
IEICE TRANS. , VOL. , NO.
1

PAPER Special Issue on New Generation Database Technologies

Group Two-Phase Locking: A Scalable Data Sharing
Protocol

Sujata Banerjeey and Panos K. Chrysanthisyy, Nonmembers
SUMMARY The advent of high-speed networks with quality of service
guarantees, will enable the deployment of data-server distributed systems
over wide-area networks. Most implementations of data-server systems
have been over local area networks. Thus it is important, in this context,
to study the performance of existing distributed data management proto-
cols in the new networking environment, identify the performance bottle-
necks and develop protocols that are capable of taking advantage of the high
speed networking technology. In this paper, we examine and compare the
scalability of the server-based two-phase locking protocol (s-2PL), and the
group two-phase locking protocol (g-2PL). The s-2PL protocol is the most
widely used concurrency control protocol, while the g-2PL protocol is an
optimized version of the s-2PL protocol, tailored for high-speed wide-area
network environments. The g-2PL protocol reduces the effect of the net-
work latency by message grouping, client-end caching and data migration.
Detailed simulation results indicate that g-2PL indeed scales better than
s-2PL. For example, upto 28% improvement in response time isreported.
key words: Distributed Databases, Gigabit Networks, Concurrency Con-
trol, Data Caching, Transaction Processing, Client-Server Configuration

1. Introduction

The rapid growth of Internet applications and the World
Wide Web (WWW), has spurred the need for high per-
formance distributed information/data-server systems over
wide area networks (WANs). To achieve the goals of such
a high performance system, the network speed is being sig-
nificantly increased, particularly in the WAN environment.
Further, user desktops are being enhanced to the point that
servers and clients may be completely indistinguishable in
the future, with regards to computing power and functional-
ity. In the future, it is expected that general data-server sys-
tems (also calleddata shippingor enhanced client-server
systems) [1]–[7] in which clients perform much of their
query and transaction processing locally, will be deployed
over WANs. In these systems, when a client needs a data
item, it sends a request to the data-server which responds
with the requested data item. We also believe that the WWW
as well will evolve to require transactional support for some
types of data access [8] rather than acting only as an inter-
face to database systems [9], [10]. However, a key problem
that is yet to be addressed adequately is the development of
scalable data-server protocols that can take advantage of the
enhanced infrastructure, which is the topic of this paper.

Up until recently, the network speed in local area net-
works (LANs) was considerably higher than in WANs, but
that is no longer true, making the data transmission de-
lays smaller in both LANs and WANs. Clearly, minimiz-yInformation Science & Telecommunications dept.yyComputer Science dept., Univ. of Pittsburgh.

ing message sizes in order to reduce transmission delays
is no longer that important. However, a significant differ-
ence that still exists is the relatively high network latency
in WANs due to larger physical distances and hence larger
signal propagation latencies and the possibility of queuing
delays at each intermediate switching hop. In a high-speed
LAN environment, the network latency is of the order of mi-
croseconds while it is of the order of milliseconds in a high-
speed WAN environment. In fact, the network latency in a
high speed WAN is the dominant component of the trans-
mission [11], processing or I/O overheads. Thus the initial
data server systems were deployed over LANs, owing to the
low latency and relatively high speed of LANs as compared
to previous generation WANs, primarily to support object
oriented databases [7], [12]–[15]. These LAN data-server
systems have exhibited promising performance levels but
for a limited number of clients [6], [16], [17]. When data-
servers, as well as collaborating-servers, become available
over high speed WANs, the users of these systems will have
the same high expectations with respect to performance pa-
rameters such as the transaction throughput, transaction re-
sponse time, system reliability and data availability as in the
case of LANs. In order to fulfill these expectations and ob-
tain scalableperformance, we need to combat the high net-
work latency. Further, unlike other overheads the only possi-
ble way for reducing the effects of high latencies on the per-
formance of database systems, is to hide them ininnovative
data management protocols that supports data migration. At
the same time, it is not practical to overhaul existing algo-
rithms that are widely in use, and our choice is the path of
evolution starting with the modification and/or optimization
of existing schemes with the new system assumptions.

Client caching of data items and locks is a popular
mechanism that has been proposed to reduce the data trans-
mission overheads. In LAN environments, three families
of caching algorithm have been proposed to preserve data
consistency in the presence of concurrent requests, all de-
rived from the widely usedstrict two-phase lockingproto-
col (2PL) [18], namely,Server-based 2PL, Optimistic 2PL
and Callback Locking[1], [2], [13], [14], [19], [20]. While
caching can significantly improve performance [17], the
marginal gains decrease rapidly as the network speed is in-
creased and when data items are frequently updated render-
ing the caches invalid. In fact, the server-based 2PL (s-2PL)
protocol was found to have the best performance in situa-
tions with high data contention in LANs [5]. Further, in a

2
IEICE TRANS. , VOL. , NO.

high-speed WAN environment, due to the above-mentioned
shifts in the overhead, efforts should be focused on reduc-
ing the number of sequential message passing rounds (since
each round can incur a significant delay, even if the trans-
mission time is negligible) rather than the data transmission
time. In this paper, a strategy to reduce message passing
rounds is described that scales better than the s-2PL proto-
col under high data contentions in a high-speed WAN. Our
strategy, embodied in thegroup 2PL(g-2PL) protocol as-
sumes a stronger inter-client cooperation, intra-transaction
caching at the clients and message grouping.

In this paper, we present an enhanced version of the
original g-2PL protocol [21], [22], and emphasize its scal-
ability properties. In the next section, we propose various
protocol scalability metrics with respect to the geographi-
cal span of the network, the number of clients and the data
contention, in terms of which we perform our evaluation.
Then the enhanced g-2PL protocol and the s-2PL protocol
are described in Section 3. Using simulation, the scalabil-
ity metrics for the g-2PL and s-2PL protocols are compared.
Section 4 consists of a description of the simulation testbed,
which is followed by a presentation of the numerical results
in Section 5. The salient results of this performance eval-
uation are that the g-2PL protocol exhibits better response
time for hot data and outperforms the s-2PL protocol in the
presence of updates in the database system. The improve-
ment in response time is significant at about 28%. Section 6
concludes the paper with a discussion of future research.

2. Scalability Metrics

A key issue in the development of next generation data-
server systems is protocol performance scalability. For ex-
ample, as the system size increases with a larger number
of clients accessing the database, the increased data con-
tention degrades the performance. Thus it is imperative to
compare the two protocols with respect to the number of
clients each can support, given a specific performance crite-
rion, such as the average transaction response time or trans-
action throughput. Further, scalability issues with respect to
the network span and the data contention levels must also be
studied. We propose the following three scalability metrics.

2.1 Scalability with respect to Network Span

As the geographical span of a network increases, the net-
work latency increases correspondingly. Depending on the
capability of the data server protocol to hide this latency, the
protocol may or may not scale with the network geographi-
cal span. For instance, a specific protocol may not scale to a
WAN environment if there is a requirement to meet an upper
bound on the average transaction response time.

Geographical scalability (GS) in the context of this pa-
per is defined as the percentage larger network span sup-
ported by g-2PL as compared to s-2PL, for a specific upper
bound on the average transaction response time.

GS(�) = dg(�) � ds(�)ds(�) ; (1)

where,dg and ds are the network latencies at which the
g-2PL and s-2PL protocols can provide the same average
transaction response time� .

2.1.1 Scalability with respect to data contention

Given a specific network geographical span, increasing the
data contention by decreasing the read probability causes
the average transaction response time. Thus it is important
to study the levels of data contention that can be supported
by a specific protocol, again given a bound on the average
transaction response time. The data contention scalability
(DCS) is defined as the ratio of the contention levels that
g-2PL can support as compared to the the s-2PL protocol,
for a given upper bound on the average transaction response
time. The data contention level is inversely proportional to
the read probability.

DCS(�) = psr(�)pgr(�) ; (2)

where, psr and pgr are the read probabilities at which the
s-2PL and g-2PL protocols can provide the same average
transaction response time� .

2.1.2 Scalability with respect to the number of clients

Finally, given a read probability and a network geograph-
ical span, the average transaction response time increases
with the number of clients, which increases the system size.
The system scalability (SS) is defined as the percentage in-
crease in the number of clients that can be supported by g-
2PL compared to the s-2PL, given a specific bound on the
average transaction response time.

SS(�) = cg(�) � cs(�)cs(�) ; (3)

where,cg andcs are the number of clients that can be sup-
ported by the g-2PL and s-2PL protocols while providing
the same average transaction response time� .

3. The Data Access Protocols

In this section, first the s-2PL protocol is briefly reviewed.
Then, an optimized version of the s-2PL protocol, the group
two-phase locking (g-2PL) protocol is described, and quan-
titatively compared to the s-2PL protocol in the following
section. The choice of comparing/optimizing the g2Pl pro-
tocol with the s-2PL protocol rather than any other concur-
rency control protocol is motivated by two reasons. The
first is that the s-2PL protocol has been shown to have the
best performance in situations with high data contention in
LANs [5]. The second reason is the wide-spread deploy-
ment of the s-2PL protocol in existing database systems be-
cause of its relative simplicity in implementation. Thus, by

BANERJEE and CHRYSANTHIS: GROUP TWO-PHASE LOCKING: A SCALABLE DATA SHARING PROTOCOL
3

optimizing s-2PL, the maximum impact on performance as
well as widespread acceptance can be expected. Although
we do not deal with the recovery aspects of the g-2PL pro-
tocol here, it is assumed that the sites follow the standard
protocol adopted by the s-2PL protocol where each site uses
Write-Ahead Logging(WAL) and garbage collects its log
once the data are made permanent at the server [23].

3.1 Server-Based Two-Phase Locking Protocol

In the basic server-based two-phase locking (s-2PL) proto-
col, a data-server basically preserves data consistency by
following thestrict two-phase lockingprotocol [18]. The s-
2PL protocol ensures data consistency as defined byserializ-
ability which requires the concurrent, interleaved, execution
of requests to be equivalent to some serial, non-interleaved,
execution of the same requests [24], [25].

In the s-2PL protocol, each transaction goes through a
growing phaseand ashrinking phase. During the growing
phase, a transaction requests data items which are shipped
to it after the data-server acquires a lock on them. In the
shrinking phase, all the locks are released when the trans-
action is either aborted or committed and all modified data
items are returned to the data-server. The clients are not
allowed to cache locks across transaction boundaries and a
client can be viewed as executing one transaction at a time.
A variation of s-2PL that allows caching of locks across
transaction boundaries is calledcaching 2PL(c-2PL) pro-
tocol [1], [5], [14], [17]. To simplify the discussion, in the
rest of the paper we focus only on the s-2PL protocol but the
results can be extended to the c-2PL protocol.

Access to some data may be done in a shared fashion,
with multiple clientsreadingthe data item simultaneously.
However, in the interest of strict consistency, while multi-
ple clients may read the data simultaneously, no client may
write on it. Hence, locks are distinguished into read (shared)
and write (exclusive) types and a client cannot acquire a
write lock on a data item until the clients reading the data
have released their shared locks and vice versa. If the data-
server cannot acquire a lock on a data item because another
transaction is holding a conflicting lock on the same data, the
request is enqueued and the requesting transaction is forced
to wait until the lock is released.

If a transaction needs to accessn data items, the first
phase of the protocol as above will involven requests from
the client to the server andn replies from the server to the
client, exchanged in minimum 2 messages if all requests are
sent at the same time or maximum2n messages if the re-
quests are sent sequentially. The second phase of the s-2PL
protocol will involve a single message. That is, for each
transaction, in the best case, the s-2PL protocol involves
threerounds, i.e., sequential phases of message passing cor-
responding to lock request, lock grant and lock release and2n+ 1 rounds in worst case.

3.2 Group Two-Phase Locking Protocol

The core of the g-2PL protocol [22] is to applygrouping of
messages sent to multiple sitesto the s-2PL protocol, thus
reducing the message passing rounds. Grouping of actions
involving a single site has been previously used successfully
in other situations (e.g., in group commit [26], [27] multi-
ple transactions are committed and acknowledged at a sin-
gle site). Specifically, the lock (data) granting and release
messages are grouped as follows. The data-server collects
the lock requests for each data item and creates aforward
list (FL) of all the clients that have pending lock requests
for that data item. When a lock becomes available, the lock
is granted to the first client on the forward list and the data
item is sent to the client along with the forward list. When a
transaction commits, the client sends the new version of the
committed data items to the clients next on the respective
forward lists. A copy of the forward list is also sent with
each data item. If the transaction aborts, the client forwards
the unchanged data to the next client. Finally, when the last
client on the forward list terminates, it sends the new ver-
sion of the data to the data-server with the outcome of each
transaction executed on the clients on the forward list.

Thus the lock release message of the previous client
is combined with the lock grant message of the next client,
thereby eliminating one sequential message required by the
s-2PL protocol. For example, assumem clients under the
best case where each transaction either requests a single data
item or requests multiple data items within a single mes-
sage. The s-2PL protocol will require3m messages and3m
rounds as opposed to the g-2PL protocol which will require2m+ 1 messages and2m+ 1 rounds. The messages in the
g-2PL protocol are larger than that in the s-2PL protocol,
but in a high speed network environment, the message size
is not a big constraint.

While the data items have been sent out to a group of
clients, the server continues to collect requests. We define
the period during which the server does not possess the lock
on a data item and collects requests as thecollection win-
dowfor the data itemy. Once the lock is returned and a data-
server receives and installs the new version of a data item
in the database, the previous collection period ends, a new
forward list is created, using which, the server dispatches
the data item to the first client on the new forward list. Ini-
tially at start-up time and during periods of extremely light
loading, the forward-list will contain a single client.

For each data item required in the shared mode by mul-
tiple (reading) clients, a copy of the data item is sent to each
of the reading clients. At the same time, it also sends a
message containing the data item and the list of the shared-
mode clients to the next clientCi on the forward list that
requires exclusive access. In this way,Ci is enabled to exe-
cute and update the data item concurrently with the readingyOur experimentation with a tunable collection window size
and a timeout proved that tuning the collection window does not
produce significant performance gains [21].

4
IEICE TRANS. , VOL. , NO.

1. First-in-First-Out or sort by arrival of the requests.
2. Order by the client ID.
3. Order by transaction priority.
4. Order by the number of locks held by each transaction.� a. Transactions with fewer number of locks go first.� b. Transactions with greater number of locks go first.
5. Serve the read requests first.
6. Split up the read requests according to the

multi-programming capabilities.
7. Order requests such that the total distance traversed

by the messages is minimized.

Table 1 Ordering rules for the forward list

clients. However,Ci cannot release its updates until it re-
ceives areleasemessage from all the reading clients. As
before, if there are no waiting transactions that need exclu-
sive access, the release messages are returned to the server.
This is termed the MR1W (Multiple Reads One Write) opti-
mization. With this optimization the g-2PL protocol behaves
similar to the two-copy version s-2PL protocol [24] which
allows more concurrency than the standard s-2PL protocol.

To improve performance further, the forward list for
each data item may be created according to one of several
ordering rules (See Table 1). The default rule is FIFO or
sort by arrival of the request as in the s-2PL protocol. The
effect of ordering rules are evaluated in Section 5. However,
we next describe a deadlock-avoidance FL ordering rule that
is an integral part of the g-2PL protocol.

3.2.1 Deadlock avoidance by FL reordering

Two-phase locking protocols are susceptible to dead-
locks [18], and so is the g-2PL protocol. Two or more
transactions are said to be in a deadlock when neither of the
transactions can proceed because at least one of the locks
required by each of the transactions is held by one of the
other transactions. This typically occurs for read-write and
write-write conflicts. In addition to the above deadlocks,
the g-2PL protocol is susceptible to a unique type of dead-
lock which is created due toread-onlydependencies formed
across different collection windows. This is described fur-
ther in Section 3.2.2. A deadlock detection and resolution
algorithm that maintains aWait-for graph and checks for
cycles in the graph is usually coupled with any s-2PL im-
plementation. Deadlock avoidance algorithms that ensure
linear ordering are typically pessimistic requiringpredecla-
ration of locks or leading tolivelocksand hence have been
considered inappropriate for dynamic databases [24], [25].
However, in the case of the g-2PL protocol, some deadlocks
can be avoided by intelligently creating the forward lists.

Specifically, some deadlocks can be avoided if in each
of the forward lists, the order of the transactions is the same.
Formally, the forward list for each data item can be repre-
sented by a transaction precedence graph. The transaction
precedence graph is a directed graph which determines the
order in which each data item willmovefrom one client
site to another. In order to ensure linear ordering, transac-

tion precedence graphs need to be made consistent. That
is, two transactionsTi andTj must follow the same order< Ti; Tj > or< Tj ; Ti > in every precedence graph involv-
ing Ti andTj . The precedence graph is consistent with the
lock granting order and hence the serialization order.

Clearly, this reordering of requests does not require
predeclaration and because it occurs within a collection win-
dow, the problem of starvation is not encountered. In the
worst case, some transactions will be pushed towards the
end of the forward list but they will have the chance to ac-
cess the data. In the case that such reordering of forward lists
is not possible, some transactions may have to be aborted
and restarted. Repeated (cyclic) restarts can be avoided in
a similar way using an aging mechanism as in deadlock de-
tection algorithms. It should be stressed that all these re-
ordering computations are done while the server is waiting
for the data items to be returned from the clients in the pre-
vious window. Thus, these computations do not increase the
transaction blocking time on a lock and in fact increases the
utilization of data-server CPU while reducing the transac-
tion response time.

3.2.2 Issues with Read-only transactions

There are two related issues associated with read-only trans-
actions and the g-2PL protocol. The first concerns a po-
tential deadlock situation caused byread-onlydependencies
and the other is the response time of read-only transactions.
This potential deadlock situation is better illustrated using
an example. In Section 5, we shall demonstrate that these
read-only deadlocks occur rarely and only under some spe-
cial circumstances.

Example: Consider two transactionst1 : read1(x) read1(y) andt2 : read2(y) read2(x) both
of which request data itemsx andy for reading in a serial
manner but in the opposite order. As soon as the data-server
gets the requestsread1(x) andread2(y), it will releasex tot1 andy to t2. Now, both transactions have one data item
and will not release it until they commit or abort. Subse-
quently, the data-server will get the requestsread1(y) andread2(x) but neither data item can be released untilt1 or t2
either commits or aborts returningx andy back to the server
respectively. This is a deadlock situation wheret1 waits fort2 to release the read lock fory andt2 waits fort1 to release
the read lock forx. The only way to resolve the situation is
to abort one of the transactions.

The second issue concerns the response time of read-
only accesses. The data server responds to the next set of
requests only when the data item (and lock) is returned back
to it by the previous set of clients. This can unnecessarily
delay read requests that have no conflict with the previous
requests. A solution to both of these problems is as follows.

A forward list that contains only read requests is termed
a read-only forward list (RO-FL). Any read request received
by the server after it has dispatched a RO-FL, is granted im-
mediately without waiting for the data item to return, thus
removing any extra delays. This is equivalent to expanding

BANERJEE and CHRYSANTHIS: GROUP TWO-PHASE LOCKING: A SCALABLE DATA SHARING PROTOCOL
5

the RO-FL to include new read requests that arrive after the
forward list is constructed and transmitted. This solution
will also remove allread-onlydependencies in a read-only
system. Consider the above example where transactionst1
andt2 request read access tox andy in the opposite order.
Knowing that the forward lists for x and y are read-only, the
server will grant the new requests as if they have arrived in
the previous window. The initial forward lists for data itemsx andy are as below.
Initial FL for x: read1(x) and Initial FL for y: read2(y).
Expanded FL for x:read1(x),read2(x) and Expanded FL
for y: read2(y),read1(y).

This modification is easy to implement and can be han-
dled by the server without contacting the clients oft1 or t2.
The forward list can be expanded as long as consecutive read
requests arrive. A new forward list will be started with the
arrival of a write request. The server will wait for acknowl-
edgments from all reading clients that are on the expanded
forward list before dispatching the next forward list.

4. System Model for Performance Evaluation

In order to evaluate the performance of the s-2PL and g-2PL
protocols under a high-speed networking environment, sim-
ulation models of both protocols were developed using theC
programming language. The simulation is a discrete-event
simulation using the unit-time approach to advance the sim-
ulation clock [28]. We consider a data-server database sys-
tem, with a single server and multiple clients connected by
a high speed network. As described earlier, the transmission
delays in a high speed network can be assumed to be negligi-
ble, and the network latency consists of the signal propaga-
tion and switching delays. In this paper, we make the sim-
plifying assumption that the network latency between any
two sites (server-client, client-client) and in either direction
is the same, and. no site and communication failures occur.

All clients are assumed to be identical and run trans-
actions that have the same statistical profile. The multi-
programming level at each client is assumed to be one, i.e.,
at any given time, each client processes a single transac-
tion only. Further, at the end of each transaction, it is re-
placed with another transaction at that client site after some
idle time that is uniformly distributed between a given min-
imum and maximum values. Each transaction accesses be-
tween1 andN data items uniformly. These data items are
drawn from a pool ofM data items that reside at the data
server. M is purposely kept small to emulate hot data ac-
cess. Each data access may be of the type read with a given
read probabilitypr and of the type write with a probabilitypw = 1 � pr. The transaction execution issequential, i.e.,
requests for data items are generated sequentially, with each
request being generated only after the previous request has
been granted and some think time (for computations) has
elapsed. In our model, this computation time is uniformly
distributed between a given minimum and maximum values.

As mentioned in the previous section, two-phase lock-
ing protocols are deadlock-prone. In the s-2PL implemen-

tation, deadlocks are detected by computing wait-for-graphs
and aborting the transactions necessary to remove the dead-
locks. This is the typical implementation found in commer-
cial systems that use the s-2PL protocol. In order to avoid
the use of tunable timeouts, deadlock detection is initiated
when a lock cannot be granted. In the case of g-2PL, the for-
ward lists are reordered using transaction precedence graphs
to ensure that deadlocks are prevented. Recall from Sec-
tion 3 that the transaction precedence graphs capture the or-
der of lock granting and is consistent with the serialization
order. In the case that such reordering is not possible, the
offending transactions are aborted. Two scenarios are con-
sidered when a transaction is aborted. In the first scenario,
each transaction that is aborted is replaced by another inde-
pendent transaction. In the second scenario which is more
realistic, each transaction that is aborted is restarted by an-
other transaction and the overall transaction response time
includes the time overhead of restarting. Both scenarios are
evaluated to study the impact of grouping on restarts. The
simulation model assumes that the computation cost at the
data server to reorder the forward lists as well as computing
the wait-for-graphs is the same.

Table 2 summarizes all the experimental parameters
and the corresponding range of values of the performance
study. Note that time durations are specified in simulation
time unitsrather than real time inseconds. The conver-
sion between the two is easily achieved and realistic val-
ues can be chosen by specifying the appropriate conversion
factor. However, it is important to recognize that the rela-
tive values of these parameters have been chosen correctly.
Since we assume a wide area high speed networking envi-
ronment, the network latency is significantly higher than the
computation/idle times. For example, if we assume that 1
simulation time unit = 0.5 msec, then the network latencies
considered are between 0.5 and 375 msec, which are real-
istic for wide area networks including satellite transmission
links. The computation time per database operation is then
between 500 and 1500�sec. In our simulations, we emulate
various high speed networking scenarios, ranging from lo-
cal area networks (LAN) to wide area networks (WAN), as
listed in Table 3 with their network latency values.

5. Simulation Results

In this section, the results of the simulation study are pre-
sented. The g-2PL and s-2PL simulations were run on a
cluster of Sun Ultra processors with the Solaris 2.5.1 op-
erating system. The transient phase of the simulation runs
was eliminated. In each simulation run, 100,000 transac-
tions (excluding the transient phase) were generated, requir-
ing a simulation time of upto 100 million time units. 95%
confidence intervals on the average transaction response
time were calculated from 5 independent simulation runs.
The relative precision of the transaction-level measurements
never exceeded 2% of the mean values. To conserve space,
only the salient results are presented.

Before describing the main results of this study, first

6
IEICE TRANS. , VOL. , NO.

Servers 1
% read accesses 0 – 100 %
Clients varying
Network Latency 1 – 750 time units
hot data items 25
Computation Time per operation 1 – 3 time units
Transaction Execution Pattern Sequential
Idle Time between transactions 2 – 10 time units
data items reqd. by a transaction1 – 5
Multiprogramming level at clients 1

Table 2 Simulation Parameters

Network Type Latency
Single Segment Local Area Network (ss-LAN) 1
Multi-Segment Local Area Network (ms-LAN) 50

Campus Area Network (CAN) 100
Metropolitan Area Network (MAN) 250
Small Wide Area Network (s-WAN) 500
Large Wide Area Network (l-WAN) 750

Table 3 Networking Environments Simulated

the impact of read-dependencies is assessed. In Figure 1,
the percentage of transactions aborted is plotted versus the
network latency in a read-only system. The fraction of trans-
actions aborted due to read-deadlocks decreases with in-
crease in the network latency, and is negligible beyond a net-
work latency of 10 units in the experiments conducted. The
percentage of transactions aborted due to read-deadlocks is
never more than a little over 5%. Thus the impact of the
read-deadlocks is small and dominant only in the LAN en-
vironment. The above observation can be explained as fol-
lows. With sequential transaction execution patterns (as has
been assumed in the system model), at high network laten-
cies, the data requests at the server are spread out over time,
causing less conflicts across multiple windows, leading to
fewer deadlocks. At a lower network latency, data requests
by different transactions occur close together, causing more
transaction conflicts in a smaller time frame. Given that the
impact of the read deadlocks is found to be minimal, and the
focus of this study is on high data contention environments,
the solution proposed in Section 3.2.2 to remove these dead-
locks was not implemented in the simulation model, bearing
in mind that without this solution, read accesses across mul-
tiple windows may suffer a larger delay.

The g-2PL protocol is particularly suited to accessing
hot data items. Thus we simulated the hot portion of a
database where a small number of data items are accessed
by a large number of clients. Figures 2 – 4 contain the av-
erage transaction response time plotted against the network
latency, for 3 values of the read probability (pr = 0.0, 0.6, or
1.0) in a database system with 25 hot data items, 50 clients
and each transaction accessing between 1 and 5 data items
(uniform access) for the g-2PL and s-2PL protocols. For
each protocol, there are two curves, one that simulated the
restart process (the higher values), and another that did not.
Obviously as the network latency is increased, the average
transaction response time increases correspondingly. From
Figures 2 – 4, it is evident that only when the read probabil-

1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

4

5

6

Network latency

P
er

ce
nt

ag
e

of
 tr

an
sa

ct
io

ns
 a

bo
rt

ed

Read−only transactions

Fig. 1 Percentage of transactions aborted as a function of the network
latency in a read-only system

ity is 1.00 (Figure 4) is the performance of s-2PL better than
the g-2PL protocol. In the other cases, over the entire range
of network latency, g-2PL outperforms s-2PL. Without tak-
ing into account the restart process, the percentage improve-
ment in the response time of the g-2PL protocol over that of
the s-2PL protocol was observed to be between 19.50% and
26.92% in the presence of update transactions. The percent-
age improvement in the response time including the restart
overhead of the g-2PL protocol over that of the s-2PL proto-
col is observed to be between 18% and 28% in the presence
of update transactions. Thus, the maximum improvement
of the g-2PL protocol over the s-2PL protocol increases by
approximately 1-2% when restarts are taken into account.
The reason for the better performance of s-2PL in read-only
systems is that in the g-2PL protocol described here, access
requests are granted only at the end of the window periods,
and not in between. Thus, the reads are penalized in the g-
2PL system and the s-2PL protocol has better performancey.

The above results are with the FIFO ordering of the
forward list. The effect of three re-ordering schemes (order-
ing rules 1, 4b and 5 from Table 1) on the performance are
presented in Table 4 for the above system parameters. As
seen from these results, the effect of the various re-ordering
schemes are minimal (less than 1% from the FIFO case).
Thus the remainder of the results are presented for the FIFO
ordering of the FL, and including the effect of restarts.

From the above graphs, the geographical scalability
(GS(�)) metric can be computed. This is shown in Table 5
in which the geographical scalability is tabulated for a given
bound on the average transaction response time. This scal-
ability measure is independent of the actual response time
bound used. This table shows that the g-2PL protocol is
25% more scalable than the s-2PL protocol whenpr = 0:0
and 36.36% whenpr = 0:6. On the other hand, in a read-
only system (pr = 1:0), the s-2PL protocol is approximatelyyIn read-only systems, the average transaction response time
for transactions accessing a single data item in the s-2PL protocol
should be the round-trip network latency.

BANERJEE and CHRYSANTHIS: GROUP TWO-PHASE LOCKING: A SCALABLE DATA SHARING PROTOCOL
7

Campus Area Networkpr FIFO (Rule 1) Rule 4b Rule 5

0.0 10582.968750 10558.753906 10608.459961
0.4 5678.985840 5672.341797 5652.992676
1.0 691.264709 693.854187 693.949646

Large Wide Area Networkpr FIFO (Rule 1) Rule 4b Rule 5

0.0 79249.976562 79315.117188 79301.273438
0.4 42604.316406 42596.437500 42529.902344
1.0 5209.281738 5176.771973 5200.751465

Table 4 Mean transaction response time of g-2pl for three ordering rulespr GS(�)

0.00 25.00 %
0.60 36.36 %

Table 5 Geographical network scalability versuspr

0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

2

2.5
x 10

5

Network latency

M
ea

n
tr

an
sa

ct
io

n
re

sp
on

se
 ti

m
e

* : g−2PL

x : s−2PL

Fig. 2 Mean transaction response time of g-2pl & s-2pl versus network
latency,pr=0.0

0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

2

2.5
x 10

5

Network latency

M
ea

n
tr

an
sa

ct
io

n
re

sp
on

se
 ti

m
e

* : g−2PL

x : s−2PL

Fig. 3 Mean transaction response time of g-2pl & s-2pl versus network
latency,pr=0.6

twice as scalable with network span as the g-2PL protocol.
Figure 5 contain plots of the average transaction re-

sponse time versus the read probability for a network latency
of 250 simulation time units. At low read probabilities, the
g-2PL protocol outperforms the s-2PL protocol by grouping

0 100 200 300 400 500 600 700
0

1

2

3

4

5

6

7

8

9

10
x 10

4

M
ea

n
tr

an
sa

ct
io

n
re

sp
on

se
 ti

m
e

Network latency

* : g−2PL
x : s−2PL

Fig. 4 Mean transaction response time of g-2pl & s-2pl versus network
latency,pr=1.0

access requests and saving on the number of rounds and only
at very high read probabilities (close to 1.0) is the perfor-
mance of the s-2PL protocol better. As the read probability
is increased, a cross-over in performance is observed.

As can be seen from the figures, the average transac-
tion response time decreases non-linearly as the data con-
tention levels are decreased. Thus the data contention scal-
ability (DCS(�)) depends on the actual average transaction
response time bounds considered. The g-2PL protocol is
found to be upto 3 times more scalable than the s-2PL pro-
tocol with respect to data contention. This implies that the
g-2PL protocol can support upto three times the data con-
tention levels that the s-2PL protocol can support.

To compute the system scalability (SS(�)) metric, the
following experiments were conducted. The network la-
tency is fixed at 500 time units (small WAN) and each trans-
action accesses between 1 and 5 data items, out of a total of
25 hot data items. Figure 6 contains the plots of the average
transaction response time for the g-2PL and s-2PL protocols
versus the number of clients, with a fixed read probability of
0.25. Except in very small systems, the response time in the
s-2PL protocol is higher (upto 28%). Also, in this case as
well, the average transaction response time increases non-
linearly with the number of clients. Thus, the system scala-
bility is a function of the average transaction response time
bound chosen. The g-2PL protocol is found to be capable
of supporting upto 26% more clients than the s-2PL proto-
col whenpr = 0:25. At pr = 0:75, the g-2PL can support
upto 78.5% more clients than the s-2PL protocol for the pa-
rameter ranges studied. Again, note that the scalability can
be expected to be larger than 78.5% in some cases as the
deadlock detection scheme in s-2PL is made more realistic.

Figure 7 contains a plot of the average transaction
throughput versus the number of clients, for a read proba-
bility of 0.75. The s-2PL and the g-2PL protocols thrash at
a system size of 8 clients and 62 clients respectively.

The g-2PL and s-2PL protocols both suffer from the
transaction deadlock phenomenon which results in transac-

8
IEICE TRANS. , VOL. , NO.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9
x 10

4

* : g−2PL

x : s−2PL

Read probability

A
ve

ra
ge

 tr
an

sa
ct

io
n

re
sp

on
se

 ti
m

e

Fig. 5 Mean transaction response time of g-2pl & s-2pl versus the read
probability for latency = 250 units (MAN)

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

3

3.5
x 10

5

* : g−2PL

x : s−2PL

Number of clients

A
ve

ra
ge

 tr
an

sa
ct

io
n

re
sp

on
se

 ti
m

e

Fig. 6 Mean transaction response time versus number of clients:pr =0:25 and network latency = 500 time units

tion aborts. Thus it is important to compare the percent-
age of transaction aborts in both protocols, as a function
of the network latency and the read probability. Due to
space restrictions, graphical results are not presented on this
topic. As expected, the percentage of transactions aborted
decreases with increase in the read probability. The percent-
age of transactions aborted in both protocols is fairly close,
although the g-2PL protocol outperforms the s-2PL protocol
in the entire range of network latency values studied. Fur-
ther, the percentage of transactions aborted stays fairly con-
stant (see Figure 8) for all latencies above the single segment
LAN case (latency of 1 unit).

6. Conclusions

Traditionally, the performance evaluation of caching
schemes in data server systems, which were conducted over
local area networks, have not taken scalability issues into ac-
count. However, this is a key issue in future systems when
data server systems are migrated to wide area networks,

0 10 20 30 40 50 60 70
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3
x 10

−3

Number of clients

T
hr

ou
gh

pu
t (

tr
an

sa
ct

io
ns

 p
er

 u
ni

t t
im

e)

* : g−2pl

x : s−2pl

Fig. 7 Mean transaction throughput versus number of clients:pr =0:75 and network latency = 500 time units

0 100 200 300 400 500 600 700 800
35

36

37

38

39

40

41

42

43

Network latency

P
er

ce
nt

ag
e

tr
an

sa
ct

io
ns

 a
bo

rt
ed

* : g−2PL

x : s−2PL

Fig. 8 Percentage of transactions aborted versus network latency: pr =0:6
with significant increases in data contention, the number of
clients and larger network latencies due to the large geo-
graphical network span. Recognizing propagation latencies
as the bottleneck and that migrating large amounts of data
between clients and servers will not be a problem in future
WANs, in this paper we have derived, from the basic server-
based two-phase locking (s-2PL) protocol, a new protocol
called the group two-phase locking (g-2PL) protocol tar-
geted for gigabit-networked client-server systems. In order
to study the performance of the g-2PL protocol, we have im-
plemented a simulator of a shared nothing, data-server dis-
tributed database system. In this paper, we reported on the
performance of the g-2PL protocol in the absence of com-
munication and site failures by comparing it with the perfor-
mance of the s-2PL protocol.

The results of our experiments confirmed our hypoth-
esis that the g-2PL protocol is particularly suited to control
access to hot data items and showed that the g-2PL proto-
col, in general, outperforms the s-2PL protocol for update
transactions. Specifically, the g-2PL protocol exhibits supe-

BANERJEE and CHRYSANTHIS: GROUP TWO-PHASE LOCKING: A SCALABLE DATA SHARING PROTOCOL
9

rior performance when the percentage of reads performed by
transactions is relatively low compared to the writes in the
database system and the network latency is high. Between
18-28% improvement in the response time was observed.
Further, the g-2PL protocol is more scalable than the s-2PL
protocol. It scales to between 25–36% larger networks, 26–
78.5% more clients and upto 3 times the data contention
levels than the s-2PL protocol. In addition, although not
shown in this paper, it balances the network traffic between
the server and the clients so as to reduce the traffic at the
server by a factor of between 10–15.

As part of our future research, we would like to inves-
tigate the performance of g-2PL protocol in the context of
read-only transactions by applying the read-only optimiza-
tion discussed in this paper. We would like to extend our
simulator along a number of directions, such as to include
the fine level CPU processing granularity. This will allow us
to compare the g-2PL protocol with more caching protocols.

Acknowledgments

This work has been partially supported by NSF awards IRI-
9502091, NCR-9624125, NCR-9702389 and IIS-9812532.

References

[1] K. Wilkinson and M. A. Neimat, “Maintaining Consistencyof
Client-Cached data,” inProc. of the 16th Intl. Conf. on Very Large
Databases, pp. 122–134, Aug. 1990.

[2] Y. Wang and L. Rowe., “Cache Consistency and ConcurrencyCon-
trol in a Client/server DBMS Architecture,” inProc. of the ACM
SIGMOD Intl. Conf. on Management of Data, pp. 367–376, May
1991.

[3] M. Carey, M. Franklin, M. Livny, and E. Shekita., “Data Caching
Tradeoffs in Client-Server DBMS Architectures,” inProc. of the
ACM SIGMOD Intl. Conf. on Management of Data, pp. 357–366,
May 1991.

[4] M. J. Franklin, M. Carey, and M. Linvy, “Local Disk Caching for
Client-Server Databases,” inProc. of the Intl. Conf. on Very Large
Data Bases, pp. 641–654, Aug. 1993.

[5] M. J. Franklin and M. Carey, “Client-Server Caching Revisited,”
in Distributed Object Management(T. Ozsu, U. Dayal, and P. Val-
duriez, eds.), pp. 57–78, Morgan Kaufmann Publishers, 1993.

[6] A. Delis and N. Roussopoulos, “Management of Updates in the En-
hanced Client-Server DBMS,” inProc. of the 14th Intl. Conf. on
Distributed Computing Systems, Jun. 1994.

[7] A. Billiris and J. Orenstein, “Object Storage Management Architec-
tures,” in Advances in Object-Oriented Database Systems(A. Do-
gac, M. T. Ozsu, A. Billiris, and T. Selis, eds.), pp. 185–200,
Springer Verlag, 1994.

[8] P. Bernstein and E. Newcomer,Principles of Transaction Processing
for the Systems Professional. Morgan Kaufman, 1997.

[9] T. Nguyen and V. Shrinivasan, “Accessing Relational Databases
from the World Wide Web,” inProc. of the ACM SIGMOD Intl. Conf.
on Management of Data, pp. 529–539, May 1996.

[10] D. Jadav, M. Gupta, and S. Lalshmi, “Caching Large Database Ob-
jects in Wed Servers,” inProc. of the 7th Intl. Workshop on Research
Issues on Data Engineering, pp. 10–19, Apr. 1997.

[11] L. Kleinrock, “The Latency/Bandwidth Tradeoff in Gigabit Net-
works,” IEEE Communications Mag., vol. 30, pp. 36–40, Apr. 1992.

[12] M. Hornick and S. Zdonik, “A shared, segmented memory system
for an object-oriented database,”ACM Transactions on Office Infor-
mation System, vol. 5, no. 1, pp. 70–95, 1987.

[13] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb, “The ObjectStore
Database System,”Communication of the ACM, vol. 34, no. 10,
pp. 34–48, 1991.

[14] M. Franklin, M. Zwilling, C. Tan, M. Carey, and D. DeWitt, “Crash
Recovery in Client-Server EXODUS,” inProc. of the ACM SIG-
MOD Intl. Conf. on Management of Data, pp. 165–174, May 1992.

[15] S. Venkataraman, J. F. Naughton, and M. Livny, “Remote Load-
Sensitive Caching for Multi-Server Database Systems,” inProc. of
the Intl. Conf. on Data Engineering (ICDE), Feb. 1998.

[16] A. Delis and N. Roussopoulos, “Performance and Scalability of
Client–Server Database Architectures,” inProc. of the 19th Int' l
Conf. on Very Large Databases, 1992.

[17] M. J. Franklin, M. Carey, and M. Linvy, “Transactional client-server
cache consistency: Alternatives and performance,”ACM Transac-
toions on Database Systems, 1997.

[18] K. P. Eswaran, J. Gray, R. Lorie, and I. Traiger, “The Notion of
Consistency and Predicate Locks in a Database System,”Communi-
cations of the ACM, vol. 19, pp. 624–633, Nov. 1976.

[19] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan,
R. Sidebotham, and M. West, “Scale and Performance in a dis-
tributed File system,”ACM Transactions on Computer Systems,
vol. 6, no. 1, pp. 51–81, 1988.

[20] M. Carey and M. Livny, “Conflict detection tradeoffs forrepli-
cated data,”ACM Transactions on Database Systems, vol. 16, no. 4,
pp. 703–746, 1991.

[21] S. Banerjee and P. K. Chrysanthis, “Performance evaluation of the
g-2PL protocol,” inProc. of the Tenth Intl. Conf. on Parallel and
Distributed Computing Systems (PDCS), pp. 428–432, Oct. 1997.

[22] S. Banerjee and P. K. Chrysanthis, “Network Latency Optimizations
in Distributed Database Systems,” inProc. of the Intl. Conf. on Data
Engineering (ICDE), pp. 532–540, Feb. 1998.

[23] C. Mohan and I. Narang, “Recovery and Coherency-Control Proto-
cols for Fast Intersystem Page Transfer and Fine-Granularity Lock-
ing in a Shared Disks Transaction Environment,” inProc. of the 17th
Intl. Conf. on Very Large Databases, 1991.

[24] P. A. Bernstein, V. Hadzilacos, and N. Goodman,Concurrency Con-
trol and Recovery in Database Systems. Reading, MA: Addison-
Wesley, 1987.

[25] J. N. Gray and A. Reuter,Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, 1993.

[26] D. DeWitt, R. Katz, F. Olken, L. Shapiro, M. Stonebraker, and
D. Wood, “Implementation Techniques For Main Memory Database
Systems,” inProc. of the ACM SIGMOD Intl. Conf. On Management
of Data, pp. 1–8, 1984.

[27] D. Gawlick and D. Kinkade, “Varieties of Concurrency Control in
IMS/VS Fast Path,”IEEE Database Engineering, vol. 8, Jun. 1985.

[28] R. Jain,The Art of Computer Systems Performance Analysis. John
Wiley & Sons, 1991.

