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Abstract

There is great need and potential for traditional trans-
action support in a mobile computing environment. How-
ever, owing to the inherent limitations of mobile comput-
ing, we need to augment the well-developed techniques of
Database Management Systems with new approaches. In
this paper, we focus on the challenge of assuring data con-
sistency. Our approach of localization is to reformulate
global constraints so as to enhance the autonomy of the mo-
bile hosts. We show how this approach unifies techniques of
maintaining replicated data with methods of enforcing poly-
nomial inequalities. We also discuss how localization can
be implemented in PRO-MOTION, a flexible infrastructure
for transaction processing in a mobile environment.

1. Introduction

Thanks to the relentless advances in semiconductors, the
number of users with mobile computers (we will refer to
these machines asmobile hostsor MHs) continues to in-
crease. These users have discovered that exciting develop-
ments in wireless technology can potentially empower them
to access remote informationanywhere, anytime, andin any
way. To be truly effective, however, users of MHs need
the ability to both query and update public as well as pri-
vate corporate databases. These databases typically execute
atomic transactions to assure data consistency and reliabil-
ity in spite of concurrent updates and system failures. Thus,
transaction support must be extended to mobile users [14].

Mobile computers are, in general, less robust than sta-
tionary ones. Not only are they prone to physical hazards,
but also suffer from limited battery life, reduced storage ca-
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pacity, and a relatively low-bandwidth, expensive, and ten-
uous wireless connection to the fixed network. They may
become disconnected when placed in certain terrain or en-
closure. Also, a MH may choose to power downonly the
communication subsystem to save battery life or communi-
cation dollars; while such a MHis disconnected, it hasnot
failed for it can continue processing [3, 7]. Such transience
in connectivity, we argue next, makes transaction process-
ing a challenging task.

The basic problem is that a mobile computer must share
some data itemD with a database in the fixed network,
and consequently agree to satisfy an integrity constraintC
(that ensures correctness of shared components) which is
distributed (or global) since it spans at least the mobile com-
puter and one other database. Consider a local transaction
T executing on the mobile host; if it accessesD, it must,
when it tries to commit, verify thatC is preserved, i.e., that
it holds at the end of the transaction. But this verification
implies a query which involves at least one other host —
so, T is no longer local: it isdistributed! Consequently,
it invites the expenses and problems associated with dis-
tributed transactions: network communication, distributed
concurrency control for synchronization of remote data and
commit protocols [2]. While complex, this is a minor mat-
ter because all this can be accommodated by a Distributed
DBMS. The major problem is that in the mobile environ-
ment, there is an additional factor, the whimsical connec-
tivity of mobile hosts, owing to which,unbounded and un-
predictable delayscan afflict not onlyT but other transac-
tionsrunning atboththe mobile and the stationary node(s).
This is clearly unacceptable. Extending transaction man-
agement and data consistency maintenance to cover discon-
nected and mobile operations is the challenge we address.

Our approach is pre-emptive: when the MH above
sharedD, it agreed to aglobal constraintC; our aim is to
give it a local constraintC 0 instead. For the MH,C 0 could
very well be more restrictive than the originalC, but this is
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the tradeoff against the enhanced autonomy brought by the
locality of C 0. As a reflection of this autonomy, the local
transactionT would remain local; thus, the unacceptable
delays discussed above would be avoided.

By a process we calllocalization, we reformulate a dis-
tributed constraint into local constraints and adjust them dy-
namically. We have looked at two kinds of constraints —
based on equality and inequality (for set-based constraints,
see [9]). Localization provides a framework for a number
of well-known but disparate techniques of concurrency con-
trol such aslease, callback, andcheck-in/check-out[5, 15]
for replicated data based on equality constraints, theEscrow
method [12] and theDemarcation Protocol[1, 4] for lin-
ear inequality constraints; it has also enabled a hitherto un-
known extension of Escrow to quadratic inequalities.

The conceptual framework of localization blends syner-
gistically with the architecture of PRO-MOTION, a flexi-
ble infrastructure for transaction processing in a multi-tier,
mobile client-server operating environment [17, 19]. By
caching data items locally, it allows MHs to continue ex-
ecuting transactions while disconnected from the stationary
server; it incorporates the modified data back into the sta-
tionary server’s database when reconnection occurs. The
cached data is in the form of an encapsulated object con-
taining data bits, methods, rules, and state information. This
object is called thecompact. The result of localization is
simply a way of filling in certain components of appropriate
compacts enabling unilateral commitment of local transac-
tions. Since PRO-MOTION is a practical system under de-
velopment (using Java), the localization approach is assured
of realizability in a mobile environment.

The rest of the paper is structured as follows. In the fol-
lowing sections, we present a running example, introduce
the PRO-MOTION infrastructure, explain the technique of
localization, and outline how localization in our example
would be handled in PRO-MOTION.

2. An Example

Mobile computers are becoming more and more com-
mon [18] in the trucking industry. Each truck has a com-
puter with a satellite or radio link. It not only communi-
cates with a corporate database, but is also used for billing
and gathering data from various vehicle instruments; it may
be used to transmit funds directly for the driver’s expenses.

Consider a trucking company that has accepted a con-
tract to move manufactured goods from a source to a desti-
nation. It, in turn, subcontracts privately owned trucks. The
driver of such a truck must come to the trucking company
for paperwork, go to the source to pick up the material, and
finally go to the destination to deliver them.

As a truck arrives at the trucking company, the driver
is given a shipping manifest, a paper specification of the

quantity of parts to be picked up plus pertinent information
about the truck, the driver, and the source; on the basis of
this paper, the driver will be allowed in at the source.

During the pick-up process, the goods are checked to
see if they meet their specifications, i.e., if an attributeA
(e.g., the diameter of a washer) is within its specified toler-
ance. The motivation is to perform quality control during
pick-up itself so as to avoid returning unsatisfactory goods
later because the process of return is costly in terms of both
time and money. Therefore, the truck’s mobile computer
measures the mean and variance ofA. If these two met-
rics are outside their acceptable range, the goods are re-
jected on the spot. For our truck, however, there is an
added complication: at the destination, the load from this
truck will be merged with that from another source (via an-
other truck), and theoverallmean� and variance�2 ofA of
the merged collectionmust be kept within tolerable limits:
M0 � � � M1 and0 � �2=�2 � K; whereM0;M1;K
are constants (we capitalize constants).

When the load is delivered, the driver records the date
and time, obtains a signature from the receiving party for
billing, We label these three steps MANIFEST, PICKUP,
and BILLING respectively. Their ramifications on transac-
tion support and consistency maintenance are as follows.

BILLING: The delivery information can be finalized at
the mobile computer and incorporated in the company
database shortly thereafter. A disconnection is not
catastrophic: it will only postpone the billing process.

PICKUP: Assume that the quality control attributeA is
uniformly distributed at the two sources. Let the two
trucks observe means�1; �2 and variance�21 ; �

2

2 re-
spectively. Suppose the two trucks handle quantities
Q1; Q2 respectively; then the fraction of goods han-
dled by them areR1 = Q1=(Q1+Q2); R2 = (1�R1)
respectively. Then, the restriction on the overall� and
�2 lead to the constraints P1 through P4 (two linear
and two quadratic polynomial inequalities in four vari-
ables�1; �2; �21 ; �

2

2
) listed in Table 1.

So, our truck driver after measuring�1; �21 , will at-
tempt to verify the constraints P1 through P4. But
to do so, it must access�2; �22 measured by the sec-
ond truck. Owing to disconnection, even if that second
truck performs its measurements at the same time, this
verification may incur unpredictable delays.

MANIFEST: The manifest information should be made
permanent in the company database before the truck
is permitted to travel. Next, it should be replicated
in the mobile computer to be looked up when needed.
The quantity of material for the first and second truck
are replicated on both their computers. The quantity
can be changed on a mobile computer (e.g., if more
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P1 R1�1 + R2�2 �M0

P2 R1�1 + R2�2 �M1

P3 R1�
2

1
+R2�

2

2
+ R1R2�

2

1
+R1R2�

2

2
� 2R1R2�1�2 � 0

P4 R1�
2

1
+R2�

2

2
+ R1(1 �R1 �KR1)�21

+R2(R1 �KR2)�22 � 2R1R2(1 +K)�1�2 � 0

Table 1. PICKUP Constraints

goods are available and there is space in the truck) but
only after the company’s database has been consulted
(both trucks delivering extra goods may not be accept-
able) and the other truck is made aware of the change.
Added complexity arises from the fact that any change
in quantityQi affectsR1; R2 and thus changes the
constraints P1 through P4 for both trucks.

Clearly, disconnection during the change process can
hold up the other truck’s pickup process.

3. PRO-MOTION

In this section, we highlight the salient features of PRO-
MOTION, a flexible infrastructure for transaction process-
ing in a multi-tier, mobile client-server environment [17].

We assume a general mobile computing environment in
which the network consists of stationary and mobile hosts
(MHs) [6]. Certain specialized stationary hosts calledMo-
bility Support Stations(MSSs) are equipped with wireless
communications capabilities that enable the mobile hosts to
connect to them, and through them, to the high-speed fixed
network. At any moment, a MH is either connected to the
network through a specific MSS or completely disconnected

The goal is to process as much of the transaction on the
MH as possible, resorting to communication with the sta-
tionary database server only when convenient or when ab-
solutely required by the semantics of the transaction. This
is achieved in PRO-MOTION by replicating or caching data
from the server; such replicated data is always in the form
of an encapsulated object called acompact(Figure 1). A
compact is, broadly speaking, a satisfied request to cache
data, enhanced withobligations(e.g., a deadline),methods
(a set of allowable operations),state information(e.g., the
time of last update), andconsistency rules(restrictions on
possible states). Unlike mobile agents, compacts are active
objects that are invoked and controlled by the Transaction
Manager. Compacts are supported at the stationary database
server, the MSS, and the MH as follows.

� At the database server, there is acompact manager. It
acts as a front-end, shielding the server from the id-
iosyncrasies of the mobile environment.

� At the MSS, there is amobility manager, which helps
manage the communication flow between the compact

Common Methods

Obligations Data

State Information

Type-specific
methods

Consistency
rules

Figure 1. Compacts as Objects

manager on the server and the compact agent (see be-
low) on the MH. A MH can send an update message
and disconnect immediately relying on the mobility
manager to pursue the update on its behalf and store
the acknowledgement.

� At the mobile host, there is acompact agent. It nego-
tiates with the mobility manager, manages compacts,
and acts as a transaction manager for transactions ex-
ecuting on the MH. It also handles disconnections and
manages storage on the MH.

Compacts are obtained from the server viarequestsfrom
the MH (to fill an imminent or anticipated data need). If
the request can be satisfied, the server’s compact manager
creates a compact containing data plus information required
for its correct usage. The compact represents an agreement
between the server and the MH in which the server dele-
gates control of the data to the MH which pledges to honor
specific conditions regarding its use as set by the server.
The compact is recorded in acompact storeand transmit-
ted to the MH. The request from the MH can be tailored to
cause only incremental transmission. For example, trans-
mitting the compact methods, which may be very expen-
sive, is avoided if they are already available on the MH.
Once the MH receives the compact, it records it in acom-
pact registrywhich is used by the compact agent to track
the location and status of all active compacts.

When the needs of the mobile host or the database server
change, compacts may berenegotiatedto redistribute re-
sources and, when the MH no longer needs the resources,
compacts arereturned to the database server and deleted
from the local compact registry and the compact store.

Each compact has a common interface which is used
by the compact agent to manage the compacts listed in the
compact registry and to perform updates submitted by trans-
actions run by applications executing on the MH. The basic
set of methods necessary to manage compacts are:

� inquire(), which retrieves useful information about the
compact state (e.g., name, data type, version, cache
status, free storage, and outstanding transaction IDs),

� dispatch(), which performs operations on the compact
on behalf of transactions executing on the MH,
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� checkpoint(), which stores the current state of the
compact for purposes of recovery,

� commit(), which makes the operations of a transac-
tion permanent on the compact (local commit), and ul-
timately on the database server (global commit),

� abort(), which abandons a given transaction’s modifi-
cation of the compact data, and

� notify(), which tells the compact that the mobile en-
vironment has changed, e.g., when some local transac-
tions must be re-done or some parameter re-negotiated.

4. Localization

In this section, we elaborate on the notion of localization.
We assume that data is distributed among nodes

1; 2; :::; N . A constraintC is local if it involves only one
node anddistributedotherwise. If there is a rule

C1 ^ C2 ^ ::: ^ CN ! C;

such that for1 � i � N , Ci is local, then a distributed con-
straintC is said to belocalizable. The variables and quanti-
fiers (not shown) conform to the rules for Horn clauses [8].

We denote the left side of the rule bySC, a sufficient
conditionfor C, and say thatC is localizable throughSC.
So, instead of enforcingC which is distributed, we enforce
local constraintCi at nodei for all i.

For example, letC be P1 (Table 1) which is distributed
involving 2 nodes (the 2 trucks), i.e.,N = 2, using variables
�1 and�2 respectively. Using the ruleC1 ^ C2 ! P1;
whereC1 = (�1 � L1), andC2 = (�2 � L2), andL1; L2
are constants such thatR1L1 + R2L2 � M0, we see that
P1 is localizable and that we can enforce�1 � L1, a local
constraint, at the first truck, and�2 � L2 at the second,
assured that their simultaneous enforcement implies P1.

Now, sinceSC is only sufficient forC, a local update
may violateCi and henceSC, while still satisfyingC. In
this case, we would likeSC to be modifiable to, say,SC 0

that could accommodate the updated value.SC 0 would be
of the form:

SC 0 = C 0

1
^ C 0

2
^ ::: ^ C 0

N :

Though the change ofSC to SC 0 typically involves con-
straint changes at more than one node, we want this to be
achieved in an incremental node-by-node manner, perhaps
in some pre-determined order. Thus, no synchronization of
data should be necessary, i.e., a distributed transaction can
be avoided.
SC is said to be incrementally changeableto

SC 0 through a sequence of constraintsW0(=
SC); :::;Wi; :::;WN (= SC 0) if, for 1 � i � n; Wi ! C
and the sequence is incremental in the sense that, the dif-
ference betweenWi�1 andWi is that exactlyoneconjunct

Cj (for somej) in Wi�1 is replaced byC 0

j in Wi. Such a
change ofSC to SC 0 is referred to asIncremental Update.

Returning to our example, if the first truck observes a
mean�1 < L1, it does not mean that P1 is violated. It
may be possible to reduceL1 to L0

1
and increaseL2 to L0

2

such thatR1L1 +R2L2 = R1L
0

1
+R2L

0

2
; also,L1; L2 can

be changed without a distributed transaction if the second
truck increasesL2 before the first decreasesL1.

This is incremental update through a sequence
W0;W1;W2 where

W0 = SC = (�1 � L1) ^ (�2 � L2);
W1 = (�1 � L1) ^ (�2 � L0

2
); and

W2 = SC 0 = (�1 � L0
1
) ^ (�2 � L0

2
):

Note thatW0;W1;W2 all imply the original constraint
P1, i.e., at each step, the original constraint P1 is main-
tained. If the order of constraint changes was reversed
(i.e., the first truck decreasedL1 before the second truck
increasedL2), the resulting intermediate state with

W1 = (�1 � L0
1
) ^ (�2 � L2)

may not have satisfied P1.
By Localization, we mean the substitution of the dis-

tributed constraintC by local constraintsCi at nodei, and
their dynamic adjustment through Incremental Update. The
following remarks cover useful properties and clearly indi-
cate why node autonomy is enhanced.

� If a local transaction at nodei satisfies the local con-
straintCi, no global constraint is checked and there-
fore unpredictable delays are avoided.

� Nodei can unilaterally change its local constraint from
Ci to C 0

i if the new constraint is more restrictive, i.e.,
C 0

i ! Ci, and the data which now satisfiesCi also sat-
isfiesC 0

i . For example, the second truck could increase
L2 toL0

2
unilaterally.

� Incremental Update ofSC can be done one node at a
time possibly in a certain prescribed sequence. No dis-
tributed transaction with expensive commit protocols
and distributed concurrency control is needed.

Making sure that the nodes follow the sequence cor-
rectly and take care of simultaneous conflicting desires
for constraint change is not trivial. Algorithms ensur-
ing correct behavior under these conditions [10, 11]
and experimental results [13] appear elsewhere.

5. Using Localization in PRO-MOTION

The compacts in PRO-MOTION are ideal for our ap-
proach. The local constraintCi, the result of localization,
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on dataD for a MH i is directly mapped into a compact
for D and handed over to the MH which becomes respon-
sible for constraint enforcement.Ci is analyzed as follows:
we split it into temporal intervals(if any), for each inter-
val, check ifdefined, and if defined, inferdata changeabil-
ity, anddata restriction, We encode thetemporal rangeas
obligation (deadline or expiration time); if defined,cur-
rent status takes the valueRWor RObased ondata change-
ability, otherwise, when changing from defined to unde-
fined it takes the valuestale , but if it was never defined
earlier, the value isNR(nonresident); and thedata restric-
tion is encoded withinconsistency rules. We will illus-
trate this below.

5.1. Handling Dynamic Replication

We have stated earlier that various data replication se-
mantics such aslease, callback, check-in/check-outcan be
captured under the framework of localization and incremen-
tal update. For shortage of space, we will dwell only on the
leasing technique [5].

Suppose a logical itemX has replicasxi at MH i (for
variousi). Not all the replicas are defined at all times; we
denote the predicatedata itemA is defined (undefined)by
A " (respectivelyA #). The conditionC for integrity of
replicas can be stated as

C = 9j9v [(1 � j � N) ^ xj "]

N̂

i=1

[xi " ! (xi = v)]:

This conditionC has two parts; the first part states that at
any time at least one replica must be defined and the second
states that alldefinedreplicas should have the same value.
Note that when more than one replica is involved, the sec-
ond part indicates that the constraint is distributed; and that
a replica cannot be updated at one of its sites alone.

A leased data item is one shared by the requesters (lease-
holders) each for a certain time interval. Typically, lease-
holders have read-only access and are free to read the item
(as long as the lease has not expired); in order to mod-
ify the data, however, a leaseholder must obtain permis-
sion from all other leaseholders, who give up their read ac-
cess when they give permission. Before the lease expires, a
writer communicates its final value to the server which sub-
sequently forwards it to any requester and globally commits
local updates. Below, we will not emphasize the special role
of the server.

The global constraint isC as given above. Leta be the
current value of the shared dataX andTi the valid lease
duration for MH i. C is localized by finding a sufficient
conditionSC = C1 ^ ::: ^ CN ; where

Ci =

8<
:

xi " ^ (xi = a) if i has a valid lease forTi
and time t 2 Ti

xi # otherwise

To see how incremental update works, we will follow a
MH k, which is initially a non-leaseholder, as it requests
and gets a lease onX obtaining and creating a replica with
the current valuea for durationTk1, later requests and
gets permission to modify the replica for durationTk2 (it
overlaps withTk1), subsequently reverts to read-only ac-
cess for durationTk3, and finally is asked to surrender the
replica. Its local constraintCk goes through the sequence
C0

k ; C
1

k ; C
2

k ; C
3

k ; C
4

k(= C0

k):

C0

k = xk #
C1

k = xk " ^ (xk = a) for t 2 Tk1
C2

k = xk " for t 2 Tk2
C3

k = xk " ^ (xk = b) for t 2 Tk3
C4

k = xk #

Its initial constraint isC0

k with xk undefined; at this time
some other MH must have a lease on the data to satisfyC.
Once it asks for a lease and gets a read-only lease, its con-
straint changes toC1

k . Later, when it wants to modifyX ,
it asks every other leaseholder MH for permission (a MH
makes its request to the compact manager of the server it
is associated with). MHi gives permission along with the
current value ofX while changing its constraintCi to xi #.
Suppose all leaseholders give permission. Then along with
the last permission, MHk changes its own constraint toC2

k

allowing it to modifyxk . At this time, this is the only MH
with definedX . Now MH j requests a standard lease (read
access). MHk gives up its exclusive write access by chang-
ing to a read-only mode with constraintC3

k whereb is the
final value ofxk , andj is allowed to set up its own con-
straint as

Cj = xj " ^ (xj = b) for t 2 Tj

Finally, suppose MHj wants to modifyxj . It requests MH
k (via its server) to surrender the lease. MHk then changes
its constraint toC4

k = C0

k .
Supposek had never received any request fromj (or any-

one else). Then, beforek’s write lease expired, it should
have transmitted its last value that can be safely committed
within the lease period to the server and reverted to a read-
only mode for the remainining duration of the lease unless
it released or re-negotiated it. The server would not con-
tact k if it failed to transmit its final value. However, an
optimization is to allow the server to requestk to surren-
der an expired lease while granting a very small duration
extension during whichk could transmit its final value and
globally commit any locally committed updates.

Consider MANIFEST. It would be appropriate to give
the replicated data lease semantics. Most of the data items
in the manifest are read-only. However, under certain con-
ditions, a truck may want to change the quantity of material
it loads. Let Truck 1 then go through the same sequence as
MH k above. We will outline the effects on its compact.
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Inquire()
Dispatch()

Notify() Abort()
Commit() Modify()

Read()

Deadline=69000

Current_Status = ReadOnly

Last_Update = 40221
DB_Server = ladrone

ManifestID = 42311

Qty2 = 700
Qty1 = 600

Figure 2. Compact: Read-only Leased Data

Based on localization and incremental update, we can
rest assured that if the compact for the manifest data can
be filled in with the requirements stipulated byC0

k through
C4

k , this truck can simply maintain these local constraints at
each step and thereby satisfy the global constraint.

The compact includes, in addition to the methods for the
common interface, two type-specific methods,Read() and
Modify(). The following table lists for each constraint in
the sequence, the corresponding compact entry forCur-
rent Status (CS), as well as the functional description of
the methodsRead, Modify, andCommit.

Ci
k CS Read() Modify() Commit()

C0

k NR AskSrvr() AskSrvr() reject()
C1

k RO return(val) AskSrvr() commit()
C2

k RW return(val) update() commit()
C3

k RO return(val) AskSrvr() if no update
then commit()
else AskSrvr()

C4

k stale AskSrvr() AskSrvr() reject()

ForC0

k , Current Status is madeNR(nonresident);Obli-
gation and Consistency rules are empty since the data
is undefined.Read results in an AskServer request to the
(compact manager of the) server for a read lease.

The state of the compact forC1

k is shown in Figure 2.
Since the data is defined but unchangeable,Current Status
is made RO (ReadOnly). The time range is translated into
a deadline and entered in theObligation field. TheCon-
sistency rules field is left empty. An invocation toModify
results in an AskServer request for write access.

ForC2

k , since the data is defined and changeable,Cur-
rent status is made RW (ReadWrite);Commit is a local
commit. C3

k is just likeC1

k except thatCommit checks if
the transaction has updated locally (during the RW period);
if so, it asks the server if a global commit is possible.

Finally, the call to surrender the lease would be made by
the server throughNotify leading to the constraint reverting
toC4

k which is exactly likeC0

k except thatCurrent Status
is now stale indicating a data value which may not be
current (but just in case it is, no data communication will be
necessary when it becomes defined later).

Now let us consider the effects of disconnection in the
mobile environment. Disconnections cannot cause delays
in acquiring a lease. A reader whose deadline has passed
and is disconnected causes no headaches for lease seekers.
A writer which was unable to communicate its final value
but the write lease interval has passed will not hold up the
others (beyond the writer’s lease interval) because the server
will substitute for that missing value and proceed. However,
in the latter case, there is a violation of the global constraint
C: at the writer node, transactions committed locally (since
the last communication) are not globally committed.

How can the constraint violation be repaired? One pos-
sibility is the following. The server would assign a default
value (perhaps a NULL value) once the writer’s deadline
has passed. If no other attempt has been made to get a write
lease on the data, the final value of MHk obtained through a
later communication is stored despite the expired deadline.
Otherwise, (if another MH did get a write lease), MHk will
be told viaNotify to redo its transactions.

In MANIFEST, only the quantity of goods Qty1 would
be the target of write requests from Truck 1. Recall that
Qty1 is also involved in the fractionsR1; R2 which are co-
efficients of the polynomials in the constraints for PICKUP.
Therefore the server would allow Truck 1 to modify Qty1

only if the change is acceptable and Truck 2 has not yet
picked up its goods. If Truck 1 becomes disconnected after
getting a write lease, it cannot commit globally and will be
forced to make sure that the PICKUP constraints are sat-
isfied with the original Qty1. While Truck 1 has a write
lease on Qty1, Truck 2 having given up its read lease on
Qty1 must wait to read it. If Truck 1’s lease expires without
communication, the server will tell Truck 2 to make its stale
value current. Only if the second truck also fails to contact
the server after giving up its read lease, will it have to wait.

5.2. Handling Polynomial Inequalities

Here we discuss the application of localization towards
distributed polynomial inequality constraints. We make use
of a geometric method.

Consider PICKUP. It generated four inequality con-
straints P1 through P4: two linear inequalities on two vari-
ables�1 and�2 and two quadratic inequalities on four vari-
ables�1; �2; �21 , and�22 . The Escrow method and the De-
marcation Protocol have both shown how linear inequalities
can be handled efficiently. But neither of them tell us how
to handle the quadratic inequalities (owing to the product
term�1�2, they cannot be converted into a linear form).

While illustrating the localization and incremental up-
date approach using constraint P1 in Section 4, we have
already established that our approach can take care of the
linear inequalities — basically in the same manner as the
Escrow and Demarcation Protocol. But we can go further.
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Owing to our constraint reformulation perspective, we have
been able to extend from linear to quadratic form through a
common approach, a geometric one.

Any constraintC = p(x1; :::; xN ), where eachxi can be
represented by a real number, defines a domainDom(C) in
theN -dimensional space in the Cartesian coordinate sys-
tem, with thei-th coordinate forxi. C can be geometrically
interpreted as:the datum(x1; :::; xN ) satisfiesC if and only
if the point(x1; :::; xN ) in theN -dimensional space is in
Dom(C). Now, suppose we are able to findR1, ...,RN ,
each a range ofR such that

(x1 2 R1)^:::^(xN 2 RN )! [(x1; :::; xN ) 2 Dom(C)]:

The right hand side of the above isC and the left hand
side is a sufficient conditionSC for C; further, since each
conjunct is local, we establish localization. Of course, this
begs the question how theseRi can be found. Geometri-
cally, the same left hand side defines arectangular subsetof
Dom(C). All we need to do for localization therefore is to
find and maintain a (N -dimensional) rectangle that is con-
tained withinDom(C) (intuitively, the closer the subset is
toDom(C), the better). Once we find such a rectangle, the
MH in charge ofxi needs to maintain its data value within
a range that is the projection of the rectangle on the axis
xi. Incremental update allows the change of one rectangle
into another making sure that all intermediate rectangles are
contained withinDom(C). Thus, the geometric approach
reduces to rectangle management. Here, we will not present
the algorithms involved [10, 11] but discuss two examples
to illustrate the method.

For a simple example, considerC = x1 < x2, a lin-
ear inequality, wherex1 andx2 reside at MHs1 and2 re-
spectively. Geometrically,Dom(C) corresponds to the half
plane above the lineOH(x1 = x2) in Figure 3.

The rule (whereL is a constant)

(x1 < L) ^ (L < x2)! (x1 < x2)

allows us to localizeC. The LHS of the rule is the sufficient
conditionSC = (x1 < L) ^ (L < x2); geometrically, it is
an open rectangleABE inside the half plane.

The current data(x1; x2) = (u; v) is represented byP
which is in rectangleABE and therefore in the half plane.
If a local transaction at MH1 attempts to increase the value
of x1 to u0 which is greater thanL, there is a violation of
the local constraint but not of the global constraint (point
P 0 is in the correct half-plane). Now the rectangle can be
changed (incremental update) fromABE to, say,FHK
via FGE as MH 2 changes its bound toL0 and then MH
1 changes its bound toL0. Note that the change viaAMK
is not acceptable since that rectangle extends beyond the
correct half plane. Constraints P1 and P2 are of the same
form asC and therefore the above description applies to
them.

x 2
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x1 > x2
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Figure 3. Managing a Linear Inequality
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Figure 4. Managing the Interior of an Ellipse

Now we will illustrate how the geometric approach
works for quadratic constraints. Consider a distributed con-
straintC of the form

A1x
2

1
+A2x1x2+A3x

2

2
+A4x1+A5x2+A6 < 0 (or> 0);

indicating a region bounded by a conic section or two par-
allel lines. Suppose by analysis [16] we find thatDom(C)
is the interior of an ellipse. We then find a well-oriented
rectangle (i.e., one with sides parallel to thex1-x2 coordi-
nate system) inside the ellipse whose interior represents the
rectangular subset we are seeking. Figure 4 shows such an
ellipse containing a well-oriented rectangle with diagonal
AB whose projections on thex1 andx2 axes give the local
constraints(p < x1 < q) and(r < x2 < s).

Now let a local transaction at MH1 attempt to changex1
from u to u0 which is greater than the local boundq, effec-
tively attempting to moveP toP 0, which is not in rectangle
AB but still inside the ellipse. MH2 using the valueu0

and its own bounds, then computes a new rectangle (shown
dashed) with diagonalCD and its new projections on the
axesx1; x2; these projections are the new local constraints.
It first restricts its own bounds which it can do unilaterally
(recall the properties of localization) thus shrinking the rect-
angle to QR and then informs MH1 that it can increase its
bound enlarging the rectangle to CD.
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Figure 5. Compact for mean and variance

The above example applies to P3 and P4 with one differ-
ence: P3, P4 involve four variables not two; consequently,
our rectangle will be 4-dimensional. At any moment, the
projections of that rectangle on the four axes�1; �2; �

2

1
; �2

2

will give us the independent bounds on each of these four
variables. Figure 5 shows the compact for one of the
trucks. Here, along withObligations andCurrent Status,
we have an entry forConsistency Rules: the bounds on
�1; �

2

1 . These bounds are the intersection of those obtained
from all the four constraints.

While four variables are involved,�1 and�2
1

are on one
machine and�2 and�22 are on another. There is a short-cut
based on approximation that lets us revert to 2 dimensions.
This is based on accepting a common bound on the variance
at each node, i.e.,0 � �2i =�i � L, for i = 1; 2, whereL is
a constant. Using this, P3 and P4 reduce to the form ofC
above based on two variables�1; �2 instead of four. Then
the above example applies verbatim.

6. Conclusions

Exciting advances in wireless technology and semicon-
ductors have thrown open the possibility of extending tra-
ditional database management functionality to the mobile
computing environment. In this paper, we have examined
the problem of maintaining data consistency while execut-
ing transactions in a mobile environment and proposed a
framework of localization.

Our proposed framework is based on the reformulation
of global constraints into a conjunction of local sufficient
conditions enhancing the autonomy of the mobile hosts.
The mobile hosts, by enjoying greater autonomy, can avoid
unbounded delays during constraint verification; also, the
limitations of data replication caused by disconnections be-
come clear. This approach unifies techniques of maintain-
ing replicated data with methods of enforcing polynomial
inequalities. We have discussed how this approach can
be implemented in PRO-MOTION, a flexible infrastructure
for transaction processing in a mobile environment. The
method is to map the results of localization into the parame-
ters of the compact which is the basic unit of data replication
for caching, prefetching, and hoarding in PRO-MOTION.

References
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