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ABSTRACT 

We identify one of the incompatibility problems associated 
with atomic commit :protocols that prevents them from being 
used together and wei derive a correctness criterion that cap- 
tures the correctness of their integration. We also present a 
new atomic commit Iprotocol, called Presumed Any, that in- 
tegrates the three commonly known two-phase commit pro- 
tocols and prove its correctness. 
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1. INTRODUCTlON 

An atomic commit protocol (ACP) is the only mean to en- 
sure the traditional atomicity property of transactions in any 
distributed database system. This is to guarantee, in spite of 
communication and site failures, that all sites participating 
in a transaction’s execution agree on the final outcome of the 
transaction, i.e., to either commit or abort the transaction. 
Since commit processing consumes a substantial amount of 
a transaction’s execution time and ACPs are blocking in the 
case of failures, a variety of ACPs and optimizations have 
been proposed in the literature. Some of which enhance the 
pedormance of the basic two-phase commit (2PC) protocol 
(which is also known as presumed nothing protocol (PrN)), 
during normal processing, while the others reduce the cost 
of recovery processing after failures [5, 16,9]. 
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With the recent advance of intranet and internet technol.ogies, 
there is a greater need than ever before to integrate different 
database environments in a practical and efficient manner. 
Such integration is absolutely necessky to support the in- 
teroperability characteristic of advanced future database ?p- 
plications such as electronic commerce, multi-organizational 
workflows and web-based transactions (to name just a few). 
A key requirement of these applications is the ability to sup- 
port universal transactional access and, in particular, to guar- 
antee the atomicity of transactions in the presence of incom- 
patible ACPs. 

In this paper, we address the issue of compatibility among 
ACPs in a distributed database environment, such as a multi- 
database system (MDBS), in which not all sites use the same 
ACP. As we show in section 2, the incompatibility of the var- 
ious ACPs may be due to the differences in the semantics of 
their coordination messages or actions. In the case of the 
three commonly known two-phase commit variants (namely, 
the presumed nothing (PrN), presumed abort (PrA) and pre- 
sumed commit (PrC) protocols’), the incompatibility arises 
because of their conflicting presumptions about the outcome 
of (terminated) transactions in the presence of failures. 

In section 3, in contrast to what it was previously be- 
lieved [6, 181, we show that supporting a visibleprepare-to- 
commit state is not enough for a practical integration of ACPs 
because the outcome of some transactions might have to be 
remembered forever. This leads us to distinguish between 
functional correctness and operational correctness and tmo de- 
fine both the notion of a safe state in ACPs and an opera- 
tional correctness criterion that, besides requiring funct:ional 
correctness, allows terminated transactions to be forgotten. 

Finally, in section 4, we present presumed any (PrAny), a 
two-phase commit protocol variant that successfully inte.. 
grates PrN, PrA and PrC protocols, and prove its correct-. 
ness with respect to our operational correctness criterion. We 
choose to integrate PrN and PrA because they have been 
widely implemented in commercial systems, and PrC be- 

’ In the appendix, we provide a brief review of related work including 
PrN, PrA and PrC protocols. 
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cause it is expected to become part of the standards as we 
argued in [4]. 

We use ACTA [7], a first order predicate logic formalism, to 
express the safe state in PrAny. All ACPs can be specified 
and all theorems can be proven using ACTA, by modeling 
log operations and system crashes as transactions’ signifi- 
cant events.2 Here, however, for the sake of brevity and sim- 
plicity, the proofs are structured in a manner similar to the 
proofs of ACPs in [5]. In all the proofs, we assume that (1) 
each site is sane and (2) each site can cause only omission 
failures. That is, each site is assumed to be fail stop where 
it never deviates from the specification of the protocol that is 
using, and when it fails, it will, eventually, recover. 

2. COMPATIBILITY OF 2PC VARIANTS 

In this section, we examine the compatibility of PrN, PrA 
and PrC by assuming that they can coexist in a system and 
can be used together to commit a distributed transaction. 
Further, we assume that a coordinator follows its own pro- 
tocol, knows what messages to expect from each participant 
and handles any violations of its protocol with respect to 
messages by ignoring such messages. We call this type of 
integrated protocol used by a coordinator as union two-phase 
commit (U2PC) protocol [l]. In our examples below, a site 
will follow U2PC when acting as a coordinator and its origi- 
nal ACP when acting as a participant. 

Consider the case where a transaction has executed at two 
participants. Further, assume that the coordinator and one of 
the participants employ PrC while the other participant em- 
ploys PrA. The voting phase is the same in both variants. The 
only difference between the two variants, as far as the coordi- 
nation messages are concerned, occurs in the decision phase. 
In the event that the coordinator of the transaction makes a 
commit final decision, in accordance to PrC, the coordina- 
tor does not expect any commit acknowledgment messages. 
However, the PrA participant will acknowledge the commit 
decision. By knowing that this participant will send an ac- 
knowledgment, the coordinator will not consider this mes- 
sage since this message is a violation of its protocol. With 
respect to the logging activities at the coordinator, it will be 
able to forget about the transaction and discard all informa- 
tion pertaining to the transaction from its protocol table once 
it makes the commit final decision and can garbage collect 
the transaction’s log records when necessary. Since the co- 
ordinator employs PrC, it will always be able to respond to 
the inquiries of the participants in case of a failure with a 
commit final decision, using the PrC presumption. 

Now, consider another transaction that has finished its exe- 
cution at the same two participants and the coordinator has 

21n [8], PrN was specified in ACTA and the important aspect of its 
functional correctness was shown. 

decided to abort the transaction. In this case, the PrA partici- 
pant never acknowledges an abort decision. This means that 
the coordinator which expects acknowledgment messages 
from all participants can never garbage collect the records 
pertaining to the transaction from its stable log nor can it 
discard the information from its protocol table. To alleviate 
this situation, in U2PC, the coordinator forgets the outcome 
of the transaction once it has received the acknowledgment 
of the PrC participant, knowing that the PrA will never ac- 
knowledge such a decision. In this case, the atomicity of 
the transaction might be violated. For example, if the PrA 
participant fails after it has received the final outcome but 
before writing it in its stable log, the participant will inquire 
about the outcome of the transaction as part of its recovery 
procedure. If the coordinator has already received the ac- 
knowledgment from the PrC participant and forgotten about 
the transaction, the coordinator will wrongly respond with 
a commit final decision (using the PrC presumption) which 
clearly violates the atomicity of the transaction. 

A similar situation may occur if the coordinator employs 
PrN or PrA. In the case that the coordinator employs PrN 
and some participants employ PrC while the others employ 
PrA, the atomicity of both committed and aborted transac- 
tions might be violated. On the other hand, if the coordinator 
is using PrA, the atomicity of committed transactions might 
be violated. 

The above scenarios can be generalized with the following 
theorem. 

Theorem 1: It is impossible to ensure global atomicity 
of distributed transactions executed at both PrA and PrC 
participants with a coordinator using U2PC. 

Proof: The proof proceeds by contradiction and con- 
sists of three parts. The first is when the coordinator is 
using PrN. The second is when the coordinator is using 
PrA. The third is when the coordinator is using PrC. 

Part I: Consider a coordinator that uses PrN and a trans- 
action that has executed at two participants one of which 
is using PrA whereas the other is using PrC. Assume that 
the coordinator decides to commit the transaction while 
ensuring its atomicity. In this case, the PrA participant 
will acknowledge the commit decision but the PrC par- 
ticipant will not. Now, it is possible for the PrC par- 
ticipant to fail before receiving the commit decision and 
for the inquiring message of the RC participant to arrive 
after the coordinator has received the acknowledgment 
of the PrA participant and forgotten the transaction. In 
this case, the coordinator will respond with an abort de- 
cision (using the PrN presumption3) which violates the 

3This is due to the hidden presumption in F’rN that we discuss in the 
appendix. 
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atomicity of the transaction, thus contradicting the as- 
sumption. 

Part II. Consider a transaction that has executed at two d 
participants as above but the coordinator is using PrA 
instead of PrN. Assume that the coordinator decides to 
commit the trans,action while ensuring its atomicity. In 
this case, the PrA participant will acknowledge the de- 
cision but the PrC one will not, as above. Now, it is 
possible for the F’rC participant to fail before receiving 
the commit decision and for inquiring message to arrive 
after the coordinator has received the acknowledgment 
of the PrA partic:ipant and forgotten the transaction. In 
this case, the coordinator will respond with an abort de- 
cision (using the PrA presumption) which violates the 
atomicity of the transaction, thus, contradicting the as- 
sumption. 

Part III: We have proven this part in our motivating ex- 
ample at the beginning of this section. 

0 

3. OPERATIONAL CORRECTNESS 

Clearly, the obvious solution of a U2PC coordinator “talk- 
ing” PrA to those participants implementing PrA and “talk- 
ing” PrC to those imlplementing PrC does not work. The 
U2PC protocol might violate transaction atomicity because 
the coordinator forgets about transactions prematurely. Let 
us consider an alternative integrated protocol, called coor- 
dinator two-phase commit (C2PC) protocol which behaves 
similar to U2PC, but unlike U2PC, C2PC never forgets a 
transaction until it ha:s received all necessary acknowledg- 
ments. 

As we have discussed1 above, some participants will never 
acknowledge either commit or abort decisions. This means 
that the coordinator will never be able to discard information 
from either its protocol table or stable log pertaining to some 
terminated transactions. Since these terminated transactions 
when they are forgotten might lead to a wrong presumption 
(as seen in U2PC), C2PC does not lead to atomicity viola- 
tions by requiring that a coordinator always remembers the 
outcome of these terminated transactions and never uses its 
presumption after a failure. Thus, even though C2PC guar- 
antees functional correctness in which it ensures the atomic- 
ity of all distributed transactions, it fails to guarantee operu- 
tional correctness which requires that the coordinator should 
be able to eventually forget about the outcome of terminated 
transactions, as the following definition states. 

Definition 1: The integration of different ACPs is oper- 
ationally correct if and only if 

1. The coordinator and all the participants reach con- 

sistent decisions regarding the outcome of transac- 
tions and regardless of failures. 

2. The coordinator can, eventually, discard all the 
information pertaining to terminated transactions 
from its protocol table and garbage collect its log. 

3. All participants can, eventually, forget about t:rans- 
actions and garbage collect their logs. 

Since C2PC has to remember the outcome of some trans- 
actions forever, we generalize this result with the following 
theorem. 

Theorem 2: It is impossible to achieve operational’ cor- 
rectness if the coordinator is using C2PC and distributed 
transactions execute at both PrA and PrC participants. 

Proof: The proof proceeds by contradiction and con 
sists of three parts. The first is when the coordinator is 
using PrN. The second is when the coordinator is using 
PrA. The third is when the coordinator is using PrC. 

Part 1. Consider a coordinator that uses PrN and a trans- L 
action that has executed at two participants one of which 
is using PrA whereas the other is using PrC. Assume: that 
the coordinator decides to commit the transaction and 
can eventually forget the transaction. In this case, the 
PrA participant will acknowledge the commit decision 
but the PrC participant will not. Hence, the coordinator 
will not be able to write an end log record and has to 
remember the transaction forever which contradicts the 
assumption. 

Part II. Consider a coordinator that uses PrC and a trans d 
action that has executed at two participants one of which 
is using PrA whereas the other is using PrC. Assume: 
that the coordinator decides to commit the transaction 
and can eventually forget the transaction. In this case: 
the PrA participant will acknowledge the decision but 
the PrC one will not, as above. Hence, the coordinator 
will not be able to write an end log record and has to 
remember the transaction forever which contradict:; the. 
assumption. 

Part III. Consider a transaction that has executed at twc’ A 
participants as above but the coordinator is using RC. 
Assume that the coordinator decides to abort the trans- 
action and can eventually forget the transaction. In this 
case, the PrC participant will acknowledge the decision 
but the PrA one will not. Hence, the coordinator will 
not be able to write an end log record and has to re- 
member the transaction forever which contradicts the 
assumption. 

0 
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To maintain operational correctness in an ACP, a coordinator 
should be able to, eventually, forget the outcome of transac- 
tions without violating the consistency of its decisions. We 
call this a safe state. Intuitively, a coordinator is in a safe 
state with respect to a transaction if 

(1) 

(2) 

it forgets a transaction after all participants have ac- 
knowledged its decision (as in PrN), or 

it can use a single presumption that is consistent with 
the transaction’s final outcome. 

Thus, in order to integrate PrA and PrC in spite of their con- 
flicting presumptions, we need a safety criterion that will al- 
low a coordinator to reach a safe state in which only a sin- 
gle presumption will hold. In order to be consistent with 
both PrA and PrC, we propose the following safety crite- 
rion for their integration. The safety criterion is expressed 
using ACTA [7], a first order predicate logic with a prece- 
dence relation (--+) in H. H represents the complete history 
of the execution of the transaction until it is either commit- 
ted or aborted at all sites. C denotes the coordinator of the 
transaction. The predicate 6 + E’ is true if event E precedes 
event 6’ in H. It is false, otherwise. Here, Decidec (Abort) 
denotes that the coordinator decides to abort a transaction 
T and Decidec (Commit) denotes that the coordinator de- 
cides to commit a transaction. DeletePTc (T) denotes that 
the information pertaining to T is deleted from the protocol 
table of the coordinator. INQti denotes an inquiry message 
from a participant regarding a subtransaction ti that it has 
executed at its site on behalf of T. Respondc(Outcometi) 
denotes the reply of the coordinator to the inquiry message. 

Definition 2: (The definition of safe state) 
SafeStatec (T) j 

(( Decidec (AbortT) E H A 

V’ti E T (DeletePTc(T)) + INQt,) + 
Respond,(Abortti) E H)v 

((Decidec (Commit*) E H A 
V4 E T (DeletePTc(T)) + INQt,) + 

Respondc(Committi) E H) 

The above definition states that a coordinator is in a safe 
state with respect to the outcome of a transaction T, if T 
has been aborted and only the presumed abort presumption 
holds (the first clause of the safe state implication), or T has 
been committed and only the presumed commit presumption 
holds (the second clause). 

This safety criterion implies that some information including 
the outcome of transactions has to be remembered as long as 
more than one presumption is possible. 

4. PRESUMED ANY (PrAny) 

In this section, we describe the PrAny protocol that inte- 
grates PrN, PrA and PrC according to the operational cor- 
rectness criterion that we have defined above. First, we de- 
scribe PrAny during normal processing. Then, in Section 
4.2, we discuss the recovery aspects of PrAny in case of fail- 
ures. In Section 4.3, we prove the correctness of PrAny pro- 
tocol. 

In PrAny, a coordinator records the 2PC protocol employed 
by each participant in a table called participants’ commit 
protocol (PCP). The PCP is kept on stable storage and is 
updated when a new site joins or leaves the distributed en- 
vironment. Only a portion of the PCP, called active purtici- 
punts’protocols (APP) table, is maintained in main memory, 
containing the identities (IDS) of the participants with active 
transactions. 

4.1 PrAny During Normal Processing 

A coordinator refers to its APP to decide which protocol 
to use with the participants in the execution of a transac- 
tion. The coordinator selects PrN if all the participants use 
PrN. Similarly, it selects PrA if all the participants use PrA 
whereas it decides to use PrC if all the participants use PrC. 
By using PrN, PrA or PrC with all the participants, the coor- 
dinator will always be in a safe state if it does not remember 
the final outcome of a transaction. 

In the event that some of the participants employ PrA while 
the others employ PrN or PrC, the coordinator selects PrAny. 
From the coordinator’s perspective, PrAny consists of the 
same two phases, i.e., the voting phase and the decision 
phase, as in PrN, PrA and PrC, as shown in Figure 1. The 
only distinction between PrAny and the other variants is in 
the logging activities at the coordinator’s site and the timing 
at which the coordinator can safely forget about the outcome 
of transactions. 

In PrAny, the coordinator starts the voting phase by force 
writing an initiation record which includes the identities of 
the participants as in PrC. The initiation record also includes 
the protocol used by each participant. Then, the coordinator 
sends to each participant a prepare to commit request. Once 
the coordinator receives the votes from all the participants, it 
force writes a commit record if the decision is commit (Fig- 
ure 1 (a)). If the decision is abort, no decision record is writ- 
ten, into the log (Figure 1 (b)). Then, the coordinator sends its 
final decision to all the participants. On a commit final deci- 
sion, the coordinator writes a non-forced end record once all 
the PrN and PrA participants acknowledge the decision. On 
an abort final decision, on the other hand, the coordinator 
writes an end record once all the PrN and PrC participants 
acknowledge the decision. After writing the end record in its 
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stable log, the coordinator discards all information pertain- 
ing to the transaction -from its protocol table. 

4.2 Recovery in P’rAny 

As in all other commit protocols, communication and site 
failures are detected by timeouts. The recovery procedure 
in case of communication and participants’ failures are han- 
dled in a manner similar to the way they are handled in PrN, 
PrA and PrC protocols. According to the behavior of PrN, 
PrA and PrC, the coordinator expects those participants that 
employ PrN and PrA to acknowledge commit final decisions 
but not those participants that employ PrC (Figure 1 (a)). The 
coordinator forgets about the outcome of a committed trans- 
action once the PrN and PrA participants acknowledge the 
commit decision, knowing that only a participant that em- 
ploys PrC might inquire about the decision in the future. If a 
PrC participant inquires about a (commit) final decision after 
the coordinator has forgotten the transaction, the coordinator, 
knowing that the participant uses PrC, will direct the partic- 
ipant to commit the tnmsaction, by the presumption of PrC 
and without examining its log. Note that, as opposed to PrA 
and PrC, PrAny does not make any a priori presumption but 
a PrAny coordinator dynamically adopts the presumption of 
an inquiring participant’s protocol. 

Similarly, if a coordirrator makes an abort final decision, it 
expects only those participants that employ PrN and PrC to 
acknowledge the decision but not those employing PrA (Fig- 
ure l(b)). Hence, the coordinator forgets about the outcome 
of an aborted transaction once the PrN and PrC participants 
acknowledge the abort decision. If a PrA participant in- 
quires about an (abort) final decision after the coordinator 
has forgotten the transaction, the coordinator, knowing that 
the participant uses PrA, will direct the participant to abort 
the transaction, by the presumption of PrA. 

After a failure, at the ibeginning of its recovery procedure, 
the coordinator re-builds its protocol table by analyzing its 
stable log. For each transaction that has a decision log record 
without an initiation record, it means that PrN or PrA has 
been used for its commitment. For each such transaction 
without an end record, the coordinator adds the transaction in 
its protocol table and re:-initiates the decision phase with the 
recorded decision in the log. In the case of PrA, the decision 
is always commit since PrA requires only commit decisions 
to be recorded in the log. In the case of PrN, the decision 
could be either commit or abort. 

For each transaction that has an initiation record, it means 
that PrC or PrAny has been used for its commitment. De- 
pending on the identities of the participants recorded in the 
initiation record and the protocols that they use, the coordi- 
nator determines which of the two protocols was used for 
the commitment of the transaction. For each such transac- 

tion that PrC has been used for its commitment and has no 
commit or end log record, the coordinator adds the transac- 
tion in its protocol table and re-initiates the decision phase 
with an abort decision in accordance to PrC. 

Finally, for each transaction that PrAny has been used for its 
commitment and has only an initiation record, or has initia- 
tion and commit records but no end record, the coordinator 
adds the transaction in its protocol table. In the former case, 
since either no decision was made or abort was decided be- 
fore the failure, the coordinator submits an abort decision to 
the PrN and PrC participants. It does not include the PrA 
participants in accordance to PrA.4 In the latter case, since 
a commit decision record is found, the coordinator submits 
a commit decision to the PrN and PrA participants but, in 
accordance to PrC, not to PrC participants. 

As during normal processing, after sending out a decision, 
the coordinator waits for acknowledgments from PrN and 
PrC participants in the case of an abort decision and from 
PrN and PrA participants in the case of a commit decision. 
When a participant receives a final decision, it enforces and 
acknowledges the decision if it has not already enforced the 
decision. Otherwise, the participant simply acknowledges 
the decision.5 When all the expected acknowledgments ar- 
rive, the coordinator writes an end log record and forgets 
about the transaction. 

4.3 Proof of Correctness 

In [5], the behavior of PrN and how it recovers after failures 
is thoroughly discussed. That discussion provides an itera- 
tive method that prove the correctness of the protocol. That 
is, what would happen if a failure occurs and at what point 
during the course of protocol. We use below the same strat- 
egy to show the correctness of PrAny. 

Theorem 3: The PrAny protocol satisfies the opera- 
tional correctness criterion. 

Proof: To show the correctness of PrAny, we need to 
show that all the three requirements of operational cor- 
rectness are satisfied. PrAny consists of the same two 

phases as PrN. Hence, the first and the third require- 
ments of the operational correctness criterion are sat- 
isfied since all participants in a transaction’s execution 
will reach an agreement and forget about the transaction. 
The only remaining requirement that needs to be proven 

4A coordinator in PrA never re-submits an abort decision to the partici- 
pants after its failure because it will not have any recollection about aborted 
transactions. It is the responsibility of the participants to inquire about the 
outcome of such transactions. Similarly, a coordinator in PrC never re- 
submits commit decisions to the participants after its failure. 

5A participant without any memory regarding a transaction is assulmed 
to have already received and enforced the decision and discarded all infor- 
mation pertaining to the transaction. . 
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State 

Active 

PrA Participat Coordinator 
Force-write 

PrC Paricipant State 

Active 

----------------- 
Force-write 

f?f:::ord _---------------_ 
Prepared 

-----------------. 
Force-write 

g;g::ord Yes _-___----___--____ 
Prepared _-------- 

Force-write 

-----------_----_ ------------------ 
Committing Force-write Write Commit Committed 

SZX’ bg 
Log Record 

_-______--____--_ Ack 
Committed - - - - - - - - - 

Write End 
Log Record 

(a) Commit case. 

State 

Active 

PrA Participat Coordinator 
Force-write 

PrC Paricipant State 

Active 

._----_-_----___ 
Force-write 

Efffzzord --------------- 
Prepared 

---------------- 
Force-write 

Eif%!ord ---------------- 
Prepared 

Abort _ _ _ - _ _ _ _ _ Abort 

--------------- 
4borted Write Abort 

Log Record 

_-------- 
Write End 
Log Record 

(b) Abort case. 

Figure 1: The presumed any protocol. 
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is the second o:ne which requires that the coordinator 
should eventually be able to forget about the outcome of 
transactions. We prove the second requirement by con- 
sidering the two possible outcome of transactions. The 
proof proceeds by contradiction, showing that a PrAny 
coordinator is always in a safe state. 

Commit Case: Assume that the coordinator has made 
a commit decisifon and after forgetting the outcome of 
the transaction, it replies to an inquiry message with an 
abort decision. 
If the inquiring participant is PrC, then the coordina- 
tor will use the commit presumption of PrC and will 
respond with a commit decision which contradicts the 
initial assumption. 
In order to reply with an abort, it means that coordina- 
tor has used the abort presumption. This means that the 
message is from a PrA participant, but this is impossible 
since all PrA and PrN participants must have acknowl- 
edged the commit decision in order for the coordinator 
to forget the outcome of the transaction. Similarly, it 
is impossible for the inquiry message to be from a PrN 
participant. 

Abort Case, Assume that the coordinator has made an -L 
abort decision and after forgetting the outcome of the 
transaction, it replies to an inquiry message with a com- 
mit decision. 
If the inquiring participant is PrA, then the coordinator 
will use the presumption of PrA and will respond with 
an abort decision which contradicts the initial assump- 
tion. 
In order to reply with an commit, it means that the coor- 
dinator has used the commit presumption. This means 
that the message is from a PrC participant, but this is 
impossible since all PrC and PrN participants must have 
acknowledged the abort decision in order for the coordi- 
nator to forget the: outcome of the transaction. Similarly, 
it is impossible for the inquiry message to be from a PrN 
participant. 

q 

5. SUMMARY AND CONCLUSION 

Our two contributions in this paper, one theoretical and the 
other more practical, are: 

1. We showed that although it is possible from a functional 
point of view to integrate incompatible ACPs in a dis- 
tributed database system as long as these protocols sup- 
port a visible prepare to commit state, it is not enough 
for a practical integration because the outcome of some 
transactions might have to be remembered forever. 

2. We defined an operational correctness criterion for ACP 

integration based upon which we developed Presumed 
Any (PrAny) that integrates the presumed nothing, pre- 
sumed abort and presumed commit 2PC variants despite 
their conflicting presumptions about the outcome Iof ter- 
minated transactions and we proved its correctness. 

The same operational correctness criterion can be used as 
a basis for the integration of a variety of ACPs, such as 
coordinator log [17] and implicit yes-vote [3], as well as 
atomic commit optimizations, such as read-only optimiza- 
tions [ 15, 1, 41. Currently, we are developing a coordina- 
tor protocol that dynamically recognizes the ACPs and op- 
timizations used by participants and constructing the condi- 
tion that expresses the operational criterion that allows for a 
practical interoperation in future dynamic database environ- 
ments. 
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Figure 3: The presumed abort protocol. 

APPENDIX: BRIEF OVERVIEW OF RE- 
LATED WORK 

In distributed databases, a distributed transaction is decom- 
posed into a set of subtransactions, each of which executes at 
a single participant site. Without loss of generality, the trans- 
action manager at the site where the transaction has been 
initiated is responsible to coordinate the different aspects of 
the execution of the transaction and in particular, its commit- 
ment. When a transaction finishes its execution and submits 
its commit request, its coordinator initiates an atomic commit 
protocol, such as the two-phase commit protocol. 

The basic two-phase commit protocol (2PC) [ 10, 111, as the 
name implies, consists of two phases, namely a votingphase 
and a decision phase (Figure 2). During the voting phase, 
the coordinator of a distributed transaction requests all the 
participating sites to prepare to commit whereas, during the 
decision phase, the coordinator either decides to commit the 
transaction if all the participants are prepared to commit 
(voted “Yes”), or to abort if any participant has decided to 
abort (voted “No”). If a participant has voted “Yes”, it can 
neither commit nor abort the transaction until it receives the 
final decision. When a participant receives the final decision, 
it complies and acknowledges the decision; The coordinator 
discards any information in its protocol table in main mem- 
ory regarding the transaction when it receives acknowledg- 
ments from all the participants and forgets the transaction. 

The resilience of 2PC to system and communication failures 
is achieved by recording the progress of the protocol in the 
logs of the coordinator and the participants. The coordina- 
tor force-writes a decision record prior to sending out the fi- 
nal decision. Since a force-write ensures that a log record is 
written into a stable storage that survives system failures, the 
final decision is not lost if the coordinator fails. Similarly, 
each participant force-writes a prepared record before send- 
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ing its “Yes” vote and a decision record before acknowledg- 
ing the final decision.” When the coordinator completes the 
protocol, it writes a non-forced end record, indicating that 
the log records pertaining to the transaction can be garbage 
collected when necessary. 

The basic 2PC is also referred to as the presumed nothing 
2PC protocol (PrN) [ 121 because it treats all transactions uni- 
formly, whether they are to be committed or aborted, requir- 
ing information to be explicitly exchanged and logged at all 
times. However, in the case of a coordinator’s failure, there 
is a hidden presumption in PrN by which the coordinator 
considers all active transactions at the time of the failure as 
aborted ones. The presumed abort protocol (PrA) makes this 
abort presumption explicit [ 151. 

Specifically, in PrA, when a coordinator decides to abort a 
transaction, it does not force-write the abort decision in its 
log as in PrN (Figure 3). It just sends abort messages to all 
the participants that have voted “Yes” and discards all infor- 
mation about the transaction from its protocol table. That 
is, the coordinator of an aborted transaction does not have to 
write any log records or wait for acknowledgments. Since 
the participants do not have to acknowledge abort decisions, 
they are also not required to force-write such decisions. Af- 
ter a coordinator or a participant failure, if the participant 
inquires about a transaction that has been aborted, the co- 
ordinator, not remembering the transaction, will direct the 
participant to abort it (by presumption). 

As opposed to PrA, the presumed commit protocol (PrC) 
is designed to reduce the cost of committing transactions 
[ 15, 121. Instead of interpreting missing information about 
transactions as abort decisions, in PrC, coordinators interpret 
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6 Writing the decision at I:he participants and acknowledging it in a lazy 
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Figure 4: The presumed commit protocol. 

(b) Abort case. 

missing information about transactions as commit decisions.. 
However, in PrC, a coordinator has to force write an initia- 
tion (which is also called collecting in [ 151) record for each 
transaction before sending prepare to commit messages to 
the participants. This record ensures that missing informa- 
tion about a transaction will not be misinterpreted as a com- 
mit after a coordinator failure. 

To commit a transaction (Figure 4 (a)), the coordinator force 
writes a commit record to logically eliminate the initiation 
record of the transaction and then sends out the commit de- 
cision. The coordinator also discards all information per.- 
taining to the transaction from its protocol table. When a 
participant receives the decision, it writes a non-forced corn.- 
mit record and commits the transaction without having to 
acknowledge the decision. After a coordinator or a partic- 
ipant failure, if the participant inquires about a transaction 
that has been committed, the coordinator, not remembering 
the transaction, will direct the participant to commit it (b) 
presumption). 

To abort a transaction (Figure 4 (b)), on the other hand, the 
coordinator does not write the abort decision in its log. In- 
stead, the coordinator, sends out the abort decision and waits 
for the acknowledgments before discarding all information 
pertaining to the transaction. When a participant receives the 
decision, it force writes an abort record and then acknowl- 
edges the decision, as in PrN. 

Unlike (homogeneous) distributed database systems, the 
constituent database sites in future distributed environments 
might use different atomic commit protocols such as the ba- 
sic two-phase commit protocol, that we discussed above, or 
one of its variants (see [l] for a survey of the most commonly 
known 2PC variants). Furthermore, some sites might not 
support any form of ACPs. For this reason, a database site 
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Figure 5: Taxonomy of atomic commitment in universal distributed environments. 

can be classified as either externalized or non-externalized 
site [18]. An externalized site: (1) implements an ACP and 
(2) makes the system calls pertaining to its commit proto- 
col, called commit operators, available to the outside word 
through its interface. Otherwise, the site is called non- 
externalized. 

Figure 5 depicts three approaches that ensure the atomicity of 
global transactions in a form of a taxonomy. The taxonomy 
is based on the two categories of sites that we mentioned 
above. In what follows, we briefly discuss the motivation 
behind each of the three categories. 

The motivation behind the works in the externalized ap- 
proach is based on the assumption that future database sites 
will implement ACPs, which is well supported by the cur- 
rent standardization efforts. The challenge in this direction 
is to integrate database sites that use different and incom- 
patible ACPs. The incompatibility of ACPs means that the 
semantics of the coordination messages and the actions of 
one ACP might be completely different than their counter- 
parts in another ACl? Integrating incompatible ACPs is not 
a trivial task as it was previously believed [6, 181. That is, 
it is not simply ‘the case that once a database site supports 
an externalized ACP, it can be integrated with other database 
sites regardless of the used ACPs. The work reported in this 
paper fits in this research direction, highlighting one of these 
difficulties and proposing a practical solution. 

Some researches have concentrated in resolving the incom- 
patibility of ACPs with respect to the semantics of the co- 
ordination messages without considering their practical im- 

plications (e.g., [ 181). Hence, this group of researchers were 
interested in achieving functional correctness. In the work 
reported in this paper, we looked at the incompatibility issue 
from a more pragmatic point of view. That is, achieving op- 
erational correctness in which, besides achieving functional 
correctness, the outcome of terminated transactions can be, 
eventually, forgotten without sacrificing consistency. 

On the other hand, the motivation behind the work in the 
non-externalized approach is based on the fact that most ex- 
isting database systems are legacy systems that do not exter- 
nalize their ACPs. Thus, the challenge in this direction is to 
ensure the atomicity of transactions despite the fact that each 
site does not externalize an ACP The methods reported in 
the literature can be classified into two categories, as shown 
in Figure 5. In the first category, it is suggested to mod- 
ify each database to incorporate an ACP into it and to ex- 
ternalize the ACP to the outside world, while the in second 
category it is suggested to simulate a prepared to commit 
state. Some of the methods under simulated ACPs guarantee 
the traditional notion of atomicity while the others achieve a 
weaker correctness notion, called semantic atomicity. In se- 
mantic atomicity, the state of the database is not necessarily 
equivalent to the state of the database after some transaction 
is executed and finally aborted, whereas, in the traditional 
atomicity, the two states are equivalent. 

The unified approach combines the other two categories 
since they complement each other and this category ensures 
the atomicity of transactions despite the diversity of the se- 
mantics of transactions and data. 
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