acknowledge the message
4

. Discard all information about the transaction from the protocol table including the locks in PLT.

Participant’s Protocol

e For the first operation of a transaction, check the AAF. If the AAF is not set, if necessary, update the RCL and force
write the log. If the updated RCL contains the identities of all coordinators in the system, set the AAF.

e For each database operation:

1. Execute the operation and log all the records that are generated during the execution of the operation.

2. Acknowledge the operation with a message that contains all the redo records, if any, with their correspondinglocal
LSNs and all the read locks acquired during the execution of the operation when executed successfully. Otherwise,
send a negative acknowledgment and abort the transaction, releasing its locks and deleting the identity of its
coordinator from the RCL.

e When a final Decision (i.e., commit or abort) message arrives:

1. Write a non-forced Decision log record.
2. Release all locks.

3. Delete the identity of the coordinator from the RCL if this is the last transaction submitted by its coordinator,
force-write the list into the log and reset the AAF if it is set.

4. Acknowledge the Decision message when the Decision record is forced into the stable log.

Fig. 3. The IYV protocol.

3.2.1. Communication failures

Although communication failures are assumed
to be rare in high speed networks, there are three
points during the execution of IYV where a com-
munication failure might occur while a site is
waiting for a message. The first point is when a
participant has no pending acknowledgments and
is waiting for a new operation or a final decision.

This is shown as the first case of the communica-
tion failure in the participant algorithm in Fig. 4.
In this case, the participant is blocked until the
communication with the coordinator is re-estab-
lished. Then, the participant inquires the coordi-
nator about the transaction’s status. The
coordinator replies with either a final decision or
a still active message. In the former case, the
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Coordinator’s Algorithm

In case of a communication failure:

1. Abort each active transaction that has a pending acknowledgment at an inaccessible site or no participant site can be

found to process one of the transaction’s operations.

2. Re-submit the commit decision of each committed transaction without and end record after the failure is fixed.

In case of a site failure:

1. For each transaction that has a final decision record in the stable log without a corresponding end record, include the
transaction in the protocol table and restart the decision phase.

2. Abort all active transactions (i.e., transactions without decision log records).

3. Do not consider transactions with end records already in the stable log.

4. Resume normal processing.

Participant’s Algorithm

In case of a communication failure:

1. Wait until the failure is fixed and then inquire about the status of all active transactions without pending acknowledg-

ments.

e Either a decision or a still active message will be received for each of these transactions.

2. Abort all active transactions (i.e., transactions with pending acknowledgments).

In case of a site failure:

1. Analysis phase: identify committed, aborted and active transactions. Also, determine the largest LSN.

2. For each coordinator in the RCL, send a recovering message containing the largest LSN.

3. Undo the effects of aborted and active transactions.

4. Once the repair messages arrive, repair the log, update the list of committed and still-active transactions and re-build

the lock table.

5. Complete the redo phase.

e Redo committed transactions and release their locks.

e Redo still-active transactions and retain their locks.

6. Resume normal processing.

Fig. 4. Recovery in IYV protocol.

participant enforces the final decision and then
acknowledges it, while in the latter case, the par-
ticipant waits for further operations.

The second point is when the coordinator of a
transaction is waiting for an operation acknowl-
edgment from a participant. This is shown as the
first case of communication failures in the algo-
rithm of the coordinator in Fig. 4. In this case, the
coordinator may abort the transaction and submit
a final abort decision to the rest of the participants.
Similarly, the participant may abort the transac-
tion if the communication failure has occurred
while the participant has a pending acknowledg-
ment. This is shown as the second case of com-
munication failures in the participant algorithm in

Fig. 4. Notice that the coordinator of a transaction
may commit the transaction despite communica-
tion failures with some participants as long as
these participants have no pending acknowledg-
ments.

The third point is when the coordinator of a
transaction is waiting for the acknowledgments of
a commit decision. Since the coordinator needs the
acknowledgments in order to discard the infor-
mation pertaining to the transaction from its
protocol table and its log, it re-submits the deci-
sion once these communication failures are fixed
(the second case of communication failures in the
coordinator’s algorithm). When a participant re-
ceives the commit decision after a failure, it either
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just acknowledges the decision if it has already
received and enforced the decision prior to the
failure, > or enforces the decision and then sends
back an acknowledgment.

3.2.2. Site failures

As mentioned above, we are assuming that each
site employs physical logging and uses an Undo/
Redo crash recovery protocol in which the undo
phase precedes the redo phase. It should be
pointed out that IYV can also be combined with
logical or physiological write-ahead logging
schemes [19,24]. However, for ease of presentation,
we only discuss IYV when physical write-ahead
logging (WAL) is used [19,20].

3.2.2.1. Coordinator failure. Upon a coordinator
restart, after a failure, the coordinator re-builds its
protocol table by scanning its stable log. The co-
ordinator needs to consider only those transac-
tions that have commit decision records without a
corresponding end records. As shown in the co-
ordinator recovery algorithm (the first step after a
site failure in Fig. 4), for each of these transac-
tions, the coordinator), creates an entry in its
protocol table that includes the identities of the
participants as recorded in the transaction’s deci-
sion record. Then, it restarts the decision phase for
each of these transactions by re-submitting its
decision to all the participants and resumes normal
operation.

As in the case of a communication failure, if a
participant has already received and enforced a
final decision prior to the failure, the participant
simply responds with an acknowledgment. If the
participant has not received the decision, it must
have been waiting for the decision and once it re-
ceives the decision, it writes a non-forced decision
record and then sends an ACK message when the
decision record is in the stable log.

For those transactions without final decision
records (i.e., those transactions that were active
prior to the failure or their non-forced abort re-

> A Participant without any memory regarding the transac-
tion is assumed to have already enforced the decision and
discarded all information pertaining to the transaction.

cords did not make it to the stable log before the
failure), the coordinator can safely forget them
and consider them as aborted transactions (the
second case of the coordinator recovery algo-
rithm). If a participant in the execution of one of
these transactions has a pending acknowledgment,
when it times out due to the coordinator site
failure, it will abort the transaction, as in the case
of a communication failure that we discussed
above. On the other hand, if the participant is left
blocked (i.e., the participant has acknowledged all
of a transaction’s operations and is in the implicit
prepared to commit state), when the coordinator
recovers, the participant will inquire about the
status of the transaction. The coordinator, not
remembering the transaction after its recovery,
will respond with an abort message by using an
implicit presumption as in PrN. For those trans-
actions that are associated with decision records
as well as end records (the third case in the co-
ordinator recovery algorithm), the coordinator
can safely discard all information about these
transactions, knowing that all participants are
informed of its decisions and no participant
will inquire about these transactions’ outcome in
the future.

3.2.2.2. Participant failure. Also shown in Fig. 4
are the steps of the participant recovery after a site
failure. Since the entire log might not be written
into a stable storage until after the log buffer
overflows, the log may not contain all the redo
records of the transactions committed by their
perspective coordinators after a failure of a par-
ticipant. Thus, at the beginning of the analysis
phase of the restart procedure, the participant de-
termines the largest LSN which is associated with
the last record written in its log that survived the
failure (the first step in the participant recovery
algorithm) and sends a recovering message that
contains the largest LSN to all coordinators in its
RCL (the second step in the recovery algorithm).
This LSN is used by the coordinators to determine
missing redo log records at the participant which
are replicated in their logs and are needed by the
participant to fully recover.

While waiting for the reply messages to arrive
from the coordinators, the wundo phase can be
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performed, even potentially completed, and the
redo phase can be initiated. That is, the partici-
pant recovers those aborted and committed
transactions that have decision records pertaining
to them already stored in its stable log (the third
step in the algorithm) while waiting for the reply
messages to arrive from the coordinators. This
ability of overlapping the undo phase with the
resolution of the status of active transactions and
the repairing of the redo part of the log, partially
masks the effects of dual logging and communi-
cation delays. Note that because of the use of
WAL, all the required undo log records that are
needed to eliminate the effects of any transaction
on the database are always available in the par-
ticipant’s stable log and never replicated at the
coordinators’ sites.

When a coordinator receives a recovering
message from a participant, it will know that the
participant has failed and is recovering from the
failure. Based on this knowledge, the coordinator
checks its protocol table to determine each
transaction that the participant has executed some
of its operations and the transaction is either still
active in the system (i.e., still executing at other
sites and no decision has been made about its final
status, yet) or has committed but did not finish
the protocol (i.e., a final decision has been made
but the participant has not acknowledged the
decision prior to its failure). For each transaction
that is finally committed, the coordinator re-
sponds with a commit status along with a list of
all the transaction’s redo records that are stored in
its log and have LSNs greater than the one that
was included in the recovering message of the
participant.

For each active transaction that is still in pro-
gress in other sites, the coordinator has the option
to either abort or forward recover the transaction.
If the coordinator decides to abort the transaction,
it sends abort messages to all participants to roll-
back the transaction. If the coordinator decides to
forward recover the transaction, it responds with a
still-active status containing, as in the case of a
committed transaction, a list of the redo records
associated with LSNs greater than the one in-
cluded in the recovering message of the partici-
pant. The message also contains all the read locks

that were held by the transaction at the partici-
pant’s site prior to its failure.

All these responses and redo log records are
packaged with the read locks acquired by active
transactions in a single repair message and sent
back to the participant. If a coordinator has no
active transactions and all committed transactions
have been acknowledged as far as the failed par-
ticipant is concerned, the coordinator sends an
ACK repair message, indicating to the participant
that there are no transactions to be recovered as
far as this coordinator is concerned.

Once the participant has received reply mes-
sages from all the coordinators (the fourth step in
the participant recovery algorithm in Fig. 4), the
participant repairs its log and completes the redo
phase. The participant also re-builds its lock table
by re-acquiring the update locks during the redo
phase in conjunction with the read locks received
from the coordinators. Once the redo phase is
completed (the fifth step in the participant recov-
ery algorithm), the participant acknowledges all
commit decision responses once these commit de-
cisions are in its stable log, as in the case of normal
processing. Then the participant resumes its nor-
mal processing (the last step in the participant re-
covery algorithm). Thus, in IYV’s recovery
algorithm, a long-executing transaction is not
necessarily aborted as a result of a participant
failure as would be the case in all other ACPs.
That is, since a participant can rebuild its lock
table after a failure and redo the effects of partially
executed transactions, the coordinator of a trans-
action has the option to forward recover the
transaction if it is still active in the system after the
failed participant is recovered.

3.2.2.3. Simultaneous coordinator and participant
failures. The case of an overlapped coordinator
and participant failure is handled using the same
procedure as we discussed above. That is, a failed
coordinator recovers the transactions initiated at
its site as we discussed above. Similarly, a failed
participant recovers as we discussed above. How-
ever, it should be noticed that if one of the coor-
dinators in the RCL of a recovering participant is
down, the participant is left blocked and cannot
recover until the failed coordinator has recovered
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and sent to the participant the pending repair
message. Although this situation might seem to be
drastic, it is expected to be very rare in the context
of future database systems given the reliability
characteristics of modern computing systems.
Hence, this represents a reasonable trade-off be-
tween fast commit processing during the normal
(i.e., non-failure) case at the expense of slower
recovery in the rare failure case.

4. Assumptions, correctness and applicability
4.1. Basic system assumptions

The essence of 2PC that ensures the atomicity
of a distributed transaction is that it prevents a
transaction from unilaterally committing or
aborting at a site while it is in the prepared to
commit state. A participant may be required to
abort a transaction either for correctness reasons,
such as ensuring serializability, or for performance
reasons, such as minimizing transaction blocking.
Regarding the latter, given that transactions are
finite, we assume that a participant does not abort
a transaction because it has not received an oper-
ation from the transaction for some time. It is the
responsibility of the coordinator to decide whether
or not it is necessary to abort a long-executing
transaction.

As we mentioned earlier, most commercial
database management systems use S-2PL for
concurrency control and physical WAL for re-
covery. Now, consider a distributed system in
which all the sites employ S-2PL. In such a distrib-
uted system, participants never abort transactions
to ensure atomicity, i.e., there are no cascading
aborts, and only abort transactions in active states
(i.e., transactions having outstanding operations’
acknowledgments) to resolve deadlocks.

Theorem 1. If each participant employs S-2PL for
concurrency control, it is not possible for a trans-
action to be involved in a non-serializable execution,
a local deadlock at a participant, or a global dead-
lock when all the operations that were submitted by
the transaction to the participants have been exe-
cuted and acknowledged.

Proof. The proof proceeds by contradiction. As-
sume that all the operations submitted by a
transaction have been executed and acknowledged
and the transaction is involved in (1) a non-seri-
alizable execution or (2) a deadlock.

According to the S-2PL rules, an operation
submitted by a transaction is executed only after
the locks required for the execution of the opera-
tion on the data items are acquired. This rule im-
plies that an operation is not acknowledged until
after the required locks for the execution of the
operation are acquired.

The first part (1) contradicts the fact that S-2PL
schedulers produce serializable histories [10]. If the
transaction is involved in a non-serializable exe-
cution, at least one of its operations would have
been blocked rather being acknowledged which
contradicts the assumption that all the transac-
tion’s operations have been executed and
acknowledged.

The second part (2) contradicts the fact that if a
transaction is involved in a deadlock, at least one
of its operations is blocked awaiting to hold some
locks on some data items which again contradicts
the assumption that all the operations pertaining
to the transaction have been acknowledged. O

Corollary 1. A4 local deadlock at a participant site
that employs S-2PL involves only active transac-
tions (i.e., transactions with pending operations).

Proof. As above, the proof proceeds by contradic-
tion. For a deadlock to occur, the hold-and-wait
condition must exist. If we assume that a transac-
tion is involved in a local deadlock at a participant
site after all the operations submitted to the par-
ticipant have been executed and acknowledged, it
means that the transaction is holding locks on some
data items and is waiting to hold locks on other
data items. However, since all the operations of the
transaction have been executed and acknowledged
by the participant, all the locks required for the
execution of the operations submitted to the par-
ticipant have been acquired. Hence, the hold-and-
wait condition cannot exist after all the operations
submitted by a transaction to a participant have
been acknowledged and a local deadlock can only
involve active transactions. [J
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Note that participants using an optimistic con-
currency control protocol [10] do not exhibit the
above property. That is, they might abort a
transaction even though the transaction is not in
an active state in order to ensure serializability
[10]. Hence, 1YV is not applicable in this case. On
the other hand, it can be shown, as in Theorem 1,
that participants using a pessimistic concurrency
control protocol (other than S-2PL) that avoids
cascading aborts never abort transactions to en-
sure atomicity and only abort transactions in ac-
tive state to ensure serializability.

It should be pointed out that IYV is designed
for client-server architecture in which interactions
between sites are structured along the lines of re-
mote procedure calls in a synchronous or asyn-
chronous manner. 1YV is not suitable for
environments where requests are not always ac-
knowledged as in peer-to-peer environments using
conversations. Also, as any other one-phase ACP,
IYV is not applicable in systems where a voting
phase is required to perform some form of vali-
dation at commit time. Such systems include those
that process transactions associated with differed
consistency constraints which are validated at
commit time.

4.2. Assumptions on transaction properties

Many applications trade-off increased concur-
rency for consistency. For this reason, ANSI SQL
defines four isolation levels [6]: (1) read uncom-
mitted, (2) read committed, (3) repeatable read and
(4) serializable. The main underlying assumption
of TYV is that each site employs a scheduler that
produces rigorous histories such as S-2PL which
corresponds to isolation level 3. Note that, in this
paper, we follow the definitions of the isolation
levels for locking-based systems that are presented
in [9].

1YV, as any other ACP, is not necessary in the
case of isolation level 0 because there is no notion
of transaction at this level. A transaction running
in this level can read any data item without re-
questing a lock and writes data items with short-
term locks which are held only for the duration of
the operation (non-two-phase writes).

In isolation level 1, a transaction is allowed to
read uncommitted data. If isolation level 1 atom-
icity is defined such that a transaction is aborted if
it has read data written by an aborted transaction
(traditional notion of atomicity), then 1YV is not
applicable. This is because a participant in 1YV
cannot abort a transaction due to cascading aborts
at the commit time of the transaction. On the other
hand, if isolation level 1 atomicity is only with
respect to the write operations, then IYV can be
used to ensure that either all the writes are com-
mitted at all participants or none at all.

IYV is applicable in isolation level 2 (which
includes the cursor stability and repeatable read
refinements). In this level, transactions read only
committed data while write locks are of long
duration (i.e., writes locks are held until a trans-
action is either committed or aborted). Thus, there
is no possibility of cascading aborts and there is a
need to synchronize the writes. But, it should be
noted here that the forward recovery option is not
applicable except in the case of repeatable reads
since read locks are of short term and reads cannot
be repeated.

4.3. Assumptions on recovery

As discussed above, recovery in IYV is based on
the traditional Undo/Redo schemes in which the
undo phase precedes the redo phase. This allows
the analysis phase at a participant that involves
communication with the coordinators to proceed
concurrently with the undo phase and potentially
part of the redo phase. This is not possible in the
case of recovery schemes such as ARIES [24], in
which the redo phase precedes the undo phase. In
the case of a recovery scheme where the redo phase
precedes the undo phase, a participant is blocked
and cannot initiate recovery until it receives re-
sponses from the required coordinators (i.e., all
coordinators in the RCL of the participant). That
is, IYV can incorporate other recovery schemes
such as ARIES, which is a physiological recovery
scheme, but it will not offer the same efficiency
during recovery in this case.

Now, let us also make the need for replicating
the read locks that are held by the transactions at
the coordinators’ sites clear, a need which allows
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the option of forward recovery without violating
consistency. Assume that we have two transactions
T, and T5, submitted at two different coordinators.
T reads data item x, writes data item y and then
commits, whereas T, writes both data items x and
v, and then commits. Here, r; [x] (w; [x]) denotes a
read (write) operation performed by transaction 7;

T1 : rl[x]wlb/]cl,

Tz . Wz[x] Wz[y]Cz.

Furthermore, assume that the first operation of
Ty, r1 [x], has been executed successfully and ac-
knowledged. After that, the participant where the
data items are stored fails. The resulting history of
execution is as follows:

H, : r[x]Crash.

At this point, assume that the participant has
received acknowledgment messages in response to
its recovering messages from all coordinators in-
cluding the coordinator of 7} which has indicated
that T is still active in its acknowledgment mes-
sage. Based on these replies, the participant fin-
ishes its recovery procedure using its own log and
knowing that T; is still in progress but there is no
redo actions that are needed to be used with this
transaction since the transaction has performed
only a read operation. Now, if we allow 7; to
forward recover after the participant has recovered
without being able to reconstruct the exact lock
table of the participant as it was before the failure,
we might end up with the following non-serializ-
able history

Hy . rifx]wax]wa[y]cawi[yler.

H, is not serializable because it is cyclic (i.e.,
T\ — I, — T}). H, is possible because the partici-
pant after losing its lock table, could not re-ac-
quire the read lock on x on behave of 7| as it was
the case prior to the failure, allowing 7, to acquire
a write lock and change x after the participant has
recovered. Once 7, has committed, the participant
receives a new operation pertaining to 77 that also
modifies the value of x. Since 7, has already
committed and all its locks have been released, T;
can acquire a write lock on x and modifies it, re-
sulting in a non-serializable execution. However,

duplicating the read locks at the coordinators in
IYV allows a participant to re-build its lock table
after a failure and to prevent execution histories
similar to the one described above from occurring.

Here, it should be pointed out again that for-
ward recovery is an option in IYV which is cur-
rently applicable only for context-free transactions
with respect to participants. A transaction pro-
gram always executes at the site of its coordinator
and cannot be forward recovered in the case of the
coordinator’s site failure without the help of
checkpoints which save the transaction program’s
local state [15]. In IYV, by assuming context-free
transactions at the participants, the read locks and
write log records are sufficient to reconstruct the
context of transactions and forward recover them
on a failed participant. For more complicated type
of contexts, a coordinator needs to store a high
level description of a transaction’s context to en-
able the transaction to forward recover at a par-
ticipant site. Finally, because forward recovery is
an option in IYV, IYV can be used to commit
transactions with complex context without this
option.

5. IYV optimizations and extensions
5.1. IYV presumed abort (IYV-PRA) optimization

Since the decision phase of IYV is exactly the
same as in the PrN, we augmented 1YV with the
PrA optimization which makes the abort pre-
sumption more explicit than IYV. In I'YV-PrA (see
Fig. 5), the coordinator of a transaction needs only
to force-write a commit log record and any missing
information about a transaction is presumed to
mean that the transaction has been aborted. The
abort presumption is made explicit by not writing
an abort log record at all and by discarding all the
information about an aborted transaction from
the protocol table.

IYV-PrA also reduces the number of coordi-
nation messages for aborted transactions. The
participants do not have to acknowledge abort
messages as they do not have to force-write abort
decisions. If a participant fails before an abort
decision is in stable storage, upon its recovery, it
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COORDINATOR PARTICIPANT STATE
[ Write non-forced Active ~ 7 7]
ACKOp(l) |redologrecord(s) |
7777777 Prepared
Write non-forced
redo log record(s) Op(2)
[ Write non-forced ~~ """ Aciive =7 7]
ACKOp(2) |redologrecords) |
Prepared
‘Write non-forced
redo log record(s\ A
MY Opm) M
| Write non-forced Acive =~
Transaction Requested ACK Op(n) Jredologrecord(s) ________________|
Abort Prepared
Write non-forced
redo log record(s)
A\m
[ Write non-forced” ~~~~~ Aborted |
Abort log
record

Fig. 5. The IYV-PrA protocol.

will undo the effects of such an (active) transaction
and inquire the transaction’s coordinator with a
recovering message. Since the transaction has been
aborted, its coordinator would not have any in-
formation pertaining to the transaction in its
protocol table and therefore, it either replies with a
repair message that does not contain any infor-
mation about the transaction or an inactive mes-
sage. An inactive message is sent as opposed to a
repair message if the coordinator does not find any
transaction in its protocol table that needs to be
recovered at the participant. In IYV-PrA, this is
possible since the coordinator may discard the
information in its protocol regarding an aborted
transaction which happens to be the last transac-
tion executing at the participant before the par-
ticipant has the chance to update its RCL. In
either case, when the participant receives the reply
message, it does not have to take any further ac-
tions since it has already obliterated the effects of
the aborted transaction during the undo phase.
The cost of a commit decision, however, remains
the same as in the (basic) IYV.

5.2. IYV read-only optimization

The read-only optimization (see Section 2) can
also be coupled with IYV in order to release locks
at the participants earlier and to eliminate some

forced log writes. A participant is termed as read-
only if it has executed only read operations on
behalf of a transaction. Otherwise, it is termed as
an update participant. Since read operations do
not affect the state of the database, a read-only
participant does not have to be concerned with
failures but only to ensure the serializability of the
transaction. That is, as opposed to an update
participant, when a read-only participant receives
a commit or an abort decision, it does not have to
perform any logging activities before releasing the
transaction locks. In the absence of logging
activities, read-only participants do not have to
acknowledge that the decision has been forced.

In IYV read-only optimization (I'YV-RO),
when a commit primitive is received from a
transaction, the coordinator determines which
participants are read-only based on the acknowl-
edgments it has received during the execution of
the transaction. Specifically, once the last opera-
tion submitted to a participant is acknowledged
and the participant did not send a redo record as
part of any of its acknowledgment messages, the
coordinator knows that the participant is read-
only. If a participant is read-only, the coordinator
immediately sends a read-only message to the
participant without having to wait until a final
decision is reached and is in the stable log. Once a
participant receives a read-only message regarding
a transaction, the participant releases the locks
associated with the transaction and updates its
RCL if necessary.

Since read-only participants in a transaction
execution do not have to wait for a final decision
to be reached and forced written into the stable log
of the transaction’s coordinator, read-only partic-
ipants release the locks held by the transaction
earlier than their update counterparts. Further-
more, as mentioned above, regardless of the final
outcome of a transaction, a read-only participant
does not have to acknowledge a read-only mes-
sage. In the case that all the participants in the
execution of a transaction are read-only and the
coordinator has sent them read-only messages, the
coordinator does not have to write decision and
end log records. IYV’s read-only optimization can
be generalized and made applicable to the two-
phase commit protocols [1,4,5].
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5.3. IYV in multi-level transactions

The multi-level transaction execution (MLTE)
model, the one specified by the standards and
adopted by commercial database systems, is simi-
lar to the tree of processes model [5,26]. In this
model, a participant is a process that is able to
decompose a subtransaction further. Thus, a par-
ticipant can initiate other participant processes at
its site or different sites. Hence, the processes
pertaining to a transaction can be represented by a
multi-level execution tree where the coordinator
process resides at the root of the tree. In this
model, the interactions between the coordinator of
the transaction and any process have to go
through all the intermediate processes that have
caused the creation of a process.

In the MLTE model, the behavior of the root
coordinator and each leaf participant in the
transaction execution tree, in both IYV and IYV-
PrA, remains the same as in two-level transactions.
The only difference is the behavior of cascaded
coordinators (i.e., non-root and non-leaf partici-
pants) since an acknowledgment message of an
operation represents the successful execution of
the operation at the cascaded coordinator as well
as all the descendants of the cascaded coordinator.

As in the case of the (two-level) IYV, in multi-
level 1YV, the root coordinators are responsible
for maintaining the replicated redo logs. In multi-
level 1YV, all the redo log records that are gener-
ated during the execution of an operation are
propagated to the root coordinator. Thus, when a
cascaded coordinator receives acknowledgment
messages from all its descendants that participated
in the execution of an operation, it sends an ac-
knowledgment to its direct ancestor in the trans-
action tree containing the redo log records
generated across all participating sites as well as
the read locks held at them during the execution of
the operation. That is, an acknowledgment mes-
sage from a cascaded coordinator represents the
implicit vote of its subtree. When the root coor-
dinator receives an acknowledgment message, it
writes any redo records contained in the message
in its log and any read locks in its PLT as it is the
case of IYV in the two-level transaction execution
model.

With respect to RCL, a cascaded coordinator
updates its RCL to include the identity of the root
coordinator only if it participates in the execution
of the operation. If a cascaded coordinator does
not participate in the execution of an operation, it
simply sends the operation to the appropriate
participant(s) without including the identity of the
root in its RCL. Thus, when a transaction finishes
its execution, all the replicated redo records and
read locks are replicated at the root coordinator
and, therefore, the coordinator knows all the
participants (i.e., both leaf and cascaded coordi-
nators). Similarly, each participant knows the
identity of the root coordinator which is reflected
in its RCL.

While the execution phase of a transaction is
multi-level, the decision phase is not because the
root coordinator of the transaction knows all the
participants at the time the transaction finishes its
execution. Therefore, the coordinator sends its
decision directly to each participant without going
through cascaded coordinators as in the two-level
IYV. Similarly, each participant sends its ac-
knowledgment of the decision directly to the root
coordinator without going through the cascaded
coordinators. °

In summary, in multi-level IYV, the behavior of
the root coordinators remains the same as in IYV,
cascaded coordinator is responsible about the co-
ordination of acknowledgment messages of indi-
vidual operations, while the behavior of
participants remains the same as in the basic IY'V.
After a failure, the recovery of the participants
(both cascaded coordinators and leaf participants)
is as in 'YV discussed in Section 3.2. A recovering
participant waits for the responses of the coordi-
nators included in its RCL, performs the undo and
redo phases, and then resumes normal processing.
Similarly, a recovering root coordinator gathers
the acknowledgments of all participants in a

© This is similar to the flattening of the commit tree optimi-

zation [31]. Notice that the execution phase cannot be flattened
as the decision phase because the acknowledgment message
reflects the execution of a complete operation that is executed at
several participants and the collective implicit vote.
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transaction execution before forgetting the trans-
action.

IYV-PrA can be extended in a similar manner
as IYV. The only difference is that a coordinator
does not wait for the acknowledgment of any
participant for the abort case.

6. Comparison with other atomic commit protocols

IYV combines the advantages of UV, EP and
CL protocols, as we mentioned earlier. Here, we
compare 1YV with these protocols and in partic-
ular with CL which shares the same basic idea with
IYV in order to reduce the number of log force-
writes while eliminating the explicit voting phase
of 2PC.

To avoid force writing the log records that are
generated during the execution of each and every
operation prior to acknowledging them, UV as-
sumes that each site knows when it has executed
the last operation on behalf of a transaction [35].
This means that the coordinator either submits to
a site all the operations at the same time (which is
a form of predeclaration) or indicates to the par-
ticipant the last operation at the time that the
operation is submitted. The former is possible in
very special cases. The latter is only possible if
each transaction has knowledge of the data dis-
tribution in the system and indicates to the coor-
dinator the last operation to be executed at a
participant.

In contrast to UV, IYV does not make any
assumption about the structure of transactions
and does not assume any knowledge of the data
distribution by the transactions. Thus, 1YV is
more general compared to UV. In the special
cases in which UV is applicable, IYV and UV
would exhibit similar behavior during normal
processing.

In EP, which is derived from PrC, the number
of forced log writes pertaining to a transaction at
its coordinator is equal to the number of partici-
pants that executed the transaction since EP re-
quires the identities of the participants to be
explicitly recorded at the coordinator’s log in a
forced initiation log record. This is because an
initiation log record has to be force-written each

time a new participant is about to execute an op-
eration of the transaction. Furthermore, a partic-
ipant force-writes a prepared log record before
acknowledging a transaction’s operation. In con-
trast, in IYV, a coordinator does not force-write
any initiation record and a participant does not
force-write any prepared log records.

To alleviate the drawback of the initiation re-
cords as well as the prepared log records of EP,
CL uses distributed write-ahead logging DWAL.
Using DWAL, only the coordinators maintain
stable logs. In the case of CL, since a participant
might inquire a coordinator about the latest
forced log write (i.e., to ensure the DWAL), CL
might become very costly and less efficient when
compared with any of the 2PC variants. Consider
the case when a number of long-living transac-
tions execute at a participant without excessive
main memory. In this case, the participant might
request a transaction’s coordinator (explicitly) to
force-write its log more than once resulting in a
great number of sequential messages. Also, roll-
ing back aborted transactions has to be per-
formed completely over the network. This means
that when a participant aborts a transaction, it
cannot release the resources held by the transac-
tion until it communicates with the transaction’s
coordinator and receives the undo log records
pertaining to the transaction, which is a signifi-
cant overhead.

Another significant difference between I'YV and
CL is the case of a coordinator’s recovery after a
failure. A coordinator in IYV can recover inde-
pendently without communicating with any par-
ticipant. In contrast, a recovering coordinator, in
CL, has to communicate with all possible partici-
pants in the system in order to determine the set of
“unknown transactions’ so that it can abort them
instead of presuming their commitment since CL is
a descendant from PrC protocol [33,34]. An un-
known transaction is a transaction that is execut-
ing at a participant but the coordinator has no
recollection about the transaction since it does not
find any log records pertaining to the transaction
in its log during its recovery. Furthermore, a re-
covering participant in CL has to wait until it re-
ceives all the log records from the coordinators
and until all active transactions have been decided
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upon. In IYV, however, using the “still active”
message, a participant can recover its state up to
the point prior to its failure and resume its normal
processing without having to wait until all active
transactions have been decided upon, allowing
long-living transactions to forward recover and
resume their execution. Aborted transactions in
IYV are handled locally by a participant without
any communication with the coordinators (i.e., the
undo log records do not have to be requested from
the coordinators).

Even though IYV requires that the redo log
records generated during the execution of a
transaction’s operation be logged at both its co-
ordinator as well as at the participant that exe-
cuted the operation, such a duplicate logging
should incur negligible overhead because the log
records are written in a non-forced manner and
without involving any extra coordination messag-
es. The only overhead is that IYV requires more
buffer space for the log of the coordinator so that
logging does not cause frequent flushing to the log
buffer. As mentioned earlier, we believe that, in
general, the overhead associated with the dupli-
cation of logs and the extra information contained
in the commit and still-active messages is well
offset by the reduction in the number of sequential
coordination messages and the gain of being able
to support forward recovery of interrupted, pos-
sibly long-lived, transactions due to participant
and communication failures.

It should be pointed out that not forcing
commit records at the participants in 1YV differs
from the group commit optimization [14,18] in two
ways, although both trade-off performance during
normal processing for reduced independent re-
covery for participants. First, in IYV, there is no
notion of a group or a timer that determines when
a force should take place. Second, by not forcing
individual commit records, group commit in-
creases blocking after a participant failure
whereas in IYV the blocking of a participant is
the same irrespective of whether commit records
are forced or not. This is because, in 1YV, a
participant cannot determine all transactions that
were active at its site prior to a failure or their
final status without contacting all coordinators in
its RCL.

7. Analytical evaluation

In this section, we evaluate the performance of
IYV and compare its performance with the per-
formance of 2PC, PrA, PrC, EP and CL. The
evaluation is based on the log, message and time
complexities. In our evaluation, we use best (ideal)
and worst case scenarios, as in [33,34], to highlight
the performance differences among the various
ACPs. Also, we consider the number of coordi-
nation messages and forced log writes that are due
to the protocols only (e.g., we do not consider the
number of messages that are due to the operations
and their acknowledgments). The cost of the pro-
tocols in both scenarios are evaluated during
normal processing and in absence of failures.

Fig. 6 graphically illustrates the sequence of
coordination messages and forced log writes in-
volved in 2PC and IYV to reach a decision point
and to release the resources held at the participants
for the commit as well as the abort case. The figure
shows how we will evaluate the performance of the
ACPs that we listed above, considering the se-
quential effects of coordination messages and
forced log writes. In our evaluation, we will as-
sume that AAF is always set by the participant
sites since we do not evaluate the cost of recovery
after a site failure.

Tables 1 and 2 compare the different protocols
under the worst case scenario. It should be pointed
out that this “worst” case scenario is very close to
the expected average behavior of transactions and
the distributed environment. This is because the
assumptions that we make in this case are more
realistic than the assumptions that we make in the
best case scenario. We denote by n the number of
participants that executed a transaction and by d
the number of data items that have been accessed
by the transaction. In this scenario, we assume the
following:

e A transaction has more than one write opera-

tion at each participant it accesses (i.e., d > n).
e Transactions execute sequentially (e.g., an oper-

ation is submitted by a transaction only when

the previous operation has been executed and
acknowledged).

e The participants are not known at the beginning
of transactions.
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Table 1
The cost of the protocols to commit a transaction assuming the worst case scenario
2PC PrC PrA EP CL IYv IYV-PrA

Log force delays 2 3 d+n+1 1 1 1
Total log force writes 2n+ 1 n+2 2n+ 1 d+n+1 1 1 1
DWAL message delays 0 0 0 2d 0 0
Message delays (commit) 2 2 0 2d 0 0
Message delays (locks) 3 3 1 2d +1 1 1
Total messages 4n 3n n 2d +n 2n 2n
Total messages with piggybacking 3n 3n n 2d +n n n

Table 2

The cost of the protocols to abort a transaction assuming the worst case scenario

2PC PrC PrA EP CL IYv IYV-PrA

Log force delays 2 2 1 d+n 0 1 0
Total log force writes 2n+1 2n+1 n d+2n 0 1 0
DWAL message delays 0 0 0 0 4d 0 0
Message delays (abort) 2 2 2 0 2d 0 0
Message delays (locks) 3 3 3 1 4d + 1 1 1
Total messages 4n 4n 3 2n 4d +n 2n n
Total messages with piggybacking 3n 3n 3n n 4d +n n n

e The participants in a transaction execution do
not have excessive main memories and each op-
eration generates a single log record. This
means that each and every log record that is
generated due to the execution of an operation
has to be forced written into the stable log as a
worst case scenario. Note that we do not in-
clude the number of forced log writes that are
due to the operations and which are the same
in all the protocols except for EP where the
log records have to be force-written all the
time. In CL, on the other hand, operations
add extra overhead because each force-write
is explicitly associated with two messages due
to the DWAL.

The rows labeled “Log force delays” contain
the sequence of forced log writes that are required
by the different protocols up to the point that the
commit/abort decision is made. The rows labeled
“Message delays (commit/abort)” contain the
number of sequential messages up to the commit/
abort point, and the rows labeled “Message delays
(locks)” contain the number of sequential mes-
sages that are involved in order to release all the
locks held by a committing/aborting transaction.

For example, in Table 1, the “Log force delays”
for the 2PC protocol is two because there are two
force log writes between the beginning of the
protocol and the time a commit decision is made
by a transaction’s coordinator, as shown in Fig. 6.
Also, “Message delays (commit)” and “Message
delays (locks)” are 2 and 3 respectively, because
the 2PC involves two sequential messages in order
for a coordinator to make its final decision re-
garding a transaction (i.e., the first phase of the
protocol), and three sequential messages to release
all the resources (i.e., locks) held by the transac-
tion at the participants. In the row labeled “Total
message with piggybacking”, we apply piggybac-
king of the acknowledgments of the decision
messages, which is a special case of the lazy com-
mit optimization [19], to eliminate the final round
of messages.

It is clear from Tables 1 and 2, that IYV, IYV-
PrA and CL outperform all other 2PC variants
with respect to the number of log force delays to
reach a decision as well as the total number of log
force-writes. For the commit case, the two proto-
cols require only one log force-write whereas for
the abort case neither IYV-PrA nor CL force-write
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any log records. In this respect, EP is the most
expensive of all protocols.

CL becomes more expensive than 1YV when
message delays and total number of messages are
considered. Due to DWAL, CL requires two ex-
plicit sequential messages to be exchanged between
a participant and the coordinator of a transaction
for each operation executed by the participant for
the commit case (thus, the 2d in “DWAL Message
delays”). For the abort case, four messages are
needed to be exchanged between the participant
and the coordinator of an aborted transaction.
This is because undoing an operation using the
recovery scheme of CL, ARIES, is another oper-
ation that has to be executed and logged. Since CL
uses DWAL, undoing an operation requires two
more explicit messages to be exchanged between
the coordinator and the participant in the worst
case scenario. Note that because of its dependency
on the number of data operations, CL can po-
tentially involve more messages to commit or
abort a transaction than any of the 2PC variants in
the case of long transactions. On the other hand,
with respect to messages, IYV and EP perform
better than the other protocols. For the commit
case, EP incurs the least number of total messages.
This situation changes when piggybacking is con-
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sidered where both EP and 1YV incurs the same
message complexities.

Piggybacking the acknowledgments of the de-
cision messages can only be used to eliminate the
final round of messages for the commit case in
2PC, PrA, 1YV, and IYV-PrA, but not in the case
of PrC, EP and CL because a commit final deci-
sion is never acknowledged in these protocols.
Similarly, this optimization can be used in the
abort case with the 2PC, PrC, EP, and IYV but
not with PrA, CL and IYV-PrA. In PrA and IY V-
PrA, an abort decision is never acknowledged
while in CL, the acknowledgment is sent immedi-
ately because it contains the undo log records of
the aborted transaction.

Tables 3 and 4 compare the number of messages
and forced log writes that are needed for the com-
mit and abort cases, respectively, for the different
protocols based on the ideal case scenario. In this
ideal scenario, we make the following assumptions:
e A transaction performs at most one write oper-

ation per each site it accesses (i.e., n = d).

e The operations of a transaction execute in paral-
lel.

e The participants are known at the beginning of
transactions.

e The participants have excessive main memory.

Table 3
The cost of the protocols to commit a transaction assuming the ideal case scenario
2PC PrC PrA EP CL IYv IYV-PrA
Log force delays 2 3 2 3 1 1 1
Total log force writes 2n+1 n+2 2n+1 n+2 1 1 1
Message delays (commit) 2 2 2 0 0 0
Message delays (locks) 3 3 3 1 1 1 1
Total messages 4n 3n 4n n n 2n 2n
Total messages with piggybacking 3n 3n 3n n n n n
Table 4
The cost of the protocols to abort a transaction assuming the ideal case scenario
2PC PrC PrA EP CL IYv IYV-PrA
Log force delays 2 2 1 2 0 1 0
Total log force writes 2n+1 2n+1 n 2n+1 0 1 0
Message delays (abort) 2 2 2 0 0 0 0
Message delays (locks) 3 3 3 1 1 1 1
Total messages 4n 4n 3n 2n 2n 2n n
Total messages with piggybacking 3n 3n 3n n 2n n n
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Table 5
The cost of the different protocols for read-only transactions assuming ideal case scenario
PrC PrA EP CL IYv IYV-PrA
Log force delays 1 0 1 1 0 0
Total log force writes 1 0 1 1 0 0
Message delays (decision) 2 2 0 0 0 0
Message delays (locks) 1 1 1 1 1 1
Total messages 2n 2n n n n n
Table 6
The cost of the different protocols for read-only transactions assuming worst case scenario
PrC PrA EP CL IYyv IYV-PrA
Log force delays 1 0 n 1 0 0
Total log force writes 1 0 n 1 0 0
Message delays (decision) 2 2 0 0 0 0
Message delays (locks) 1 1 1 1 1 1
Total messages 2n 2n n n n n

In the ideal case, CL and IYV have the same
cost as far as the number of sequential force log
writes and messages are concerned for the commit
case, dominating the other ACPs with CL domi-
nating IYV and IYV-PrA with respect to the total
number of messages. When piggybacking is con-
sidered, CL, 1YV and IYV-PrA have exactly the
same cost. For the abort case, CL dominates IYV
with respect to the number of sequential force-
writes and the total number of forced log writes
while they have the same cost considering the
number of sequential and total number of mes-
sages. On the other hand, IYV-PrA is better than
CL by 7 in the total message count.

Comparing the two scenarios, we note that the
cost associated with EP is highly dependent on the
number of operations submitted by the transac-
tions while CL is also dependent on the behavior
of the system (e.g., the propagation latency of the
communication network, the log buffer size, and
the main memory size of the participants, etc.).
This makes EP and CL completely inefficient in
distributed database systems with long-living
transactions where a transaction typically executes
a large number of operations at a small number of
sites (i.e., d > n), a situation common in advanced
distributed database applications. Ruling out EP
and CL, it is clear from our comparison’s tables

that IYV and its PrA optimization promise the
minimum cost among the other ACPs.

Tables 5 and 6 show the cost of the different
ACPs for read-only transactions assuming a
commit final outcome. Table 5 considers the best
case scenario while Table 6 considers the worst
case scenario. The standard read-only optimiza-
tion is used with PrC and PrA while the IYV-RO
optimization is used with IYV and IYV-PrA. All
the protocols in the two tables have the same cost
as far as the number of sequential messages to
release all the locks held by read-only transactions
is concerned (i.e., only a single message). However,
IYV and IYV-PrA dominate CL, EP and PrC
as far as the number of sequential forced log delays
to reach the commit point as well as the total
number of forced log writes in both scenarios. As
far as the total number of messages and message
delays to reach a commit decision is concerned,
EP, CL, 1YV, and IYV-PrA have the same cost
which dominates the cost associated with PrC and
PrA.

8. Conclusions

In this paper, we presented 1YV, a new one-
phase atomic commit protocol for future gigabit-
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networked distributed databases. IYV is targeted
for environments with fixed number of high per-
formance coordinators or application servers.
IYV exploits the semantics of (1) database man-
agement mechanisms and (2) gigabit-networks to
enhance performance over the other well-known
atomic commit protocols [1,2]. Specifically, it
exploits the S-2PL and the huge capacity of the
network. 1YV reduces the cost of commit pro-
cessing at the cost of independent recovery.
However, IYV compensates for the lack of in-
dependent recovery by providing the option of
forward recovery where partially executed trans-
actions at a failed participant that are still active
in the system can resume their execution after the
participant has recovered.

To highlight the performance enhancement of
our commit protocol, we compared its perfor-
mance to the performance of other known proto-
cols based on the traditional analytical method.
This method is based on evaluating the perfor-
mance of the different protocols under worst and
ideal case scenarios. Our evaluation reveals that
the performance of our proposed protocol is very
promising, a fact that has also been shown by our
initial simulation results [1].

Even though IYV seems to be a very promising
protocol with respect to performance, it is not
applicable in resource-constrained systems (e.g.,
low bandwidth networks, small main memory or
high cost disk access systems) or in client-server
systems where the interactions between sites are
not structured along the lines of remote proce-
dure calls. Also, as any other one-phase protocol,
IYV is not applicable in systems that require
atomic commit protocols with explicit voting
phase to perform some form of validation at
commit time. This includes systems that use
optimistic concurrency control protocols and
systems that support validation of deferred con-
sistency constraints.

Finally, IYV was designed for relatively reliable
systems in mind. However, in the case of less re-
liable sites, unlike in [32], its blocking aspects can
be reduced by combining 'YV with the delegation
of commitment technique, found in open commit
protocols [28,29], and a novel timestamp synchro-
nization mechanism while retaining its perfor-

mance advantages over the other atomic commit
protocols [3].

A clear conclusion of our analysis is that there
is no single atomic commit protocol that is best for
any system and for all transaction types. Fur-
thermore, this points to the direction of integrated
atomic commit protocols where for example IYV
can be integrated with presumed abort protocol.
This in fact constitutes the line of our current
investigation along with the performance evalua-
tion of the different atomic commit protocols using
simulation.

References

[1] Y.J. Al-Houmaily, Commit processing in distributed dat-
abase systems and in heterogeneous multidatabase systems,
Ph.D. thesis, Department of Electrical Engineering, Uni-
versity of Pittsburgh, Pittsburgh, Pennsylvania, April 1997.

[2] Y.J. Al-Houmaily, P.K. Chrysanthis, Two-phase commit
in gigabit-networked distributed databases, in: Proceedings
of the Eighth ISCA International Conference on Parallel
and Distributed Computing Systems, 1995, pp. 554-560.

[3] Y.J. Al-Houmalily, P.K. Chrysanthis, The implicit yes-vote
commit protocol with delegation of commitment, in:
Proceedings of the Ninth International Conference on
Parallel and Distributed Computing Systems, 1996,
pp- 804-810.

[4] Y.J. Al-Houmaily, P.K. Chrysanthis, S.P. Levitan, En-
hancing the performance of presumed commit protocol, in:
Proceedings of the 12th ACM Annual Symposium on
Applied Computing, 1997, pp. 131-133.

[5] Y.J. Al-Houmaily, P.K. Chrysanthis, S.P. Levitan, An
argument in favor of the presumed commit protocol, in:
Proceedings of the 13th International Conference on Data
Engineering, 1997, pp. 255-265.

[6] ANSI X3.135-1992, American National Standard for
Information Systems - Database Language — SQL,
November 1992.

[7] S. Banerjee, P.K. Chrysanthis, Data sharing and recovery
in gigabit-networked databases, in: Proceedings of the
Fourth International Conference on Computer Communi-
cations and Networks, 1995.

[8] S. Banerjee, V. Li, C. Wang, Distributed database systems
in high-speed wide-area networks, IEEE Journal on
Selected Areas in Communications 11 (4) (1993) 617-630.

[9] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, P.
O'Neil, A critique of ANSI SQL isolation levels, in:
Proceedings of ACM SIGMOD International Conference
on Management of Data, 1995, pp. 1-10.

[10] P.A. Bernstein, V. Hadzilacos, N. Goodman, Concurrency
Control and Recovery in Database Systems, Adison-
Wesley, Reading, MA, 1987.



832 Y.J. Al-Houmaily, P.K. Chrysanthis | Journal of Systems Architecture 46 (2000) 809-833

[11] E. Braginski, The X/Open DTP effort, in: Proceedings of
the Fourth International Workshop on High Performance
Transaction Systems, CA, 1991.

[12] A. Citron, LU 6.2 Directions, in: Proceedings of the
Fourth International Workshop on High Performance
Transaction Systems, CA, 1991.

[13] D. DeWitt et al., The gamma database machine project,
IEEE Transactions on Knowledge and Data Engineering 2
(1) (1990) 44-69.

[14] D. DeWitt, R. Katz, F. Olken, L. Shapiro, M. Stonebrak-
er, D. Wood, Implementation techniques for main memory
database systems, in: Proceedings of ACM SIGMOD
International Conference on Management of Data, 1984,
pp- 1-8.

[15] E.N. Elnozahy, W. Zwaenepoel, Manetho: Transparent
rollback-recovery with low overhead, limited rollback and
fast output commit, IEEE Transactions on Computers,
Special Issue on Fault-Tolerant Computing 41 (5) (1992)
526-531.

[16] K.P. Eswaran, J.N. Gray, R.A. Lorie, I.L. Traiger, The
notion of consistency and predicate locks in a database
system, Communications of the ACM 19 (11) (1976)
624-633.

[17] J. Gray, Notes on data base operating systems, in: R.
Bayer, R.M. Graham, G. Seegmuller (Eds.), Operating
Systems: An Advanced Course, Lecture Notes in Comput-
er Science, vol. 60, Springer, Berlin, 1978, pp. 393-481.

[18] D. Gawlick, D. Kinkade, Varieties of concurrency control
in IMS/VS fast path, IEEE Database Engineering 8 (2)
(1985).

[19] J.N. Gray, A. Reuter, Transaction Processing: Con-
cepts and Techniques, Morgan Kaufmann, Los Altos,
CA, 1993.

[20] T. Haerder, A. Reuter, Principles of transaction-oriented
database recovery, ACM Computing Surveys 15 (4) (1983)
287-317.

[21] L. Kleinrock, The latency/bandwidth tradeoff in gigabit
networks, IEEE Communications Magazine 30 (4) (1992)
36-40.

[22] B.W. Lampson, Atomic transactions, in: B.W. Lampson
(Ed.), Distributed Systems: Architecture and Implementa-
tion — An Advanced Course, Lecture Notes in Computer
Science, vol. 105, Springer, 1981, pp. 246-265.

[23] B. Lampson, D. Lomet, A new presumed commit optimi-
zation for two phase commit, in: Proceedings of the 19th
VLDB Conference, 1993, pp. 630-640.

[24] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, P.
Schwarz, ARIES: A transaction recovery method support-
ing fine-granularity locking and partial rollbacks using
write-ahead logging, ACM Transactions on Database
Systems 17 (1) (1992) 94-162.

[25] C. Mohan, B. Lindsay, Efficient commit protocols for the
tree of processes model of distributed transactions, in:
Proceedings of the Second ACM SIGACT/SIGOPS Sym-
posium on Principles of Distributed Computing, 1983.

[26] C. Mohan, B. Lindsay, R. Obermarck, Transaction man-
agement in the R* distributed data base management
system, ACM Transactions on Database Systems 11 (4)
(1986).

[27] J.E.B Moss, Nested Transactions: An Approach to Reli-
able Computing, MIT Press, Boston, 1985.

[28] K. Rothermel, S. Pappe, Open commit protocols for the
tree of processes model, in: Proceedings of the 10th
International Conference on Distributed Computing Sys-
tems, 1990, pp. 236-244.

[29] K. Rothermel, S. Pappe, Open commit protocols tolerating
commission failures, ACM Transactions on Database
Systems 18 (2) (1993) 289-332.

[30] G. Samaras, K. Britton, A. Citron, C. Mohan, Two-phase
commit optimizations and tradeoffs in the commercial
environment, in: Proceedings of the Ninth International
Conference on Data Engineering, 1993, pp. 520-529.

[31] G. Samaras, K. Britton, A. Citron, C. Mohan, Two-phase
commit optimizations in a commercial distributed envi-
ronment, Distributed and Parallel Databases 3 (4) (1995)
325-360.

[32] D. Skeen, Non-blocking commit protocols, in: Proceedings
of ACM SIGMOD International Conference on Manage-
ment of Data, 1982, pp. 133-147.

[33] J. Stamos, F. Cristian, A low-cost atomic commit protocol,
in: Proceedings of the Ninth Symposium on Reliable
Distributed Systems, 1990, pp. 66-75.

[34] J. Stamos, F. Cristian, Coordinator log transaction execu-
tion protocol, Distributed and Parallel Databases 1 (1993)
383-408.

[35] M. Stonebraker, Concurrency control and consistency of
multiple copies of data in distributed INGRES, IEEE
Transactions on Software Engineering 5 (3) (1979)
188-194.

[36] F. Upton 1V, OSI distributed transaction processing, an
overview, in: Proceedings of the Fourth International
Workshop on High Performance Transaction Systems,
CA, 1991.

Yousef J. Al-Houmaily received a B.S.
in computer engineering from King
Saud University, Riyadh, Saudi Ara-
bia in 1986, a M..S. in computer science
from George Washington University,
Washington, D.C. in 1990, and a
Ph.D. in computer engineering from
the University of Pittsburgh, Pennsyl-
vania in 1997. Currently, Dr. Al-
Houmaily is an Assistant Professor
and the director of Computer Pro-
grams Department at the Institute of
-— Public Administration, Riyadh, Saudi
Arabia. He served on a number of program committees in-
cluding MobiDE’99 and IRI'99. His current research interests
are in the areas of transaction processing and management in
distributed and mobile database environments. Dr. Al-Hou-
maily is a member of ACM, ISCA and the Saudi Computer
Society (SCS).

\



Y.J. Al-Houmaily, P.K. Chrysanthis | Journal of Systems Architecture 46 (2000) 809-833 833

Panos K. Chrysanthis is currently a and real-time systems. In 1995, he was a recipient of the
tenured Associate Professor of Com- National Science Foundation CAREER Award for his inves-
puter Science at the University of tigation on the management of data for mobile and wireless
Pittsburgh. He received the B.S. degree computing. Dr. Chrysanthis has chaired and served on Program
in Physics with concentration in Committees of several Database and Distributed Computing
Computer Science from the University Conferences. He also served as guest editor and reviewer for
of Athens, Greece, in 1982. He earned several journals. He is a member of the ACM (Sigmod, Sigops),
the M.S. and Ph.D. degrees in Com- the IEEE Computer Society, Sigma Xi the Scientific Research
puter and Information Sciences from Society, and the USENIX Association.

the University of Massachusetts at
Ambherst, in 1986 and 1991 respec-
tively, and joined the University of
Pittsburgh in 1991 as an Assistant
Professor. His research interests lie within the areas of database
systems, distributed and mobile computing, operating system




