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EXTENDED ABSTRACT

Abstract

A WebViewisaweb pagethat isautomatically created from
base data, which are usually drawn froma DBMS. A Web-
View can be either materialized as an html page at the web
server, or virtual, aways being computed on-the-fly. For
the materialized case, updates to base datalead to immedi-
ate recomputation of the WebView, whereas in the virtual
case, recomputation is done on demand with each request.
We introduce the materialize on-demand approach which
combines the two strategies, and generates WebViews on
demand, but also stores the results and re-uses them in the
future if possible. Deciding on one of the three material-
ization policiesfor each WebView is clearly a performance
issue. Inthis paper, we givethe framework for the problem
and provide a cost model, which we test with experiments
on areal web server.

1 Introduction

The web isincreasingly being used as the meansto do ev-
eryday tasks, from reading the newspaper to shopping or
paying bills. One common denominator for all these activ-
itiesis that the corresponding web sites provide some sort
of personalization, tailored to the style and needs of each
individual ([B*98]). Personalized web pages, that are au-
tomatically created from base data, are one of the many
instances of WebViews. In general, we define WebViews as
web pages that are automatically constructed from “base
data” using aprogram or aDBMS query.

Similarly to traditional database views, WebViews can
beintwo forms: virtual or materialized. Virtual WebViews
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are computed dynamically on-demand, usually by a CGlI
script, whereas materialized WebViews are pre-computed
and stored as static HTML pages. In the virtual case, the
cost to compute the WebView increases the query response
time'. On the other hand, in the materialized case, every
update to the base data leads to a WebView refresh, which
increases the server load.

Having a WebView materialized can potentialy give
significantly lower query response times, provided that the
update workload is not heavy. Even if the WebView com-
putation is not very expensive, by keeping it materialized
we eliminate the latency of going to the DBMS every time,
which could lead to DBMS overloading ([Sin98]). How-
ever, if the update workload is heavy, having the WebView
materialized can lead to a degradation in performance, as
every update will cause a refresh. In this case, deferring
the updates until the time of query (|[RK86]) is the best so-
lution. Clearly, the decision whether to have a WebView
materialized or virtual at the server, the WebView material-
ization problem, is a performance issue.

WebView materialization is different from traditional
web caching: WebView materialization aims at elimi-
nating the processing time needed for repeated genera
tion, whereas web caching strives to eliminate unnecessary
data transmissions across the network ([Mal98]). Also,
WebView materialization is performed at the web server,
whereas web caching is done at the clients or at proxies.
However, although different, both techniques improve web
server performance.

The WebView materialization problem is similar to that
of deciding which viewsto materialize in adatawarehouse
(J[GM95, Gup97, Rou98]), known as the view selection
problem. There are however many differences. First of
all, athough both problems aim at decreasing query re-
sponse times, warehouse views are materialized in order to
speed up the execution of afew & long anaytical (OLAP)
queries, whereas WebViews are materialized to avoid re-

1We use the term queries to refer to web page requests for a particular
WebView.



peated execution of many small OLTP-style queries. Sec-
ondly, since WebViews are defined after user requests, un-
like warehouse views, the resulting search space for the de-
cision problem is significantly smaller. Moreover, we have
accurate statistics on the access and update frequencies for
all the WebViews from the web server logs. Thirdly, Web-
View materialization means avoiding an extralayer of soft-
ware (i.e. generating the WebView by executing a program
or aDBMS query), whereas in the warehouse case one al-
ways has to issue a query to the DBMS. Finally, the gen-
eral case of the WebView materialization problem has no
constraints, whereas most view selection algorithms im-
pose some resource constraints (e.g. space requirement or
maintenance time allowed [KR99]).

In the web context, although there is a lot of recent lit-
erature on building & maintaining web sites (AMM98,
FFK*98]), on querying the web ([MMM97, FLM98,
GW98]) and on integrating heterogeneous data sources
([CDSS98, MZ298]), there is very little work on the per-
formance issues associated with materializing WebViews.
[MMM98] provide an agorithm to support client-side
materialization of WebViews, and [Sin98], [AMRT98]
present algorithms to maintain them incrementally. How-
ever, to the best of our knowledge, thisisthefirst attempt to
provide a quantitative solution to the problem of deciding
the best materialization strategy for WebViews.

In this paper we give the framework for the WebView
materialization problem, and also propose a hybrid ap-
proach that combines the advantages of both thevirtual and
the materialized approaches (Section 2). We also present
an approximate cost model for the WebView materializa-
tion problem in Section 3. Finally, we present the results
of our experiments on a real web server in Section 4 and
our conclusionsin the last section.

2 WebView Materialization Problem

When a WebView is materialized, any update to the base
dataleads to an immediate refresh of the derived WebView
(in addition to the update to the underlying DBMS). The
refresh can either be incremental or a complete recom-
putation?. Requests for such a WebView, however, are
very fast, since they are pre-computed. On the other hand,
virtual WebViews are always generated on-the-fly. This
means that updates to the base data are only applied to the
DBMS, but queries have to wait for the WebView to be
recomputed every time. Clearly, both of these approaches
can cause significant performance degradation if not used
properly (e.g. if materializing a WebView that has alot of

2Since the materialized WebView is in html format, it is difficult to
do an incremental refresh, although not impossible. For the remainder of
the paper, we assume that a complete recomputation is taking place after
every update to the base data.

updates and very few requests).

There is another, hybrid alternative: generate the Web-
View on demand (like the virtual approach), but aso store
the results and re-use them in the future (like the materi-
alized approach), if possible. We call this approach ma-
terialize on-demand. Under this strategy, an update to the
base data must invalidate the derived WebView (but it will
not cause a refresh). When the server gets arequest for the
WebView, it first checks whether it has been invalidated
and, if not, simply returns the saved copy. If the view has
been invalidated since the last time it was saved, then the
server needs to generate the WebView and save it again.

We formulate the WebView materialization problem as:

For every WebView at the server, select the ma-
terialization strategy (virtual, materialized, ma-
terialized on-demand) for minimizing the aver-
age query response time on the clients. We as-
sume that there is no storage constraint at the
server.

The assumption that there is no storage constraint on the
server is not unrealistic, since, in our case, storage means
disk space (and not main memory) and also WebViews are
expected to be relatively small3. In this paper, we also as-
sume a no staleness reguirement, i.e. the WebViews must
always be up to date. This is a reasonable requirement,
since users would rather access fresh data.

Clearly the WebView materialization decision is heav-
ily dependent on the update and access patterns for the
WebViews, whereas the cal culation cost and the size could
also play some role. There are some classes of WebViews
for which a straightforward solution to the materialization
problem exists. For example, WebViews with alot of re-
questswhich do not get alot of updates should be material-
ized, since keeping them up-to-date “ pays off” because of
the high access rate. An example for this scenario are the
web pages in Yahoo (htt p: // www. yahoo. con) which
don’t get many updates and are thus kept as HTML pages.
On the other hand, WebViews with a lot of updates and
infrequent access should be virtual, since the overhead of
keeping them fresh is not warranted by the number of re-
guests. An example for this case is a personalized stock
portfolio page from aweb site offering real -time stock mar-
ket data. Since the update frequency is very high (stock
prices can change many timesin asecond), the correspond-
ing WebView would have to be virtual and generated on-
demand using CGlI scripts.

Although some classes of WebViews have straightfor-
ward solutions to the materialization problem, this is not
the case in general. To find an analytical solution to the
WebView materialization problem, we have developed a
cost model, which we present in the next section.

3The average web pageis 30K B ([AW97]), so asingle 50GB hard disk
for example could hold approximately 1.5 million pages.



3 Cost mode

We want to compare the three different materialization
policies (materialized, virtual, materialized on-demand)
for aWebView v; and decidewhich onewill lead to smaller
query response times under given workload conditions. We
calculate the cost to the server under each materialization
policy for v;, however we make the distinction between up-
date cost, CV, which is load on the server because of the
application of the updates, and the access cost, C4, which
is load on the server because of the user requests for v;.
We expected and verified in the experiments that the query
response times are going to be more “ sensitive” to the ac-
cess codt, since it isin the “critical path” of each request.
Let f,(v;) bethe WebView access frequency givenin some
unit of time, say minutes, and f,,(v;) be the WebView up-
date frequency. f,(v;) includes requests to WebView v;
from al clients. Finally, let the cost to recompute v; be

Cgen(Vs)-

Materialized Policy If v; is kept materialized, then the
cumulative update cost is

Char(vi) = fu(vs) X (cgen(vs) + cuw(vi))

where ¢, (v;) isthe cost to write v; to disk?.
The cumulative access codt, if v; is kept materialized is:

C;gat(vi) = fa(vi) X cp(v;) ()

where ¢, (v;) isthe cost to read v; from disk®.

Since we wish to minimize the average query response
time, we must give more weight to the access cost than
the update cost, because the access cost has a direct effect
on the response time, whereas the update cost has only an
indirect effect (by increasing the server load). This asym-
metry is dueto the fact that a request for aweb page can be
serviced while an update on the same page takes place, in
other words there is no locking or blocking on typical web
Servers.

Following this idea, to get the overall cost for keeping
v; materialized, weintroduce aweight factor for the access
cost, @ > 1, which is expected to be platform-dependent.
Thetota costis:

1)

Cmat (Uz) = CU

mat

(vi) + a X Crpgy (v3) 3

Virtual Policy In contrast to the materialized strategy, if
v; iskept virtual, there will be no update cost whatsoever®.

4For simplicity one could assume that all WebViews have approxi-
mately the same size, kept constant in the presence of updates, and hence
the cost to read or write a WebView to disk would be the same for all.

5We do not take into account the cost to update the base data, since
thiswill be the same with all three materialization policies.

Therefore
4)

On the other hand, the cumulative access cost if v; is
kept virtual is:

Czﬁ'rt(vi) = fa(vi) X cgen(vi) )

where cg., (v;) is the cost to recompute v;, and, in this
case, it is“suffered” by every query.

Like in the materialized case, we have to use o when
calculating the total cost for the virtual policy:

C’uirt (Uz)

Crire(vi) =0

= C%Tt(vi) +axC4 (v;)

virt

(6)

Materialized On-Demand Policy If v; is kept material-
ized on-demand, then the cumulative update cost is only
theinvalidation cost:

Cgod(vi) = fu(vi) X Cino

)

where ¢;,,, iSthe cost to invalidate one WebView.

The access cost of v; under a materialized on-demand
policy, has alookup cost on every request when the server
checks to see if the WebView has been invalidated. Fur-
thermore, for every update we also have to include the
WebView generation cost plus a small cost to save the
WebView to disk. When the access frequency is higher
than the update frequency for v;, we expect to have better
performance compared to the virtual strategy, sincein that
case we only pay the cost of reading the saved WebView
from disk for the extra accesses, instead of recomputing it
al the time. Here is the upper bound® for the access cost
to v; under a materialized on-demand policy:

C;god(vi) < fa(vi) X Cchk
+  fulvi) X (cgen(vi) + cu(vi))
+ b x (fa(vi) - fu(vz)) X cr(vz’)

where ¢, is the cost to check if one WebView has been
invalidated, and b is 1 if f,(v;) > fu(v;), and O otherwise.

Finally, the total cost for the materialized on-demand
policy is:

Cmod(vi) = CYq(v:) + a x Cipoq(v7)

(8)

)

WebView Materialization Problem Let V be the set of
WebViews in our system and let V,,,,; be the subset of
WebViewsthat are materiaized, V,;,; the onesthat are vir-
tual, and V;,,,4 the ones that are materialized on-demand.

6We cannot calculate the exact cost, as it depends on the interleaving
of updates and accesses to v; .



The total cost would be:

= DovicVmar Omat(vi)
+ EvjEVuin Coirt (vj)
+ Evk EVinod Cm"d(vk)

With the help of Equations 1 - 10 we can rephrase
the WebView materialization problem as. partition V' into
Vimats Vairts Vimod, suchthat Cyoeqey 1S minimized.

By default, web servers log al page requests, so, esti-
mating f,(v;) for any WebView v; is not difficult. Calcu-
lating f,(v;) and the rest of the costs is easy too, and we
can assume that ¢, (v;), ¢, (v;) Will be approximately the
same for al WebViews to make things even easier.

To get some intuition behind the formulas, we assume
that all costs, except for cgepn (vi) and cgen (v;), are small
and constant. Under this assumption, we can get some ap-
prOXi mations for Cmat (Ui)- Cvirt (Ui)- Cmod(vi):

Ctotal
(10)

;nat(vi) = fu(vz) X cgen(vi)
Crirt(vi) = ax fo(vi) X cgen(vi) (11)
C;nod(vi) = aXfnp (Uz) X Cgen ('Uz) + Cover

where fr,, (v;) ismin(fa(vi), fu(vs)), and coper, is acom-
posite cost to reflect the extradisk 1/O that the materialize
on-demand approach has to make. We expect that the ma-
terialize on-demand approach will give better performance
than the classic virtual strategy, in cases where f,(v;) >
fu(v;). Furthermore, we can see that in order to choose
between the materialize and materialize on-demand poli-
cies, we should consult the weighted ratio of accesses to
updates, A = a;ufa(si). A ratio A > 1 would suggest that
the materialized approach is better, otherwise a material-
ized on-demand or avirtual strategy would be expected to
yield better performance.

4 Experiments

For our experiments we used two machines, a SUN
UltraSparc-5 with 320MB of memory, running Solaris 2.6
and an AlphaStation 255 with 64MB of memory, running
Digital Unix V4.0. The web server, Apache version 1.3.6
(htt p: // ww. apache. or g), ran concurrently with the
update process on the SUN machine, while the clientswere
running on the Alpha. All machines were on the same lo-
cal areanetwork in order to eliminate (uncontrollable) net-
work latency from our experiments. In every experiment,
each client would read a set of queries from a script, send
the requests to the web server and wait for the reply, mea-
suring the elapsed time for each query (averaged over mul-
tiple runs).

Workload Our workload consisted of 100 WebViews.
Their access rates followed the Zipf distribution with a

theta of 0.7, as suggested in [BCFT99]. The total accesses
to the web server averaged to about 12 requests per second.
This should correspond to a quite heavy load on the server,
of about 1 million hits per day. For comparison, our de-
partmental web server (http: //ww. cs. und. edu) gets
about 70,000 requests a day which correspond to only
about 0.8 requests per second.

While the access rate for each WebView was kept the
same for all experiments, we varied the update rate and the
meaterialization policy for 10 out of the 100 WebViews, our
test group. The remaining 90 WebViews had no updates
at al, were always materialized and played the role of a
“background” load to the server. The sizes for the Web-
Views were on average 30KB ([AW97]) and the calcula-
tion cost was rather small, 0.5 seconds.

o
'S
&

I
~

e

0.25

o
w

——mat
- mod
= virt

I
N}

0.15

o
e

2 0.05

Avg total query response time (sec)

0 3 6 10 15 20 30
Test group Update Rate (upd/min)

Figure 1: Total avg query response time

Experiments The test group in our experiments con-
sisted of 10 WebViews in the “middle” of the access
rate distribution (with access rates about 3-4 requests per
minute). We varied the update rate from O up to 30 updates
per minute for each of the 10 WebViews. For each update
rate, we ran three different experiments, one for each ma-
terialization policy.

We plot the average query response time for all queries
(including the ones in the test group) in Fig. 1. The x-
axis is the update rate for the test group, in updates/min,
whereasthey-axisisthetotal average query responsetime,
in seconds. The mat line corresponds to the case where
all WebViews from the test group are kept materialized
(i.e. the updates cause all WebViews to be refreshed in
the background), thevi r t lineto the virtual case (i.e. the
guery result is recomputed on every request) and the nod
line corresponds to the case where all WebViewsin the test
group are materialized on-demand (i.e. the query result is
recomputed on request, but also saved for future use and
updates invalidate the saved copy).

We see from Fig. 1 that in the virtua case, the over-
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all performance is not affected by the update rate (i.e. the
vi rt lineis amost straight), as it was expected. On the
other hand, the materialize on-demand policy, depending
on the interleaving of updates and requests, can have bet-
ter performance over the virtual approach, since it re-uses
pre-computed results as much as possible, whereas the vir-
tual approach blindly recomputes each WebView on ev-
ery request. Furthermore, if we look at the average query
response time for only the WebViews in the test group
(Fig 2), we verify that the materialize on-demand policy
outperformsthe virtual strategy when the updaterateisless
than the access rate (first two points in the graph).
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From Figures 1 and 2 we see that the materialized pol-
icy performs really well, even for update rates far exceed-
ing the access rate, although, eventually, the virtual & the
meaterialized on-demand strategies are expected to perform
better for very high update rates. So where do the savings
for the materialized strategy come from? We plotin Fig. 3,
the average query response time of all queries except for
those in the test group. From Fig. 3, we see that the rea-
son for this great performance is that the materialized pol-

icy “penalizes’ therest of the views, by dlightly increasing
their query response times (since the updates done at the
background increase the load at the server). On the other
hand, the performance of the rest of the views is almost
not affected with the materialized on-demand and virtual
approaches, since the cost of the updatesis inflicted on the
query response time of the updated WebView.

5 Conclusions

In this paper, we have introduced the materialize on-
demand policy for WebViews, that combines the materi-
alized and virtual strategies. We also formulated the Web-
View materialization problem, and described a cost model
to help decide among the three materialization strate-
gies (materialized, virtual, materialized on-demand). Our
experiments showed that the materialized policy usually
leads to better performance, at the expense, however, of
the other WebViews. On the other hand, if the update rate
is really high compared to the access rate, the virtual and
materialized on-demand strategies have better overall per-
formance than the materialized policy, since they defer the
updates till the time of the query. Finally, the materialized
on-demand strategy outperforms the virtual policy when
the accessrate is higher than the update rate, sinceit avoids
recomputation of the WebView when there are no updates.

We are currently implementing the materialized on-
demand policy for the web server of the AMASE project
(http://amase. gsfc. nasa. gov). As part of our fu-
turework, we want to drive our experimentswith trace data
from acommercial web server.
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