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ABSTRACT

We identify one of the incompatibility problems associated
with atomic commit protocols that prevents them from being
used together and we derive a correctness criterion that cap-
tures the correctness of their integration. We also present a
new atomic commit protocol, called Presumed Any, that in-
tegrates the three commonly known two-phase commit pro-
tocols and prove its correctness.
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1. INTRODUCTION

An atomic commit protocol (ACP) is the only mean to en-
sure the traditional atomicity property of transactions in any
distributed database system. This is to guarantee, in spite of
communication and site failures, that all sites participating
in a transaction’s execution agree on the final outcome of the
transaction, i.e., to either commit or abort the transaction.
Since commit processing consumes a substantial amount of
a transaction’s execution time and ACPs are blacking in the
case of failures, a variety of ACPs and optimizations have
been proposed in the literature. Some of which enhance the
performance of the basic two-phase commir (2PC) protocol
{which is also known as presumed nothing protocol (PrN)),
during normal processing, while the others reduce the cost
of recovery processing after failures [5, 16, 9].
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With the recent advance of intranet and internet technologies,
there is a greater need than ever before to integrate different
database environments in a practical and efficient manner.
Such integration is absolutely necessary to support the in-
teroperability characteristic of advanced future database ap-
plications such as electronic commerce, multi-organizational
workflows and web-based transactions (to name just a few).
A key requirement of these applications is the ability to sup-
port universal transactional access and, in particular, to guar-
antee the atomicity of transactions in the presence of incom-
patible ACPs.

In this paper, we address the issue of compatibility among
ACPs in a distributed database environment, such as a multi-
database system (MDBS), in which not all sites use the same
ACP. As we show in section 2, the incompatibility of the var-
ious ACPs may be due to the differences in the semantics of
their coordination messages or actions. In the case of the
three commonly known two-phase commit variants (namely,
the presumed nothing (PrN), presumed abort (PrA) and pre-
sumed commit (PrC) protocols?), the incompatibility arises
because of their conflicting presumptions about the outcome
of (terminated) transactions in the presence of failures.

In section 3, in contrast to what it was previously be-
lieved [6, 18], we show that supporting a visible prepare-to-
commit state is not enough for a practical integration of ACPs
because the outcome of some transactions might have to be
remembered forever. This leads us to distinguish between
Sfunctional correctness and operational correctness and to de-
fine both the notion of a safe state in ACPs and an opera-
tional correctness criterion that, besides requiring functional
correctness, allows terminated transactions to be forgotten.

Finally, in section 4, we present presumed any (PrAny), a
two-phase commit protocol variant that successfully inte-
grates PrN, PrA and PrC protocols, and prove its correct-
ness with respect to our operational correctness criterion. We:
choose to integrate PrN and PrA because they have been
widely implemented in commercial systems, and PrC be-

1 In the appendix, we provide a brief review of related work including
PrN, PrA and PrC protocols.
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cause it is expected to become part of the standards as we
argued in [4].

We use ACTA {7], a first order predicate logic formalism, to
express the safe state in PrAny. All ACPs can be specified
and all theorems can be proven using ACTA, by modeling
log operations and system crashes as transactions’ signifi-
cant events.? Here, however, for the sake of brevity and sim-
plicity, the proofs are structured in a manner similar to the
proofs of ACPs in [5]. In all the proofs, we assume that (1)
each site is sane and (2) each site can cause only omission
failures. That is, each site is assumed to be fail stop where
it never deviates from the specification of the protocol that is
using, and when it fails, it will, eventually, recover.

2. COMPATIBILITY OF 2PC VARIANTS

In this section, we examine the compatibility of PrN, PrA
and PrC by assuming that they can coexist in a system and
can be used together to commit a distributed transaction.
Further, we assume that a coordinator follows its own pro-
tocol, knows what messages to expect from each participant
and handles any violations of its protocol with respect to
messages by ignoring such messages. We call this type of
integrated protocol used by a coordinator as union two-phase
commit (U2PC) protocol [1]. In our examples below, a site
will follow U2PC when acting as a coordinator and its origi-
nal ACP when acting as a participant.

Consider the case where a transaction has executed at two
participants. Further, assume that the coordinator and one of
the participants employ PrC while the other participant em-
ploys PrA. The voting phase is the same in both variants. The
only difference between the two variants, as far as the coordi-
nation messages are concerned, occurs in the decision phase.
In the event that the coordinator of the transaction makes a
commit final decision, in accordance to PrC, the coordina-
tor does not expect any commit acknowledgment messages.
However, the PrA participant will acknowledge the commit
decision. By knowing that this participant will send an ac-
knowledgment, the coordinator will not consider this mes-
sage since this message is a violation of its protocol. With
respect to the logging activities at the coordinator, it will be
able to forget about the transaction and discard all informa-
tion pertaining to the transaction from its protocol table once
it makes the commit final decision and can garbage collect
the transaction’s log records when necessary. Since the co-
ordinator employs PrC, it will always be able to respond to
the inquiries of the participants in case of a failure with a
commit final decision, using the PrC presumption.

Now, consider another transaction that has finished its exe-
cution at the same two participants and the coordinator has

2In [8), PIN was specified in ACTA and the important aspect of its
functional correctness was shown.

decided to abort the transaction. In this case, the PrA partici-
pant never acknowledges an abort decision. This means that
the coordinator which expects acknowledgment messages
from all participants can never garbage collect the records
pertaining to the transaction from its stable log nor can it
discard the information from its protocol table. To alleviate
this situation, in U2PC, the coordinator forgets the outcome
of the transaction once it has received the acknowledgment
of the PrC participant, knowing that the PrA will never ac-
knowledge such a decision. In this case, the atomicity of
the transaction might be violated. For example, if the PrA
participant fails after it has received the final outcome but
before writing it in its stable log, the participant will inquire
about the outcome of the transaction as part of its recovery
procedure. If the coordinator has already received the ac-
knowledgment from the PrC participant and forgotten about
the transaction, the coordinator will wrongly respond with
a commit final decision (using the PrC presumption) which
clearly violates the atomicity of the transaction.

A similar situation may occur if the coordinator employs
PrN or PrA. In the case that the coordinator employs PrN
and some participants employ PrC while the others employ
PrA, the atomicity of both committed and aborted transac-
tions might be violated. On the other hand, if the coordinator
is using PrA, the atomicity of committed transactions might
be violated.

The above scenarios can be generalized with the following

) theorem.
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Theorem 1: It is impossible to ensure global atomicity
of distributed transactions executed at both PrA and PrC
participants with a coordinator using U2PC.

Proof: The proof proceeds by contradiction and con-
sists of three parts. The first is when the coordinator is
using PrN. The second is when the coordinator is using
PrA. The third is when the coordinator is using PrC.

Part I: Consider a coordinator that uses PrN and a trans-
action that has executed at two participants one of which
is using PrA whereas the other is using PrC. Assume that
the coordinator decides to commit the transaction while
ensuring its atomicity. In this case, the PrA participant
will acknowledge the commit decision but the PrC par-
ticipant will not. Now, it is possible for the PrC par-
ticipant to fail before receiving the commit decision and
for the inquiring message of the PrC participant to arrive
after the coordinator has received the acknowledgment
of the PrA participant and forgotten the transaction. In
this case, the coordinator will respond with an abort de-
cision (using the PrN presumption®) which violates the

3This is due to the hidden presumption in PrN that we discuss in the
appendix.



atomicity of the transaction, thus contradicting the as-
sumption.

Part II: Consider a transaction that has executed at two
participants as above but the coordinator is using PrA
instead of PrN. Assume that the coordinator decides to
commit the transaction while ensuring its atomicity. In
this case, the PrA participant will acknowledge the de-
cision but the PrC one will not, as above. Now, it is
possible for the PrC participant to fail before receiving
the commit decision and for inquiring message to arrive
after the coordinator has received the acknowledgment
of the PrA participant and forgotten the transaction. In
this case, the coordinator will respond with an abort de-
cision (using the PrA presumption) which violates the
atomicity of the transaction, thus, contradicting the as-
sumption.

Part IT]: We have proven this part in our motivating ex-

ample at the beginning of this section.
a

3. OPERATIONAL CORRECTNESS

Clearly, the obvious solution of a U2PC coordinator “talk-
ing” PrA to those participants implementing PrA and “talk-
ing” PrC to those implementing PrC does not work. The
U2PC protocol might violate transaction atomicity because
the coordinator forgets about transactions prematurely. Let
us consider an alternative integrated protocol, called coor-
dinator two-phase commit (C2PC) protocol which behaves
similar to U2PC, but unlike U2PC, C2PC never forgets a
transaction until it has received all necessary acknowledg-
ments.

As we have discussed above, some participants will never
acknowledge either commit or abort decisions. This means
that the coordinator will never be able to discard information
from either its protocol table or stable log pertaining to some
terminated transactions. Since these terminated transactions
when they are forgotten might lead to a wrong presumption
(as seen in U2PC), C2PC does not lead to atomicity viola-
tions by requiring that a coordinator always remembers the
outcome of these terminated transactions and never uses its
presumption after a failure. Thus, even though C2PC guar-
antees functional correctness in which it ensures the atomic-
ity of all distributed transactions, it fails to guarantee opera-
tional correctness which requires that the coordinator should
be able to eventually forget about the outcome of terminated
transactions, as the following definition states.

Definition 1: The integration of different ACPs is oper-
ationally correct if and only if

1. The coordinator and all the participants reach con-
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sistent decisions regarding the outcome of transac-
tions and regardless of failures.

2. The coordinator can, eventually, discard all the
information pertaining to terminated transactions
from its protocol table and garbage collect its Jog.

3. All participants can, eventually, forget about trans-
actions and garbage collect their logs.

Since C2PC has to remember the outcome of some trans-
actions forever, we generalize this result with the following
theorem.

Theorem 2: It is impossible to achieve operational cor-
rectness if the coordinator is using C2PC and distributed
transactions execute at both PrA and PrC participants.

Proof: The proof proceeds by contradiction and con-
sists of three parts. The first is when the coordinator is
using PrN. The second is when the coordinator is using
PrA. The third is when the coordinator is using PrC.

Part I: Consider a coordinator that uses PrN and a trans-
action that has executed at two participants one of which
is using PrA whereas the other is using PrC. Assume that
the coordinator decides to commit the transaction and
can eventually forget the transaction. In this case, the
PrA participant will acknowledge the commit decision
but the PrC participant will not. Hence, the coordinator
will not be able to write an end log record and has to
remember the transaction forever which contradicts the
assumption.

Part II: Consider a coordinator that uses PrC and a trans-
action that has executed at two participants one of which
is using PrA whereas the other is using PrC. Assume
that the coordinator decides to commit the transaction
and can eventually forget the transaction. In this case,
the PrA participant will acknowledge the decision but
the PrC one will not, as above. Hence, the coordinator
will not be able to write an end log record and has to
remember the transaction forever which contradicts the
assumption.

Part ITT: Consider a transaction that has executed at twc
participants as above but the coordinator is using PrC.
Assume that the coordinator decides to abort the trans-
action and can eventually forget the transaction. In this
case, the PrC participant will acknowledge the decision
but the PrA one will not. Hence, the coordinator will
not be able to write an end log record and has to re-
member the transaction forever which contradicts the

assumption.
0




To maintain operational correctness in an ACP, a coordinator
should be able to, eventually, forget the outcome of transac-
tions without violating the consistency of its decisions. We
call this a safe state. Intuitively, a coordinator is in a safe
state with respect to a transaction if

(1) it forgets a transaction after all participants have ac-
knowledged its decision (as in PrN), or

(2) it can use a single presumption that is consistent with
the transaction’s final outcome.

Thus, in order to integrate PrA and PrC in spite of their con-
flicting presumptions, we need a safety criterion that will al-
low a coordinator to reach a safe state in which only a sin-
gle presumption will hold. In order to be consistent with
both PrA and PrC, we propose the following safety crite-
rion for their integration. The safety criterion is expressed
using ACTA [7], a first order predicate logic with a prece-
dence relation (—) in H. H represents the complete history
of the execution of the transaction until it is either commit-
ted or aborted at all sites. C denotes the coordinator of the
transaction. The predicate € — €’ is true if event ¢ precedes
event ¢’ in H. It is false, otherwise. Here, Decidec (Abort)
denotes that the coordinator decides to abort a transaction
T and Decidec (Commit) denotes that the coordinator de-
cides to commit a transaction. Delete PT¢ (T') denotes that
the information pertaining to 7" is deleted from the protocol
table of the coordinator. IN();, denotes an inquiry message
from a participant regarding a subtransaction ¢; that it has
executed at its site on behalf of T'. Respondc (Outcome;,)
denotes the reply of the coordinator to the inquiry message.

Definition 2: (The definition of safe state)
SafeStatec (T) =
((Decidec (Abortr) € H A
Vt; € T (DeletePT¢ (T)) — INQ:,) =
Respond.(Abort,,) € H)V
((Decidec (Commity) € H A
Vt; € T (DeletePT¢ (T)) = INQ:,) =
Respondc(Commit,,) € H)

The above definition states that a coordinator is in a safe
state with respect to the outcome of a transaction T', if T
has been aborted and only the presumed abort presumption
holds (the first clause of the safe state implication), or T" has
been committed and only the presumed commit presumption
holds (the second clause).

This safety criterion implies that some information including
the outcome of transactions has to be remembered as long as
more than one presumption is possible.
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4. PRESUMED ANY (PrAny)

In this section, we describe the PrAny protocol that inte-
grates PrN, PrA and PrC according to the operational cor-
rectness criterion that we have defined above. First, we de-
scribe PrAny during normal processing. Then, in Section
4.2, we discuss the recovery aspects of PrAny in case of fail-
ures. In Section 4.3, we prove the correctness of PrAny pro-
tocol.

In PrAny, a coordinator records the 2PC protocol employed
by each participant in a table called participants’ commit
protocol (PCP). The PCP is kept on stable storage and is
updated when a new site joins or leaves the distributed en-
vironment. Only a portion of the PCP, called active partici-
pants’ protocols (APP) table, is maintained in main memory,
containing the identities (IDs) of the participants with active
transactions.

4.1 PrAny During Normal Processing

A coordinator refers to its APP to decide which protocol
to use with the participants in the execution of a transac-
tion. The coordinator selects PrN if all the participants use
PrN. Similarly, it selects PrA if all the participants use PrA
whereas it decides to use PrC if all the participants use PrC.
By using PrN, PrA or PrC with all the participants, the coor-
dinator will always be in a safe state if it does not remember
the final outcome of a transaction.

In the event that some of the participants employ PrA while
the others employ PrN or PrC, the coordinator selects PrAny.
From the coordinator’s perspective, PrAny consists of the
same two phases, i.e., the voting phase and the decision
phase, as in PrN, PrA and PrC, as shown in Figure 1. The
only distinction between PrAny and the other variants is in
the logging activities at the coordinator’s site and the timing
at which the coordinator can safely forget about the outcome
of transactions.

In PrAny, the coordinator starts the voting phase by force
writing an initiation record which includes the identities of
the participants as in PrC. The initiation record also includes
the protocol used by each participant. Then, the coordinator
sends to each participant a prepare to commit request. Once
the coordinator receives the votes from all the participants, it
force writes a commit record if the decision is commit (Fig-
ure 1 (a)). If the decision is abort, no decision record is writ-
ten into the log (Figure 1 (b)). Then, the coordinator sends its
final decision to ali the participants. On a commit final deci-
sion, the coordinator writes a non-forced end record once all
the PrN and PrA participants acknowledge the decision. On
an abort final decision, on the other hand, the coordinator
writes an end record once all the PrN and PrC participants
acknowledge the decision. After writing the end record in its



stable log, the coordinator discards all information pertain-
ing to the transaction from its protocol table.

4.2 Récovery in PrAny

As in all other commit protocols, communication and site
failures are detected by timeouts. The recovery procedure
in case of communication and participants’ failures are han-
dled in a manner similar to the way they are handled in PrN,
PrA and PrC protocols. According to the behavior of PrN,
PrA and PrC, the coordinator expects those participants that
employ PrN and PrA to acknowledge commit final decisions
but not those participants that employ PrC (Figure 1 (a)). The
coordinator forgets about the outcome of a committed trans-
action once the PrN and PrA participants acknowledge the
commit decision, knowing that only a participant that em-
ploys PrC might inquire about the decision in the future. If a
PrC participant inquires about a (commit) final decision after
the coordinator has forgotten the transaction, the coordinator,
knowing that the participant uses PrC, will direct the partic-
ipant to commit the transaction, by the presumption of PrC
and without examining its log. Note that, as opposed to PrA
and PrC, PrAny does not make any a priori presumption but
a PrAny coordinator dynamically adopts the presumption of
an inquiring participant’s protocol.

Similarly, if a coordinator makes an abort final decision, it
expects only those participants that employ PrN and PrC to
acknowledge the decision but not those employing PrA (Fig-
ure 1(b)). Hence, the coordinator forgets about the outcome
of an aborted transaction once the PrN and PrC participants
acknowledge the abort decision. If a PrA participant in-
quires about an (abort) final decision after the coordinator
has forgotten the transaction, the coordinator, knowing that
the participant uses PrA, will direct the participant to abort
the transaction, by the presumption of PrA.

After a failure, at the beginning of its recovery procedure,
the coordinator re-builds its protocol table by analyzing its
stable log. For each transaction that has a decision log record
without an initiation record, it means that PrN or PrA has
been used for its commitment. For each such transaction
without an end record, the coordinator adds the transaction in
its protocol table and re-initiates the decision phase with the
recorded decision in the log. In the case of PrA, the decision
is always commit since PrA requires only commit decisions
to be recorded in the log. In the case of PrN, the decision
could be either commit or abort.

For each transaction that has an initiation record, it means
that PrC or PrAny has been used for its commitment. De-
pending on the identities of the participants recorded in the
initiation record and the protocols that they use, the coordi-
nator determines which of the two protocols was used for
the commitment of the transaction. For each such transac-
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tion that PrC has been used for its commitment and has no
commit or end log record, the coordinator adds the transac-
tion in its protocol table and re-initiates the decision phase
with an abort decision in accordance to PrC.

Finally, for each transaction that PrAny has been used for its
commitment and has only an initiation record, or has initia-
tion and commit records but no end record, the coordinator
adds the transaction in its protocol table. In the former case,
since either no decision was made or abort was decided be-
fore the failure, the coordinator submits an abort decision to
the PrN and PrC participants. It does not include the PrA
participants in accordance to PrA.% In the latter case, since
a commit decision record is found, the coordinator submits
a commit decision to the PrN and PrA participants but, in
accordance to PrC, not to PrC participants.

As during normal processing, after sending out a decision,
the coordinator waits for acknowledgments from PrN and
PrC participants in the case of an abort decision and from
PrN and PrA participants in the case of a commit decision.
When a participant receives a final decision, it enforces and
acknowledges the decision if it has not already enforced the
decision. Otherwise, the participant simply acknowledges
the decision.®. When all the expected acknowledgments ar-
rive, the coordinator writes an end log record and forgets
about the transaction.

4.3 Proof of Correctness

In [5], the behavior of PrN and how it recovers after failures
is thoroughly discussed. That discussion provides an itera-
tive method that prove the correctness of the protocol. That
is, what would happen if a failure occurs and at what point
during the course of protocol. We use below the same strat-
egy to show the correctness of PrAny.

Theorem 3: The PrAny protocol satisfies the opera-
tional correctness criterion.

Proof: To show the correctness of PrAny, we need to
show that all the three requirements of operational cor-
rectness are satisfied. PrAny consists of the same two
phases as PrN. Hence, the first and the third require-
ments of the operational correctness criterion are sat-
isfied since all participants in a transaction’s execution
will reach an agreement and forget about the transaction.
The only remaining requirement that needs to be proven

4 A coordinator in PrA never re-submits an abort decision to the partici-
pants after its failure because it will not have any recollection about aborted
transactions. It is the responsibility of the participants to inquire about. the
outcome of such transactions. Similarly, a coordinator in PrC never re-
submits commit decisions to the participants after its failure.

5 A participant without any memory regarding a transaction is assumed
to have already received and enforced the decision and discarded all infor-
mation pertaining to the transaction.



State PrA Participat Coordinator PrC Paricipant State
Active fr(;l;f:{l‘gl? 'f) g Active
Prepare | Record %
———————— F ;;c;-:vl_it;— N Force-w—ri_te T
Prepared Prepared
Log Record Yes Yes LogRecord ______
Prepared \ ________ / Prepared
Force-write
Commit Log
Commit | Record | Commit
Committing Force-write Write Commit  Committed
Commit Log Log Record
___.__Record ] Ack
Committed W o _
Write End
Log Record
(a) Commit case.
State PrA Participat Coordinator PrC Paricipant State
. Force-write :
Active Initiation log Active
Prepare | Record %
Force-write Force-write
Prepared Prepared
_______ LogRecord | yes Yes ) logRecord
Prepared \ L B / Prepared
Abort | .. _____. Abort
Aborted  Write Abort | Force-write ~~ ~ Aborting
Log Record Abort Log
Ack | Record ~_________-
Aborted
Write End
Log Record
(b) Abort case.

Figure 1: The presumed any protocol.
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is the second one which requires that the coordinator
should eventually be able to forget about the outcome of
transactions. We prove the second requirement by con-
sidering the two possible outcome of transactions. The
proof proceeds by contradiction, showing that a PrAny
coordinator is always in a safe state.

Commit Case: Assume that the coordinator has made
a commit decision and after forgetting the outcome of
the transaction, it replies to an inquiry message with an
abort decision.

If the inquiring participant is PrC, then the coordina-
tor will use the commit presumption of PrC and will
respond with a commit decision which contradicts the
initial assumption.

In order to reply with an abort, it means that coordina-
tor has used the abort presumption. This means that the
message is from a PrA participant, but this is impossible
since all PrA and PrN participants must have acknowl-
edged the commit decision in order for the coordinator
to forget the outcome of the transaction. Similarly, it
is impossible for the inquiry message to be from a PrN
participant.

Abort Case: Assume that the coordinator has made an
abort decision and after forgetting the outcome of the
transaction, it replies to an inquiry message with a com-
mit decision.
If the inquiring participant is PrA, then the coordinator
will use the presumption of PrA and will respond with
an abort decision which contradicts the initial assump-
tion.
In order to reply with an commit, it means that the coor-
dinator has used the commit presumption. This means
that the message is from a PrC participant, but this is
impossible since all PrC and PrN participants must have
acknowledged the abort decision in order for the coordi-
nator to forget the outcome of the transaction. Similarly,
it is impossible for the inquiry message to be from a PrN
participant.

0

S. SUMMARY AND CONCLUSION

Our two contributions in this paper, one theoretical and the
other more practical, are:

1. We showed that although it is possible from a functional
point of view to integrate incompatible ACPs in a dis-
tributed database system as long as these protocols sup-
port a visible prepare to commit state, it is not enough
for a practical integration because the outcome of some
transactions might have to be remembered forever.

2. We defined an operational correctness criterion for ACP
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The

integration based upon which we developed Presumed
Any (PrAny) that integrates the presumed nothing, pre-
sumed abort and presumed commit 2PC variants despite
their conflicting presumptions about the outcome of ter-
minated transactions and we proved its correctness.

same operational correctness criterion can be used as

a basis for the integration of a variety of ACPs, such as
coordinator log [17] and implicit yes-vote [3], as well as
atomic commit optimizations, such as read-only optimiza-
tions [15, 1, 4]. Currently, we are developing a coordina-
tor protocol that dynamically recognizes the ACPs and op-
timizations used by participants and constructing the condi-
tion that expresses the operational criterion that allows for a
practical interoperation in future dynamic database environ-
ments.
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Figure 3: The presumed abort protocol.

APPENDIX: BRIEF OVERVIEW OF RE-
LATED WORK

In distributed databases, a distributed transaction is decom-
posed into a set of subtransactions, each of which executes at
a single participant site. Without loss of generality, the trans-
action manager at the site where the transaction has been
initiated is responsible to coordinate the different aspects of
the execution of the transaction and in particular, its commit-
ment. When a transaction finishes its execution and submits
its commit request, its coordinator initiates an atomic commit
protocol, such as the two-phase commit protocol.

The basic two-phase commit protocol (2PC) [10, 11], as the
name implies, consists of two phases, namely a voting phase
and a decision phase (Figure 2). During the voting phase,
the coordinator of a distributed transaction requests all the
participating sites to prepare to commit whereas, during the
decision phase, the coordinator either decides to commit the
transaction if all the participants are prepared to commit
(voted “Yes”), or to abort if any participant has decided to
abort (voted “No”). If a participant has voted “Yes”, it can
neither commit nor abort the transaction until it receives the
final decision. When a participant receives the final decision,
it complies and acknowledges the decision. The coordinator
discards any information in its protocol table in main mem-
ory regarding the transaction when it receives acknowledg-
ments from all the participants and forgets the transaction.

The resilience of 2PC to system and communication failures
is achieved by recording the progress of the protocol in the
logs of the coordinator and the participants. The coordina-
tor force-writes a decision record prior to sending out the fi-
nal decision. Since a force-write ensures that a log record is
written into a stable storage that survives system failures, the
final decision is not lost if the coordinator fails. Similarly,
each participant force-writes a prepared record before send-
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Figure 4: The presumed commit protocol.

ing its “Yes” vote and a decision record before acknowledg-
ing the final decision.® When the coordinator completes the
protocol, it writes a non-forced end record, indicating that
the log records pertaining to the transaction can be garbage
collected when necessary.

The basic 2PC is also referred to as the presumed nothing
2PC protocol (PrN) [12] because it treats all transactions uni-
formly, whether they are to be committed or aborted, requir-
ing information to be explicitly exchanged and logged at all
times. However, in the case of a coordinator’s failure, there
is a hidden presumption in PrN by which the coordinator
considers all active transactions at the time of the failure as
aborted ones. The presumed abort protocol (PrA) makes this
abort presumption explicit [15].

Specifically, in PrA, when a coordinator decides to abort a
transaction, it does not force-write the abort decision in its
log as in PrN (Figure 3). It just sends abort messages to all
the participants that have voted “Yes” and discards all infor-
mation about the transaction from its protocol table. That
is, the coordinator of an aborted transaction does not have to
write any log records or wait for acknowledgments. Since
the participants do not have to acknowledge abort decisions,
they are also not required to force-write such decisions. Af-
ter a coordinator or a participant failure, if the participant
inquires about a transaction that has been aborted, the co-
ordinator, not remembering the transaction, will direct the
participant to abort it (by presumption).

As opposed to PrA, the presumed commit protocol (PrC)
is designed to reduce the cost of committing transactions
[15, 12]. Instead of interpreting missing information about
transactions as abort decisions, in PrC, coordinators interpret

8 Writing the decision at the participants and acknowledging it in a lazy
fashion is an optimization that is not considered here.
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missing information about transactions as commit decisions.
However, in PrC, a coordinator has to force write an initia-
tion (which is also called collecting in [15]) record for each
transaction before sending prepare to commit messages to
the participants. This record ensures that missing informa-
tion about a transaction will not be misinterpreted as a com-
mit after a coordinator failure.

To commit a transaction (Figure 4 (a)), the coordinator force
writes a commit record to logically eliminate the initiation
record of the transaction and then sends out the commit de-
cision. The coordinator also discards all information per-
taining to the transaction from its protocol table. When a
participant receives the decision, it writes a non-forced com-
mit record and commits the transaction without having to
acknowledge the decision. After a coordinator or a partic-
ipant failure, if the participant inquires about a transaction
that has been committed, the coordinator, not remembering
the transaction, will direct the participant to commit it (by
presumption).

To abort a transaction (Figure 4 (b)), on the other hand, the
coordinator does not write the abort decision in its log. In-
stead, the coordinator, sends out the abort decision and waits
for the acknowledgments before discarding all information
pertaining to the transaction. When a participant receives the
decision, it force writes an abort record and then acknowl-
edges the decision, as in PrN.

Unlike (homogeneous) distributed database systems, the
constituent database sites in future distributed environments
might use different atomic commit protocols such as the ba-
sic two-phase commit protocol, that we discussed above, or
one of its variants (see {1] for a survey of the most commonly
known 2PC variants). Furthermore, some sites might not
support any form of ACPs. For this reason, a database site
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can be classified as either externalized or non-externalized
site [18]. An externalized site: (1) implements an ACP and
(2) makes the system calls pertaining to its commit proto-
col, called commit operators, available to the outside word
through its interface. Otherwise, the site is called non-
externalized.

Figure 5 depicts three approaches that ensure the atomicity of
global transactions in a form of a taxonomy. The taxonomy
is based on the two categories of sites that we mentioned
above. In what follows, we briefly discuss the motivation
behind each of the three categories.

The motivation behind the works in the externalized ap-
proach is based on the assumption that future database sites
will implement ACPs, which is well supported by the cur-
rent standardization efforts. The challenge in this direction
is to integrate database sites that use different and incom-
patible ACPs. The incompatibility of ACPs means that the
semantics of the coordination messages and the actions of
one ACP might be completely different than their counter-
parts in another ACP. Integrating incompatible ACPs is not
a trivial task as it was previously believed [6, 18]. That is,
it is not simply 'the case that once a database site supports
an externalized ACP, it can be integrated with other database
sites regardless of the used ACPs. The work reported in this
paper fits in this research direction, highlighting one of these
difficulties and proposing a practical solution.

Some researches have concentrated in resolving the incom-
patibility of ACPs with respect to the semantics of the co-
ordination messages without considering their practical im-
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plications (e.g., [18]). Hence, this group of researchers were
interested in achieving functional correctness. In the work
reported in this paper, we looked at the incompatibility issue
from a more pragmatic point of view. That is, achieving op-
erational correctness in which, besides achieving functional
correctness, the outcome of terminated transactions can be,
eventually, forgotten without sacrificing consistency.

On the other hand, the motivation behind the work in the
non-externalized approach is based on the fact that most ex-
isting database systems are legacy systems that do not exter-
nalize their ACPs. Thus, the challenge in this direction is to
ensure the atomicity of transactions despite the fact that each
site does not externalize an ACP. The methods reported in
the literature can be classified into two categories, as shown
in Figure 5. In the first category, it is suggested to mod-
ify each database to incorporate an ACP into it and to ex-
ternalize the ACP to the outside world, while the in second
category it is suggested to simulate a prepared to commit
state. Some of the methods under simulated ACPs guarantee
the traditional notion of atomicity while the others achieve a
weaker correctness notion, called semantic atomicity. In se-
mantic atomicity, the state of the database is not necessarily
equivalent to the state of the database after some transaction
is executed and finally aborted, whereas, in the traditional
atomicity, the two states are equivalent.

The unified approach combines the other two categories
since they complement each other and this category ensures
the atomicity of transactions despite the diversity of the se-
mantics of transactions and data.



