IEICE TRANS., VOL., NO.

| PAPER Special Issue on New Generation Database Technologies

Group Two-Phase Locking:
Protocol

A Scalable Data Sharlng

Sujata Banerjee! and PanosK. Chrysanthistt, Nonmembers

SUMMARY The advent of high-speed networks with quality of service
guarantees, will enable the deployment of data-serveritaiseéd systems
over wide-area networks. Most implementations of dataesesystems
have been over local area networks. Thus it is importanthig ¢context,
to study the performance of existing distributed data mansnt proto-
cols in the new networking environment, identify the penfance bottle-
necks and develop protocols that are capable of taking salyaf the high
speed networking technology. In this paper, we examine antpare the
scalability of the server-based two-phase locking prdt¢e@PL), and the
group two-phase locking protocol (g-2PL). The s-2PL protas the most
widely used concurrency control protocol, while the g-2Rbtpcol is an
optimized version of the s-2PL protocol, tailored for higheed wide-area
network environments. The g-2PL protocol reduces the efféthe net-
work latency by message grouping, client-end caching atalmagration.
Detailed simulation results indicate that g-2PL indeedeschetter than
s-2PL. For example, upto 28% improvement in response timepisrted.
key words: Distributed Databases, Gigabit Networks, Corency Con-
trol, Data Caching, Transaction Processing, Client-Ser@enfiguration

1. Introduction

ing message sizes in order to reduce transmission delays
is no longer that important. However, a significant differ-
ence that still exists is the relatively high network latency
in WANs due to larger physical distances and hence larger
signal propagation latencies and the possibility of queuing
delays at each intermediate switching hop. In a high-speed
LAN environment, the network latency is of the order of mi-
croseconds while it is of the order of milliseconds in a high-
speed WAN environment. In fact, the network latency in a
high speed WAN is the dominant component of the trans-
mission [11], processing or 1/0O overheads. Thus the initial
data server systems were deployed over LANs, owing to the
low latency and relatively high speed of LANs as compared
to previous generation WANS, primarily to support object
oriented databases [7],[12]-[15]. These LAN data-server
systems have exhibited promising performance levels but
for a limited number of clients [6],[16],[17]. When data-
servers, as well as collaborating-servers, become available

The rapid growth of Internet applications and the World over high speed WANS, the users of these systems will have
Wide Web (WWW), has spurred the need for high per- the same high expectations with respect to performance pa-
formance distributed information/data-server systems overrameters such as the transaction throughput, transaction re-
wide area networks (WANSs). To achieve the goals of such Sponse time, system reliability and data availability as in the
a high performance system, the network speed is being sig-case of LANs. In order to fulfill these expectations and ob-
nificantly increased, particularly in the WAN environment. tain scalableperformance, we need to combat the high net-
Further, user desktops are being enhanced to the point thavork latency. Further, unlike other overheads the only possi-
servers and clients may be completely indistinguishable in ble way for reducing the effects of high latencies on the per-
the future, with regards to computing power and functional- formance of database systems, is to hide themrovative
ity. In the future, it is expected that general data-server sys-data management protocols that supports data migration. At
tems (also calledlata shippingor enhanced client-server the same time, it is not practical to overhaul existing algo-
systems) [1]-[7] in which clients perform much of their rithms that are widely in use, and our choice is the path of
query and transaction processing locally, will be deployed evolution starting with the modification and/or optimization
over WANs. In these systems, when a client needs a datedf existing schemes with the new system assumptions.
item, it sends a request to the data-server which responds Client caching of data items and locks is a popular
with the requested data item. We also believe that the Www mechanism that has been proposed to reduce the data trans-
as well will evolve to require transactional support for some Mission overheads. In LAN environments, three families
types of data access [8] rather than acting only as an inter-0f caching algorithm have been proposed to preserve data
face to database systems [9], [10]. However, a key problemconsistency in the presence of concurrent requests, all de-
that is yet to be addressed adequately is the development ofived from the widely usedtrict two-phase lockingroto-
scalable data-server protocols that can take advantage of theol (2PL) [18], namelyServer-based 2PL, Optimistic 2PL
enhanced infrastructure, which is the topic of this paper. ~ and Callback Locking[1], [2], [13],[14], [19], [20]. While

Up until recently, the network speed in local area net- caching can significantly improve performance [17], the
works (LANs) was considerably higher than in WANs, but marginal gains decrease rapidly as the network speed is in-
that is no longer true, making the data transmission de-creased and when data items are frequently updated render-
lays smaller in both LANs and WANs. Clearly, minimiz- ing the caches invalid. In fact, the server-based 2PL (s-2PL)
protocol was found to have the best performance in situa-
tions with high data contention in LANs [5]. Further, in a

fInformation Science & Telecommunications dept.
tfComputer Science dept., Univ. of Pittsburgh.

IEICE TRANS. , VOL., NO.

high-speed WAN environment, due to the above-mentioned GSE) = dy(1) — ds(7) 1)
shifts in the overhead, efforts should be focused on reduc- ds(T) ’
ing the number of sequential message passing rounds (since

. S . Where, d, andd, are the network latencies at which the
each round can incur a significant delay, even if the trans- ‘)
L . .. g-2PL and s-2PL protocols can provide the same average
mission time is negligible) rather than the data transmission

. . ._transaction response time
time. In this paper, a strategy to reduce message passing

rounds is described that scales better than the s-2PL proto—2 1.1 Scalability with respect to data contention
col under high data contentions in a high-speed WAN. Our =™

strategy, embodied in thgroup 2PL(g-2PL) protocol as-
sumes a stronger inter-client cooperation, intra-transaction
caching at the clients and message grouping.

In this paper, we present an enhanced version of the
original g-2PL protocol [21],[22], and emphasize its scal-
ability properties. In the next section, we propose various
protocol scalability metrics with respect to the geographi-

Given a specific network geographical span, increasing the
data contention by decreasing the read probability causes
the average transaction response time. Thus it is important
to study the levels of data contention that can be supported
by a specific protocol, again given a bound on the average
transaction response time. The data contention scalability
cal span of the network, the number of clients and the data(DCS) is defined as the ratio of the contention levels that
g-2PL can support as compared to the the s-2PL protocol,

contention, in terms of which we perform our evaluation. for a given upper bound on the averade transaction response
Then the enhanced g-2PL protocol and the s-2PL protocol,. 9 PP 9 P

are described in Section 3. Using simulation, the scalabil-Egié;ger%%t:bﬁimem'on levelis inversely proportional to
ity metrics for the g-2PL and s-2PL protocols are compared. P Y-

Section 4 consists of a description of the simulation testbed, _ pi(r)

which is followed by a presentation of the numerical results DCSE) = pr(r)’ @)
in Section 5. The salient results of this performance eval-

uation are that the g-2PL protocol exhibits better responseWhere, p; and p! are the read probabilities at which the
time for hot data and outperforms the s-2PL protocol in the S-2PL and g-2PL protocols can provide the same average
presence of updates in the database system. The improvefansaction response time

ment in response time is significant at about 28%. Section 6

concludes the paper with a discussion of future research. 2.1.2 Scalability with respect to the number of clients

Finally, given a read probability and a network geograph-
ical span, the average transaction response time increases
. . . with the number of clients, which increases the system size.
A key issue in the development of next generation data- The system scalability (SS) is defined as the percentage in-
server systems is protocol performance scalability. For ex- crease in the number of clients that can be supported by g-

ample, as the system size increases with a larger numbepp| compared to the s-2PL, given a specific bound on the
of clients accessing the database, the increased data conyyerage transaction response time.

tention degrades the performance. Thus it is imperative to

compare the two protocols with respect to the number of SSE) = cg(T) — Cs(T)_ 3)
clients each can support, given a specific performance crite- cs(7)

rion, such as the average transaction response time or trans- h d th ber of clients that b i
action throughput. Further, scalability issues with respect oW erz,cg ar;] Cs azre N r(;umz erorc |ens| ah.::an e_zyp
the network span and the data contention levels must also b horte y the g-2PL an s PL protoco S While providing
studied. We propose the following three scalability metrics. € same average transaction response fime

2. Scalability Metrics

o 3. The Data Access Protocols
2.1 Scalability with respect to Network Span
In this section, first the s-2PL protocol is briefly reviewed.

As the geographical span of a network increases, the net-Then, an optimized version of the s-2PL protocol, the group
work latency increases correspondingly. Depending on thetwo-phase locking (g-2PL) protocol is described, and quan-
capability of the data server protocol to hide this latency, the titatively compared to the s-2PL protocol in the following
protocol may or may not scale with the network geographi- section. The choice of comparing/optimizing the g2PI pro-
cal span. For instance, a specific protocol may not scale to aocol with the s-2PL protocol rather than any other concur-
WAN environment if there is a requirement to meet an upper rency control protocol is motivated by two reasons. The
bound on the average transaction response time. first is that the s-2PL protocol has been shown to have the

Geographical scalability (GS) in the context of this pa- best performance in situations with high data contention in
per is defined as the percentage larger network span suptLANs [5]. The second reason is the wide-spread deploy-
ported by g-2PL as compared to s-2PL, for a specific upperment of the s-2PL protocol in existing database systems be-
bound on the average transaction response time. cause of its relative simplicity in implementation. Thus, by

BANERJEE and CHRYSANTHIS: GROUP TWO-PHASE LOCKING: A SCABAE DATA SHARING PROTOCOL

optimizing s-2PL, the maximum impact on performance as 3.2 Group Two-Phase Locking Protocol
well as widespread acceptance can be expected. Although
we do not deal with the recovery aspects of the g-2PL pro- The core of the g-2PL protocol [22] is to appiyouping of
tocol here, it is assumed that the sites follow the Standafdmessages sent to multiple sitesthe s-2PL protocol, thus
prqtocol adopted b_y the s-2PL protocol where each_site USeSeducing the message passing rounds. Grouping of actions
Write-Ahead LoggindWAL) and garbage collects its 1og jnyolving a single site has been previously used successfully
once the data are made permanent at the server [23]. in other situations (e.g., in group commit [26], [27] multi-
ple transactions are committed and acknowledged at a sin-
gle site). Specifically, the lock (data) granting and release
3.1 Server-Based Two-Phase Locking Protocol messages are grouped as follows. The data-server collects
the lock requests for each data item and creatiEsward
list (FL) of all the clients that have pending lock requests
)) for that data item. When a lock becomes available, the lock
In the basic server-based two-phase locking (s-2PL) proto-js granted to the first client on the forward list and the data
col, a data-server basically preserves data consistency bytem js sent to the client along with the forward list. When a
following the strict two-phase lockingrotocol [18]. The s- transaction commits, the client sends the new version of the
2PL protocol ensures data consistency as define@bgliz- committed data items to the clients next on the respective
ability which requires the concurrent, interleaved, execution fgnward lists. A copy of the forward list is also sent with
of requests to be equivalent to some serial, non-interleavedeach data item. If the transaction aborts, the client forwards
execution of the same requests [24], [25]. the unchanged data to the next client. Finally, when the last
In the s-2PL protocol, each transaction goes through aclient on the forward list terminates, it sends the new ver-
growing phaseand ashrinking phase During the growing sjon of the data to the data-server with the outcome of each
phase, a transaction requests data items which are shippeflansaction executed on the clients on the forward list.
to it after the data-server acquires a lock on them. In the Thus the lock release message of the previous client
shrinking phase, all the locks are released when the transjs combined with the lock grant message of the next client,
action is either aborted or committed and all modified data thereby eliminating one sequential message required by the
items are returned to the data-server. The clients are notg.op| protocol. For example, assumeclients under the

allowed to cache locks across transaction boundaries and est case where each transaction either requests a single data
client can be viewed as executing one transaction at a timejtem or requests multiple data items within a single mes-

A variation of s-2PL that allows caching of locks across sage. The s-2PL protocol will requiBen messages ariin
transaction boundaries is calledching 2PL(c-2PL) pro- younds as opposed to the g-2PL protocol which will require
tocol [1],[5], [14],[17]. To simplify the discussion, in the 2, | 1 messages arthn + 1 rounds. The messages in the
rest of the paper we focus only on the s-2PL protocol but the g_2p| protocol are larger than that in the s-2PL protocol,

results can be extended to the c-2PL protocol. ~ butin a high speed network environment, the message size
Access to some data may be done in a shared fashionjg not a big constraint.
with multiple clientsreadingthe data item simultaneously. While the data items have been sent out to a group of

However, in the interest of strict consistency, while multi- cjients, the server continues to collect requests. We define
ple clients may read the data simultaneously, no client maythe period during which the server does not possess the lock
write on it. Hence, locks are distinguished into read (shared) gn 3 data item and collects requests asdbiection win-

and write (exclusive) types and a client cannot acquire adowfor the data iterh. Once the lock is returned and a data-
write lock on a data item until the clients reading the data server receives and installs the new version of a data item
have released their shared locks and vice versa. If the datain the database, the previous collection period ends, a new
server cannot acquire a lock on a data item because anothegnward list is created, using which, the server dispatches
transaction is holding a conflicting lock on the same data, thethe data item to the first client on the new forward list. Ini-
request is enqueued and the requesting transaction is forcegla|ly at start-up time and during periods of extremely light
to wait until the lock is released. . . loading, the forward-list will contain a single client.

If a transaction needs to acgessjata items, the first For each data item required in the shared mode by mul-
phase of the protocol as above will involuerequests from tjple (reading) clients, a copy of the data item is sent to each
the client to the server and replies from the server to the of the reading clients. At the same time, it also sends a
client, exchanged in minimum 2 messages if all requests aremessage containing the data item and the list of the shared-
sent at the same time or maximun messages if the re- mode clients to the next cliet; on the forward list that
quests are sent sequentially. The second phase of the s-2Pfequires exclusive access. In this wéy,is enabled to exe-
protocol will involve a single message. That is, for each cyte and update the data item concurrently with the reading
transaction, in the best case, the s-2PL protocol involves
threerounds i.e., sequential phases of message passing cor- fOur experimentation with a tunable collection window size

responding to lock request, lock grant and lock release andand a timeout proved that tuning the collection window doess n
2n + 1 rounds in worst case. produce significant performance gains [21].

IEICE TRANS. , VOL., NO.

4
1. | First-in-First-Out or sort by arrival of the requests. tion precedence graphs need to be made consistent. That
g- grger EY :he C"eft‘_“D- . is, two transactiond; and7; must follow the same order
. raer ransaction priority. H H
4. | Order bi/l the number[())f I03/<S held by each transaction. < T, Tj > or< Tj’ Ti > inevery prece.dence graph m\./ow_
e a. Transactions with fewer number of locks go first. ing T; and_Tj- The precedence graph_ls_con3|stent with the
« b. Transactions with greater number of locks go first. lock granting order and hence the serialization order.
5. | Serve the read requests first. Clearly, this reordering of requests does not require
6. | Split up the read requests according to the predeclaration and because it occurs within a collection win-
multi-programming capabilities. dow, the problem of starvation is not encountered. In the
7. | Order requests such that the total distance traversed . .
by the messages is minimized. worst case, some transactions will be pushed towards the

end of the forward list but they will have the chance to ac-
cess the data. Inthe case that such reordering of forward lists
is not possible, some transactions may have to be aborted
and restarted. Repeated (cyclic) restarts can be avoided in
clients. HoweverCi cannot release its Updates until it re- a similar way using an aging mechanism as in deadlock de-
ceives areleasemessage from all the reading clients. As tection algorithms. It should be stressed that all these re-
before, if there are no Waltlng transactions that need eXClU-Ordering Computations are done while the server is Wamng
sive access, the release messages are returned to the serveyr the data items to be returned from the clients in the pre-
This is termed the MR1W\ultiple Reads One Wrijepti- vious window. Thus, these computations do not increase the
mization. With this optimization the g-2PL protocol behaves transaction blocking time on a lock and in fact increases the

similar to the two-copy version s-2PL protocol [24] which ytijlization of data-server CPU while reducing the transac-
allows more concurrency than the standard s-2PL protocol. tjon response time.

To improve performance further, the forward list for
each data item may be created according to one of severag 2 2 |ssues with Read-only transactions
ordering rules (See Table 1). The default rule is FIFO or

sort by arrival of the request as in the s-2PL protocol. The There are two related issues associated with read-only trans-
effect of ordering rules are evaluated in Section 5. However, actions and the g-2PL protocol. The first concerns a po-

we next describe a deadlock-avoidance FL ordering rule thatiantial deadlock situation caused t@ad-onlydependencies

Tablel Ordering rules for the forward list

is an integral part of the g-2PL protocol. and the other is the response time of read-only transactions.
_ _ This potential deadlock situation is better illustrated using
3.2.1 Deadlock avoidance by FL reordering an example. In Section 5, we shall demonstrate that these

read-only deadlocks occur rarely and only under some spe-

Two-phase locking protocols are susceptible to dead-cial circumstances.
locks [18], and so is the g-2PL protocol. Two or more Example: Consider two transactions
transactions are said to be in a deadlock when neither of thety : read; (z) read: (y) andts : reads(y) reads(x) both
transactions can proceed because at least one of the locksf which request data items andy for reading in a serial
required by each of the transactions is held by one of themanner but in the opposite order. As soon as the data-server
other transactions. This typically occurs for read-write and gets the requestead; (z) andread.(y), it will releasez to
write-write conflicts. In addition to the above deadlocks, ¢; andy to ¢5. Now, both transactions have one data item
the g-2PL protocol is susceptible to a unique type of dead-and will not release it until they commit or abort. Subse-
lock which is created due tead-onlydependencies formed quently, the data-server will get the requestad; (y) and
across different collection windows. This is described fur- read,(x) but neither data item can be released untir ¢,
ther in Section 3.2.2. A deadlock detection and resolution either commits or aborts returningandy back to the server
algorithm that maintains &Vait-for graph and checks for respectively. This is a deadlock situation wherevaits for
cycles in the graph is usually coupled with any s-2PL im- t, to release the read lock fgrandt, waits fort; to release
plementation. Deadlock avoidance algorithms that ensurethe read lock for:. The only way to resolve the situation is
linear ordering are typically pessimistic requiripgedecla- to abort one of the transactions.
ration of locks or leading tdivelocksand hence have been The second issue concerns the response time of read-
considered inappropriate for dynamic databases [24],[25].0only accesses. The data server responds to the next set of
However, in the case of the g-2PL protocol, some deadlocksrequests only when the data item (and lock) is returned back
can be avoided by intelligently creating the forward lists. to it by the previous set of clients. This can unnecessarily

Specifically, some deadlocks can be avoided if in each delay read requests that have no conflict with the previous
of the forward lists, the order of the transactions is the same.requests. A solution to both of these problems is as follows.
Formally, the forward list for each data item can be repre- A forward list that contains only read requests is termed
sented by a transaction precedence graph. The transaction read-only forward list (RO-FL). Any read request received
precedence graph is a directed graph which determines théy the server after it has dispatched a RO-FL, is granted im-
order in which each data item withovefrom one client mediately without waiting for the data item to return, thus
site to another. In order to ensure linear ordering, transac-removing any extra delays. This is equivalent to expanding

BANERJEE and CHRYSANTHIS: GROUP TWO-PHASE LOCKING: A SCABAE DATA SHARING PROTOCOL

the RO-FL to include new read requests that arrive after thetation, deadlocks are detected by computing wait-for-graphs
forward list is constructed and transmitted. This solution and aborting the transactions necessary to remove the dead-
will also remove allread-onlydependencies in a read-only locks. This is the typical implementation found in commer-
system. Consider the above example where transactions cial systems that use the s-2PL protocol. In order to avoid
andt, request read access:toandy in the opposite order. the use of tunable timeouts, deadlock detection is initiated
Knowing that the forward lists for x and y are read-only, the when alock cannot be granted. In the case of g-2PL, the for-
server will grant the new requests as if they have arrived in ward lists are reordered using transaction precedence graphs
the previous window. The initial forward lists for data items to ensure that deadlocks are prevented. Recall from Sec-

2 andy are as below. tion 3 that the transaction precedence graphs capture the or-
Initial FL for x: read, () and Initial FL for y: read:(y). der of lock granting and is consistent with the serialization
Expanded FL for x:read (z),reads(xz) and Expanded FL order. In the case that such reordering is not possible, the
fory: reads (y),read (y). offending transactions are aborted. Two scenarios are con-
This modification is easy to implement and can be han- sidered when a transaction is aborted. In the first scenario,
dled by the server without contacting the clientg obr 5. each transaction that is aborted is replaced by another inde-

The forward list can be expanded as long as consecutive reaghendent transaction. In the second scenario which is more
requests arrive. A new forward list will be started with the realistic, each transaction that is aborted is restarted by an-
arrival of a write request. The server will wait for acknowl- other transaction and the overall transaction response time
edgments from all reading clients that are on the expandedncludes the time overhead of restarting. Both scenarios are

forward list before dispatching the next forward list. evaluated to study the impact of grouping on restarts. The
simulation model assumes that the computation cost at the
4. System Model for Performance Evaluation data server to reorder the forward lists as well as computing

the wait-for-graphs is the same.

In order to evaluate the performance of the s-2PL and g-2PL Table 2 summarizes all the experimental parameters
protocols under a high-speed networking environment, sim-and the corresponding range of values of the performance
ulation models of both protocols were developed usingthe study. Note that time durations are specified in simulation
programming language. The simulation is a discrete-eventtime unitsrather than real time irseconds The conver-
simulation using the unit-time approach to advance the sim-sion between the two is easily achieved and realistic val-
ulation clock [28]. We consider a data-server database sys-ues can be chosen by specifying the appropriate conversion
tem, with a single server and multiple clients connected by factor. However, it is important to recognize that the rela-
a high speed network. As described earlier, the transmissiortive values of these parameters have been chosen correctly.
delays in a high speed network can be assumed to be negligiSince we assume a wide area high speed networking envi-
ble, and the network latency consists of the signal propaga-ronment, the network latency is significantly higher than the
tion and switching delays. In this paper, we make the sim- computation/idle times. For example, if we assume that 1
plifying assumption that the network latency between any simulation time unit = 0.5 msec, then the network latencies
two sites (server-client, client-client) and in either direction considered are between 0.5 and 375 msec, which are real-
is the same, and. no site and communication failures occur. istic for wide area networks including satellite transmission

All clients are assumed to be identical and run trans- links. The computation time per database operation is then
actions that have the same statistical profile. The multi- between 500 and 15Q@sec. In our simulations, we emulate
programming level at each client is assumed to be one, i.e.various high speed networking scenarios, ranging from lo-
at any given time, each client processes a single transaccal area networks (LAN) to wide area networks (WAN), as
tion only. Further, at the end of each transaction, it is re- listed in Table 3 with their network latency values.
placed with another transaction at that client site after some
idle time that is uniformly distributed between a given min- 5. Simulation Results
imum and maximum values. Each transaction accesses be-
tweenl and N data items uniformly. These data items are In this section, the results of the simulation study are pre-
drawn from a pool ofM data items that reside at the data sented. The g-2PL and s-2PL simulations were run on a
server. M is purposely kept small to emulate hot data ac- cluster of Sun Ultra processors with the Solaris 2.5.1 op-
cess. Each data access may be of the type read with a giverrating system. The transient phase of the simulation runs
read probabilityp,, and of the type write with a probability = was eliminated. In each simulation run, 100,000 transac-
pw = 1 — p,. The transaction execution $&quentiagli.e., tions (excluding the transient phase) were generated, requir-
requests for data items are generated sequentially, with eacling a simulation time of upto 100 million time units. 95%
request being generated only after the previous request hasonfidence intervals on the average transaction response
been granted and some think time (for computations) hastime were calculated from 5 independent simulation runs.
elapsed. In our model, this computation time is uniformly The relative precision of the transaction-level measurements
distributed between a given minimum and maximum values. never exceeded 2% of the mean values. To conserve space,

As mentioned in the previous section, two-phase lock- only the salient results are presented.
ing protocols are deadlock-prone. In the s-2PL implemen- Before describing the main results of this study, first

IEICE TRANS. , VOL., NO.

6
Servers 1 6
% read accesses 0-100 %
Clients varying |
Network Latency 1 — 750 time units 5 : : Read-only transactions

hot data items 25

Computation Time per operation| 1 - 3 time units
Transaction Execution Pattern Sequential

Idle Time between transactions | 2 — 10 time units
data items reqd. by a transactignl — 5
Multiprogramming level at clients| 1

Table2 Simulation Parameters

Percentage of transactions aborted

Network Type Latency
Single Segment Local Area Network (ss-LAN) 1
Multi-Segment Local Area Network (ms-LAN 50

Campus Area Network (CAN) 100 K e
Metropolitan Area Network (MAN) 250 Network latency oon
Small Wide Area Network (s-WAN) 500 Fig.1 Percentage of transactions aborted as a function of theorietw
Large Wide Area Network (I-WAN) 750 latency in a read-only system

Table3 Networking Environments Simulated

ity is 1.00 (Figure 4) is the performance of s-2PL better than
the impact of read-dependencies is assessed. In Figure 1th€ 9-2PL protocol. In the other cases, over the entire range
the percentage of transactions aborted is plotted versus th@f nétwork latency, g-2PL outperforms s-2PL. Without tak-
network latency in a read-only system. The fraction of trans- INd into account the restart process, the percentage improve-
actions aborted due to read-deadlocks decreases with infentin the response time of the g-2PL protocol over that of
crease in the network latency, and is negligible beyond a net-th€ S-2PL protocol was observed to be between 19.50% and
work latency of 10 units in the experiments conducted. The 26:92% in the presence of update transactions. The percent-

percentage of transactions aborted due to read-deadlocks j89€ improvement in the response time including the restart
never more than a little over 5%. Thus the impact of the Overhead of the g-2PL protocol over that of the s-2PL proto-
read-deadlocks is small and dominant only in the LAN en- €Ol iS observed to be between 18% and 28% in the presence
vironment. The above observation can be explained as fol-Of Update transactions. Thus, the maximum improvement
lows. With sequential transaction execution patterns (as ha<f the g-2PL protocol over the s-2PL protocol increases by
been assumed in the system model), at high network laten2PpProximately 1-2% when restarts are taken into account.
cies, the data requests at the server are spread out over timd,N€ réason for the better performance of s-2PL in read-only
causing less conflicts across multiple windows, leading to SYStems is that in the g-2PL protocol described here, access
fewer deadlocks. At a lower network latency, data requests/®duests are granted only at the end of the window periods,
by different transactions occur close together, causing more@nd not in between. Thus, the reads are penalized in the g-
transaction conflicts in a smaller time frame. Given that the 2PL System and the s-2PL protocol has better performiance
impact of the read deadlocks is found to be minimal, and the The above results are with the FIFO ordering of the
focus of this study is on high data contention environments, forward list. The effect of three re-ordering schemes (order-
the solution proposed in Section 3.2.2 to remove these deadi"d rules 1, 4b and 5 from Table 1) on the performance are
locks was not implemented in the simulation model, bearing Presented in Table 4 for the above system parameters. As
in mind that without this solution, read accesses across mul-S€€n from these results, the effect of the various re-ordering
tiple windows may suffer a larger delay. schemes are r_mmmal (less than 1% from the FIFO case).
The g-2PL protocol is particularly suited to accessing Thus the remainder of the results are presented for the FIFO

hot data items. Thus we simulated the hot portion of a ordering of the FL, and including the effect of.restarts. N
database where a small number of data items are accessed _From the above graphs, the geographical scalability
by a large number of clients. Figures 2 — 4 contain the av- (6S(r)) metric can be computed. This is shown in Table 5
erage transaction response time plotted against the networ#? Which the geographical scalability is tabulated for a given
latency, for 3 values of the read probabilify. (= 0.0, 0.6, or bog_nd on the average transaction response time. This s_cal—
1.0) in a database system with 25 hot data items, 50 clients2Pility measure is independent of the actual response time
and each transaction accessing between 1 and 5 data itenfdound used. This table shows that the g-2PL protocol is
(uniform access) for the g-2PL and s-2PL protocols. For 29% more scalable than the s-2PL protocol wher= 0.0
each protocol, there are two curves, one that simulated the2nd 36.36% whep,. = 0.6. On the other hand, in a read-
restart process (the higher values), and another that did notOnly systemg, = 1.0), the s-2PL protocol is approximately
Obviously as the network latency is increased, the average 1, read-only systems, the average transaction responge tim

transaction response time increases correspondingly. Fronor transactions accessing a single data item in the s-28togol
Figures 2 — 4, it is evident that only when the read probabil- should be the round-trip network latency.

BANERJEE and CHRYSANTHIS: GROUP TWO-PHASE LOCKING: A SCABAE DATA SHARING PROTOCOL

Campus Area Network

[pr [FIFO(Rule1)] Rule 4b | Rule 5 |

0.0 | 10582.968750| 10558.753906 10608.459961

0.4 5678.985840| 5672.341797| 5652.992676

1.0 691.264709 693.854187 693.949646

Large Wide Area Network

[pr | FIFO(Rule1)] Rule 4b | Rule 5 |

0.0 | 79249.976562| 79315.117188| 79301.273438

0.4 | 42604.316406| 42596.437500 42529.902344

1.0 | 5209.281738| 5176.771973| 5200.751465

Table4 Mean transaction response time of g-2pl for three orderihesr
0.00 | 25.00 %
0.60 | 36.36 %
Table5 Geoaraphical network scalability versus
2, 5x 1’ T <
*:1g-2PL e i
L x:s-2PL Ieat ’ i
%:1 st . ’ .
o5l o e ~ J
X g %= —iZ

0 100 200 300

Fig. 2
latency,p,=0.0

x 10
25

400 500
Network latency

600 700 800

Mean transaction response time of g-2pl & s-2pl versus ndgtwo

*:1g-2PL

x:s-2PL

N
)
T

Mean transaction response time
[
T

0.5

0 L

L
0 100 200 300

Fig. 3
latency,p,=0.6

i i
400 500
Network latency

L L
600 700 800

Mean transaction response time of g-2pl & s-2pl versus négtwo

10

8- *:g-2PL q
Xx:s-2PL

Mean transaction response time

0 100

300
Network latency

Mean transaction response time of g-2pl & s-2pl versus ndtwo
latency,p,=1.0

400 500 600

Fig. 4

access requests and saving on the number of rounds and only
at very high read probabilities (close to 1.0) is the perfor-
mance of the s-2PL protocol better. As the read probability
is increased, a cross-over in performance is observed.

As can be seen from the figures, the average transac-
tion response time decreases non-linearly as the data con-
tention levels are decreased. Thus the data contention scal-
ability (DCS(@)) depends on the actual average transaction
response time bounds considered. The g-2PL protocol is
found to be upto 3 times more scalable than the s-2PL pro-
tocol with respect to data contention. This implies that the
g-2PL protocol can support upto three times the data con-
tention levels that the s-2PL protocol can support.

To compute the system scalability (SP(metric, the
following experiments were conducted. The network la-
tency is fixed at 500 time units (small WAN) and each trans-
action accesses between 1 and 5 data items, out of a total of
25 hot data items. Figure 6 contains the plots of the average
transaction response time for the g-2PL and s-2PL protocols
versus the number of clients, with a fixed read probability of
0.25. Except in very small systems, the response time in the
s-2PL protocol is higher (upto 28%). Also, in this case as
well, the average transaction response time increases non-
linearly with the number of clients. Thus, the system scala-
bility is a function of the average transaction response time
bound chosen. The g-2PL protocol is found to be capable
of supporting upto 26% more clients than the s-2PL proto-
col whenp,. = 0.25. At p,. = 0.75, the g-2PL can support
upto 78.5% more clients than the s-2PL protocol for the pa-
rameter ranges studied. Again, note that the scalability can
be expected to be larger than 78.5% in some cases as the
deadlock detection scheme in s-2PL is made more realistic.

Figure 7 contains a plot of the average transaction

twice as scalable with network span as the g-2PL protocol. throughput versus the number of clients, for a read proba-
Figure 5 contain plots of the average transaction re- bility of 0.75. The s-2PL and the g-2PL protocols thrash at
sponse time versus the read probability for a network latencya system size of 8 clients and 62 clients respectively.

of 250 simulation time units. At low read probabilities, the

The g-2PL and s-2PL protocols both suffer from the

g-2PL protocol outperforms the s-2PL protocol by grouping transaction deadlock phenomenon which results in transac-

IEICE TRANS. , VOL., NO.

81~ *:g-2PL = 281
1s-2PL
S 26

’
x

241

=
T
X
I

221

I 5
T T
,
X
I I

w
T

7
I

Average transaction response time
7
,
Throughput (transactions per unit time)

N
T

/
I

0 L L L L L L L L L 1 L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 10 20 30 40 50 60 70

Read probability Number of clients

Fig.5 Mean transaction response time of g-2pl & s-2pl versusthd re Fig. 7 Mean transaction throughput versus number of cliepts: =
probability for latency = 250 units (MAN) 0.75 and network latency = 500 time units

x10°
35 43

N
o
T
IS
=
T
I

N
T
IS
S
T
I

-
o
T
@
%

Average transaction response time
Percentage transactions aborted
w
&

N
T
w
<
T
I

051
36 a

0 L L L L L Il 35 i i L L Il Il L
0 20 40 60 80 100 120 140 0 100 200 300 400 500 600 700 800
Number of clients Network latency

Fig.6 Mean transaction response time versus number of clignts= Fig.8 Percentage of transactions aborted versus network latgncy:
0.25 and network latency = 500 time units 0.6

tion aborts. Thus it is important to compare the percent- with significant increases in data contention, the number of
age of transaction aborts in both protocols, as a functionclients and larger network latencies due to the large geo-
of the network latency and the read probability. Due to graphical network span. Recognizing propagation latencies
space restrictions, graphical results are not presented on thigs the bottleneck and that migrating large amounts of data
topic. As expected, the percentage of transactions aborteetween clients and servers will not be a problem in future

decreases with increase in the read probability. The percent\WANs, in this paper we have derived, from the basic server-
age of transactions aborted in both protocols is fairly close, based two-phase locking (s-2PL) protocol, a new protocol
although the g-2PL protocol outperforms the s-2PL protocol called the group two-phase locking (g-2PL) protocol tar-

in the entire range of network latency values studied. Fur- geted for gigabit-networked client-server systems. In order
ther, the percentage of transactions aborted stays fairly con+to study the performance of the g-2PL protocol, we have im-

stant (see Figure 8) for all latencies above the single segmenplemented a simulator of a shared nothing, data-server dis-

LAN case (latency of 1 unit). tributed database system. In this paper, we reported on the
performance of the g-2PL protocol in the absence of com-

6. Conclusions munication and site failures by comparing it with the perfor-
mance of the s-2PL protocol.

Traditionally, the performance evaluation of caching The results of our experiments confirmed our hypoth-

schemes in data server systems, which were conducted oveesis that the g-2PL protocol is particularly suited to control
local area networks, have not taken scalability issues into ac-access to hot data items and showed that the g-2PL proto-
count. However, this is a key issue in future systems whencol, in general, outperforms the s-2PL protocol for update
data server systems are migrated to wide area networkstransactions. Specifically, the g-2PL protocol exhibits supe-

BANERJEE and CHRYSANTHIS: GROUP TWO-PHASE LOCKING: A SCABAE DATA SHARING PROTOCOL

rior performance when the percentage of reads performed by [13]
transactions is relatively low compared to the writes in the
database system and the network latency is high. Between
18-28% improvement in the response time was observed.
Further, the g-2PL protocol is more scalable than the s-2PL
protocol. It scales to between 25-36% larger networks, 26— [15]
78.5% more clients and upto 3 times the data contention
levels than the s-2PL protocol. In addition, although not
shown in this paper, it balances the network traffic between [16]
the server and the clients so as to reduce the traffic at the
server by a factor of between 10-15. [17]
As part of our future research, we would like to inves-
tigate the performance of g-2PL protocol in the context of
read-only transactions by applying the read-only optimiza- [18l
tion discussed in this paper. We would like to extend our
simulator along a number of directions, such as to include g
the fine level CPU processing granularity. This will allow us
to compare the g-2PL protocol with more caching protocols.

14]

Acknowledgments [20]

This work has been partially supported by NSF awards IRI- [21]
9502091, NCR-9624125, NCR-9702389 and 11S-9812532.

References [22]

[1] K. Wilkinson and M. A. Neimat, “Maintaining Consistencyf
Client-Cached data,” ifProc. of the 16th Intl. Conf. on Very Large [23]
Databasespp. 122—-134, Aug. 1990.

[2] Y. Wang and L. Rowe., “Cache Consistency and Concurreay-
trol in a Client/server DBMS Architecture,” ifProc. of the ACM
SIGMOD Intl. Conf. on Management of Datpp. 367—-376, May [24]

1991.
[3] M. Carey, M. Franklin, M. Livny, and E. Shekita., “Data €dng
Tradeoffs in Client-Server DBMS Architectures,” iroc. of the [25]
ACM SIGMOD Intl. Conf. on Management of Datap. 357-366,
May 1991. [26]

[4] M. J. Franklin, M. Carey, and M. Linvy, “Local Disk Cachanfor
Client-Server Databases,” roc. of the Intl. Conf. on Very Large
Data Basespp. 641-654, Aug. 1993.

[5] M. J. Franklin and M. Carey, “Client-Server Caching Rigd,” [27]
in Distributed Object ManagemeifT. Ozsu, U. Dayal, and P. Val-
duriez, eds.), pp. 57-78, Morgan Kaufmann Publishers, 1993 [28]

[6] A. Delis and N. Roussopoulos, “Management of UpdatesiénEn-
hanced Client-Server DBMS,” ifProc. of the 14th Intl. Conf. on
Distributed Computing Systemiun. 1994.

[7]1 A. Billiris and J. Orenstein, “Object Storage Managernarchitec-
tures,” in Advances in Object-Oriented Database SystésDo-
gac, M. T. Ozsu, A. Billiris, and T. Selis, eds.), pp. 185-200
Springer Verlag, 1994.

[8] P.Bernstein and E. Newcométrinciples of Transaction Processing
for the Systems Professiondllorgan Kaufman, 1997.

[9] T. Nguyen and V. Shrinivasan, “Accessing Relational dbaises
from the World Wide Web,” irProc. of the ACM SIGMOD Intl. Conf.
on Management of Datgp. 529-539, May 1996.

[10] D.Jadav, M. Gupta, and S. Lalshmi, “Caching Large DasabOb-
jects in Wed Servers,” iffroc. of the 7th Intl. Workshop on Research
Issues on Data Engineeringp. 10-19, Apr. 1997.

[11] L. Kleinrock, “The Latency/Bandwidth Tradeoff in Giga Net-
works,” [IEEE Communications Magvol. 30, pp. 36—40, Apr. 1992.

[12] M. Hornick and S. Zdonik, “A shared, segmented memorsteyn
for an object-oriented databas&CM Transactions on Office Infor-
mation Systemvol. 5, no. 1, pp. 70-95, 1987.

C. Lamb, G. Landis, J. Orenstein, and D. Weinreb, “Th¢e@iStore
Database SystemCommunication of the ACMvol. 34, no. 10,
pp. 34-48, 1991.

M. Franklin, M. Zwilling, C. Tan, M. Carey, and D. DeWjttCrash
Recovery in Client-Server EXODUS,” iRroc. of the ACM SIG-
MOD Intl. Conf. on Management of Datpp. 165-174, May 1992.
S. Venkataraman, J. F. Naughton, and M. Livny, “Remotad-
Sensitive Caching for Multi-Server Database SystemsProc. of
the Intl. Conf. on Data Engineering (ICDHyeb. 1998.

A. Delis and N. Roussopoulos, “Performance and Schtialnf
Client—Server Database Architectures,” Btoc. of the 19th Int'l
Conf. on Very Large Database$992.

M. J. Franklin, M. Carey, and M. Linvy, “Transactiondlent-server
cache consistency: Alternatives and performané&;M Transac-
toions on Database Systeni997.

K. P. Eswaran, J. Gray, R. Lorie, and |. Traiger, “The iotof
Consistency and Predicate Locks in a Database Sys@omimuni-
cations of the ACMvol. 19, pp. 624—633, Nov. 1976.

J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyayanan,
R. Sidebotham, and M. West, “Scale and Performance in a dis-
tributed File system,”ACM Transactions on Computer Systems
vol. 6, no. 1, pp. 51-81, 1988.

M. Carey and M. Livny, “Conflict detection tradeoffs foepli-
cated data,ACM Transactions on Database Systexw. 16, no. 4,
pp. 703-746, 1991.

S. Banerjee and P. K. Chrysanthis, “Performance etialuaf the
g-2PL protocol,” inProc. of the Tenth Intl. Conf. on Parallel and
Distributed Computing Systems (PDC). 428—-432, Oct. 1997.
S. Banerjee and P. K. Chrysanthis, “Network Latencyi@jziations
in Distributed Database Systems,"Rmoc. of the Intl. Conf. on Data
Engineering (ICDE)pp. 532-540, Feb. 1998.

C. Mohan and I. Narang, “Recovery and Coherency-Corroto-
cols for Fast Intersystem Page Transfer and Fine-Gratylaack-
ing in a Shared Disks Transaction Environment,Piroc. of the 17th
Intl. Conf. on Very Large Databasg$991.

P. A. Bernstein, V. Hadzilacos, and N. Goodm@oncurrency Con-
trol and Recovery in Database SystemReading, MA: Addison-
Wesley, 1987.

J. N. Gray and A. Reuteffransaction Processing: Concepts and
TechniguesMorgan Kaufmann, 1993.

D. DeWitt, R. Katz, F. Olken, L. Shapiro, M. Stonebrakand
D. Wood, “Implementation Techniques For Main Memory Datsba
Systems,” ifProc. of the ACM SIGMOD Intl. Conf. On Management
of Data, pp. 1-8, 1984.

D. Gawlick and D. Kinkade, “Varieties of Concurrency i@ml in
IMS/VS Fast Path,IEEE Database Engineeringol. 8, Jun. 1985.
R. Jain, The Art of Computer Systems Performance Analydihn
Wiley & Sons, 1991.

