
An Evaluation of the Java-Based Approaches to Web
Database Access∗∗∗∗

Stavros Papastavrou1, Panos Chrysanthis1, George Samaras2, Evaggelia Pitoura3

1 Dept. of Computer Science, University of Pittsburgh
{stavrosp, panos}@cs.pitt.edu

2 Dept. of Computer Science, University of Cyprus
cssamara@cs.ucy.ac.cy

3 Dept. of Computer Science, University of Ioannina
pitoura@cs.uoi.gr

Abstract. Given the undeniable popularity of the Web, providing efficient and
secure access to remote databases using a Web browser is crucial for the emerg-
ing cooperative information systems and applications. In this paper, we evaluate
all currently available Java-based approaches that support persistent connec-
tions between Web clients and database servers. These approaches include Java
applets, Java Sockets, Servlets, Remote Method Invocation, CORBA, and mo-
bile agents technology. Our comparison is along the dimensions of perform-
ance and programmability.

1 Introduction

Providing efficient and secure access to remote databases using a Web browser is
crucial for the emerging cooperative information systems, such as Virtual Enterprises.
A number of methods for Web database connectivity and integration have been pro-
posed such as CGI scripts, active pages, databases speaking http, external viewers or
plug-ins, and HyperWave [6]. These methods enhance the Web server capabilities
with dynamic functionality for interactive and cooperative applications to create data-
base connections, execute queries and transactions, and generate dynamic Web pages.
However, there is an increasing interest in those that are Java-based due to the inher-
ent advantages of Java, namely, platform independence support, highly secure pro-
gram execution, and small size of compiled code, combined with a simple database
connectivity interface (JDBC API) that facilitates application access to relational
databases over the Web at different URLs [8].

Several Java-based methods are currently available that can be used for the devel-
opment of Web cooperative information systems but in the best of our knowledge,
there is no quantitative comparison of them in a database context. Existing studies
either primarily focused on the various server side scripting mechanisms to support
database connectivity (e.g., [5, 9]), or evaluated the Java client/server communication

∗ This work was partially supported by NSF IRI-9502091 and IIS-9812532, and AFOSR

F49620-98-1-043 awards.

O. Etzion and P. Scheuermann (Eds.): CoopIS 2000, LNCS 1901, pp. 102−113, 2000.
 Springer-Verlag Berlin Heidelberg 2000

paradigm without any database connectivity or lengthy computations (e.g., [11]). This
experimental paper contributes a comparison of the six Java-based approaches, spe-
cifically, Java applets using JDBC (Applet JDBC), Java Sockets [13], Java Servlets
[4], Remote Method Invocation (RMI) [3], CORBA [10], and Java Mobile Agents
(JMA) [2]. We focus on these methods because of their support for persistent data-
base connections, which are essential for cooperative environments with long, and
repeated data retrievals and updates.

For our evaluation, we used each approach to implement a Web client accessing
and querying a remote database. Each approach differs in the way the client estab-
lishes connection with remote database servers with the help of a middleware and the
implementation of the middleware. Depending on the way the client establishes con-
nection with the middleware, the approaches can be classified as (1) non-RPC ones,
that do not provide for remote method invocation mechanisms, (2) RPC ones with
clear remote method invocation semantics, and (3) RPC-like ones involving mobile
agent technology.

We compared the behavior of the different approaches along the following two di-
mensions: (1) performance expressed in terms of response time under different loads,
and (2) programmability expressed in terms of the number of system calls at the client
and the server site. The two salient results of our study are: (1) Best performance is
not always achievable with high programmability and low resource requirements, and
(2) the mobile agent technology needs to improve its programmability while giving
particular emphasis in its infrastructure.

In the next section, we first discuss our experimental testbed and then elaborate on
the implementation details of the six approaches under evaluation. In Section 3, we
discuss our performance evaluation results whereas in Section 4, we compare the
different approaches from programmability point of view.

2 The Experimental Testbed

We use each Java method to implement a Web client querying a remote database. Our
testbed is structured along a three-tier client/middleware/database model. Two design
principles were adopted in the selection of the various components during the devel-
opment of the testbed. First, our Web clients should be lean for allowing fast down-
loads, and therefore increasing support for wireless clients. Second, no a-priori con-
figuration of the Web client should be necessary to run the experiments in order to
maintain portability, and therefore, support arbitrary clients. Thus, our Web client is a
Java applet stored on a Web server. When the Java applet is downloaded and initial-
ized at a client computer, queries can be issued through the applet’s GUI to be exe-
cuted on the remote database server (Figure 1). Our remote database server, a 3-table
Microsoft Access, is on the same machine with the Web server.

The role of the middleware is to accept client requests, execute them on the data-
base server, and return the results back to the client. Due to security restrictions of
Java applets, part of the middleware has to execute on the Web server machine.

103An Evaluation of the Java-Based Approaches to Web Database Access

