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Abstract 

To provide data consistency in the presence of failures 
and concurrency, database methods will continue to be 
important to the processing of shared information in 
a mobile computing environment. ‘Motivated by the 
need to migrate existing database applications while 
supporting the development of new database applica- 
tions and personal services involving mobile and wire- 
less data access, we have developed PRO-MOTION. 
PRO-MOTION is a mobile transaction processing sys- 
tem that supports disconnected transaction processing 
in a mobile client-server environment. In this paper, we 
present the specifics of the structuring and the manage- 
ment of transactions in PRO-MOTION, which utilizes 
nested-split transactions to provide different levels of 
isolation and transaction consistency. 

Keywords: mobile transactions, data caching, commit 
processing, disconnected database operations 

1 Introduction 

We are in the midst of a mobile revolution. Just as cel- 
lular telephones have forever altered the way we com- 
municate, a new generqtion of mobile (even hand held) 
computers will change the way t,hat we compute. Lap 
top computers have become a modern business neces- 
sity and smaller, tighter computers are on the way. In 
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a trend started by personal digital assistants (PDAs) 
like the Apple Newton, handheld computers and “palm- 
tops” are taking mobile computing to the masses. 3com, 
for instance, has sold over a million of its pocket-sized 
PDA, the Palm Pilot. The introduction of Windows 
CE, an operating system designed specifically for hand- 
held computers and embedded systems, will provide a 
standard API and user interface for a number of various 
platforms, processors, and form-factors. The sub4500 
street price of these midget marvels will be a justifiable 
business expense for the executive “on the go” and an 
attractive option for the hobbyist or homemaker. 

Perhaps as important as the advent of small, low- 
cost, powerful, and energy efficient mobile computers 
is the emergence of a wireless communication infras- 
tructure to support mobile computing. For example, 
the industry has finally settled on a Wireless Ethernet 
standard (802.11), GSM phones deliver digital data in 
many urban areas, cellular modems have become com- 
monplace, and some form of wireless digital information 
is a+lable at every level, from the micro-cell in an of- 
fice to a global wireless network. Modems are still the 
most common means of data 
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possible within the confines of the mobile computer’s 
capabilities. This means, in the context of database ap- 
plications, that mobile users should have the ability to 
both query and update public, private, and corporate 
databases. Such databases typically utilize transactions 
to provide data consistency and reliability in spite of 
concurrent updates and system failures. As a result, 
transaction processing and efficient update techniques 
for mobile and, in particular, disconnected operations, 
have recently attracted some attention. 

Most transaction processing systems are built 
upon the client-seruer paradigm. If the clients are 
mobile computers, alI communications must be com- 
pleted over a wireless connection. In this environment, 
a disconnected client is virtually powerless because all 
queries and updates must be executed at the server. It 
becomes clear, therefore, that to process transactions 
while disconnected, we must keep data on the mobile 
computer and manage database operations locally, a 
process known as data shipping or caching. 

The first systems that were intended to support 
processing on a disconnected mobile, cached data at the 
file level [12, 20, 141 and provided consistency by means 
of optimistic concurrency control. While many oper- 
ations can be supported at the file level, database re- 
quests often operate on extremely large flles. Caching 
(or hoarding’) several database files would require too 
much storage on the typical mobile host (with a 3 to 5 
gigabyte hard disk). Even if a mobile host were able to 
cache the entire database, file level caching complicates 
efforts to maintain data consistency. File systems that 
support disconnection treat the file as the basic unit 
of caching and consistency, which, due to optimistic 
concurrency control, would lead to wasted work since 
any two update operations by different transactions con- 
flict. To prevent wasted work (important in a heavily 
loaded system), database systems typically do not use 
the database file as the unit of consistency. To be prac- 
tical, therefore, mobile transaction processing requires 
finer granularity for caching and control than that of- 
fered at the file level. 

New, efficient storage management techniques 
are not the only requirement of mobile transaction pr* 
cessing. If the mobile is to process transactions while 
disconnected, there must be some type of transaction 
management process resident in the mobile host to pro- 
vide local applications with concurrent database access. 
And because the structure and behavior of the database 
“client” has changed, we must make significant changes 
to the database server or provide an interface between 
our traditional server and the mobile client. 

To simplify the management of disconnected 
transactions, some proponents of mobile transaction 
processing advocate new mobile transaction models, 
e.g., [6, 41, and/or correctness criteria for data consis- 
tency that are weaker than the standard serializabil- 
ity, e.g., [17, 221, so that they can cope more effectively 
with the restrictions of mobility and wireless commu- 
nication. Even though many applications do not re- 

‘Hoarding is the caching ol data before the actual demand 
based upon the possible data requirements of the host. 

quire strict serializability, there are important applica- 
tions, including existing business applications such as 
inventory databases [13], that require the data consis- 
tency guarantees offered by serializability. Because the 
traditional techniques for providing serializability (e.g. 
transaction monitors, schedulers, locks) do not function 
properly in a disconnected environment, new mecha- 
nisms must be developed expressly for the management 
of mobile transaction processing. For this reason, we 
have developed PRO-MOTION, a mobile transaction 
processing infrastructure to support disconnected trans- 
action processing. PRO-MOTION is built upon a gen- 
eralized, multi-tier client-server architecture. Its archi- 
tecture and fundamental building block, the compacts. 
were presented in [23, 241. The focus of this paper is 
on the specifics of the management of transactions in 
PRO-MOTION. 

In the next section, we elaborate on mobile 
transaction requirements. In Section 3, we briefly re- 
view the fundamentals of PRO-MOTION while in Sec- 
tion 4, we discuss the nested-split transaction which is 
the underlying transaction processing model of PRO- 
MOTION. Transaction execution and commitment on 
mobile clients is discussed in Section 5. Finally, in Sec- 
tion 5.4, we discuss the mechanisms in PRO-MOTION 
which define and enforce the correctness of transactions 
which involve a number of compacts with varying cor- 
rectness criteria. 

2 Mobile Transaction Requirements 

In order to better describe local transaction processing 
on an MH, it is often helpful to generalize the tradi- 
tional ACID properties2 and talk instead about uisibil- 
ity, consistency, permanence, and recovery. Visibility, 
for instance, refers to the ability of a transaction to 
see the effects on data items caused by other transac- 
tions. To reduce the cost of recovery, the effects of a 
transaction are usually not made visible until the trans- 
action commits and the changes are made permanent 
in the database. Allowing new transactions to see un- 
committed changes (dirty data) may result in unwanted 
dependencies and cascading aborts. But since no up 
dates on a disconnected MH can be incorporated in the 
server database, subsequent transactions using the same 
data items normally could not proceed until connection 
occurs and the mobile transaction commits. By mak- 
ing the results of a transaction visible as soon as the 
transaction begins to commit at the MH, we can al- 
low additional transactions to progress even though the 
data items involved have been mod&d by an active 
( i.e., non-committed) transaction, similar to altruistic 
locking [19]. Making data available at the beginning 
of transaction commitment leads to the notion of local 

‘ACID: rltomicity - if any of the operations contained in a 
transaction are executed, all of the operations in the transaction 
are executed. Consistency - any transaction, executed singly 
against a “correct” database, completes with the databwe in a 
“correct” state. Isolation - each transaction executer indepen- 
dently of other transactions. Durability- once committed, the 
effects of a transaction become permanent in the database. en- 
sured to survive any failure. 



visibility and local (vs. seroer) commitment which can, 
in turn, reduce the blocking of transactions during dis- 
connected transaction processing while minimizing, but 
not eliminating, the probability of cascading aborts. 

A completedatabase management system to sup- 
port transaction processing on a disconnected mobile 
must include: 

a means of interfacing with stationary database 
servers, 

a stand-alone transaction processing subsystem to 
execute on the MH, 

a method to reconcile transactions processed while 
disconnected with the server database, 

sufficient logging, checkpoint, and recovery sys- 
tems to mitigate system failures, and 

a way to manage the replication and consistency 
of needed data. 

Such a system should provide serializability 
when needed, but should also support more relaxed 
correctness criteria and different degrees of transaction 
isolation, where appropriate. The system must be fru- 
gal with mobile system resources, such as bandwidth, 
energy, and storage, but powerful enough to adapt to 
changing conditions, such as remaining battery life or 
imminent disconnection. It should be extensible enough 
to seamlessly support new data types and correctness 
criteria and new recovery and caching schemes, but ba- 
sic enough to support legacy applications and database 
servers. Because the mobile network may include mul- 
tiple servers and various mobile computers, the system 
should be platform independent and able to support a 
heterogeneous mixture of clients and hosts. Finally, the 
system should be written to allow integration into new 
mobile computers and servers or as an add-on to exist- 
ing object relational database systems. 

Several systems have been proposed to support 
updating data on a disconnected MH. Most of these 
incorporate some notion of local visibility and local 
commitment with reconciliation of work done locally 
with the server database when reconnection occurs. 
But many such systems implement correctness crite- 
ria weaker than serializability and are, therefore, un- 
suitable for applications which demand the correctness 
measure that serializability provides. Others require 
specially constructed applications to deal with failed 
tentative commits and changing mobile conditions and, 
therefore, do not support existing database applications. 
Of the systems that permit disconnected operations on 
replicated data, Bayou[5], and Odyssey[lS] each exhibit 
some of the qualities that we feel are essential to support 
transaction processing on the MH but fail to address all 
of the issues surrounding tentative commitment, server 
consistency, flexibility, recovery, and transparency. In 
the next section, we will briefly present PRO-MOTION, 
our proposed solution to the difficulties associated with 
disconnected transaction processing. 

3 PRO-MOTION 

PRO-MOTION is a new transaction processing infras- 
tructure developed to deal with the problems introduced 
by disconnection and limited resources in mobile client- 
server operating environments. PRO-MOTION (Figure 
1) is built upon a generalized, multi-tier client-server 
architecture with a mobile client agent called compact 
agent, a stationary server front-end called compact man- 
ager, and an intermediate array of mobility managers 
to help manage the flow of updates and data between 
the other components in the system. Its fundamental 
building block is the compact which functions as the ba- 
sic unit of data replication for caching, prefetching, and 
hoarding. 

A compact is, broadly speaking, a satisfied re- 
quest to cache data, enhanced with obligations (such as 
a deadline), restrictions (such as a set of allowable oper- 
ations) and state information (such as the number of ac- 
cesses to the object). The compact represents an agree- 
ment between the database server and the mobile host. 
In this agreement, the database server delegates control 
of some data to the MH to be used for local transaction 
processing. The MH, in return, agrees to honor spe- 
cific conditions on the use of the data set forth by the 
database server so that the consistency of the database 
is maintained when the updated data items are incor- 
porated back into the server database. As a result, the 
database server need not be aware of the operations exe- 
cuted by individual transactions on the MH but, rather, 
sees periodic updates to a compact for each of the data 
items manipulated by the mobile transactions. Com- 
pacts are represented in our system as objects (Figure 
2) which encapsulate 

the cached data, 

methods (i.e., code) for the access of the cached 
data, 

information about the current state of the com- 
pact, 
consistency rules, if any, which must be followed 
to guarantee global consistency of the data item3, 

obIigations, such as a deadline which creates a 
bound on the time for which the rights to a re- 
source are held by the mobile host or restrictions 
on the visibility of locally committed updates, and 

methods which provide an interface with which 
the MH may manage the compact. 

The management of compacts is a cooperative 
effort by the compact manager on the database server 
and the compact agent on each mobile host. Compacts 
are obtained from the database via requests by the MH 
when a real or anticipated data demand is created. If 

3The compact author determiner what sharing can be done 
and what correctness criteria are used. For example, if an aggre- 
gate item ir involved in escrow tranractionr[l6], it may be pas- 
sible to create additional compacts with appropriate constraints 
to allow a distributed, shared access to the data. Or. for exam- 
ple, if the compact is expired, the ownership may be transferred 
to the the new MH and the expired compact invalidated. 
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data is available to satisfy the request, the database 
server creates a compact (with the help of the compact 
manager) which is recorded in the compact store and 
transmitted to the MH to provide the data and meth- 
ods to satisfy the needs of transactions executing on 
the MH. The request can be tailored to cause only the 
transmission of missing or outdated components of a 
compact. In this way, transmitting the compact meth- 
ods, which may be very expensive, is avoided if they 
are already available on the MH. Once the MH receives 
the compact, it is recorded in a compact registry, which 
is used by the compact agent to track the location and 
status of all local compacts. 

Each compact has a common interface which is 
used by the compact agent to manage the compacts 
listed in the compact registry and to perform updates 
submitted by transactions run by applications execut- 
ing on the IMH. The basic set of methods necessary to 
manage compacts includes, 

l inquire(). which retrieves useful information about 
the state of the compact (such as name, data type 
and version, cache status, outstanding transaction 
IDS, and remaining storage), 

. notify(), used to notify the compact when the mo- 
bile environment changes, 

s dispatch(), used to perform operations on the com- 
pact on behalf of transactions executing on the 
MH, 

l commit(). to mnke the operations of a specified 
transaction permanent on the database, and, 

l abort(), to abandon the changes made to the com- 
pact data by a given transaction. 

The implementation of a common interface simplifies 
the design of the compact agent and guarantees the 
minimum acceptable functionality of a specific compact 
instance. In addition, each compact may contain spe- 
cialized methods which support the particular type of 
data or concurrency control specific to that particular 
compact. 

Compacts are managed by the compact agent, 
which is much like the daemon responsible for cache 
management in the CODA file system [12] in that 
the compact agent handles disconnections and manages 
storage on a MH. It monitors activity and interacts 
with the user and applications to maintain lists of items 
which are candidates for caching. However, unlike the 
CODA daemon, or other cache managers, the compact 
agent is actively involved in transaction processing on 
the mobile host, acting as a transaction manager for 
transactions executing on the mobile host. As such, the 
compact agent is responsible for concurrency control, 
logging and recovery. 

4 Nested-Split Transactions 

As discussed earlier, disconnected transaction process- 
ing introduces another level of complexity, namely, the 
need to provide for two levels of commitment and differ- 
ent degrees of visibility or isolation. It is possible, for ex- 
ample, that the MH may want to commit a transaction 
locally and make the results of that transaction available 
on the MH before they are actually incorporated in the 
server database. In order to provide for local visibility 
and incremental updates to the server database with- 
out compromising consistency, permanence, or recovery. 
PRO-MOTION uses nested-split transactions[4, 181 as 
its infrastructure. In fact, PRO-MOTION considers the 
entire mobile sub-system as one extremely large, long- 
lived transaction which executes at the server with a 
subtransaction executing at each MH. Each of these MH 
subtransactions, in turn, is the root of another nested- 
split transaction. Individual transactions on the MH 
form additional subtrees. The exact nesting and struc- 
ture of the subtrees is dependent upon the commit se- 
mantics imposed by the commit processing on the MH. 

When reconnecting to the database after a dis- 
connection the MH identifies a group of compacts whose 
states reflect the updates of the locally committed trans- 
actions. The transactions in this subset are split from 
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uncommitted transactions and communicated to the 
compact manager, which creates a split transaction for 
this very group of updates. The compact manager then 
commits this split transaction into the database making 
the updates visible to all transactions (fixed and mobile) 
waiting for server commitment. All of this should hap- 
pen without releasing the locks held by the compact 
manager root transaction. 

Because most database servers employ a flat 
transaction model, the best implementation of PRO- 
MOTION would include a database server which 
“knows” about compacts and supports the nested-split 
transaction model. However, we can mimic the appro- 
priate behavior by limiting all database access to the 
compact manager. If the compact manager is the only 
means to access the database. we can consider every 
item in the database implicitly locked by the root trans- 
action. When an item is needed by a MH, the compact 
manager can read the data value and immediately re- 
lease any actual (i.e., server imposed) locks on the data 
item, knowing that it wilI not be accessed by any trans- 
action unknown to the compact manager. During the 
reconnection, the compact manager locks the items nec- 
essary for the ‘*split transaction”, writes the updates to 
the data items, commits the “split transaction”, and 
re-reads and releases the altered items, maintaining the 
implicit lock. 

5 Transaction Processing in PRO-MOTION 

The interaction of the compact manager, compact 
agents, compacts, and the network connection implicitly 
suggest four transaction processing activities performed 
by the compact agent: 

l hoarding - the mobile host is connected to the 
network and the compact manager is storing com- 
pacts in preparation for an eventual disconnection, 

l connected processing - the mobile host is con- 
nected to the network and the compact manager 
is processing transactions, 

l disconnected processing - the MH is disconnected 
from the network and the compact manager is pro- 
cessing transactions locally, and 

l resynchronization - the MH has reconnected to the 
network and the compact agent is reconciling the 
updates committed during the disconnection with 
the fixed database. 

Due to space limitations, we will describe only 
the hoarding, disconnected processing, and resynchro- 
nization activities in this paper. Intentional termina- 
tion of the network connection to save power can force 
disconnection and a resumption of the network con- 
nection begins aLIH resynchronization. Therefore, con- 
nected processing is not necessary to achieve complete 
functionality of the system, but rather, simply allows for 
an optimized mode of operation which takes advantage 
of the network connection to quickly propagate data and 
status changes to the fixed network. We could easily 

simulate disconnections following each resynchromza- 
tion to force the MH to remain in disconnected trans- 
action processing. 

5.1 Hoarding and Caching 

Hoarding utilizes a list of resources required for process- 
ing transactions on the mobile host. Each resource re- 
quest is implicitly or explicitly associated with a specific 
compact type. The resource list is built and maintained 
on the AMH by interactions with the compact agent, mo- 
bile applications, and the user. The compact agent adds 
items to the list by monitoring the usage of items by 
applications running on the MH. If an application at- 
tempts to access data not in the list, the compact agent 
immediately adds the item to the list which initiates an 
attempt to obtain the data item. 

An application can maintain the list directly 
by passing a request to the compact agent. A pro- 
gram written specifically for PRO-MOTION can have 
code executed periodically (e.g., when the application 
is loaded to the MH or when the connection state is 
about to change) that will update the list. A specific 
application may make a “best guess” about resources 
which will be needed during the disconnection based on 
information provided at the MH, such as the identity 
of the user or the current MH location. Also, since any 
program can make additions to the required resource 
list, an application can be written that allows the user 
to provide input about what resources must be kept 
available for disconnected operation. In this way the 
hoarding behavior may be extended or modified, if de- 
sired. 

>IuItiple requests for a single resource may be 
included in the resource request list. Because various 
applications may have need for the same item, one entry 
for each item may exist per application with similar or 
differing access requirements. For example, perhaps ap 
plication A requires item z with read and write permis- 
sions and application B requires item z with read-only 
access. If application A is later removed from the MH, 
the item wilI still be required, but the level of access may 
be downgraded to read-only. If, on the other hand, B is 
removed and 4 remains, the associated request from B 
is removed and the compact wiII be adjusted to comply 
with.the requirements the remaining request(s). 

While the IMH is connected to the fixed network, 
the resource request list is scanned for new, unsatisfied 
requests. The compact registry forwards such a request 
to the compact manager. The compact manager checks 
to see if the given resource is currently involved in a 
compact with the requesting MH. If the requesting MH 
already holds the resource, the compact manager for- 
wards the new request to the existing server-side com- 
pact. The existing server-side compact determines if 
the access privileges in the new request can be satisfied. 
If so, an update message is transmitted to the exist- 
ing client-side compact revising the access rights of the 
compact. 

If the needed resource is currently involved in 
mobile transaction processing with another IMH, the 
compact manager forwards the new MH request to the 
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appropriate server-side compact. The related compact 
determines whether or not the request can be satis- 
fied allowing concurrent caching of the data across two 
MHs. If the request can be satisfied, a MH-side compact 
with appropriate constraints and obligations is created 
and queued for transmission. If not, a null compact is 
queued to be sent to the MH. In any case, the dead- 
line for the compact, the compact constraints, and the 
actual data items returned are determined by the na- 
ture of the request, the current usage at the server, and 
pre-programmed parameters of the compact type. Com- 
pacts generated at the compact manager are forwarded 
to the MH and stored in the compact registry where 
they are accessed by the compact agent. 

If the resource is freely available in the database 
(i.e., the resource can be locked by the compact man- 
ager), the compact manager obtains modification rights 
to the data and finds the matching compact type. The 
compact manager creates an instance of the appropri- 
ate server-side compact type with the data obtained 
and forwards the request to this newly created com- 
pact. The server-side compact creates an instance of a 
matching MH-side compact with the data and needed 
code and queues the new MH-side compact for transmis- 
sion to the MH. If the resource is not available (e.g., held 
by a non-mobile transaction), a null compact is created 
and queued for transmission to the MH. The null com- 
pact will cause operations attempted by an application 
to return with an indication of a failure. 

When a MH-side compact is received by the mo- 
bile host, the first message contains only the compact 
class specification and compact data. The compact reg- 
istry checks to see if the compact code for the specified 
class is already resident in the mobile host. If the code 
is needed, the compact registry sends a request for the 
MH-side code to the compact manager which returns 
the required compact code. When the necessary com- 
pact code is resident, the compact registry creates a 
local instance of the desired compact type, makes an 
entry in the registry database, and calls the initialize0 
method of the new compact, passing the data received 
from the server. The new compact stores its initial value 
into a persistent object store on the MH and does any 
housekeeping needed to process transactions. The ob- 
ject store always contains at least one copy of the com- 
pact which reflects the state of the compact (including 
the value of the data item) after considering all suc- 
cessfully committed transactions on the MH. By closely 
following this convention, the MH is always capable of 
restoring the compact registry (and all associated data) 
to a consistent state by simply reloading the correct set 
of objects from the persistent store. 

Compacts stored on the MH which are about to 
expire are also handled by the hoarding process. When a 
compact is about to expire, the compact registry checks 
the resource request list to see if the resource held by 
the compact is still required. If the compact is no longer 
required, the compact registry sends a cancelation mes- 
sage to the compact manager for the matching server- 
side compact. If the server-side compact is still valid 
and synchronized with the MH compact, a cancelation 
message is returned to the 11H where the MH-side com- 

pact is removed from the registry. If valid but unsyn- 
chronized, the affected MH is notified that resynchro- 
nization is required. If the compact is invalid, an in- 
validation message is returned to the requesting MH. If 
the MH cancelation came from the last MH holding a 
matching client-side compact, the lock on the resource 
is released, the compact is destroyed, and a cancelation 
message is sent to the MH. 

If, based upon the contents of the resource re- 
quest list, the expiring compact is still needed, the com- 
pact registry sends a renegotiation message to the com- 
pact manager requesting an extension on the deadline. 
The compact manager forwards the renegotiation mes- 
sage to the server-side compact. If successful, a status 
message is queued for the MH with an updated deadline. 
If not, an invalidation message is queued for transmis- 
sion. 

5.2 Disconnected Transaction Processing 

When the network link is lost by the MH, the com- 
pact agent begins processing transactions locally. Dur- 
ing local transaction processing, the compact agent 
and the compacts themselves constitute a distributed 
transaction management system responsible for all lo- 
cal transaction management. Applications running 
on the MH access data via events, such as “begin 
transaction”( BEGIN), “perform operation”(OP), “com- 
mit”(COMMIT), or “abort”(ABORT). In applications 
written specifically for PRO-MOTION, these events 
may be sent directly to the compact agent. If legacy 
applications are to be supported on the MH, there may 
be a “front end” which intercepts calls from the legacy 
application and converts those calls to PRO-MOTION 
events which are sent on to the compact agent. 

The compact agent maintains an event log, 
which is used to manage transaction processing, recov- 
ery, and resynchronization on the MH. Events which do 
not involve a specific compact are sent directly to the 
event log by the compact agent. Events destined for a 
specific compact, such as operations to be performed on 
a data item, are sent directly to the compact. The com- 
pact filters these events and returns a log entry along 
with the results of the event. This filtering allows the 
compact to discard irrelevant events and create opti- 
mized log entries for recovery purposes, saving log stor- 
age. 

5.2.1 Initiating a transaction 

An application on the MH initiates a transaction by is- 
suing a BEGIN event. Upon receiving a BEGIN event, 
the compact agent assigns a transaction ID which is 
unique on the IMH. The BEGIN event, along with the 
transaction ID, is written to the event log. PRO- 
MOTION allows a number of options to the BEGIN 
event to further specify transaction behavior. Two such 
options control the transaction’s level of isolation (dis- 
cussed in a later section) and local commitment. If the 
BEGIN event contains a LOCAL option, the transaction 
will be permitted to commit locally and make its re- 
sults visible to other transaction on the MH, accepting 



the possibility of an eventual failure to commit at the 
server. Transactions which do not have a LOCAL option 
will not commit locally until the updates have commit- 
ted at the server. Because the options are attached by 
the compact agent to each operation sent to the com- 
pacts, a specific compact may choose to disallow oper- 
ations by transactions that wait for server commitment 
and block local transactions. Or. if it is crucial that up- 
dates be propagated to the server database, a compact 
may be conditioned to accept only traditional (i.e., not 
LOCAL) transactions. 

The BEGIN event may also contain a group ID. If 
no group ID is present in the BEGIN event, the compact 
agent assigns a group ID to the transaction and returns 
the group ID to the new transaction. The application 
can pass this information to additional transactions, al- 
lowing the additional transactions to “join” the trans- 
action in progress. Additional transactions that include 
this group ID receive the same group ID but a unique 
transaction ID. All transactions with the same group 
ID are commit-dependent upon all other transactions 
in the group (i.e., all transaction in the group commit 
together or abort together). Compacts may be written 
to honor the group ID to allow visibility of uncommit- 
ted data to a group of transactions. This allows the 
data engineer to create compacts which are capable of 
supporting cooperative transactions without relying on 
local commitment. It is important to note that not all 
compacts need honor the group ID. Compacts must be 
specifically designed to allow group access to uncommit- 
ted data. 

5.2.2 Transaction execution 

As an application executes and needs to perform data 
access, an OP event is sent to the compact agent with 
the ID of the compact, the operation to be performed, 
any parameters for the operation, and the transaction 
ID and group ID. The compact agent uses the ID of the 
compact and invokes the compact’s dispatch0 method 
with the OP event as a parameter. The compact deter- 
mines if there is a conflict with the new operation and 
any pending (i.e., non-committed) operation. If the op 

eration confhcts, the OP event is returned to the com- 
pact agent with a CONFLICT return code and a iist of 
conI%cting transaction ID(s). The compact agent then 
queues the OP event for dispatch to the compact when 
the compact state changes. The information saved in 
the queue is sufficient for the compact agent to detect 
and resolve transaction deadlocks. 

If no conflict with pending operation(s) is de- 
tected, the compact performs the operation against the 
memory-resident value of the data item and returns an 
event with: 

l the value returned by performing the operation, 
which must be communicated to the appropriate 
application, 

l an indication that the operation was performed 
successfully, and 

l a record (possibly null) to be written to the event 
log with enough information to undo or redo the 
operation. 

The compact agent writes the returned event to the 
event log and returns the result of the operation to the 
calling application. 

5.2.3 Transaction completion 

Because a number of compacts may be involved in a sin- 
gle local transaction, the commitment of a transaction is 
performed using a two-phase commit protocol where all 
participants reside on the MH. Transaction commitment 
is initiated upon the receipt of a COMMIT event from 
the application. Unlike most transaction processing sys- 
tems, PRO-MOTION allows a contingencyprocedure to 
be attached to each COMMIT event and logged with the 
COMMIT event. Because each transaction committed 
during disconnection represents a local, tentatively com- 
mitted transaction, there exists the possibility that the 
transaction wiIl never commit at the server. The con- 
tingency procedure is saved to be executed in the event 
that a locally committed transaction cannot be incor- 
porated in the server database state. When a COMMIT 
event is received from an application, the compact agent 
coordinates a two-phase commitment, sending and log- 
ging PREPARE and COMMIT messages as appropriate. 
Each participating compact, upon receiving the COM- 
MIT event, invalidates the previously saved object state 
in the persistent store, validates the newest committed 
state, and resumes accepting events. Upon receiving an 
ABORT event, a compact reloads an appropriate consis- 
tent state4 from the persistent object store and resumes 
processing with the next event. 

5.2.4 Failure recovery 

Should the MH fail without warning (e.g., shut down 
due to low battery voltage) during disconnection, a re- 
covery protocol wiII be executed. Our recovery protocol 
assumes that any transaction pending (i.e., not commit- 
ted) when the failure occurs will be aborted. When the 
compact agent is restarted after the failure it examines 
the log and removes records from uncommitted trans- 
actions. The connection state is determined and appro- 
priate processes are restarted. Because a set of compact 
states that constitute a consistent state is assumed to 
be present in the compact store, transaction processing 
resumes. If the compact agent attempts to dispatch an 
operation to a compact that is not in main memory, the 
compact registry creates an instance of the compact and 
calls the recovcr() method. The compact attempts to 
reload the state from the persistent store and finds that 
it was in the process of commit processing. The com- 
pact then queries the event log to determine whether 
the commitment was successful and reload the correct 
stored state. Compacts not invoIved in commit process- 
ing at the time of the failure reload the last consistent 
state from the object store and resume processing. 

‘It is possible to write a compact that supports multiple vcr- 
rions. which may result in Z+ number of states in the store. 



5.3 Resynchronization 

When a disconnected MH finally reconnects to the 
network, resynchronization begins. Resynchronization 
brings the server database into agreement with the 
changes performed on the MH while disconnected. 
Resynchronization requires two, three, or four stages, 
depending on the validity of the compacts cached on 
the IMH. Every attempt is made to incorporate changes 
from all transactions locally committed by the MH into 
the database. Nonetheless, it may not be possible to 
commit every eligible transaction at the server. The 
contingency procedure of each transaction that cannot 
ultimately be committed is executed to compensate. 
The process begins when the compact agent sends a 
BEGIN SYNCHRONIZATION event to the compact man- 
ager, freezing the state of alI compacts associated with 
the IMH. 

In the Ilrst stage of resynchronization, the com- 
pact registry finds the IDS of alI compacts which have 
been modified since the MH was disconnected. If all 
of the compacts are valid (i.e., have not expired), the 
resynchronization can be complete and moves into the 
final stage. If, however, modified compacts have ex- 
pired, additional work must be completed before resyn- 
chronization ends. 

In the second stage, the compact registry trans- 
mits the IDS of expired modified compacts and attempts 
to renew each compact and extend the deadline. If no 
other entity has locked or modified the compact data, 
the compact manager can reinstate a compact and val- 
idate the MH-side compact as if the compact had never 
expired. If alI expired compacts are thus reinstated, the 
update can be made in their entirety and the resynchro- 
nization proceeds to the final stage. 

If, however, modified compacts cannot be rein- 
stated, an additional and more expensive, procedure 
must be completed. The original values of the valid 
or reinstated compacts can be obtained from the com- 
pact manager. Compacts that could not be reinstated 
are invalidated. At this point, the event log can be re- 
played for all committed transactions. If a transaction 
reads or modifies an invalidated compact, the transac- 
tion is considered aborted and alI compacts modified by 
the aborted transaction are left unchanged, but marked 
unavailable. Similarly, transactions reading from un- 
available transactions are aborted and compacts mod- 
ified by these transactions are marked as unavailable. 
The compacts used by group transactions are consid- 
ered together when invalidating compacts. When the 
event log has been completely replayed, the remaining 
set of valid compacts (including those marked unavail- 
able) represent a subset of the locally committed trans- 
actions that can be incorporated in the server database. 
The contingency procedures for transactions originally 
marked as committed that are now marked as aborted 
must be scheduled to execute. Resynchronization then 
proceeds to the Iinal stage. 

In the last stage of resynchronization, the com- 
pact registry inspects the set of compacts for compacts 
that are valid and modified. Each compact is queried 
and generates an OP event that is returned to the server- 

side compact to bring the server data into agreement 
with the data on the MH. When all the operations have 
been communicated, the IMH sends a COMMIT message 
to the compact manager. On the server, the set of oper- 
ations from updates of the resynchronization process are 
split out into a single, separate transaction that is com- 
mitted on the database server. In addition, the compact 
manager attempts to keep locks on all of the items thus 
committed. If the locks are retained by the compact 
manager, the associated server-side compacts and the 
MH-side compacts remain valid and usable. If the locks 
cannot be kept, the server-side compact and the asso- 
ciated MH-side compacts are invalidated. Once resyn- 
chronization is complete, the compacts are released and 
the MH returns to the hoarding state. 

5.4 Correctness in PRO-MOTION 

To facilitate the implementation of various mobile trans- 
action processing schemes involving semantic correct- 
ness criteria as welI as various read/write models, PRO- 
MOTION allows the compact designer to determine cor- 
rectness criteria and concurrency control methods for 
each individual compact type. Because a single trans- 
action may utilize several compacts with varying defi- 
nitions of correctness, some mechanism must be intro- 
duced to classify and enforce correctness guarantees for 
the database, regardless of which compact methods were 
used to access the data. 

PRO-MOTION utilizes a ten level scale to char- 
acterize the correctness of a given transaction execution. 
While the scale is arbitrary (i.e., the database designer 
can use any definition for each level in the scale), the 
concept is most useful when a the scale can be used to 
categorize the properties of a particular execution. Our 
current standard for PRO-MOTION is loosely based 
upon the degrees of isolation defined in the ANSI SQL 
standard as extended in [z]. We defme “Level 9” to 
represent an actual serial execution of transactions and 
“Level 8” to represent a serializable execution. Each 
succeeding level represents a lesser degree of isolation. 
A “Level 0” operation makes no guarantee whatsoever 
about the correctness of an operation. 

Each method in a compact (corresponding to an 
operation on the compact data) is assigned an isolation 
level and a mode indicating whether the operation is a 
READ operation or a WRITE operation. Any operation 
which may modify the value of a data item wiII be cat- 
egorized as a WRITE operation (e.g., increment0 and 
decrement0 for an escrow[lb] item). It is interesting 
to note that a given compact may have multiple meth- 
ods for a given data item that employ differing levels 
of correctness. For example, an escrow compact may 
have “Level 8” (serializable) isolation for incrcmcnt() 
and dccrement() methods, and a “Level 3” or “Level 
4” certification for a relaxed-read0 method which re- 
turns the expected value of a data item if all outstanding 
transactions commit. Furthermore, a compact may offer 
more than one level of isolation for the same operation 
by providing alternate methods which enforce different 
levels of isolation. For example, a single compact may 
provide a read-strict0 operation which only completes 



if the item can be locked, and a read-relaxed0 method 
which returns a value regardless of the lock status of 
the data item. The read-strict0 method may carry a 
“Level 8” guarantee while the read-relaxed0 operation 
may carry only a “Level 4”, for example. 

During transaction processing, each transaction 
may be assigned a minimal READ level and a minimal 
WRITE level. These levels can be specified as optional 
arguments to the BEGIN event for the transaction. Each 
system will have default READ and WRITE transac- 
tion levels assigned by the database administrator. (It 
is probable that the default READ and WRITE levels 
would be set at “Level S”, forcing serializable behav- 
ior.) No operation will succeed if its isolation level is 
lower than the corresponding READ or WRITE level of 
the transaction performing the operation. 

Now, having set these ground rules, we are ready 
to explain how the interactions across compacts can 
be handled and to address the isolation guarantees 
provided by a transaction which operates on a vari- 
ety of compacts. Because dirty data provided by a 
compact with relaxed correctness criteria could corrupt 
data written by a compact which guarantees strict cor- 
rectness, it is necessary that any modification to the 
database be based on reads that are “at least as strong” 
as the write to be performed. Based on this premise, 
PRO-MOTION applies the following method: 

As each transaction commits, the set of oper- 
ations is scanned for the lourest guarantee among any 
of the READ operations and the highest requirement 
among any of the WRITE operations. A given trans- 
action will only be allowed to commit (first locally and 
then, during reconciliation, globally) if: 

None of the WRITE operations is lower than the 
WRITE level of the transaction, 

None of the READ operations is lower than the 
READ level of the transaction, 

Xll of the involved compacts agree that the trans- 
action is correct (through the 2PC protocol), 

The lowest level of any READ operation is greater 
than or equal to the highest level required by any 
WRITE operation. 

This system ensures that the correctness of a particu- 
lar transaction execution is at least OS good as specified 
by the compact designer, the individuals certifying the 
compacts, and the application programmer, while al- 
lowing a range of correctness criteria and utilization of 
object semantics to achieve maximum concurrency. 

6 Conclusions 

PRO-MOTION provides an infrastructure and transac- 
tion model that wilI support the disconnected process- 
ing of transactions by a mobile host. As a mobile trans- 
action processing system, PRO-MOTION offers many 
unique advantage over other proposed systems. Unlike 
systems which rely upon the application to enforce con- 
sistency, PRO-SlOTION is d&o-cenrric. The compact 

is the basic unit of caching and consistency. Therefore, 
it is the compact which determines correctness crite- 
ria, granularity, and conflict determination for each data 
type. Furthermore, multiple compacts may be defined 
for a single data type, employing varying correctness 
criteria and supporting different degrees of isolation, 
allocation strategies, access privileges, or renegotiation 
strategies. This flexibility allows PRO-MOTION to im- 
plement a number of mobile data management schemes, 
including leases, check-in check-out items, cooperative 
activities, and escrow items, by properly implementing 
the compact for the data items involved. Indeed, it is 
possible to support different correctness criteria at the 
same time by utilizing compatible, but different com- 
pacts. At the same time, PRO-MOTION frees the ap- 
plication programmer from considering correctness and 
concurrency concerns while designing applications and 
prevents an errant application from violating data con- 
sistency. 

PRO-MOTION is efficient because only com- 
pacts needed to manage required resources are main- 
tained on the MH. Furthermore, because compacts are 
written in Java, much of the code is maintained in the 
Java Virtual Machine and need not be replicated in each 
compact. Also, the compacts are designed to share code 
(methods) wherever possible. Because compacts alIow 
for varying degrees of granularity (based upon data type 
and modes of access) and can query available storage 
and modify their behavior accordingly, compacts can 
make more efficient use of limited mobile data storage 
capacity. Because caching, transaction processing, and 
recovery are controlIed by compacts and the code con- 
tained in the compacts, these characteristics can dy- 
namically change to reflect changing conditions on the 
MH. Compacts can submit queries about the mobile 
status and respond accordingly. 

We hope that PRO-MOTION wiII simplify the 
implementation and testing of various mobile trans- 
action processing schemes. We currently have simple 
compacts written in Java and are designing a database 
server that directly supports compacts. We are cur- 
rently using laptop computers to test the mobile com- 
ponents of PRO-MOTION, but hope to test handheld 
devices as soon as a Java Virtual Machine is ported to 
Windows CE. 
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