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Abstract

Updating the materialized views stored in data warehouses usually implies making the warehouse
unavailable to users. We propose MAUVE , a new agorithm for online incremental view updates that
uses timestamps and allows consistent read-only access to the warehouse while it being updated. The
algorithm propagates the updates to the views more often than the typical once aday in order to reduce
view staleness.

Wehaveimplemented MAUVE on top of the Informix Universal Server and used asyntheticworkload
generator to experiment with variousupdate workl oadsand different view updatefrequencies. Our results
show that, al kinds of update streams benefit from more frequent view updates, instead of just once
aday. However, thereis a clear maximum for the view update frequency, for which view staleness is
minimal.

1 Introduction

Datawarehouses contain data replicated from several external sources, collected to answer decision support
gueries. Thereplicated datais often copied in replicatablesin the warehouse. The degree of replicationis
further extended by introducing other derived data to facilitate query processing and maintenance. These
derived data include al kinds of indices, multidimensional materialized views or partially materialized
views, summary tables and aggregate views such as the data cube, and so on. We refer to all these with the
most general term “materiaized views’ ([Rou98]).
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When data on the external sources change, updates are sent to the warehouse, which has to perform a
refresh operation. Except for updating the base data tables, derived data aso need be updated in order for
the warehouse to reach a fully consistent state. The two issues at hand are how to implement the refresh
operation, and when to refresh the warehouse ([CD97]).

View Maintenance deal s with the issue of how to perform the refresh operation on materialized views,
oncethe underlying data has changed ([GM 95]). The simplesolution of recomputing the entire materialized
view from scratch is not suitable for most cases, and instead incremental algorithms (|[BALT86, RK86,
CW91, Rou9l, QW91, GMS93, GL 95, RCK*95, ZGMHW95, ZGMW96, CGL*96, AASY 97, GLT97,
QW97]) have been proposed to compute only the changes to the materialized view given the updates on the
base tables. The choice of which algorithm to choose can be | eft to the query optimizer ([VisO8]).

The when to refresh issue, is closely associated with the overhead that the view update algorithm places
on the warehouse. 1n most cases, the update algorithms render the warehouse off-line (i.e. no queries are
allowed to run concurrently with the update process since they would possibly access inconsistent data), and
as such are usually scheduled overnight. However, the new world order of globalization in operations takes
away the luxury of refreshing the warehouse during the night, because it is always daytimein some part of
theworld. One solution isto try to minimize this downtime, and make the effects of the warehouse being
off-line as little as possible (([CGL196]). An even better solution is to eliminate downtime altogether, by
using an online algorithm, that allows read-only queries to access the warehouse whileiit is being updated
([QW97)).

Even with the best online view maintenance a gorithm, the decision of when to update is not straight-
forward. If we wish to update the materialized views as soon as changes to the base tables arrive, this
immediate maintenance imposes a significant overhead both to the update process, and to the rest of the
warehouse users. As an alternative, we can use deferred view maintenance, which will allow the view data
tobecomestale (i.e. inconsistent with theview definition) and perform the update at sometimein the future.

Deferred view maintenance raises two concerns. First of al, in the case that we want warehouse readers
to always see consistent data (the default case for most applications), we must come up with a way to
“filter out” the parts that are inconsistent, possibly by supplying readers with an older version of the entire
warehouse. Secondly, we must strike balance between grouping many view updates together for better
performance, and not letting view data become too stale.

In this paper we present MAUVE?!, a new online agorithm for incrementally updating materialized
views. MAUVE uses versioning to allow read-only warehouse queries to run concurrently with warehouse
update jobs and always “se€’ the warehouse at a completely consistent state. Incoming update streams are
split up into “chunks” of updates. For each chunk, MAUVE first applies al of the updates to the base tables
and then propagates these updates to the views.

By controlling the chunk size, we affect the view staleness (the timeit takes for the base table updates to

IMAUVE stands for Multi-version Algorithm for Updating materialized Views onlinE.



“reach” theviews) for the warehouse. Sincethe view update phasein a sense takes processing time “ away”
from base table updates, having arelatively small chunk size can have an overwhelming delay on the update
process, whereas a big chunk size will let the view data becometoo stale. Finding the chunk size that leads
to an optimal view stalenessfor the warehouse will guarantee a good tradeoff.

This paper contributes to the work on view maintenance by presenting a new online view update
algorithm, and by establishing view staleness as a key metric to use when deciding how often to propagate
the updates to the materialized views.

Therest of thispaper isorganized asfollows. Our onlineview update a gorithmis presentedin Section 2.
View Staleness is defined and calculated in Section 3. Section 4 contains our experiments and Section 5
discussesrelated work. Finaly, Section 6 has our conclusions and plansfor future work.

2 View Update Algorithm

MAUVE is an online agorithm for incrementally updating materialized views that uses versioning. The
warehouse refresh process, “fed” by the incoming update stream, is continuously applying the updates to
the base tables. When certain conditions are met (e.g. number of updates reaches a predefined threshold
or certain time has passed since the last view update) MAUVE will interrupt the regular processing of base
table updates in order to propagate these updates to the views (see Figure 1). Versioning allows readers,
running concurrently with the update process, to “filter out” pending or not fully propagated updates, thus
always seeing the warehouse at acompletely consistent state.
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Figure 1: MAUVE



2.1 Using Timestamps

MAUVE supports multiple versions by using Time Travel ([Sto87]). Each row has two extra attributes,
Toin, the insertion timestamp, and 7,,,,.. the deletion timestamp. Timestamps in our system are rather
coarse, and assigned at the warehouse by grouping many updates together into logical chunks of work
(|RES93)).

To illustrate the use of timestamps, we follow the life-cycle of atuple. First of al, supposetuple r gets
inserted into the source database. Thisinsertion will propagate through the network and eventually reach
the warehouse. At the warehouse, the insertion will receive a timestamp, say 7;,, grouping it along with
other updates that share the same timestamp number. When the insertion is applied to the base table in the
warehouse, the newly created tuple gets 1., = T, and aso T, = null. At some point in time, tuple »
might be del eted from the source database and the del etion will once again arrive at the warehouse receiving
atimestamp of 7,.. However, thistime, there will be no actual deletion of tuple r at the warehouse, as we
will only updateits T, to T, instead. At some later point in the future, tuple » can finally be physically
deleted from the warehouse.

In our model, updates can be either insertions or deletions (so updating an attribute of a tuple would
correspond to a pair of update operations). We also assume that updates for each relation come from
only one source and that we have in-order delivery of updates at the warehouse. If there are multiple
sources, we assume each relation residesin one source. These assumptionsguaranteethat 7. <= T, and
consecutively that T,.:n <= Tz (OF T,mae = Null) hold for al tuples.

2.2 Queries

Trin and T,,,. are used by our system to provide different versions of the warehouse to queries. Each
version corresponds to a state of the warehouse that is completely consistent with the source databases.
A speciad variable, global_timestamp, is used to indicate the current maximum version, which would
correspond to the most up-to-date consistent state of the warehouse.

Each query, on startup, records the current global_timestamp into aprivate variable, local_timestamp.
Throughout the execution of the query, only tuples with

Trin <= local_timestamp (D)

Tiae > local_timestamp or T,,,,. = null 2

are “visible” to the query. In other words, we only alow the query to access tuples that were created
sometimein the past, and have not yet been marked as “deleted”.

Implementing this versioning scheme for queriesis simple, sinceit can be done by query modification
([Sto75]) where we rewrite the queries to include Eq. 1 and Eq. 2 as part of their predicate (i.e. thewher e
clausein SQL).



2.3 Incremental View Updates

Let Vr s = R X S be our materialized view. R’ and 5’ arethe updated basetables £ and 5. IR, Is arethe
sets of insertionsto R and 5 respectively, and Dr, Ds are the sets of deletions.
MAUVE uses the formulas from [Rou91] to compute incrementa updates to the view:

Vhs=R'™MS = (RUIgR—Dg)X(SUIs— Ds)
= (BRMS)— (RN Ds)—(Dr™S)—(Dg M Ds)
U(RNX Ig)— (DrXIg)
U(Ip™MS) U (IpXIs)— (Ip™X Dg)
= [RMS —{Dp.*} = {*,Ds}] U (R™ M Is) U (I ') 3

where { Dg,* } arethepairs(tidg, tids) of Vg s for which tidr € Dp,
{*, Ds} arethepairs (tidg, tids) of Vg s for whichtids € Dg, and
R™ =R — Dp.

One interesting observation for Eq. 3 is that there is a “hidden” assumption that 7x N Dy = 0 and
Isn Dgs = 0. If for example Ir N Dr = r, then tuple r will appear in VI/%,S’ because when Drg is
applied, » has not been inserted yet and thus won't be deleted. One way around thisis to have some sort
of preprocessing to eiminate such “trivia” updates ([Sta89]). Another way isto “clean up” the two sets
of insertions /r and I's on the fly, by checking to see if any of their members aso belong to Dr or Dg
respectively.

Each update phase in MAUVE gets assigned a unique timestamp, update_timestamp. Thisis used as
thevaluefor T,,;, for al tuplesinserted to the warehouse by the update process (beit at a base table or at
aview), and dso asthe T,,,,.. for al deleted tuples (again both at base tables or views). After the update
process compl etes, global _timestamp isincremented to reflect a more up-to-date consistent version of the
warehouse. Using timestamp “arithmetic”, we derive the SQL statementsfor the setsin Eq 3:

Dr = select * from R
where 7,,., = update_timestamp
Ir = select * from R
where 7., = update_timestamp
and (T, > update_timestamp or T, = null)
R~ = select * from R
where 7, < update_timestamp
and (T, > update_timestamp or T, = null)
S’ = select * from S
where 7T,., <= update_timestamp
and (T, > update_timestamp or T, = null)




2.4 Discussion

Timestampsare generated at the warehouse, so their useimposesno overhead to the datasourceswhatsoever.
Implementation overhead is also quite low. They create little interaction between readers and updaters
(common access to global _timestamp), and & so alow for concurrent, consistent access to the warehouse.

Timestamps are used to group update operations together. However, the granularity of this grouping is
arbitrary? and can be defined on a per workload basis or even dynamically. Therefore, chunk size should
be seen as a special knob in our system, a unique feature of MAUVE. On the one hand, batching alot of
operations together usually improves performance (except in the extreme case of long transactions where
it might have adverse side effects on the rest of the system). On the other hand, the smaller each update
phaseis, the more up-to-date the warehouse will be (except of course for the degenerate case of very small
update phases that saturate the system). In the next section we propose away on how to “tune”’ chunk size
to optimize view staleness.

3 View Staleness

We assume a warehouse that keeps compl ete replicas of the base tables, or at least a part of the base tables
that hold al therelevant updates([BALT86], [HZ964d]). In our environment, updatesfrom the sources arrive
a the warehouse and are being applied to the base tables. At some points, this process gets interrupted in
order to propagate these updates to the view(s).

Even with the best online view update agorithm, the decision of when to update the views is not
straightforward. On the one hand, if the updates are propagated to the views too often, the extra overhead
will probably delay the future updates (both on base tables and views) significantly. On the other hand, if
the views get updated too infrequently theresult would be “stale” view data. The latter isthe usua practise
nowadays, with the updates being committed to the warehouse once aday. Finding a solution in-between
would be desirablein order to keep the datain the warehouse rel atively “fresh” without too much overhead.

The same problem applies to views that are self-maintainable ((QGMW96], [Huy97]). In that case,
although there are no base tables, changes in base tables are mapped to changesin the view and the auxiliary
views. Thisimpliesthat we still need to strike a balance between propagating the updates to the “target”
views frequently versustolerating “stale” view data.

As illustrated in figure 2, frequent view updates cause base table updates to get “pushed back”, but
these changes get propagated to the views significantly faster. Case (a), updates the view once at the end.
We can clearly see however that the first base table updates (e.g. tuple 1) will wait along time till they
get propagated to the view. In case (b), the view gets updated twice. Although some updates will be
propagated sooner to theviews (e.g. r1), somewill bedelayed (e.g tuplesry, r3). Finaly, the same tradeoff

2Actually, if we want to maintain complete consistency with the data sources, we have to limit “ splitting” the update stream at
transaction boundaries only. This shouldn’t place too much of a constraint.
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Figure 2: Executing the updates from logs with different view update frequencies

characterizes case (C), were we have three view update phases.
In the following sections, we define view staleness, derive a smple mathematical formulafor itsvalue
under varying view update frequencies, and, finally, give some rough analysis of its behavior.

3.1 Definition

We are focusing on the freshness of views. For each base table update operation we measure the elapsed
time between T}, the moment that the updateis applied to the basetable, and T, the moment it i s propagated
to the materiadized views. We can define view staleness as the average of this elapsed timefor al updates.
However, this definition does not capture the fact that frequent view updates delay the entire warehouse
update process and must be “ penaized” somehow. Let T, bethe earliest time when the update would have
been applied to the basetable, if no view updates were interleaved.

We define the actua view stalenessfor each base table update:

VS =T, - T, (4)

By rewritingEq. 4,asVS =T, — T + Ty — T, = T, — Ty + T, — T, we obtain two terms:
—— Ne——
S1 Sz
o 59 =1T,—T,, istheextra“delay” introduced to base table updates from their interleaving with view
updates. 57 isexpected to rise as the view update frequency increases.

o S =1T,— T, istheview staleness as “seen” from the update process. .5, isexpected to decrease as
theview update frequency increases, since the window of base table updatesthat are being propagated
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to the view gets smaller.

The advantages of thisdefinition of view stalenessare twofold. First of al, it providesafair comparison
to schemes with different view update frequencies, as it takes into consideration both the delay caused by
each view update phase and the speed by which the updates get propagated to the views. Secondly, by
making the time of the application of the updates to the base tabl es as the starting point of our measurements,
view staleness becomes insensitive to the speed by which these base table updates are processed by the
system (which would be the case if the arrival timeswere used). It also makes this definition insensitiveto
the update rates of the sources.

3.2 Calculation

Having defined view staleness, we proceed to cal culate an analytic formulafor it, under varying view update
frequencies. If n isthe number of view update phases, let V' .5, be the average view staleness over al base
table updates. Also, let U be the total time it takes to process the base table updates. We expect U to be
roughly the same even with different view update frequencies. Finaly, let V,, be the average view update
time.

View
Staleness

View Staleness

|
|

U/z' 3
v | N
0 m 0 rn/2 m
Base Table Updates Base Table Updates
a) One view update phase b) Two view update phases

Figure 3: View staleness calculation

When aview is updated only once, all base table updates are processed without interruption and hence
51 isawaysOfor al of them (see Figure 3a). 5, ishighfor thefirst update and decreases monotonically for
the rest. The minimum for .55 is achieved for the last base tuple update and equals to the time to complete
the view update, V3. The maximum for 5> would be reached for the first base tuple update and it would be
the time to process al the base table updates, U, plus the time to complete the view update V3. Summing
up, wehave min(VS;) = 514+ min(.52) = 0+ V1. Also, max(VS;) = S1+ max(S2) = 04 (U + Vi). The
average view staleness becomes:

min(V§) + max(vs) _ Wi+ (WU +WVy) _ U +V (5)

VS =
St 2 2 2




The case with two view update phasesis similar, but now we haveto do asimilar analysisfor each of the
two “chunks’ that thelog is split into. During each segment, approximately half of the base table updates
will be completed (in roughly % time), and each of the view update phases will take on average V5> time
(see figure 3b). Since al the base table updates in the second segment will have to be “delayed” by V5, the
average view stalenessfor updating the view twice would be:

(Z+V)+(5+2xVa) U+6xVs
2 - 4 ©)

VS =

View Staleness
S
[~

S
@‘
-

<

Base Table Updates

Figure 4. View Staleness with n view update phases

In the genera case, with n view update phases (Figure 4), the average view stalenessis roughly:

1 n 1 .

n i=1 2n

where U isthe total time needed for base tables updates and V,, isthe average view update time per phase,
and 51, 5> are:
(n—1)xV,

U

Eq. 8 capturesthe meaning of 51 and .5%. 51 increases asn gets bigger, and measures the“delay” caused
by frequent view updates. 5, steadily decreases as n increases, and accounts for the decrement of the time
it takes for each update to be propagated to the views.

3.3 Analyss

Figure 5 plotsview staeness, VS together with 51 and 5, for some typical values of the total update time
U and the average view update time V,,. In order to simplify calculations, we assumed the same value for
V,, for dl n, arather pessimistic approach for the cases with high view update frequency, for which V,, is
expected to be lower.
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The z-axisisthe chunk size, which isthe number of base table updates each view update phase will have

to propagate. Note that the view update frequency is the inverse of chunk size. For example, in Figure 5, a

50,000
10,000/*

We can clearly see that .5 isincreasing exponentialy with the chunk size getting smaller, and that .55
isincreasing linearly with the chunk size getting bigger. View staleness, the sum of .53 and 5%, isaconcave
curve. It starts off with really high values (attributed to the very high values of 51), but plunges until it
reaches a minimum and then starts to increase again (picking up the high values of .52). The minimum for

chunk size of 10,000 corresponds to a view update frequency of 5 (=

VSis around the point where the two curves 51 and .52 meet.

Tota updatetime, U is expected to have a big effect on the value of view staleness. Figure 6 plotsthe
view staleness for three different cases, where the update time is set to be double and triple as that of the
“base” case. Clearly, the bigger the update time, the more the reduction of view staleness if we update the
views more frequently. Such a case might occur, when the update stream is “slow” (because the sources
aren’t sending their updates fast, or because of network delay) or hasintervals between update arrivals with
no activity.
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Figure 7: Scaling both U and V,,

Figure 7 has a plot of scaling up all the parameters (total update time, number of update operations,

10



average view update time), where the second curve is a twofold scaleup of the “base” curve and the third
curve a threefold scaleup. Comparing these two curves with the “base” curve, we see that the bigger
the scale-up is, the “deeper” the curveis. A deeper curve would imply that the view staleness improves
significantly after updating the views more frequently than just once. This is really good news, as we
expect this scaleup to be the case when we have multiple viewsin our warehouse and want to aggregate the
individual per view measurements.

The various view staleness plotsindicate that:

¢ In all cases there exists an optima (minimum) value for view staleness. In most cases this optimal
valueislessthan what the view stalenessis when the view is update only once.

¢ Inall casesthereisaclear threshold, after which view stalenesswill soar. This meansthat increasing
the view update frequency beyond that point will have adverse effects.

4 Experiments

We developed a synthetic workload generator, Genesis, in order to create update streams with varying
characteristics. The base table that we used in our experiments have the same tuple-size as the Wisconsin
benchmark [Dew93] (plus the extra timestamp attributes), but we only provided explicit values for the join
attribute. Genesis uses techniques from [GSET94] and [PTVF92] in order to generate values which follow
different distribution functions. It was used to create update streams with many different data patterns and
also various “behaviors’ over time (e.g. “slow” or “high speed” streams).

In our experiments, the join attribute value for the base relations had a uniform distribution. The min,
max values were different among experiments and were picked so that the join selectivity would result in a
view with roughly the same size as each of the two base relations. The materialized view in our system was
stored in the form of aView Index ([Rou82], [Va87]), as another table.

MAUVE , our online view maintenance a gorithm that uses timestamps, was implemented on top of the
Informix Universal Server version 9.12 ([inf97]). It run as a separate client on the same machine where the
server was running. The database was stored as a raw partition (to avoid any “outside” buffering from the
0S). For al our experimentswe used a SUN UltraSparc 1 model 170, with 64 MB of main memory, running
Solaris 2.5. Since this was a networked machine, we tolerated some minor fluctuations in our results and
thus we had to average our measurements over multiple runs.

For every experiment, acompl ete database (basetables & materialized views) had aready beeninstalled.
MAUVE was used to apply the base table updates read from a log®, propagating the updates to the view,
every time we had completed “chunk size’” number of base table tuple updates. For each tuple update we
measure view staleness and average it over al tuplesat the end.

3The update |og also had timing information together with the update data, in order to mimic real update streams.
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For dl the experiments we plot the measured average view staleness over all the updates. We also plot

the theoretic average for VS(given by Eq. 7) using some representative U/ and V,, numbers (usually the

averages of all therunsin each experiment).

4.1 Updatesize

We expect the total number of update operations, the update size, to influence view staleness significantly.

The bigger the update size, the longer the total update time (the total time it takes to process just the base

table insertions and deletions), which as the analysisindicated, is really important for view staleness.

We used two 50 M B tablesand asaview their join. We then run 4 sets of experimentswith thefollowing
update sizes: 30,000 (= 4% of both tables), 40,000 (6%), 70,000 (10%) and 100,000 (15%). Figures 8

through 11 have the results.
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The first observation is that in al cases, propagating the updates to the view more than just once at

the end, clearly improves the average view staleness. For Figure 8 the minimum view stalenessis reached

with chunk size = 15K, for Figure 9 with chunk size = 15K, for Figure 10 with chunk size = 15K and, for
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Figure 10 with chunk size = 25K. These chunk sizes correspond to applying the incremental updates to the
view respectively twice, three times, five times and four timesinstead of doing it once at the end.

Asexpected from our analysis, the bigger the update size, the deeper the view staleness curveis. In the
first two sets of experimentswith relatively small update sizes (Figures 8 and 9), VSisamost “flat” around
the area of the minimum, and the difference from the case with only one view update phase is not very big.
However, asthe update size increases (Figures 10 and 11), so does the difference between the optimal view
staleness and the view staleness for the case with only one view update.

In conclusion, we found that our experiments verified the intuition that the bigger update sizes are more
prone to benefit by frequent view updates, as early updates become much more “stale” at the end, if not
propagated in the mean time. In other words, it makes sense to break down “long” update jobs so that some
of the updates get propagated to the views.

Comparing the experimental data with the predicted curve, we can see that there are cases where there
issignificant deviation. Since we used asingle V,, in the calculation of the predicted view staleness (Eqg. 7)
for simplicity, this can be explained by the fact that there was considerabl e deviation in average view times
among the different experiments. For example, in Figure 11, the average view time for the case with only
one view update was about 3000, compared to a mere 570 on average for al the other cases. A solution
to this problem is to use the actua V,, value for each point when calculating the predicted view staleness,
instead of the overall average. We used thisideain Figure 11 for plotting a second curve, “theoretic-2”,
which illustrates the fact that the predicted values coincide with the ones from the experiments.

4.2 Stream Continuity and Stream Update Rate

Following our experiments with varying update sizes, we experimented with workloads of different kinds
of update streams. We identified two parametersthat characterize the temporal behavior of incoming update
streams:

¢ Update rateisthe combined rate at which the sources supply updates to the warehouse. Streams are
classified into those with high update rate, medium update rate, and low update rate, depending on
whether the updates are coming at a speed higher than what the warehouse can process, just about, or
less, respectively.

¢ Continuity refers to whether the stream exhibits great variationsin the update rate or not. We classify
update streamsinto, steady, i.e. those that have a nearly constant update rate, and discontinuous, i.e.
those that exhibit greatly varying update rates (even with no update activity at some times).

The experiments of the previous section were for steady streams. In this section we concentrate on
discontinuous streams.
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Figure 12 has aplot of the update rate over time for three different streams. Cases (a) and (c) are steady
streams, and (b) is an example of a discontinuous stream, with (¢) having the same effective update rate as
(b).

The motivation behind studying this kind of streams s that even with the sources constantly “willing”
to supply the warehouse with updates, there are alot of reasons for periods of no incoming update activity
at the warehouse, because of network congestion or failures or other outside factors.
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Figure 13: High update rate Figure 14: Medium update rate

The case of discontinuous streams with high update rates is plotted in Figure 13. We can see, that the
percentage of periods® of no update activity versusregular activity on the warehouse has no major influence
on view staleness. Although view staleness can be improved by updating the views more than once, all
four view staleness curves seem to be roughly the same. The reason isthat as the update rate isreally high,
it makes no big difference even if it has discontinuities. If for example it takes X minutes to process the
updates, and these updates all arrive on the first minute, then it would make no difference if there were any
periods of no activity in thisminute or not. Even if it took two minutes for the updates to arrive (twice the

“The length of these periods was made to follow a negative exponential distribution in order to agree with typical inter-arrival

rates.
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previoustime), it still wouldn’t make much of adifference.

For the second set of experiments, we studied discontinuous streams with medium update rates. In
Figure 14, the curves for view sta eness are much more concave than the previous set of experiments, which
means that these cases can benefit even more from higher view update frequencies.

2,500 I Base Table Update Time
[] View Update Time
B Lag Time
2,000
1,500
0
(&)
(<}
(72}
1,000
500
0

1300 2000 2500 5000 7000 10K 20K

chunk size (ops)

Figure 15: Lag time for a discontinuous stream

When we have discontinuous medium update rate streams, the warehouse beginsto experience lag time,
or in other words, idle time because of no update activity. In this case, it makes sense to interrupt the
update stream in order to propagate the updatesto the views. Figure 15 has measurementsfor total lag time,
compared to the total base table update time and the total view update time, for the medium update rate
stream with the most discontinuity. Clearly, as the view chunk size decreases (i.e. the views are updated
more frequently), the lag time decreases as well, because that time is being used for updating the views.

Finally, in other experiments with low update rate streams (not shown here because of space considera-
tions), we were able to verify our intuition that as the update rate gets |lower, the benefits of propagating the
updates to the views more frequently increase. In other words, it makes sense to “interrupt” alight update

job.

4.3 Sizeof basetables

With size being a key consideration in data warehousing environments, we conducted a scal ability experi-
ment to see how table size affects view staleness. We compared plots from the two different table sizes of
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the previous experiments, 30MB and 100M B, while keeping the update size constant.
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Figure 16: Scaling thetable size/ 40K updates

Figure 16 is the case where the absolute number of updates was kept constant (to 40,000 updates in
our experiment). Comparing the two runs for the different base table sizes (30MB vs 100MB) we see that
the view staleness curves have roughly the same shape (with the second curve perhaps being sightly less
concave than thefirst one). In other words, scaling the database size didn’t seem to have any major impact
on view staleness.

5 Reated Work

[QW97] proposesthe 2VNL a gorithmfor onlineview maintenance where pre-update versions of updatesble
attributes are kept for readers to access while a maintenance transaction is active. Their approach haslittle
overhead and can be implemented by query rewrite. MAUVE provides a natura extension to n versions,
thus avoiding the session expiration problem when a reader overlaps with more than one maintenance
transaction.

Algorithmsfor deferred view maintenance that minimize downtimewere presented in [CGL*96]. They
avoid the “state bug” where direct application of pre-update algorithms in the post-update state results in
incorrect view change caculation. The use of timestamps in MAUVE allows us to access the pre-update
phase of thetables, circumventing the state bug. Also, weimproveonthe* deferredness’ of view updates, by
introducing view stalenessas akey metric to optimizein order to achieve agood view freshness/performance
tradeoff.

Data stalenessisintroduced in[AGMK95], where they study various scheduling policies among update
and query transactions in a soft real-time database system. Nevertheless, all updates in their system are
applied directly to the database tables without the need to propagate these updates to any derived data, asis
the case with view staleness and materiaized views in our work.

The notion of view freshness also appears in [HZ96a] and [HZ96b] during the presentation of the
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Squirrel integration mediators. However, their study is different from ours, as they study the tradeoffs
between different view materialization approaches (fully materialized, partially materialized and fully
virtual) under eager update processing, whereas we focus our study on the tradeoffs between different view
update frequencies.

The work in [SLSV95] contains agorithms for splitting up long transactions. Although, MAUVE in
effect splitsup avery long transaction (the update stream), the differencein our caseisthat we still enforce a
seria ordering on those“ chunks’ of work to guarantee in-order application of the updatesto the warehouse.

6 Conclusions & FutureWork

We have proposed MAUVE , a new online view update algorithm. MAUVE guarantees full consistency
while alowing concurrent read-only access to the warehouse during the refresh operation. It has little
implementation overhead as it can be implemented with query rewrite, and also imposes little storage
overhead. MAUVE alows for the base table updates to be propagated to the views at arbitrary points (the
chunk size), which can be used as a knob in the system to optimize view staleness.

We have given a definition for view staleness that providesafair comparison to schemes with different
view update frequencies. We have aso derived an anaytical formulafor it, which was verified by experi-
mental results. Our experiments showed that view staleness can be greatly improved if updatesto theviews
are propagated more frequently than once a day.

Future Work We based thiswork on the assumption that &l views in the warehouse are equally “impor-
tant”, and thus it always makes sense to try “stealing” some cycles from the base table updates in order to
refresh the views. However, we want to experiment with cases where there is a distinction between “hot”
and “cold” datain the warehouse and seeif allowing different view update frequencies per view can give a
better solution for these cases.

Acknowledgments We would like to thank Kostas Stathatos, Yannis Kotidis and Damianos Karakos for
many useful discussions, comments and suggestions.
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A Tableof Symbols

Symbol || Meaning
R, S base tables
VRr.s materialized view
R, S || updated versionsof R, S
Vis updated version of Vy s
I, Is || setofinsertionson R, S respectively
Dp, Dgs || set of deletionson R, S respectively
T, base table update arrival time
Ty actual timewhen updateis applied to basetable
Te earliest possible Ty, i.e. timewhen update would have
been applied to base table, had there been no view updates
T, time when update is propagated to view
VS view staleness (VS = 51 + 52)
VS, view staleness when view update frequency = n
51 base table updates delay
9o presumed view sta eness
U total time to update base tables
Va average view update time

Table 1: Table of symbols

21




