Transaction Processing in PRO-MOTION

Gary D. Walborn and Panos K. Chrysanthis
Department of Computer Science
University of Pittsburgh
Pittsburgh, PA 15260
{gwalborn,panos}@cs.pitt.edu

Abstract

To provide data consistency in the presence of failures
and concurrency, database methods will continue to be
important to the processing of shared information in
a mobile computing environment. Motivated by the
need to migrate existing database applications while
supporting the development of new database applica-
tions and personal services involving mobile and wire-
less data access, we have developed PRO-MOTION.
PRO-MOTION is a mobile transaction processing sys-
tem that supports disconnected transaction processing
in a mobile client-server environment. In this paper, we
present the specifics of the structuring and the manage-
ment of transactions in PRO-MOTION, which utilizes
nested-split transactions to provide different levels of
isolation and transaction consistency.

Keywords: mobile transactions, data caching, commit
processing, disconnected database operations

1 Introduction

We are in the midst of a mobile revolution. Just as cel-
lular telephones have forever altered the way we com-
municate, a new generation of mobile (even hand held)
computers will change the way that we compute. Lap-
top computers have become a modern business neces-
sity and smaller, lighter computers are on the way. In

This material is based upon work partially supported by the
National Science Foundation under grants IRI-95020091 and 1IS-
9812532.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a
fee.

SAC '99, San Antonio, Texas

©1998 ACM 1-58113-086-4/99/0001 $5.00

a trend started by personal digital assistants (PDAs)
like the Apple Newton, handheld computers and “palm-
tops” are taking mobile computing to the masses. 3com,
for instance, has sold over a million of its pocket-sized
PDA, the Palm Pilot. The introduction of Windows
CE, an operating system designed specifically for hand-
held computers and embedded systems, will provide a
standard API and user interface for a number of various
platforms, processors, and form-factors. The sub-$500
street price of these midget marvels will be a justifiable
business expense for the executive “on the go” and an
attractive option for the hobbyist or homemaker.
Perhaps as important as the advent of small, low-
cost, powerful, and energy efficient mobile computers
is the emergence of a wireless communication infras-
tructure to support mobile computing. For example,
the industry has finally settled on a Wireless Ethernet
standard (802.11), GSM phones deliver digital data in
many urban areas, cellular modems have become com-
monplace, and some form of wireless digital information
is available at every level, from the micro-cell in an of-
fice to a global wireless network. Modems are still the
most common means of data exchange among portable
computers, but new radio-based wireless schemes and
even infrared light are becoming popular conduits for
mobile data communications. There is no sign, how-
ever, that any of these wireless communication methods
will approach, let alone exceed, the speed of a copper
wire or a fiber optic link. In addition, the wireless link
is inherently less reliable than a “hard wired” network
connection. The wireless connection may be lost be-
cause of computer movement, battery exhaustion, or
even some planned event, such as deliberate suspension
(or “sleep”) to conserve remaining battery power.
Therefore, despite improvements in mobile com-
puting technology, the mobile computing environment
still includes limitations on communication bandwidth,
storage capacity, battery life, and processing speed.
Network disconnection, however, is not failure, and, if
the data and methods needed to complete a task are al-
ready present on the mobile host (MH), processing may
continue even though disconnection has occurred. The
goal of mobile software research is, therefore, to provide
as much of the functionality of network computing as

http://crossmark.crossref.org/dialog/?doi=10.1145%2F298151.298393&domain=pdf&date_stamp=1999-02-28

possible within the confines of the mobile computer’s
capabilities. This means, in the context of database ap-
plications, that mobile users should have the ability to
both query and update public, private, and corporate
databases. Such databases typically utilize transactions
to provide data consistency and reliability in spite of
concurrent updates and system failures. As a result,
transaction processing and efficient update techniques
for mobile and, in particular, disconnected operations,
have recently attracted some attention.

Most transaction processing systems are built
upon the client-server paradigm. [f the clients are
mobile computers, all communications must be com-
pleted over a wireless connection. In this environment,
a disconnected client is virtually powerless because all
queries and updates must be executed at the server. It
becomes clear, therefore, that to process transactions
while disconnected, we must keep data on the mobile
computer and manage database operations locally, a
process known as data shipping or caching.

The first systems that were intended to support
processing on a disconnected mobile, cached data at the
file level [12, 20, 14] and provided consistency by means
of optimistic concurrency control. While many oper-
ations can be supported at the file level, database re-
quests often operate on extremely large files. Caching
(or hoarding') several database files would require too
much storage on the typical mobile host (with a 3 to 5
gigabyte hard disk). Even if a mobile host were able to
cache the entire database, file level caching complicates
efforts to maintain data consistency. File systems that
support disconnection treat the file as the basic unit
of caching and consistency, which, due to optimistic
concurrency control, would lead to wasted work since
any two update operations by different transactions con-
flict. To prevent wasted work (important in a heavily
loaded system), database systems typically do not use
the database file as the unit of consistency. To be prac-
tical, therefore, mobile transaction processing requires
finer granularity for caching and control than that of-
fered at the file level.

New, efficient storage management techniques
are not the only requirement of mobile transaction pro-
cessing. If the mobile is to process transactions while
disconnected, there must be some type of transaction
management process resident in the mobile host to pro-
vide local applications with concurrent database access.
And because the structure and behavior of the database
“client” has changed, we must make significant changes
to the database server or provide an interface between
our traditional server and the mobile client.

To simplify the management of disconnected
transactions, some proponents of mobile transaction
processing advocate new mobile transaction models,
e.g., [6, 4], and/or correctness criteria for data consis-
tency that are weaker than the standard serializabil-
ity, e.g., {17, 22], so that they can cope more effectively
with the restrictions of mobility and wireless commu-
nication. Even though many applications do not re-

'Hoarding is the caching of data before the actual demand
based upon the possible data requirements of the host.

quire strict serializability, there are important applica-
tions, including existing business applications such as
inventory databases [13], that require the data consis-
tency guarantees offered by serializability. Because the
traditional techniques for providing serializability (e.g.
transaction monitors, schedulers, locks) do not function
properly in a disconnected environment, new mecha-
nisms must be developed expressly for the management
of mobile transaction processing. For this reason, we
have developed PRO-MQTION, a mobile transaction
processing infrastructure to support disconnected trans-
action processing. PRO-MOTION is built upon a gen-
eralized, multi-tier client-server architecture. Its archi-
tecture and fundamental building block, the compacts.
were presented in [23, 24]. The focus of this paper is
on the specifics of the management of transactions in
PRO-MOTION.

In the next section, we elaborate on mobile
transaction requirements. In Section 3, we briefly re-
view the fundamentals of PRO-MOTION while in Sec-
tion 4, we discuss the nested-split transaction which is
the underlying transaction processing model of PRO-
MOTION. Transaction execution and commitment on
mobile clients is discussed in Section 5. Finally, in Sec-
tion 5.4, we discuss the mechanisms in PRO-MOTION
which define and enforce the correctness of transactions
which involve a number of compacts with varying cor-
rectness criteria.

2 Mobile Transaction Requirements

In order to better describe local transaction processing
on an MH, it is often helpful to generalize the tradi-
tional ACID properties® and talk instead about visibil-
ity, consistency, permanence, and recovery. Visibility,
for instance, refers to the ability of a transaction to
see the effects on data items caused by other transac-
tions. To reduce the cost of recovery, the effects of a
transaction are usually not made visible until the trans-
action commits and the changes are made permanent
in the database. Allowing new transactions to see un-
committed changes (dirty data) may result in unwanted
dependencies and cascading aborts. But since no up-
dates on a disconnected MH can be incorporated in the
server database, subsequent transactions using the same
data items normally could not proceed until connection
occurs and the mobile transaction commits. By mak-
ing the results of a transaction visible as soon as the
transaction begins to commit at the MH, we can al-
low additional transactions to progress even though the
data items involved have been modified by an active
(i.e., non-committed) transaction, similar to altruistic
locking [19]. Making data available at the beginning
of transaction commitment leads to the notion of local

2ACID: Atomicity - if any of the operations contained in a
transaction are executed, all of the operations in the transaction
are executed. Consistency - any transaction, executed singly
against a ‘“correct” database, completes with the database in a
“correct” state. [solation - each transaction executes indepen-
dently of other transactions. Durability - once committed, the
effects of a transaction become permanent in the database, en-
sured to survive any failure.

visibility and local (vs. server) commitment which can,
in turn, reduce the blocking of transactions during dis-
connected transaction processing while minimizing, but
not eliminating, the probability of cascading aborts.

A complete database management system to sup-
port transaction processing on a disconnected mobile
must include:

e a means of interfacing with stationary database
servers,

¢ a stand-alone transaction processing subsystem to
execute on the MH,

e a method to reconcile transactions processed while
disconnected with the server database,

¢ sufficient logging, checkpoint, and recovery sys-
tems to mitigate system failures, and

¢ a way to manage the replication and consistency
of needed data.

Such a system should provide serializability
when needed, but should also support more relaxed
correcthess criteria and different degrees of transaction
isolation, where appropriate. The system must be fru-
gal with mobile system resources, such as bandwidth,
energy, and storage, but powerful enough to adapt to
changing conditions, such as remaining battery life or
imminent disconnection. It should be extensible enough
to seamlessly support new data types and correctness
criteria and new recovery and caching schemes, but ba-
sic enough to support legacy applications and database
servers. Because the mobile network may include mul-
tiple servers and various mobile computers, the system
should be platform independent and able to support a
heterogeneous mixture of clients and hosts. Finally, the
system should be written to allow integration into new
mobile computers and servers or as an add-on to exist-
ing object relational database systems.

Several systems have been proposed to support
updating data on a disconnected MH. Most of these
incorporate some notion of local visibility and local
commitment with reconciliation of work done locally
with the server database when reconnection occurs.
But many such systems implement correctness crite-
ria weaker than serializability and are, therefore, un-
suitable for applications which demand the correctness
measure that serializability provides. Others require
specially constructed applications to deal with failed
tentative commits and changing mobile conditions and,
therefore, do not support existing database applications.
Of the systems that permit disconnected operations on
replicated data, Bayou(5], and Odyssey[15] each exhibit
some of the qualities that we feel are essential to support
transaction processing on the MH but fail to address all
of the issues surrounding tentative commitment, server
consistency, flexibility, recovery, and transparency. In
the next section, we will briefly present PRO-MOTION,
our proposed solution to the difficulties associated with
disconnected transaction processing.

391

3 PRO-MOTION

PRO-MOTION is a new transaction processing infras-
tructure developed to deal with the problems introduced
by disconnection and limited resources in mobile client-
server operating environments. PRO-MOTION (Figure
1) is built upon a generalized, multi-tier client-server
architecture with a mobile client agent called compact
agent, a stationary server front-end called compact man-
ager, and an intermediate array of mobility managers
to help manage the flow of updates and data between
the other components in the system. Its fundamental
building block is the compact which functions as the ba-
sic unit of data replication for caching, prefetching, and
hoarding.

A compact is, broadly speaking, a satisfied re-
quest to cache data, enhanced with obligations (such as
a deadline), restrictions (such as a set of allowable oper-
ations) and state information (such as the number of ac-
cesses to the object). The compact represents an agree-
ment between the database server and the mobile host.
In this agreement, the database server delegates control
of some data to the MH to be used for local transaction
processing. The MH, in return, agrees to honor spe-
cific conditions on the use of the data set forth by the
database server so that the consistency of the database
is maintained when the updated data items are incor-
porated back into the server database. As a result, the
database server need not be aware of the operations exe-
cuted by individual transactions on the MH but, rather,
sees periodic updates to a compact for each of the data
items manipulated by the mobile transactions. Com-
pacts are represented in our system as objects (Figure
2) which encapsulate

o the cached data,

e methods (i.e., code) for the access of the cached
data,

¢ information about the current state of the com-
pact,

¢ consistency rules, if any, which must be followed
to guarantee global consistency of the data item®,

¢ obligations, such as a deadline which creates a
bound on the time for which the rights to a re-
source are held by the mobile host or restrictions
on the visibility of locally committed updates, and

e methods which provide an interface with which
the MH may manage the compact.

The management of compacts is a cooperative
effort by the compact manager on the database server
and the compact agent on each mobile host. Compacts
are obtained from the database via requests by the MH
when a real or anticipated data demand is created. If

3The compact author determines what sharing can be done
and what correctness criteria are used. For example, if an aggre-
gate item is involved in escrow transactions[i6], it may be pos-
sible to create additional compacts with appropriate constraints
to allow a distributed, shared access to the data. Or, for exam-
ple, if the compact is expired, the ownership may be transferred
to the the new MH and the expired compact invaiidated.

Mobile Host

Laee || app_| -

Compact

Compact Class -
Registry |+ Library

Mobile Network :

PR N

MSS Server
-
| 5 |
<
Mobility Compact
™ Manager Manager - DBMS
- Compact
St
= ore

Fixed Network

Figure 1: PRO-MOTION System Architecture

Methods Common | Type-Specific

/ to Alf Compacts Methods x
Obligations Data Consistency
r Rules
State
Information

Figure 2: Compacts as Objects

data is available to satisfy the request, the database
server creates a compact (with the help of the compact
manager) which is recorded in the compact store and
transmitted to the MH to provide the data and meth-
ods to satisfy the needs of transactions executing on
the MH. The request can be tailored to cause only the
transmission of missing or outdated components of a
compact. In this way, transmitting the compact meth-
ods, which may be very expensive, is avoided if they
are already available on the MH. Once the MH receives
the compact, it is recorded in a compact registry, which
is used by the compact agent to track the location and
status of all local compacts.

Each compact has a common interface which is
used by the compact agent to manage the compacts
listed in the compact registry and to perform updates
submitted by transactions run by applications execut-
ing on the MH. The basic set of methods necessary to
manage compacts includes,

o inquire(), which retrieves useful information about
the state of the compact (such as name, data type
and version, cache status, outstanding transaction
IDs, and remaining storage),

o notify(), used to notify the compact when the mo-
bile environment changes,

e dispatch(), used to perform operations on the com-
pact on behalf of transactions executing on the
MH,

o commit(), to make the operations of a specified
transaction permanent on the database, and,

392

e abort(), to abandon the changes made to the com-
pact data by a given transaction.

The implementation of a common interface simplifies

the design of the compact agent and guarantees the
minimum acceptable functionality of a specific compact
instance. In addition, each compact may contain spe-
cialized methods which support the particular type of
data or concurrency control specific to that particular
compact.

Compacts are managed by the compact agent,
which is much like the daemon responsible for cache
management in the CODA file system [12] in that
the compact agent handles disconnections and manages
storage on a MH. It monitors activity and interacts
with the user and applications to maintain lists of items
which are candidates for caching. However, unlike the
CODA daemon, or other cache managers, the compact
agent is actively involved in transaction processing on
the mobile host, acting as a transaction manager for
transactions executing on the mobile host. As such, the
compact agent is responsible for concurrency control,
logging and recovery.

4 Nested-Split Transactions

As discussed earlier, disconnected transaction process-
ing introduces another level of complexity, namely, the
need to provide for two levels of commitment and differ-
ent degrees of visibility or isolation. It is possible, for ex-
ample, that the MH may want to commit a transaction
locally and make the results of that transaction available
on the MH before they are actually incorporated in the
server database. In order to provide for local visibility
and incremental updates to the server database with-
out compromising consistency, permanence, or recovery.
PRO-MOTION uses nested-split transactions[4, 18] as
its infrastructure. In fact, PRO-MOTION considers the
entire mobile sub-system as one extremely large, long-
lived transaction which executes at the server with a
subtransaction executing at each MH. Each of these MH
subtransactions, in turn, is the root of another nested-
split transaction. Individual transactions on the MH
form additional subtrees. The exact nesting and struc-
ture of the subtrees is dependent upon the commit se-
mantics imposed by the commit processing on the MH.

When reconnecting to the database after a dis-
connection the MH identifies a group of compacts whose
states reflect the updates of the locally committed trans-
actions. The transactions in this subset are split from

mitted transactions and communicated to the

compact manager, which creates a split transaction for
this very group of updates. The compact manager then
commits this split transaction into the database making
the updates visible to all transactions (fixed and mobile)

ur;nhno‘ f'nr server commitment All of Hmc chanld hano
commitment, i1 nis snpouia nap

pen wxchout releasing the locks held by the compact
manager root transaction.

Because most database servers employ a flat
transaction model, the best implementation of PRO-
MOTION would include a database server which
“knows” about compacts and supports the nested-split
transaction model. However, we can mimic the appro-
priate behavior by limiting all database access to the
compact manager. If the compact manager is the only
means to access the database, we can consider every
item in the database implicitly locked by the root trans-
action. When an item is needed by a MH, the compact

Lem neecea Dy a i, e com Palis

manager can read the data value and 1mmed1ately re-
lease any actual (i.e., server imposed) locks on the data
item, knowing that it will not be accessed by any trans-
action unknown to the compact ma.nager During the
reconnecuon, LHC \.ur‘upaCL md.uager 10(.1(5 Lﬂe lLemS nec-
essary for the “split transaction”, writes the updates to
the data items, commits the “split transaction”, and
re-reads and releases the altered items, maintaining the

implicit lock.

5 Transaction Processing in PRO-MOTION

The interaction of the compact manager, compact
agents, compacts, and the network connection implicitly
suggest four transaction processing activities performed
by the compact agent:

¢ hoarding - the mobile host is connected to the
network and the compact manager is storing com-

pacts in preparation for an eventual dlsconnectxon,

e connected processing - the mobile host is con-
nected to the network and the compact manager
is processing transactions,

¢ disconnected processing - the MH is disconnected
from the network and the compact manager is pro-
cessing transactions locally, and

o resynchronization - the MH has reconnected to the
network and the compact agent is reconciling the

updates committed during the disconnection with
ed databnaca

bhc ﬁACu uabauaac

Due to space limitations, we will describe only
the hoarding, disconnected processing, and resynchro-
nization activities in this paper. Intentional termina-
tion of the network connection to save power can force
disconnection and a resumption of the network con-
nection begins MH resynchronization. Therefore, con-
nected processing is not necessary to achieve complete
functionality of the system, but rather, simply allows for
an optimized mode of operation which takes advantage
of the network connection to quickly propagate data and

. es to the fixed network. We could easily

393

simulate disconnections following each resynchroniza-
tion to force the MH to remain in disconnected trans-

action processing.

5.1 Hoarding and Caching

Hoarding utilizes a list of resources required for process-
ing transactions on the mobile host. Each resource re-
quest is implicitly or explicitly associated with a specific
compact type. The resource list. is built and maintained
on the MH by interactions with the compact agent, mo-
bile applications, and the user. The compact agent adds
items to the list by monitoring the usage of items by
applications running on the MH. [f an application at-
tempts to access data not in the list, the compact agent
immediately adds the item to the list which initiates an
attempt to obtain the data item.

An application can maintain the list directly
by passing a request to the compact agent. A pro-
gram written specifically for PRO-MOTION can have
code executed periodically (e.g., when the application
is loaded to the MH or when the connection state is
about to change) that will update the list. A specific
application may make a “best guess” about resources
which will be needed during the disconnection based on
information provided at the MH, such as the identity
of the user or the current MH location. Also, since any
program can make additions to the required resource
list, an application can be written that allows the user
to provide input about what resources must be kepf
available for disconnected operation. In this way the
hoarding behavior may be extended or modified, if de-
sired.

\«Iultiple requests for a single resource may be
included i in the resource A‘c‘quest list. Because various
applications may have need for the same item, one entry
for each item may exist per application with similar or
differing access requirements. For example, perhaps ap-
plication A requires item z with read and write permis-
sions and application B requires item z with read-oniy
access. If application A is later removed from the MH,
the item will still be required, but the level of access may
be downgraded to read-only. If, on the other hand, B is
removed and A remains, the associated request from B
is removed and the compact will be adjusted to comply
wich,che requirements the remaining request().

While the MH is connected to the fixed network,
the resource request list is scanned for new, unsatisfied
requests. The compact registry forwards such a request
to the compact manager. The compact manager checks
to see if the given resource is currently involved in a
compact with the requesting MH. If the requesting MH
already holds the resource, the compact manager for-
wards the new request to the existing server-side com-
pact. The existing server-side compact determines if
the access privileges in the new request can be satisfied.
If so, an update message is transmitted to the exist-
ing client-side compact revising the access rights of the
compact.

If the needed resource is currently involved in
mobile transaction processing with another MH, the

e WranSaclion plocessllls Ll anawner

compact manager forwards the new MH request to the

appropriate server-side compact. The related compact
determines whether or not the request can be satis-
fied allowing concurrent caching of the data across two
MHs. If the request can be satisfied, a MH-side compact
with appropriate constraints and obligations is created
and queued for transmission. If not, a null compact is
queued to be sent to the MH. In any case, the dead-
line for the compact, the compact constraints, and the
actual data items returned are determined by the na-
ture of the request, the current usage at the server, and
pre-programmed parameters of the compact type. Com-
pacts generated at the compact manager are forwarded
to the MH and stored in the compact registry where
they are accessed by the compact agent.

If the resource is freely available in the database
(i.e., the resource can be locked by the compact man-
ager), the compact manager obtains modification rights
to the data and finds the matching compact type. The
compact manager creates an instance of the appropri-
ate server-side compact type with the data obtained
and forwards the request to this newly created com-
pact. The server-side compact creates an instance of a
matching MH-side compact with the data and needed
code and queues the new MH-side compact for transmis-
sion to the MH. [f the resource is not available (e.g., held
by a non-mobile transaction), a null compact is created
and queued for transmission to the MH. The null com-
pact will cause operations attempted by an application
to return with an indication of a failure.

When a MH-side compact is received by the mo-
bile host, the first message contains only the compact
class specification and compact data. The compact reg-
istry checks to see if the compact code for the specified
class is already resident in the mobile host. If the code
is needed, the compact registry sends a request for the
MH-side code to the compact manager which returns
the required compact code. When the necessary com-
pact code is resident, the compact registry creates a
local instance of the desired compact type, makes an
entry in the registry database, and calls the initialize()
method of the new compact, passing the data received
from the server. The new compact stores its initial value
into a persistent object store on the MH and does any
housekeeping needed to process transactions. The ob-
Jject store always contains at least one copy of the com-
pact which reflects the state of the compact (including
the value of the data item) after considering all suc-
cessfully committed transactions on the MH. By closely
following this convention, the MH is always capable of
restoring the compact registry (and all associated data)
to a consistent state by simply reloading the correct set
of objects from the persistent store.

Compacts stored on the MH which are about to
expire are also handled by the hoarding process. When a
compact is about to expire, the compact registry checks
the resource request list to see if the resource held by
the compact is still required. If the compact is no longer
required, the compact registry sends a cancelation mes-
sage to the compact manager for the matching server-
side compact. If the server-side compact is still valid
and synchronized with the MH compact, a cancelation
message is returned to the MH where the MH-side com-

pact is removed from the registry. If valid but unsyn-
chronized, the affected MH is notified that resynchro-
nization is required. If the compact is invalid, an in-
validation message is returned to the requesting MH. If
the MH cancelation came from the last MH holding a
matching client-side compact, the lock on the resource
is released, the compact is destroyed, and a cancelation
message is sent to the MH.

If, based upon the contents of the resource re-
quest list, the expiring compact is still needed, the com-
pact registry sends a renegotiation message to the com-
pact manager requesting an extension on the deadline.
The compact manager forwards the renegotiation mes-
sage to the server-side compact. If successful, a status
message is queued for the MH with an updated deadline.
If not, an invalidation message is queued for transmis-
sion.

5.2 Disconnected Transaction Processing

When the network link is lost by the MH, the com-
pact agent begins processing transactions locally. Dur-
ing local transaction processing, the compact agent
and the compacts themselves constitute a distributed
transaction management system responsible for all lo-
cal transaction management. Applications running
on the MH access data via events, such as “begin
transaction” (BEGIN), “perform operation”(QP), “com-
mit”(COMMIT), or “abort”(ABORT). In applications
written specifically for PRO-MOTION, these events
may be sent directly to the compact agent. If legacy
applications are to be supported on the MH, there may
be a “front end” which intercepts calls from the legacy
application and converts those calls to PRO-MOTION
events which are sent on to the compact agent.

The compact agent maintains an event log,
which is used to manage transaction processing, recov-
ery, and resynchronization on the MH. Events which do
not involve a specific compact are sent directly to the
event log by the compact agent. Events destined for a
specific compact, such as operations to be performed on
a data item, are sent directly to the compact. The com-
pact filters these events and returns a log entry along
with the results of the event. This filtering allows the
compact to discard irrelevant events and create opti-
mized log entries for recovery purposes, saving log stor-
age.

5.2.1 Initiating a transaction

An application on the MH initiates a transaction by is-
suing a BEGIN event. Upon receiving a BEGIN event,
the compact agent assigns a transaction [D which is
unique on the MH. The BEGIN event, along with the
transaction ID, is written to the event log. PRO-
MOTION allows a number of options to the BEGIN
event to further specify transaction behavior. Two such
options control the transaction’s level of isolation (dis-
cussed in a later section) and local commitment. [f the
BEGIN event contains a LOCAL option, the transaction
will be permitted to commit locally and make its re-
sults visible to other transaction on the MH, accepting

the possibility of an eventual failure to commit at the
server. Transactions which do not have a LOCAL option
will not commit locally until the updates have commit-
ted at the server. Because the options are attached by
the compact agent to each operation sent to the com-
pacts, a specific compact may choose to disallow oper-
ations by transactions that wait for server commitment
and block local transactions. Or, if it is crucial that up-
dates be propagated to the server database, a compact
may be conditioned to accept only traditional (i.e., not
LOCAL) transactions.

The BEGIN event may also contain a group ID. If
no group 1D is present in the BEGIN event, the compact
agent assigns a group ID to the transaction and returns
the group ID to the new transaction. The application
can pass this information to additional transactions, al-
lowing the additional transactions to “join” the trans-
action in progress. Additional transactions that include
this group ID receive the same group ID but a unique
transaction [D. All transactions with the same group
ID are commit-dependent upon all other transactions
in the group (i.e., all transaction in the group commit
together or abort together). Compacts may be written
to honor the group ID to allow visibility of uncommit-
ted data to a group of transactions. This allows the
data engineer to create compacts which are capable of
supporting cooperative transactions without relying on
local commitment. [t is important to note that not all
compacts need honor the group ID. Compacts must be
specifically designed to allow group access to uncommit-
ted data.

5.2.2 Transaction execution

As an application executes and needs to perform data
access, an OP event is sent to the compact agent with
the ID of the compact, the operation to be performed,
any parameters for the operation, and the transaction
ID and group ID. The compact agent uses the ID of the
compact and invokes the compact’s dispatch() method
with the OP event as a parameter. The compact deter-
mines if there is a conflict with the new operation and
any pending (i.e., non-committed) operation. If the op-
eration conflicts, the OP event is returned to the com-
pact agent with a CONFLICT return code and a list of
conflicting transaction ID(s). The compact agent then
queues the OP event for dispatch to the compact when
the compact state changes. The information saved in
the queue is sufficient for the compact agent to detect
and resolve transaction deadlocks.

If no conflict with pending operation(s) is de-
tected, the compact performs the operation against the
memory-resident value of the data item and returns an
event with:

o the value returned by performing the operation,
which must be communicated to the appropriate
application,

e an indication that the operation was performed
successfully, and

e arecord (possibly null) to be written to the event
log with enough information to undo or redo the
operation.

The compact agent writes the returned event to the
event log and returns the result of the operation to the
calling application.

5.2.3 Transaction completion

Because a number of compacts may be involved in a sin-
gle local transaction, the commitment of a transaction is
performed using a two-phase commit protocol where all
participants reside on the MH. Transaction commitment
is initiated upon the receipt of a COMMIT event from
the application. Unlike most transaction processing sys-
tems, PRO-MOTION allows a contingency procedure to
be attached to each COMMIT event and logged with the
COMMIT event. Because each transaction committed
during disconnection represents a local, tentatively com-
mitted transaction, there exists the possibility that the
transaction will never commit at the server. The con-
tingency procedure is saved to be executed in the event
that a locally committed transaction cannot be incor-
porated in the server database state. When a COMMIT
event is received from an application, the compact agent
coordinates a two-phase commitment, sending and log-
ging PREPARE and COMMIT messages as appropriate.
Each participating compact, upon receiving the COM-
MIT event, invalidates the previously saved object state
in the persistent store, validates the newest committed
state, and resumes accepting events. Upon receiving an
ABORT event, a compact reloads an appropriate consis-
tent state® from the persistent object store and resumes
processing with the next event.

5.2.4 Failure recovery

Should the MH fail without warning (e.g., shut down
due to low battery voltage) during disconnection, a re-
covery protocol will be executed. Our recovery protocol
assumes that any transaction pending (i.e., not commit-
ted) when the failure occurs will be aborted. When the
compact agent is restarted after the failure it examines
the log and removes records from uncommitted trans-
actions. The connection state is determined and appro-
priate processes are restarted. Because a set of compact
states that constitute a consistent state is assumed to
be present in the compact store, transaction processing
resumes. [f the compact agent attempts to dispatch an
operation to a compact that is not in main memory, the
compact registry creates an instance of the compact and
calls the recover() method. The compact attempts to
reload the state from the persistent store and finds that
it was in the process of commit processing. The com-
pact then queries the event log to determine whether
the commitment was successful and reload the correct
stored state. Compacts not invoived in commit process-
ing at the time of the failure reload the last consistent
state from the object store and resume processing.

‘1t is possible to write a compact that supports multiple ver-
sions, which may result in a number of states in the store.

5.3 Resynchronization

When a disconnected MH finally reconnects to the
network, resynchronization begins. Resynchronization
brings the server database into agreement with the
changes performed on the MH while disconnected.
Resynchronization requires two, three, or four stages,
depending on the validity of the compacts cached on
the MH. Every attempt is made to incorporate changes
from all transactions locally committed by the MH into
the database. Nonetheless, it may not be possible to
commit every eligible transaction at the server. The
contingency procedure of each transaction that cannot
ultimately be committed is executed to compensate.
The process begins when the compact agent sends a
BEGIN SYNCHRONIZATION event to the compact man-
ager, freezing the state of all compacts associated with
the MH.

In the first stage of resynchronization, the com-
pact registry finds the IDs of all compacts which have
been modified since the MH was disconnected. If all
of the compacts are valid (i.e., have not expired), the
resynchronization can be complete and moves into the
final stage. If, however, modified compacts have ex-
pired, additional work must be completed before resyn-
chronization ends.

In the second stage, the compact registry trans-
mits the IDs of expired modified compacts and attempts
to renew each compact and extend the deadline. If no
other entity has locked or modified the compact data,
the compact manager can reinstate a compact and val-
idate the MH-side compact as if the compact had never
expired. If all expired compacts are thus reinstated, the
update can be made in their entirety and the resynchro-
nization proceeds to the final stage.

If, however, modified compacts cannot be rein-
stated, an additional and more expensive, procedure
must be completed. The original values of the valid
or reinstated compacts can be obtained from the com-
pact manager. Compacts that could not be reinstated
are invalidated. At this point, the event log can be re-
played for all committed transactions. If a transaction
reads or modifies an invalidated compact, the transac-
tion is considered aborted and all compacts modified by
the aborted transaction are left unchanged, but marked
unavailable. Similarly, transactions reading from un-
available transactions are aborted and compacts mod-
iied by these transactions are marked as unavailable.
The compacts used by group transactions are consid-
ered together when invalidating compacts. When the
event log has been completely replayed, the remaining
set of valid compacts (including those marked unavail-
able) represent a subset of the locally committed trans-
actions that can be incorporated in the server database.
The contingency procedures for transactions originally
marked as committed that are now marked as aborted
must be scheduled to execute. Resynchronization then
proceeds to the final stage.

In the last stage of resynchronization, the com-
pact registry inspects the set of compacts for compacts
that are valid and modified. Each compact is queried
and generates an OP event that is returned to the server-

396

side compact to bring the server data into agreement
with the data on the MH. When all the operations have
been communicated, the MH sends a COMMIT message
to the compact manager. On the server, the set of oper-
ations from updates of the resynchronization process are
split out into a single, separate transaction that is com-
mitted on the database server. In addition, the compact
manager attempts to keep locks on all of the items thus
committed. If the locks are retained by the compact
manager, the associated server-side compacts and the
MH-side compacts remain valid and usable. If the locks
cannot be kept, the server-side compact and the asso-
ciated MH-side compacts are invalidated. Once resyn-
chronization is complete, the compacts are released and
the MH returns to the hoarding state.

5.4 Correctness in PRO-MOTION

To facilitate the implementation of various mobile trans-
action processing schemes involving semantic correct-
ness criteria as well as various read/write models, PRO-
MOTION allows the compact designer to determine cor-
rectness criteria and concurrency control methods for
each individual compact type. Because a single trans-
action may utilize several compacts with varying defi-
nitions of correctness, some mechanism must be intro-
duced to classify and enforce correctness guarantees for
the database, regardless of which compact methods were
used to access the data.

PRO-MOTION utilizes a ten level scale to char-
acterize the correctness of a given transaction execution.
While the scale is arbitrary (i.e., the database designer
can use any definition for each level in the scale), the
concept is most useful when a the scale can be used to
categorize the properties of a particular execution. Qur
current standard for PRO-MOTION is loosely based
upon the degrees of isolation defined in the ANSI SQL
standard as extended in [2). We define “Level 9”7 to
represent an actual serial execution of transactions and
“Level 8" to represent a serializable execution. Each
succeeding level represents a lesser degree of isolation.
A “Level 0" operation makes no guarantee whatscever
about the correctness of an operation.

Each method in a compact (corresponding to an
operation on the compact data) is assigned an isolation
level and a mode indicating whether the operation is a
READ operation or a WRITE operation. Any operation
which may modify the value of a data item will be cat-
egorized as a WRITE operation (e.g., increment() and
decrement() for an escrow[16] item). It is interesting
to note that a given compact may have multiple meth-
ods for a given data item that employ differing levels
of correctness. For example, an escrow compact may
have “Level 8" (serializable) isolation for increment()
and decrement() methods, and a “Level 3” or “Level
4" certification for a relaxed-read() method which re-
turns the expected value of a data item if all outstanding
transactions commit. Furthermore, a compact may offer
more than one level of isolation for the same operation
by providing alternate methods which enforce different
levels of isolation. For example, a single compact may
provide a read-strict() operation which only completes

if the item can be locked, and a read-relaxed() method
which returns a value regardless of the lock status of
the data item. The read-strict() method may carry a
“Level 8” guarantee while the read-relaxed() operation
may carry only a “Level 47, for example.

During transaction processing, each transaction
may be assigned a minimal READ level and a minimal
WRITE level. These levels can be specified as optional
arguments to the BEGIN event for the transaction. Each
system will have default READ and WRITE transac-
tion levels assigned by the database administrator. (It
is probable that the default READ and WRITE levels
would be set at “Level 8, forcing serializable behav-
ior.) No operation will succeed if its isolation level is
lower than the corresponding READ or WRITE level of
the transaction performing the operation.

Now, having set these ground rules, we are ready
to explain how the interactions across compacts can
be handled and to address the isolation guarantees
provided by a transaction which operates on a vari-
ety of compacts. Because dirty data provided by a
compact with relaxed correctness criteria could corrupt
data written by a compact which guarantees strict cor-
rectness, it is necessary that any modification to the
database be based on reads that are “at least as strong”
as the write to be performed. Based on this premise,
PRO-MOTION applies the following method:

As each transaction commits, the set of oper-
ations is scanned for the lowest guarantee among any
of the READ operations and the highest requirement
among any of the WRITE operations. A given trans-
action will only be allowed to commit (first locally and
then, during reconciliation, globally) if:

o None of the WRITE operations is lower than the
WRITE level of the transaction,

e None of the READ operations is lower than the
READ level of the transaction,

¢ All of the involved compacts agree that the trans-
action is correct (through the 2PC protocol),

o The lowest level of any READ operation is greater
than or equal to the highest level required by any
WRITE operation.

This system ensures that the correctness of a particu-
lar transaction execution is at least as good as specified
by the compact designer, the individuals certifying the
compacts, and the application programmer, while al-
lowing a range of carrectness criteria and utilization of
object semantics to achieve maximum concurrency.

6 Conclusions

PRO-MOTION provides an infrastructure and transac-
tion model that will support the disconnected process-
ing of transactions by a mobile host. As a mobile trans-
action processing system, PRO-MOTION offers many
unique advantage over other proposed systems. Unlike
systems which rely upon the application to enforce con-
sistency, PRO-MOTION is data-centric. The compact

397

is the basic unit of caching and consistency. Therefore,
it is the compact which determines correctness crite-
ria, granularity, and conflict determination for each data
type. Furthermore, multiple compacts may be defined
for a single data type, employing varying correctness
criteria and supporting different degrees of isolation,
allocation strategies, access privileges, or renegotiation
strategies. This flexibility allows PRO-MOTION to im-
plement a number of mobile data management schemes,
including leases, check-in check-out items, cooperative
activities, and escrow items, by properly implementing
the compact for the data items involved. Indeed, it is
possible to support different correctness criteria at the
same time by utilizing compatible, but different com-
pacts. At the same time, PRO-MOTION frees the ap-
plication programmer from considering correctness and
concurrency concerns while designing applications and
prevents an errant application from violating data con-
sistency.

PRO-MOTION is efficient because only com-
pacts needed to manage required resources are main-
tained on the MH. Furthermore, because compacts are
written in Java, much of the code is maintained in the
Java Virtual Machine and need not be replicated in each
compact. Also, the compacts are designed to share code
(methods) wherever possible. Because compacts allow
for varying degrees of granularity (based upon data type
and modes of access) and can query available storage
and modify their behavior accordingly, compacts can
make more efficient use of limited mobile data storage
capacity. Because caching, transaction processing, and
recovery are controlled by compacts and the code con-
tained in the compacts, these characteristics can dy-
namically change to reflect changing conditions on the
MH. Compacts can submit queries about the mobile
status and respond accordingly.

We hope that PRO-MOTION will simplify the
implementation and testing of various mobile trans-
action processing schemes. We currently have simple
compacts written in Java and are designing a database
server that directly supports compacts. We are cur-
rently using laptop computers to test the mobile com-
ponents of PRO-MOTION, but hope to test handheld
devices as soon as a Java Virtual Machine is ported to

Windows CE.

References

(1] Barbara, D. Certification Reports: Supporting Trans-
actions in Wireless Systems. In: Proc. of the 17th Int’l
Conference on Distributed Computing Systems, 1997.
Berenson H., P. Bernstein, J. Gray, J. Melton, E. O'Neil,
P. O'Neil. A Critique of ANSI SQL Isolation Levels.
Proc. of ACM SIGMOD Conference, 1995, pp. 1-10.
Bernstein P. A., V. Hadzilacos and N. Goodman. Con-
currency Control and Recovery in Database Systems.
Addison-Wesley, Reading, MA, 1987.
{4] Chrysanthis P. K. Transaction Processing in a Mobile
Computing Environment. In: Proc. of IEEE Workshop
on Advances in Parallel and Distributed Systems, 1993,
pp. 77-82.
(5] Demers A., et al. The Bayou Architecture: Support
for Data Sharing among Mobile Users. In: Proc. of the

[2

—

(3

(6]

(7

—

(8

—

(9

(10]

(11]

(12]

(13]

(14]

(15]

. {16}

(17]

(18]

(19]

(20]

[21]

Workshop on Mobile Computing Systems and Applica-
tions, 1994.

Dunham, M., A. Helal, and S. Balakrishnan. A Mobile
Transaction Model That Captures Both the Data and
Movement Behavior, ACM/Balizer Journal on Special
Topics in Mobile Networks.

Gray C. G. and D. Cheriton. Leases: An Efficient Fault—
Tolerant Mechanism for Distributed File Cache Consis-
tency. In: Proc. of 12th ACM Symposium on Operating
Systems Principles, 1989, pp. 202-210.

Imielinski T. and B. R. Badrinath. Mobile Wireless
Computing: Challenges in Data Management.In: Com-
munication of ACM, 1994, 37(10):18-28.

Ioannidis J., D. Duchamp and G. Q. Maguire. [P-Based
protocols for mobile internetworking. In: Proc. of ACM
SIGCOMM Symposium on Communication, Architec-
tures and Protocols, 1991, pp. 235-245.

Jain R. and K. Narayanan. Network Support for Per-
sonal Information Services to PCS Users. In: Proc. of
IEEE Conference Networks for Personal Communica-
tions, 1994.

Jing, J., O. Bukhres, and A. Elmagarmid. Distributed
Lock Management for Mobile Transactions. In: Proc.
of the 15th Int'l Conference on Distributed Computing
Systems, 1995, pp. 118-125.

Kistler J. and M. Satyanarayanan. Disconnected opera-
tion in the Coda file system. In: ACM Transactions on
Computer Systems, 1992, 10(1):3-25.

KrishnakumarN. and R. Jain. Protocols for maintaining
inventory databases and user service profiles in mobile
sales applications. In: Proc. of the Mobidata Workshop,
1994.

Kuenning G. and G. J. Popek. Automated Hording for
Mobile Computers. In: Proc. of the 16th ACM Sympo-
sium on Operation System Principals, 1997.

Lu, Q., Satyanarayanan, M. Isolation-Only Transac-
tion for Mobile Computing. Operating Systems Review
28(2):81-87, 1994.

O’Neil P. The Escrow Transactional Method. In: ACM
Transactions on Database Systems, 1986, 11(4):405-
430.

Pitoura E. and B. Bhargava. Maintaining Consistency
of Data in Mobile Distributed Environments. In: Proc.
of 15th Int'l Conference on Distributed Computing Sys-
tems, 1995, pp. 404-414.

Ramamritham K. and P. K. Chrysanthis. Advances
tn Concurrency Control and Transaction Processing,
IEEE Computer Society Press, 1996.

Salem, K., H. Garcia-Molina, and J. Shands, “Altruis-
tic Locking,” ACM Transactions on Database Systems,
Vol. 19, No. 1, 1994, pp. 117-165.

Tait D. C., H. Lei, and H. Chang. Intelligent File Hoard-
ing for Mobile Computing. In: Proc. of the Workshop
on Mobile Computing, 1995, pp. 119-125.

Yeo L. H. and A. Zasiavsky. Submission of Transac-
tions from Mobile Workstations in a Cooperative Mul-
tidatabase Processing Environment. In: Proc. of the
14th Int'l Conference on Distributed Computing Sys-
termns, 1994.

Walborn G. and P. K. Chrysanthis. Supporting
Semantics-Based Transaction Processing in Mobile
Database Applications. In: Proc. of the 11th Sympo-
sium of Reliable Distributed Systems, 1995, pp. 31-40.
Walborn, G. and P. K. Chrysanthis. PRO-MOTION:
Management of Mobile Transactions. In: Proc. of the
Symposium on Applied Computing, 1997, pp. 101-108.

398

[24] G. Walborn and P. K. Chrysanthis. “PRO-MOTION:

Support for Mobile Database Access,” Personal Tech-
nologies, Vol. 1, No. 3, 1997, pp. 171-181.

