Scalable Processing of Read-Only Transactions
in Broadcast Push

Evaggelia Pitoura Panos K. Chrysanthis
Department of Computer Science Department of Computer Science
University of loannina, Greece University of Pittsburgh
pitoura@cs.uoi.gr panos@cs.pitt.edu
Abstract broadcast channel.

Push-based delivery is central to an increasingly impor-

Recently, push-based delivery has attracted considerablelant range of applications that involve dissemination of in-
attention as a means of disseminating information to large formation to a large number of clients. Dissemination-
client populations in both wired and wireless settings. In based applications include information feeds such as stock
this paper, we address the problem of ensuring the consis-quotes and sport tickets, electronic newsletters, mailing
tency and currency of client read-only transactions in the lists, road traffic management systems, and cable TV. Im-
presence of updates. To this end, additional control infor- portant are also electronic commerce applications such as
mation is broadcast. A suite of methods is proposed thatauctions or electronic tendering. Recently, information dis-
vary in the complexity and volume of the control informa- semination on the Internet has gained significant attention
tion transmitted and subsequently differ in response times,(e.g., [7, 19]) as well.
degrees of concurrency, and space and processing over- In this paper, we address the problem of preserving the
heads. The proposed methods are combined with cachingonsistency and currency of client read-only transactions,
to improve query latency. The relative advantages of eachwhen the values of broadcast data are updated at the server.
method are demonstrated through both simulation results To this end, control information is broadcast that enables
and gqualitative arguments. Read-only transactions are pro- the validation of read-only transactions at the clients. We
cessed locally at the client without contacting the server propose various methods that vary in the complexity and
and thus the proposed approaches are scalable, i.e., theirvolume of control information, including transmitting inval-
performance is independent of the number of clients. idation reports, multiple versions per item, and serializabil-
ity information. Caching at the client is also supported to
decrease query latency. The performance of the methods is
evaluated and compared through both qualitative arguments
and simulation results. In all the methods proposed, consis-
tency is preserved without contacting the server and thus the

In traditional client/server systems, data are delivered onmethods are scalable; i.e., their performance is independent
demand. A client explicitly requests data items from the of the number of clients. This property makes the methods
server. Upon receipt of a data request, the server locates thappropriate for highly populated service areas.
information of interest and returns it to the client. This form Providing transactional support tailored to read-only
of data delivery is callegull-based In many wireless set- transactions is important for many reasons. First, the great
tings, such as in satellite and cellular networks, the servermajority of transactions in dissemination systems are read-
machine is provided with a relative high-bandwidth chan- only. Then, even if we allow update transactions at the
nel which supports broadcast delivery to all mobile clients client, it is more efficient to process read-only transactions
located inside the geographical region it covers. This facil- with special algorithms. That is because consistency of
ity provides the infrastructure for a new form of data de- queries can be ensured without contacting the server. This
livery called push-basedielivery. Broadcast is supported is important because even if a backchannel exists from the
in wireline networks as well. In push-based data delivery, client to the server, this channel typically has small commu-
the server repetitively broadcasts data to a client populationnication capacity. Furthermore, since the number of clients
without a specific request. Clients monitor the broadcastsupported is large, there is a great chance of overwhelm-
and retrieve the data items they need as they arrive on theéng the server with clients’ requests. In addition, avoiding

1. Introduction

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:43:47 UTC from |IEEE Xplore. Restrictions apply.

contacting the server decreases the latency of client transease, the client first gets this information from the broadcast
actions. The proposed methods are applicable in wired asand use it in subsequent reads.
well as in wireless settings. The smallest logical unit of a broadcast is calertket

In most current research, updates have been treated ifBuckets are the analog to blocks for disks. Each bucket has
the context of caching (for example, [5], [2], and [12]). In a header that includes useful information. Information in
this case, updates are considered in terms of local cach¢he header usually includes the position of the bucket in the
consistency; there are no transactional semantics. Transbcast as an offset from the beginning of the bcast as well
actions and broadcast were first discussed in the Datacyclas the offset to the beginning of the next bcast. Data items
project [8] where special hardware is used to detect changesorrespond to database records (tuples). We assume that
of values read and thus ensure consistency. The Datacycleisers access data by specifying the value of one attribute
architecture is extended in [3] for the case of a distributed of the record, the search key. Each bucket contains several
database where each database site broadcasts the conteiitams.
of the database fragments residing at that site. More recent
work involves the development of new correctness criteria 2 2. Consistency of Read-Only Transactions
for transactions in broadcast environments [18] and the de-
ployment of the broadcast me_dium for transmitting CONCU™ \ne assume that the server broadcasts the content of a
rency control related information so that part of transaction database. A database consists of a finite set of data items.

management can be undertaken by the clients [4]. A database state is typically defined as a mapping of every
The remainder of this paper is organized as follows. In gata to a value of its domain. Thus, a databases state, de-
Section 2, we introduce the problem and in Section 3, We oteq DS, can be defined as a set of ordered pairs of data
propose various methods for processing read-only transaciiems in D and their values. In a database, data are related
tions. The methods are extended to support caching in Secpy 5 number of integrity constraints that express relation-
tion 4. In Section 5, the performance of the methods pro- ghins of values of data that a database state must satisfy. A

posed is compared through both qualitative arguments andjaahase state (nsistentf it does not violate the integrity
simulation results. Finally, in Section 6, we offer conclu- gnstraints 6.

sions and present our plans for future work. While data items are being broadcast, transactions exe-

cuted at the server may update their values. We assume that

2. Read-Only Transactions and Broadcast the content of the broadcast at each cycle is guaranteed to
be consistent. In particular, we assume that the values of
data items that are broadcast during each bcycle correspond
to the state of the database at the beginning of the cycle, i.e.,
the values produced by all transactions that have been com-

The server periodically broadcasts data items to a largemitted by the beginning of the bcycle. Thus, a read-only
client population. Each period of the broadcast is called atransaction that reads all its data within a single bcycle can
broadcastycleor becycle while the content of the broad- be executed without any concurrency overhead at all. We
cast is called dcast Each client listens to the broadcast make this assumption for clarity of presentation.
and fetches data as they arrive. We assume that all updates Since the set of items read by a transaction is not known
are performed at the server and disseminated from thereat static time and access to data is sequential, transactions
Clients access data from the broadcast in a read-only modemay read data items from different bcasts, that is values
We do not make any particular assumptions about transacfrom different database states. As a simple example, con-
tion processing, i.e., concurrency control or recovery, at the sider the transaction that corresponds to the following pro-
server. gram:if a > O thenread b else read whereb andc precede

Clients do not need to listen to the broadcast continu- a in the broadcast. Then, a client transaction has to sead
ously. Instead, they can tune-in to read specific items. Se-first and wait for the next bcycle to reador c. We define
lective tuning is important especially in the case of portable the spanof a transactiolf’, span(T'), to be the maximum
mobile computers, since they most often rely for their oper- number of the different bcycles from whi@hreads data.
ation on the finite energy provided by batteries and listening Since client transactions read data from different cycles,
to the broadcast consumes energy. However, for selectivehere is no guarantee that the values they read are consis-
tuning, clients must have some prior knowledge of the struc-tent. We define theeadsetof a transactiori’, denoted
ture of the broadcast to determine when the item of interestRead_Set(T), to be the set of items it reads. In particu-
appears on the channel. Alternatively, the broadcast can béar, Read_Set(T') is a set of ordered pairs of data items and
self-descriptive, in that, some form of directory information their values thaf' read. Our correctness criterion for read-
is broadcast along with data (see for instance [11]). In thisonly transactions is that each transaction reads consistent

2.1. The Broadcast Model

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:43:47 UTC from |IEEE Xplore. Restrictions apply.

to overflow buckets

data. Specifically, the readset of each read-only transaction |

must form a subset of a consistent database state [17]. We | nexer [xa] d [P[k] dﬂ:\ ke[d e[-+ 1 [ka] o [v][ka]a [V]
assume that each server transaction preserves database con- bucket < overflow bucket ——=
sistency. Thus, a state produced by a serializable execution Notation: k (key fields) d (other fields) v (version) P (pointer)
(i.e., an execution equivalent to a serial one [6]) of a number

of server transactions produces a consistent database state. Figure 1. Multiversion broadcast

The goal of the methods presented in this paper is to ensure

that the readset of each read-only transaction corresponds))
to such a state. Theorem 2 The multiversion broadcast method produces

correct read-only transactions.
3. Read-Only Transaction Processing

Proof. In [14].
3.1. The Invalidation-Only Method In terms of currency, the data items readygorrespond

to the database state at the beginningyofif for each data

Each bcast is preceded by an invalidation report in theitem, all its S previous values, i.e., the values during the

form of a list that includes all data items that were updated previousS bcycles, are available, whefeis the maximum
at the server during the previous bcycle. For each activetransaction span among all read-only transactions, then, all
read-only transactiof®, the client maintains a sétS(R) read-only transactions can proceed successfully by reading
of all data items thaR has read so far. At the beginning of older versions of data when necessary. If, instead, the server
each bcast, the client tunes in and reads the invalidation rebroadcastd” older versions, for some constait < S,

port. A read transactioR is aborted if an itenx € RS(R) then some read-only transactions may be aborted. A server
was updated, that is if appears in the invalidation report. can either maintain a constant numberof versions per
Clearly, item or just the different values of each item during ihe

previous cycles (that may be less thidh In any case, the
numberV of older versions that are retained can be seen
as a property of the server. In this sensé&;-aultiversion
Proof. In [14]. server, i.e., a server that broadcasts the previoualues, is

one that guarantees the consistency of all transactions with
spanV” or smaller. The amount of broadcast reserved for old
versions can be adapted depending on various parameters,
such as the allowable bandwidth, feedback from clients, or
update rate at the server.

Theorem 1 The invalidation-only method produces correct
read-only transactions.

With the invalidation-only method, a read-only transac-
tion R reads the most current values, in particular the last
values written by transactions committed by the beginning
of the bcycle at whiclR commits. The increase in the size
of the broadcast is equal {8:%], whereu is the number of
items updated is the size of the key anidthe bucket size. Multiversion Broadcast Organization. There are various

ways to organize a multiversion broadcast [14]. One ap-
3.2. Multiversion Broadcast proach is to broadcast old versions at the end of the bcast.
In particular, instead of broadcasting with each data item all

The invalidation-only method is prone to starvation of its versions, a single version, the most recent one, is broad-
gueries by update transactions. To minimize the number ofcast along with a pointer. The pointer points to the older
invalidated and aborted read-only transactions, older ver-versions of the item, if any, that are broadcast at the end
sions of data items are retained temporarily. In particu- of the bcast iroverflowbuckets (Figure 1). This way, for
lar, the server, instead of broadcasting the last committedeach data item, the offset of its position in the bcast from
value for each data item, maintains and broadcasts multi-the beginning of the bcast remains fixed. Thus, the server
ple versions per item. Multiversion schemes, where older needs not recompute and broadcast an index at each bcycle.
copies of items are kept for concurrency control purposes,Instead, the client may use a locally stored directory to lo-
have been successfully used to speed-up processing of orgate the first appearance of a data item in the broadcast and,
line read-only transactions in traditional pull-based systemsif needed, follow the pointer to locate older versions in the
(e.g., [13]). Letzy be the beycle during which a client trans- overflow bucket. The drawback is that long-running read-
actionR performs its first read operation. During, trans- only transactions that read old versions are penalized since
actionR reads the most up-to-date value for each data item,they have to wait for the end of the bcast. However, trans-
that is, the value having the largest version number. In lateractions that are satisfied with current versions do not suffer
cycles, R reads the value with the largest version number from a similar increase in latency.
¢n, sSuch that,, < ¢p. If such a value existsi proceeds, Let v be the size of the version numberthe size of the
elseR aborts. key, d the size of the other attributes andhe mean num-

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:43:47 UTC from |IEEE Xplore. Restrictions apply.

¢
P is the size of the pointer, while the total size of the over-

flow buckets isB = [w]. The pointer is kept

as the offset of the beginning of the overflow bucket from

the end of the bcast, and thus be analog to the number of

overflow buckets, in particulaP = log(B). To allocate Figure 2. At bcycle i+ 1, R reads z from T,
less space for version numbers, instead of broadcasting the committed during beycle & (co < k < i). Ty
number of the bcycle during which a version was created, committed during beycle m (cg < m < i) over-
we broadcast the difference between the current bcycle and wrote an item previously read by R.

the bcycle during which the version was created, i.e., how
old the versionis. For example, if the current bcycle is cycle
30, and a version was created during bcycle 27, we broad-
cast 3 as the version of the data value instead of 27. Then™& be employed.

log(S) bits are sufficient fop. Implementation of the SGT Method. Next, we describe
animplementation of the SGT method based on the assump-
tion that histories are strict. A historyssrictif no data may

be read or overwritten until the transaction that previously
wrote into it terminates. The SGT method is applicable to
Both the invalidation-only and the multiversion schemes Other cases as well but with additional overhead. At the be-

ensure that transactions read consistent values, i.e., value@inning of bcast + 1, the server broadcasts the following
produced by a serializable execution, by enforcing transac-control information:
tions to read values that correspond to the content of a single
bcast. However, it suffices for transactions to read values
that correspond to any consistent database state not neces-
sarily one that is broadcast. To this end, we use a conflict
serialization graph testing (SGT) method.

The serialization graph for a histofy, denotedSG(H),
is a directed graph whose nodes are the committed transac- o anaugmented invalidation report

ber of updates per bcycle afithe maximum transaction G2 sG" sc™? SG
span. The size of the data bucketdigk + d + P), where . & -
®

3.3. Serialization-Graph Testing

¢ thedifference from the previous serialization graph
In particular, the server broadcasts for each transac-
tion that was committed during bcyclea list of the
transactions with which it conflicts, i.e., it is connected
through a direct edge.

tionsinH and whose edges are &ll —+ T; (i # j) such that The report includes all data written during bcydle
one of7;’s operations precedes and conflicts with on&pf along with an identification of the first transaction that
operations irf [6]. According to the serialization theorem, wrote each of them during bcycle

a historyH is serializable iffSG(H) is acyclic. We assume
that each transaction reads a data item before it writesit, that |n addition, the content of the broadcast is augmented
is, the readset of a transaction includes its writeset. Then,so that along with each item, the identification of the last
in the serialization graph, there are two types of edges transaction that wrote it is also broadcast.
T); between any pair of transactiofisandT;: dependency At the beginning of each bcyclet 1, each client tunes
edges that express the fact tifatread the value written by in to obtain the control information and updates its local
T; andprecedencedges that express the fact thatwrote copySG of the serialization graph to include any additional
an item that was previously read y. edges and nodes. In addition, the client adds precedence
In brief, the SGT method works as follows. Each client edges for all its active read-only transactions as follows. Let
maintains a copy of the serialization graph locally. The seri- R be an active transaction aitS¢(R) be the set of items
alization graph at the server includes the transactiams- that R has read so far. For each itemin the augmented
mittedat the server, while the local copy at a client site in- invalidation report such that € RS*(R), the client adds a
cludes in addition all active read-only transactions issued atprecedence edge — Ty, whereT is the first transaction
the site. At each cycle, the server broadcasts any updatethat wrotez during beyclei. Although R conflicts with all
of the serialization graph. Upon receipt of the updates, thetransactions that wrote during bcyclei, it suffices to just
client integrates them into its local copy of the graph. A add one edge t@ (see [14] for a proof).
read operation at a client is accepted only if it does not cre- WhenR reads an iteny, a dependency edde — R is
ate a cycle in the local serialization graph. Else, the issuingadded in SG, wher&; is the last transaction that wrote
transaction is aborted. The serialization graph at the servefThe read operation is accepted, only if no cycle is formed.
is not necessarily used for concurrency control at the server]t can be shown that it suffices to just add one edges
instead a more practical method, e.g., two-phase locking,R instead of adding edgeE’ — R from all transactions

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:43:47 UTC from |IEEE Xplore. Restrictions apply.

T' that wrotey. To prove that the SGT method detects all at mostc conflicts with other transactions. Thus, the differ-
cycles that include a read-only transactiBnwe will use ence from the previous graph has at mdst edges. The
the following lemma. LetSG* be the subgraph cfG that total size of the difference ig:< (et (lea(S)Heg(N)))
includes only the transactions committed during bcycle assuming that we broadcast pair of conflicting transactions
where the first transaction in the pair is a newly committed
transaction, and the second one any previously committed

transaction with which it conflicts. If we broadcast the con-
() During broadcast cyclé + 1, the only type of cycle trol information at the end of the previous bcast, then the

Lemma 1 Letcy be the first broadcast cycle during which
an item read byR is overwritten.

that can be formed that includes R is of the faRm- offset of each item from the beginning of each bcast remains
Tj, = Tj, - ... Tj, — R, where foranyT; € SG™, fixed and a locally stored directory can be used.
it holdscy < m < 4.
4. Cachin
(b) The SGT method detects all such cycles. 9
Proof. In [14]. To reduce latency in answering queries, clients can cache

items of interest locally. Caching reduces not only the la-
tency but also the span of transactions, since transactions

Theorem 3 The SGT method produces correct read-only find data of interest in their local cache and thus need to

Figure 2 shows graphically the formation of such a cycle.

transactions. access the broadcast channel for a smaller nymber of cy-
cles. We assume that each page, i.e., the unit of caching,
Proof. In [14]. corresponds to a bucket, i.e., the unit of broadcast. In the

presence of updates, the value of cached items may become
ystale. There are various approaches to communicating up-

dates to the client. We assume invalidation combined with

a form of autoprefetching [2]. Other approaches are also

applied to read-only transactions. The main difference is 2PPlicable. In particular, we assume that at the beginning
that to implement the method, we broadcast control infor- of each bcycle, the server broadcasts an invalidation report,

mation in a form of a serialization graph, while they broad- which .iS a list of.the pages that have b_een updated. This
cast information per pair of data items. report is used to invalidate those pages in cache that appear

.) in the invalidation report. The invalidated pages remain in
Space EfficiencyInstead of keeping a complete copy ofthe c5che. When the new value of an invalidated page appears

serialization graph at each client, by Lemma 1, it suffices t0 j the proadcast, the client fetches the new value and re-
keeTg for each read-only transactighonly the subgraphs j5ces the old one. Thus, a page in cache either has a current
SG™ with m > co, wherec, is the bcycle when the first —y51ye (the one in the current beast) or is marked for auto-

item read byR was invalidated, i.e., overwritten. Thus, if efetching. The cache invalidation report is similar to the
no items are updated, there is no space or processing oVelialigation reports in our methods. However, the two re-

head at the client. Furthermore, at mssubgraphs are o115 differ in granularity. The cache invalidation report in-
maintained, where' is the maximum transaction span of ¢ydes pages (buckets) that have been updated, whereas the
queries at each client. Also, by Lemma 1, we need keepgery-processing invalidation report includes data items.
only the outgoing edges dt. o _ The proposed read-only transaction processing tech-
The volume of control information is considerable. Let niques can be easily extended to accommodate caching. For

tid be the size of a transaction identifig¥, the maximum b6 invalidation-only scheme, each read first checks whether
number of transactions committed per bcycle, anthe the item is in cache. If the item is found in cache and the

maximum number of operations per server transaction. Wepage is not invalidated, the item is read from the cache.
assume that transaction identifiers are unique within eachoiherwise. the item is read from the broadcast. A simple

beycle, thus it suffices to allocateg (V) bits per transac- gnpancement to the above scheme is to extend the cache so
tion identifier when the bcycle is known. To distinguish be- 4+ along with each item, it also includes the bcycle dur-
tween transactions at different bcycles, a version number iSing which the item was inserted in the cache. Febe a

broad(?ast i.ncrjlicat.ing trfle bc%/cle a’g which the tr.ansact'ion WaSquery andu, the first beycle at which an item € RS(R)
committed; the size of such version numberdg(5) bits, is invalidated. Instead of abortin®, R is marked abort and

since only the |§%bzd%)jg|oeg(sjve)1)re relevant. The size of the ¢ontinyes operation as long as old enough values are found
broadcast data is————;—~—>1, while the size of the in- i cache. In particular, a read operation is accepted if the

validation report igf “+0a(N))

Regarding the database state seerRRbyR is serialized
before all update transactions that overwrote items read b
R and after all update transactions from whighead from.
This is similar to the approximation criterion of [18] when

(N))]. Since, there are at most item is in cache and has version numbet < uy. We call
¢ operations per transaction, each transaction participates irthis method invalidation-only with versioned cache.

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:43:47 UTC from |IEEE Xplore. Restrictions apply.

T — T
Invalidétion-Only+Cache ~—
Invalidation-Only+Version Cache -+-
Table 1. Performance model parameters o O e Caehe o
Multiversion + Cache -x
Server Parameters Client Parameters — x
y S
D (BroadcastSize) 1000 ReadRange (range of client reads) 250 g
UpdateRange 500 theta (zipf distribution parameter) 0.95 %
theta (zipf distribution parameter) 0.95 Think Time (time between client ES
Offset (update and 0- 250100 reads in broadcast units) 2 é
. R 3
client-read access deviation) Number of reads per quey 5-50(10) §
g
ServerReadRange 1000 S (transaction span) varies = /)
N (number of server transactions) 10 E
Offset (update and 0 Cache ,"
server-read access deviation) 20T
X
u (Number of updates at the server) 50 - 500 (50) CacheSize 125
¢ (Number of operations per server trans) (u+4* u)/N Cache replacement policy LRU &
k (size of the key field) 1 unit Cacheinvaidation invalidation + 0 ’ L L L L L
. autoprefetch 5 10 15 20 25 30 40 45 50
d (size of the other fields) 5%k P Number of Client Reads
b (bucket size) d units

Figure 3. Abort rate with the number of read

Theorem 4 The invalidation-only with versioned cache Operations per client transaction
method produces correct read-only transactions.

Proof. In [14]. We assume that during each bcycl¥, transactions

To support the multiversion broadcast method, the cachede committed at the server. All server transactions have
must also include the version number for each item. Anal-the same number of update and read operations, where
ogously, for the SGT method, the cache must be extendedead operations are four times more frequent than up-
to include for each item the last transaction that wrote it; in- dates. Read operations at the server are in the range
formation that is broadcast anyway. In addition, each time BroadcastSize, follow a Zipf distribution, and have zero
an item is read from the cache, the same test for cycles a®ffset with the update set at the server. The client main-

when the item is read from the broadcast is performed. tains a local cache that can hold updacheSize pages.
The cache replacement policy is LRU: when the cache is

full, the least recently used page is replaced. When pages

5. Performance Evaluation are updated, the corresponding cache entries are invalidated
and subsequently autoprefetched. Table 1 summarizes the
5.1. The Performance Model parameters. Values in parenthesis are the default.

Our performance model is similar to the one presented in 5.2. Comparison of the Methods

[1]. The server periodically broadcasts a set of data items in .]

the range ofl to BroadcastSize. We assume for simplic- Concurrency. Updates at the server may invalidate data
ity a flat broadcast organization in which the server broad- Values read by read-only transactions and cause them to
casts cyclicly the set of items. The client accesses itemsP® aborted and reissued anew. Figure 3 depicts the abort
from the range 1 tRead Range, which is a subset of the rate f_or the schemes presented with cac_hlng at the chgnt.
items broadcastReadRange < BroadcastSize). Within Qachlng reduges the number of transactlo!"n_s abo.rted since
this range, the access probabilities follow a Zipf distribu- It reduces their span and thus the probability of invalida-
tion with a parametetheta to model non-uniform access. tlon.. For.the muluyersmn scheme, a total of three versions
Access patterns become increasingly skewethaga in- per item is maintained. The abort rate also depends on the
creases. The client wailhinkTime units and then makes Update rate and the overlap between the client read and the
the next read request. Similarly, updates at the server ar&€"ver update pattern. For results refer to [14].

generated following a Zipf distribution. The write distribu- Broadcast Size The increase of the broadcast volume
tion is across the rangeto Update Range. We use a pa- is an important measure of the efficiency of the proposed
rameter called) f f set to model disagreement between the schemes, in terms of bandwidth. Furthermore, the volume
client access pattern and the server update pattern. Whenf the broadcast data affects the response time of client
the offset is zero, the overlap between the two distribu- transactions. Since access to data is sequential, the larger
tions is the greatest, that is the client’s hottest pages are alsthe volume of the broadcast, the longer the clients need to
the most frequently updated. An offset fofshifts the up- wait until the data of interest appear on the channel. Figure
date distribution k items making them of less interest to the 4 shows the increase of the broadcast size as a function of
client. the maximum transaction span and the number of updates

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:43:47 UTC from |IEEE Xplore. Restrictions apply.

Invalidation-Only —
Multiversion Broadcast —+-
SGT Method o

Percentage (%) of Increase in Size
Percentage (%) of Increase in Size

s -
S5r 1 o & Gl e

S —

-

o + + + + s 5 + + UM
4

7 8 9 10 10 20 30 40 0 80 90 100

5 6 50 60 X
Transaction Span Number of Updates

Figure 4. Increase in the size of the broadcast: (left) with the transaction span (for U = 50 updates
per beycle) (right) with the number of updates (for span = 3)

using the formulas developed in the previous sections. an item does not change durihgk > V, cycles, this value
will be available to any read-only transactions for more than

Latency. We.quantn‘y latency, the mean duration of read- V cycles. The SGT method does not tolerate any client dis-
only transactions, as the mean number of bcycles per trans-

action. Besides reading control information at each bey- connections. If a client misses a broadcast cycle, it can-
' 9 .) Y hot anymore guarantee serializability. Thus, any active read
cle, from the methods presented, multiversion broadcastim-

oses an additional increase in latency. since lond-runnin transactions must be reissued anew. To increase tolerance
P . : Y, 9 %o disconnections, version numbers could be broadcast. In
read-only transactions wait for old versions to appear at the,, . L e .
o this case, a read operation is accepted iff its version num-
end of the bcast. For quantitative results refer to [14]. . .
ber is smaller than the version of the last broadcast that
Currency Read-only transactions can be classified based onthe transaction has listen to. This guarantees that the client
their currency requirements [10]Currency requirements has all the information required for cycle detection. In all
specify what update transactions are reflected by the datdhe schemes, periodic retransmission of control information
read by read-only transactions. Table 2 summarizes thecan increase their tolerance to intermittent connectivity. For
currency properties of read-only transaction in each of theinstance, an invalidation report of the items updated dur-
methods. ing the lastw bcycles may be broadcast to allow clients to
resynchronize. Finally, caching improves tolerance to dis-

Disconnections The techniques presented differ on connections.

whether they require active clients to monitor the broadcast

continuously. Raising the continuous monitoring require-

ment is desirable in various settings. For example, in the6. Conclusions and Future Work
case of mobile clients, operation relies on the finite power

provided by batteries, and since listening to the broadcast \\e have presented a suite of processing techniques to
consumes energy, selective tuning is required. Besides, acprovide support for consistent queries for broadcast push
cess to the broadcast is monetarily expensive, and thus minin poth wired and wireless settings with mobile or station-
imizing access to the broadcast is sought for. Finally, client 5ry clients. The techniques are scalable in that their perfor-
disconnections [16] are very common when the data broad-mance is independent of the number of clients. We have
cast are delivered wirelessly. compared the proposed techniques both quantitatively and
In the invalidation-only scheme, a client has to tune- through simulation and show their relative advantages. The
in at each and every cycle to read the invalidation report. proposed techniques can be extended in various ways. First,
Otherwise, it cannot ensure the correctness of any activewe may raise the assumption that the values broadcast at
read-only transaction. In multiversion broadcast, clients each bcycle are those at the beginning of the cycle. Sec-
can refrain from listening to the broadcast for a number of ond, possible refinements of the proposed schemes refer to
cycles and resume execution later as long as the requiredhe supported granularity. For example, invalidation reports
versions are still on air. In general, a transacti®with may include buckets instead of items. Finally, another pos-
span(R) = sg can tolerate missing up t0 — sp broad- sible extension is to consider a broadcast-disk organization
cast cycles in any’-multiversion broadcast. The tolerance [1], where specific items are broadcast more frequently than
to disconnections depends also on the rate of updates, i.egthers, i.e., are placed on “faster disks”. Along this line, in
the creation of new versions. For example, if the value of [15] we address the problem of determining the optimal fre-

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:43:47 UTC from |IEEE Xplore. Restrictions apply.

Table 2. Summary

rate rate and the span

(increase of the

broadcast volume)

and span = 3) and V = 3)

Invalidation-Only Multiversion Broadcast SGT Method Caching
Concurrency L ; Moderate
(percentage of Minimum Max|bmumf(depgnds ON | (depends on the trans | (depends on the cache
transactions accepted number of versions) activity at the server) size)
Considerable (includes
Processing Overhead | | Small Moderate maintaining SGs at both| Small
the server and the client)
Size depends on the update depends on the update | depends on the activity | (small, for

(1% for U = 50 updates (12 % for U = 50 updates

at the server
(2.5 % for N = 10 server
trans and U = 50 updates)

transmitting invalidation
reports for buckets)

Latency
(number of beycles)

Not affected -
transactions

Increases for long

Not affected Decreases

Currency
(database state seen
by the clients)

The state when the las

read is performed read operation is

performed

The state when the first

(for invalidation with
versioned caching)
the state when an item
previously read is
overwritten for the

first time

A state between the first
and the last operation

Tolerance to
Disconnections

None

Some, depends on the
individual transaction’s
span and the update rate

None, unless
additional information
is broadcasted

Some, depends
on the update rate and
the cache size

guency for transmitting old versions.
References
[1] S. Acharya, R. Alonso, M. J. Franklin, and S. Zdonik.

(2]
(3]

(4]

(5]

(6]

Broadcast Disks: Data Management for Asymmetric Com-
munications Environments. Froc. of SIGMOD 1995.

S. Acharya, M. J. Franklin, and S. Zdonik. Disseminating
Updates on Broadcast Disks. Broc. of VLDB 1996.

S. Banerjee and V. O. K. Li. Evaluating the Distributed Dat-
acycle Scheme for a High Performance Distributed System.
Journal of Computing and Informatioi (1), 1994.

D. Barbad. Certification Reports: Supporting Transactions
in Wireless Systems. IRroc. of the IEEE Int. Conf. on
Distributed Computing Systemk97.

D. Barbad and T. Imielinski. Sleepers and Workaholics:
Caching Strategies in Mobile Environments. Mmoc. of
SIGMOD1994.

P. A. Bernstein, V. Hadjilacos, and N. GoodmarCon-
currency Control and Recovery in Database Systems
Addisson-Wesley, 1987.

[7] A.Bestavros and C. Cunha. Server-initiated Document Dis-

(8]

semination for the WWWIEEE Data Engineering Bulletin
19(3), September 1996.

T. Bowen, G. Gopal, G. Herman, T. Hickey, K. Lee,
W. Mansfield, J. Raitz, and A. Weinrib. The Datacycle Ar-
chitecture.CACM, 35(12), December 1992.

[9] A. Datta, A. Celik, J. Kim, D. VanderMeer, and V. Kumar.

Adaptive Broadcast Protocols to Support Efficient and En-
ergy Conserving Retrieval from Databases in Mobile Com-
puting Environments. IfProc. of the 13th IEEE Int. Conf.
on Data Engineering1997.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

H. Garcia-Molina and G. Wiederhold. Read-Only Transac-
tions in a Distributed Databas&CM TODS 7(2), 1982.

T. Imielinski, S. Viswanathan, and B. R. Badrinanth. Data
on Air: Organization and AccesdEEE TKDE 9(3):353-
372, 1997.

J. Jing, A. K. Elmargarmid, S. Helal, and R. Alonso. Bit-
Sequences: An Adaptive Cache Invalidation Method in Mo-
bile Client/Server Environment®ACM/Baltzer Mobile Net-
works and Application®2(2), 1997.

C. Mohan, H. Pirahesh, and R. Lorie. Efficient and Flexi-
ble Methods for Transient Versioning to Avoid Locking by
Read-Only Transactions. Proc. of SIGMOD 1992.

E. Pitoura and P. K. Chrysanthis. Scalable Process-
ing of Read-Only Transaction in Broadcast Push (ex-
tended version). Tech. Report TR: 98-26, Univ. of loan-
nina, Computer Science Dept, 1998. Also available
at:www.cs.uoi.gr/” pitoura/pub.html.

E. Pitoura and P. K. Chrysanthis. Exploiting Versions for
Handling Updates in Broadcast Disks. Tech. Report TR: 99-
02, Univ. of loannina, Computer Science Dept, 1999.

E. Pitoura and G. Samarafata Management for Mobile
Computing Kluwer Academic Publishers, 1998.

R. Rastogi, S. Mehrotra, Y. Breitbart, H. F. Korth, and A. Sil-
berschatz. On Correctness of Non-serializable Executions.
In Proc. of ACM POD$1993.

J. Shanmugasundaram, A. Nithrakashyap, R. Sivasankaran,
and K. Ramamritham. Efficient Concurrency Control for
Broadcast Environments. BCM SIGMOD 1999.

T. Yan and H. Garcia-Molina. SIFT — A Tool for Wide-area
Information Dissemination. IProc. of the 1995 USENIX
Technical Conferengel995.

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:43:47 UTC from |IEEE Xplore. Restrictions apply.

