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Abstract

Updating the materialized views stored in data warehouses usually implies making the warehouse

unavailable to users. We propose MAUVE , a new algorithm for online incremental view updates that

uses timestamps and allows consistent read-only access to the warehouse while it being updated. The

algorithm propagates the updates to the views more often than the typical once a day in order to reduce

view staleness.

We have implemented MAUVE on top of the Informix Universal Server and used a synthetic workload

generator to experiment with various update workloads and different view update frequencies. Our results

show that, all kinds of update streams benefit from more frequent view updates, instead of just once

a day. However, there is a clear maximum for the view update frequency, for which view staleness is

minimal.

1 Introduction

Data warehouses contain data replicated from several external sources, collected to answer decision support

queries. The replicated data is often copied in replica tables in the warehouse. The degree of replication is

further extended by introducing other derived data to facilitate query processing and maintenance. These

derived data include all kinds of indices, multidimensional materialized views or partially materialized

views, summary tables and aggregate views such as the data cube, and so on. We refer to all these with the

most general term “materialized views” ([Rou98]).
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When data on the external sources change, updates are sent to the warehouse, which has to perform a

refresh operation. Except for updating the base data tables, derived data also need be updated in order for

the warehouse to reach a fully consistent state. The two issues at hand are how to implement the refresh

operation, and when to refresh the warehouse ([CD97]).

View Maintenance deals with the issue of how to perform the refresh operation on materialized views,

once the underlying data has changed ([GM95]). The simple solution of recomputing the entire materialized

view from scratch is not suitable for most cases, and instead incremental algorithms ([BALT86, RK86,

CW91, Rou91, QW91, GMS93, GL95, RCK+95, ZGMHW95, ZGMW96, CGL+96, AASY97, GLT97,

QW97]) have been proposed to compute only the changes to the materialized view given the updates on the

base tables. The choice of which algorithm to choose can be left to the query optimizer ([Vis98]).

The when to refresh issue, is closely associated with the overhead that the view update algorithm places

on the warehouse. In most cases, the update algorithms render the warehouse off-line (i.e. no queries are

allowed to run concurrently with the update process since they would possibly access inconsistent data), and

as such are usually scheduled overnight. However, the new world order of globalization in operations takes

away the luxury of refreshing the warehouse during the night, because it is always daytime in some part of

the world. One solution is to try to minimize this downtime, and make the effects of the warehouse being

off-line as little as possible ([CGL+96]). An even better solution is to eliminate downtime altogether, by

using an online algorithm, that allows read-only queries to access the warehouse while it is being updated

([QW97]).

Even with the best online view maintenance algorithm, the decision of when to update is not straight-

forward. If we wish to update the materialized views as soon as changes to the base tables arrive, this

immediate maintenance imposes a significant overhead both to the update process, and to the rest of the

warehouse users. As an alternative, we can use deferred view maintenance, which will allow the view data

to become stale (i.e. inconsistent with the view definition) and perform the update at some time in the future.

Deferred view maintenance raises two concerns. First of all, in the case that we want warehouse readers

to always see consistent data (the default case for most applications), we must come up with a way to

“filter out” the parts that are inconsistent, possibly by supplying readers with an older version of the entire

warehouse. Secondly, we must strike balance between grouping many view updates together for better

performance, and not letting view data become too stale.

In this paper we present MAUVE1, a new online algorithm for incrementally updating materialized

views. MAUVE uses versioning to allow read-only warehouse queries to run concurrently with warehouse

update jobs and always “see” the warehouse at a completely consistent state. Incoming update streams are

split up into “chunks” of updates. For each chunk, MAUVE first applies all of the updates to the base tables

and then propagates these updates to the views.

By controlling the chunk size, we affect the view staleness (the time it takes for the base table updates to

1MAUVE stands for Multi-version Algorithm for Updating materialized Views onlinE.
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“reach” the views) for the warehouse. Since the view update phase in a sense takes processing time “away”

from base table updates, having a relatively small chunk size can have an overwhelming delay on the update

process, whereas a big chunk size will let the view data become too stale. Finding the chunk size that leads

to an optimal view staleness for the warehouse will guarantee a good tradeoff.

This paper contributes to the work on view maintenance by presenting a new online view update

algorithm, and by establishing view staleness as a key metric to use when deciding how often to propagate

the updates to the materialized views.

The rest of this paper is organized as follows. Our online view update algorithm is presented in Section 2.

View Staleness is defined and calculated in Section 3. Section 4 contains our experiments and Section 5

discusses related work. Finally, Section 6 has our conclusions and plans for future work.

2 View Update Algorithm

MAUVE is an online algorithm for incrementally updating materialized views that uses versioning. The

warehouse refresh process, “fed” by the incoming update stream, is continuously applying the updates to

the base tables. When certain conditions are met (e.g. number of updates reaches a predefined threshold

or certain time has passed since the last view update) MAUVE will interrupt the regular processing of base

table updates in order to propagate these updates to the views (see Figure 1). Versioning allows readers,

running concurrently with the update process, to “filter out” pending or not fully propagated updates, thus

always seeing the warehouse at a completely consistent state.

source
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no
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Figure 1: MAUVE
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2.1 Using Timestamps

MAUVE supports multiple versions by using Time Travel ([Sto87]). Each row has two extra attributes,

Tmin, the insertion timestamp, and Tmax the deletion timestamp. Timestamps in our system are rather

coarse, and assigned at the warehouse by grouping many updates together into logical chunks of work

([RES93]).

To illustrate the use of timestamps, we follow the life-cycle of a tuple. First of all, suppose tuple r gets

inserted into the source database. This insertion will propagate through the network and eventually reach

the warehouse. At the warehouse, the insertion will receive a timestamp, say Tir, grouping it along with

other updates that share the same timestamp number. When the insertion is applied to the base table in the

warehouse, the newly created tuple gets Tmin = Tir, and also Tmax = null. At some point in time, tuple r

might be deleted from the source database and the deletion will once again arrive at the warehouse receiving

a timestamp of Tdr. However, this time, there will be no actual deletion of tuple r at the warehouse, as we

will only update its Tmax to Tdr instead. At some later point in the future, tuple r can finally be physically

deleted from the warehouse.

In our model, updates can be either insertions or deletions (so updating an attribute of a tuple would

correspond to a pair of update operations). We also assume that updates for each relation come from

only one source and that we have in-order delivery of updates at the warehouse. If there are multiple

sources, we assume each relation resides in one source. These assumptions guarantee that Tir <= Tdr and

consecutively that Tmin <= Tmax (or Tmax = null) hold for all tuples.

2.2 Queries

Tmin and Tmax are used by our system to provide different versions of the warehouse to queries. Each

version corresponds to a state of the warehouse that is completely consistent with the source databases.

A special variable, global timestamp, is used to indicate the current maximum version, which would

correspond to the most up-to-date consistent state of the warehouse.

Each query, on startup, records the current global timestamp into a private variable, local timestamp.

Throughout the execution of the query, only tuples with

Tmin <= local timestamp (1)

Tmax > local timestamp or Tmax = null (2)

are “visible” to the query. In other words, we only allow the query to access tuples that were created

sometime in the past, and have not yet been marked as “deleted”.

Implementing this versioning scheme for queries is simple, since it can be done by query modification

([Sto75]) where we rewrite the queries to include Eq. 1 and Eq. 2 as part of their predicate (i.e. the where

clause in SQL).
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2.3 Incremental View Updates

Let VR;S = R 1 S be our materialized view. R0 and S 0 are the updated base tables R and S. IR, IS are the

sets of insertions to R and S respectively, and DR, DS are the sets of deletions.

MAUVE uses the formulas from [Rou91] to compute incremental updates to the view:

V 0
R;S = R0

1 S0 = (R[ IR �DR) 1 (S [ IS �DS)

= (R 1 S)� (R 1 DS)� (DR 1 S)� (DR 1 DS)

[ (R 1 IS)� (DR 1 IS)

[ (IR 1 S) [ (IR 1 IS)� (IR 1 DS)

= [R 1 S � fDR; *g � f*; DSg] [ (R�
1 IS) [ (IR 1 S0) (3)

where fDR; *g are the pairs (tidR; tidS) of VR;S for which tidR 2 DR,

f*; DSg are the pairs (tidR; tidS) of VR;S for which tidS 2 DS , and

R� = R�DR.

One interesting observation for Eq. 3 is that there is a “hidden” assumption that IR \ DR = ; and

IS \ DS = ;. If for example IR \ DR = r, then tuple r will appear in V 0
R;S, because when DR is

applied, r has not been inserted yet and thus won’t be deleted. One way around this is to have some sort

of preprocessing to eliminate such “trivial” updates ([Sta89]). Another way is to “clean up” the two sets

of insertions IR and IS on the fly, by checking to see if any of their members also belong to DR or DS

respectively.

Each update phase in MAUVE gets assigned a unique timestamp, update timestamp. This is used as

the value for Tmin for all tuples inserted to the warehouse by the update process (be it at a base table or at

a view), and also as the Tmax for all deleted tuples (again both at base tables or views). After the update

process completes, global timestamp is incremented to reflect a more up-to-date consistent version of the

warehouse. Using timestamp “arithmetic”, we derive the SQL statements for the sets in Eq 3:

DR = select * from R

where Tmax = update timestamp

IR = select * from R

where Tmin = update timestamp

and (Tmax > update timestamp or Tmax = null )

R� = select * from R

where Tmin < update timestamp

and (Tmax > update timestamp or Tmax = null )

S0 = select * from S

where Tmin <= update timestamp

and (Tmax > update timestamp or Tmax = null )

5



2.4 Discussion

Timestamps are generated at the warehouse, so their use imposes no overhead to the data sources whatsoever.

Implementation overhead is also quite low. They create little interaction between readers and updaters

(common access to global timestamp), and also allow for concurrent, consistent access to the warehouse.

Timestamps are used to group update operations together. However, the granularity of this grouping is

arbitrary2 and can be defined on a per workload basis or even dynamically. Therefore, chunk size should

be seen as a special knob in our system, a unique feature of MAUVE. On the one hand, batching a lot of

operations together usually improves performance (except in the extreme case of long transactions where

it might have adverse side effects on the rest of the system). On the other hand, the smaller each update

phase is, the more up-to-date the warehouse will be (except of course for the degenerate case of very small

update phases that saturate the system). In the next section we propose a way on how to “tune” chunk size

to optimize view staleness.

3 View Staleness

We assume a warehouse that keeps complete replicas of the base tables, or at least a part of the base tables

that hold all the relevant updates ([BALT86], [HZ96a]). In our environment, updates from the sources arrive

at the warehouse and are being applied to the base tables. At some points, this process gets interrupted in

order to propagate these updates to the view(s).

Even with the best online view update algorithm, the decision of when to update the views is not

straightforward. On the one hand, if the updates are propagated to the views too often, the extra overhead

will probably delay the future updates (both on base tables and views) significantly. On the other hand, if

the views get updated too infrequently the result would be “stale” view data. The latter is the usual practise

nowadays, with the updates being committed to the warehouse once a day. Finding a solution in-between

would be desirable in order to keep the data in the warehouse relatively “fresh” without too much overhead.

The same problem applies to views that are self-maintainable ([QGMW96], [Huy97]). In that case,

although there are no base tables, changes in base tables are mapped to changes in the view and the auxiliary

views. This implies that we still need to strike a balance between propagating the updates to the “target”

views frequently versus tolerating “stale” view data.

As illustrated in figure 2, frequent view updates cause base table updates to get “pushed back”, but

these changes get propagated to the views significantly faster. Case (a), updates the view once at the end.

We can clearly see however that the first base table updates (e.g. tuple r1) will wait a long time till they

get propagated to the view. In case (b), the view gets updated twice. Although some updates will be

propagated sooner to the views (e.g. r1), some will be delayed (e.g tuples r2, r3). Finally, the same tradeoff

2Actually, if we want to maintain complete consistency with the data sources, we have to limit “splitting” the update stream at

transaction boundaries only. This shouldn’t place too much of a constraint.
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Figure 2: Executing the updates from logs with different view update frequencies

characterizes case (c), were we have three view update phases.

In the following sections, we define view staleness, derive a simple mathematical formula for its value

under varying view update frequencies, and, finally, give some rough analysis of its behavior.

3.1 Definition

We are focusing on the freshness of views. For each base table update operation we measure the elapsed

time between Tb, the moment that the update is applied to the base table, and Tv, the moment it is propagated

to the materialized views. We can define view staleness as the average of this elapsed time for all updates.

However, this definition does not capture the fact that frequent view updates delay the entire warehouse

update process and must be “penalized” somehow. Let Teb be the earliest time when the update would have

been applied to the base table, if no view updates were interleaved.

We define the actual view staleness for each base table update:

VS = Tv � Teb (4)

By rewriting Eq. 4, as VS = Tv � Teb + Tb � Tb = Tb � Teb| {z }
S1

+Tv � Tb| {z }
S2

we obtain two terms:

� S1 = Tb�Teb, is the extra “delay” introduced to base table updates from their interleaving with view

updates. S1 is expected to rise as the view update frequency increases.

� S2 = Tv � Tb, is the view staleness as “seen” from the update process. S2 is expected to decrease as

the view update frequency increases, since the window of base table updates that are being propagated
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to the view gets smaller.

The advantages of this definition of view staleness are twofold. First of all, it provides a fair comparison

to schemes with different view update frequencies, as it takes into consideration both the delay caused by

each view update phase and the speed by which the updates get propagated to the views. Secondly, by

making the time of the application of the updates to the base tables as the starting point of our measurements,

view staleness becomes insensitive to the speed by which these base table updates are processed by the

system (which would be the case if the arrival times were used). It also makes this definition insensitive to

the update rates of the sources.

3.2 Calculation

Having defined view staleness, we proceed to calculate an analytic formula for it, under varying view update

frequencies. If n is the number of view update phases, let V Sn be the average view staleness over all base

table updates. Also, let U be the total time it takes to process the base table updates. We expect U to be

roughly the same even with different view update frequencies. Finally, let Vn be the average view update

time.
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Figure 3: View staleness calculation

When a view is updated only once, all base table updates are processed without interruption and hence

S1 is always 0 for all of them (see Figure 3a). S2 is high for the first update and decreases monotonically for

the rest. The minimum for S2 is achieved for the last base tuple update and equals to the time to complete

the view update, V1. The maximum for S2 would be reached for the first base tuple update and it would be

the time to process all the base table updates, U , plus the time to complete the view update V1. Summing

up, we have min(VS1) = S1 + min(S2) = 0 + V1. Also, max(VS1) = S1 + max(S2) = 0 + (U + V1). The

average view staleness becomes:

VS1 =
min(VS1) + max(VS1)

2
=
V1 + (U + V1)

2
=
U

2
+ V1 (5)
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The case with two view update phases is similar, but now we have to do a similar analysis for each of the

two “chunks” that the log is split into. During each segment, approximately half of the base table updates

will be completed (in roughly U
2 time), and each of the view update phases will take on average V2 time

(see figure 3b). Since all the base table updates in the second segment will have to be “delayed” by V2, the

average view staleness for updating the view twice would be:

VS2 =
(U4 + V2) + (U4 + 2 � V2)

2
=
U + 6 � V2

4
(6)

U
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U
n

U
n

Vn

Vn

n

V
ie

w
 S

ta
le

ne
ss

Vn

Base Table Updates

0 mm

Figure 4: View Staleness with n view update phases

In the general case, with n view update phases (Figure 4), the average view staleness is roughly:

VSn =
1
n

 
n �

U

2n
+ Vn �

nX
i=1

i

!
=
U + n� (n+ 1)� Vn

2n
(7)

where U is the total time needed for base tables updates and Vn is the average view update time per phase,

and S1, S2 are:

S1 =
(n� 1)� Vn

2
and S2 =

U

2n
+ Vn (8)

Eq. 8 captures the meaning of S1 and S2. S1 increases as n gets bigger, and measures the “delay” caused

by frequent view updates. S2 steadily decreases as n increases, and accounts for the decrement of the time

it takes for each update to be propagated to the views.

3.3 Analysis

Figure 5 plots view staleness, VS, together with S1 and S2, for some typical values of the total update time

U and the average view update time Vn. In order to simplify calculations, we assumed the same value for

Vn for all n, a rather pessimistic approach for the cases with high view update frequency, for which Vn is

expected to be lower.
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Figure 6: Increasing the update time

The x-axis is the chunk size, which is the number of base table updates each view update phase will have

to propagate. Note that the view update frequency is the inverse of chunk size. For example, in Figure 5, a

chunk size of 10,000 corresponds to a view update frequency of 5 (= 50;000
10;000).

We can clearly see that S1 is increasing exponentially with the chunk size getting smaller, and that S2

is increasing linearly with the chunk size getting bigger. View staleness, the sum of S1 and S2, is a concave

curve. It starts off with really high values (attributed to the very high values of S1), but plunges until it

reaches a minimum and then starts to increase again (picking up the high values of S2). The minimum for

VS is around the point where the two curves S1 and S2 meet.

Total update time, U is expected to have a big effect on the value of view staleness. Figure 6 plots the

view staleness for three different cases, where the update time is set to be double and triple as that of the

“base” case. Clearly, the bigger the update time, the more the reduction of view staleness if we update the

views more frequently. Such a case might occur, when the update stream is “slow” (because the sources

aren’t sending their updates fast, or because of network delay) or has intervals between update arrivals with

no activity.

2000

4000

6000

8000

10000

12000

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

st
al

en
es

s 
(s

ec
s)

chunk size (ops)

base

2000

4000

6000

8000

10000

12000

0 20000 40000 60000 80000 100000

st
al

en
es

s 
(s

ec
s)

chunk size (ops)

twofold

2000

4000

6000

8000

10000

12000

0 20000 40000 60000 80000 100000 120000 140000

st
al

en
es

s 
(s

ec
s)

chunk size (ops)

threfold

Base Twofold scaling Threefold scaling

Figure 7: Scaling both U and Vn

Figure 7 has a plot of scaling up all the parameters (total update time, number of update operations,
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average view update time), where the second curve is a twofold scaleup of the “base” curve and the third

curve a threefold scaleup. Comparing these two curves with the “base” curve, we see that the bigger

the scale-up is, the “deeper” the curve is. A deeper curve would imply that the view staleness improves

significantly after updating the views more frequently than just once. This is really good news, as we

expect this scaleup to be the case when we have multiple views in our warehouse and want to aggregate the

individual per view measurements.

The various view staleness plots indicate that:

� In all cases there exists an optimal (minimum) value for view staleness. In most cases this optimal

value is less than what the view staleness is when the view is update only once.

� In all cases there is a clear threshold, after which view staleness will soar. This means that increasing

the view update frequency beyond that point will have adverse effects.

4 Experiments

We developed a synthetic workload generator, Genesis, in order to create update streams with varying

characteristics. The base table that we used in our experiments have the same tuple-size as the Wisconsin

benchmark [Dew93] (plus the extra timestamp attributes), but we only provided explicit values for the join

attribute. Genesis uses techniques from [GSE+94] and [PTVF92] in order to generate values which follow

different distribution functions. It was used to create update streams with many different data patterns and

also various “behaviors” over time (e.g. “slow” or “high speed” streams).

In our experiments, the join attribute value for the base relations had a uniform distribution. The min,

max values were different among experiments and were picked so that the join selectivity would result in a

view with roughly the same size as each of the two base relations. The materialized view in our system was

stored in the form of a View Index ([Rou82], [Val87]), as another table.

MAUVE , our online view maintenance algorithm that uses timestamps, was implemented on top of the

Informix Universal Server version 9.12 ([inf97]). It run as a separate client on the same machine where the

server was running. The database was stored as a raw partition (to avoid any “outside” buffering from the

OS). For all our experiments we used a SUN UltraSparc 1 model 170, with 64 MB of main memory, running

Solaris 2.5. Since this was a networked machine, we tolerated some minor fluctuations in our results and

thus we had to average our measurements over multiple runs.

For every experiment, a complete database (base tables & materialized views) had already been installed.

MAUVE was used to apply the base table updates read from a log3, propagating the updates to the view,

every time we had completed “chunk size” number of base table tuple updates. For each tuple update we

measure view staleness and average it over all tuples at the end.

3The update log also had timing information together with the update data, in order to mimic real update streams.
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For all the experiments we plot the measured average view staleness over all the updates. We also plot

the theoretic average for VS (given by Eq. 7) using some representative U and Vn numbers (usually the

averages of all the runs in each experiment).

4.1 Update size

We expect the total number of update operations, the update size, to influence view staleness significantly.

The bigger the update size, the longer the total update time (the total time it takes to process just the base

table insertions and deletions), which as the analysis indicated, is really important for view staleness.

We used two 50 MB tables and as a view their join. We then run 4 sets of experiments with the following

update sizes: 30,000 (= 4% of both tables), 40,000 (6%), 70,000 (10%) and 100,000 (15%). Figures 8

through 11 have the results.
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Figure 8: 30K updates
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Figure 9: 40K updates
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Figure 10: 70K updates

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

V
ie

w
 S

ta
le

ne
ss

 (
se

cs
)

chunk size (ops)

avg
theoretic

theoretic-2

Figure 11: 100K updates

The first observation is that in all cases, propagating the updates to the view more than just once at

the end, clearly improves the average view staleness. For Figure 8 the minimum view staleness is reached

with chunk size = 15K, for Figure 9 with chunk size = 15K, for Figure 10 with chunk size = 15K and, for
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Figure 10 with chunk size = 25K. These chunk sizes correspond to applying the incremental updates to the

view respectively twice, three times, five times and four times instead of doing it once at the end.

As expected from our analysis, the bigger the update size, the deeper the view staleness curve is. In the

first two sets of experiments with relatively small update sizes (Figures 8 and 9), VS is almost “flat” around

the area of the minimum, and the difference from the case with only one view update phase is not very big.

However, as the update size increases (Figures 10 and 11), so does the difference between the optimal view

staleness and the view staleness for the case with only one view update.

In conclusion, we found that our experiments verified the intuition that the bigger update sizes are more

prone to benefit by frequent view updates, as early updates become much more “stale” at the end, if not

propagated in the mean time. In other words, it makes sense to break down “long” update jobs so that some

of the updates get propagated to the views.

Comparing the experimental data with the predicted curve, we can see that there are cases where there

is significant deviation. Since we used a single Vn in the calculation of the predicted view staleness (Eq. 7)

for simplicity, this can be explained by the fact that there was considerable deviation in average view times

among the different experiments. For example, in Figure 11, the average view time for the case with only

one view update was about 3000, compared to a mere 570 on average for all the other cases. A solution

to this problem is to use the actual Vn value for each point when calculating the predicted view staleness,

instead of the overall average. We used this idea in Figure 11 for plotting a second curve, “theoretic-2”,

which illustrates the fact that the predicted values coincide with the ones from the experiments.

4.2 Stream Continuity and Stream Update Rate

Following our experiments with varying update sizes, we experimented with workloads of different kinds

of update streams. We identified two parameters that characterize the temporal behavior of incoming update

streams:

� Update rate is the combined rate at which the sources supply updates to the warehouse. Streams are

classified into those with high update rate, medium update rate, and low update rate, depending on

whether the updates are coming at a speed higher than what the warehouse can process, just about, or

less, respectively.

� Continuity refers to whether the stream exhibits great variations in the update rate or not. We classify

update streams into, steady, i.e. those that have a nearly constant update rate, and discontinuous, i.e.

those that exhibit greatly varying update rates (even with no update activity at some times).

The experiments of the previous section were for steady streams. In this section we concentrate on

discontinuous streams.
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Figure 12: Comparison of three streams

Figure 12 has a plot of the update rate over time for three different streams. Cases (a) and (c) are steady

streams, and (b) is an example of a discontinuous stream, with (c) having the same effective update rate as

(b).

The motivation behind studying this kind of streams is that even with the sources constantly “willing”

to supply the warehouse with updates, there are a lot of reasons for periods of no incoming update activity

at the warehouse, because of network congestion or failures or other outside factors.
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Figure 13: High update rate
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Figure 14: Medium update rate

The case of discontinuous streams with high update rates is plotted in Figure 13. We can see, that the

percentage of periods4 of no update activity versus regular activity on the warehouse has no major influence

on view staleness. Although view staleness can be improved by updating the views more than once, all

four view staleness curves seem to be roughly the same. The reason is that as the update rate is really high,

it makes no big difference even if it has discontinuities. If for example it takes X minutes to process the

updates, and these updates all arrive on the first minute, then it would make no difference if there were any

periods of no activity in this minute or not. Even if it took two minutes for the updates to arrive (twice the

4The length of these periods was made to follow a negative exponential distribution in order to agree with typical inter-arrival

rates.
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previous time), it still wouldn’t make much of a difference.

For the second set of experiments, we studied discontinuous streams with medium update rates. In

Figure 14, the curves for view staleness are much more concave than the previous set of experiments, which

means that these cases can benefit even more from higher view update frequencies.

1300 2000 2500 5000 7000 10K 20K

chunk size (ops)

0

500

1,000

1,500

2,000

2,500

se
cs

Base Table Update Time

View Update Time

Lag Time

Figure 15: Lag time for a discontinuous stream

When we have discontinuous medium update rate streams, the warehouse begins to experience lag time,

or in other words, idle time because of no update activity. In this case, it makes sense to interrupt the

update stream in order to propagate the updates to the views. Figure 15 has measurements for total lag time,

compared to the total base table update time and the total view update time, for the medium update rate

stream with the most discontinuity. Clearly, as the view chunk size decreases (i.e. the views are updated

more frequently), the lag time decreases as well, because that time is being used for updating the views.

Finally, in other experiments with low update rate streams (not shown here because of space considera-

tions), we were able to verify our intuition that as the update rate gets lower, the benefits of propagating the

updates to the views more frequently increase. In other words, it makes sense to “interrupt” a light update

job.

4.3 Size of base tables

With size being a key consideration in data warehousing environments, we conducted a scalability experi-

ment to see how table size affects view staleness. We compared plots from the two different table sizes of
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the previous experiments, 30MB and 100MB, while keeping the update size constant.
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Figure 16: Scaling the table size / 40K updates

Figure 16 is the case where the absolute number of updates was kept constant (to 40,000 updates in

our experiment). Comparing the two runs for the different base table sizes (30MB vs 100MB) we see that

the view staleness curves have roughly the same shape (with the second curve perhaps being slightly less

concave than the first one). In other words, scaling the database size didn’t seem to have any major impact

on view staleness.

5 Related Work

[QW97] proposes the 2VNL algorithm for online view maintenance where pre-update versions of updateable

attributes are kept for readers to access while a maintenance transaction is active. Their approach has little

overhead and can be implemented by query rewrite. MAUVE provides a natural extension to n versions,

thus avoiding the session expiration problem when a reader overlaps with more than one maintenance

transaction.

Algorithms for deferred view maintenance that minimize downtime were presented in [CGL+96]. They

avoid the “state bug” where direct application of pre-update algorithms in the post-update state results in

incorrect view change calculation. The use of timestamps in MAUVE allows us to access the pre-update

phase of the tables, circumventing the state bug. Also, we improve on the “deferredness” of view updates, by

introducing view staleness as a key metric to optimize in order to achieve a good view freshness/performance

tradeoff.

Data staleness is introduced in [AGMK95], where they study various scheduling policies among update

and query transactions in a soft real-time database system. Nevertheless, all updates in their system are

applied directly to the database tables without the need to propagate these updates to any derived data, as is

the case with view staleness and materialized views in our work.

The notion of view freshness also appears in [HZ96a] and [HZ96b] during the presentation of the
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Squirrel integration mediators. However, their study is different from ours, as they study the tradeoffs

between different view materialization approaches (fully materialized, partially materialized and fully

virtual) under eager update processing, whereas we focus our study on the tradeoffs between different view

update frequencies.

The work in [SLSV95] contains algorithms for splitting up long transactions. Although, MAUVE in

effect splits up a very long transaction (the update stream), the difference in our case is that we still enforce a

serial ordering on those “chunks” of work to guarantee in-order application of the updates to the warehouse.

6 Conclusions & Future Work

We have proposed MAUVE , a new online view update algorithm. MAUVE guarantees full consistency

while allowing concurrent read-only access to the warehouse during the refresh operation. It has little

implementation overhead as it can be implemented with query rewrite, and also imposes little storage

overhead. MAUVE allows for the base table updates to be propagated to the views at arbitrary points (the

chunk size), which can be used as a knob in the system to optimize view staleness.

We have given a definition for view staleness that provides a fair comparison to schemes with different

view update frequencies. We have also derived an analytical formula for it, which was verified by experi-

mental results. Our experiments showed that view staleness can be greatly improved if updates to the views

are propagated more frequently than once a day.

Future Work We based this work on the assumption that all views in the warehouse are equally “impor-

tant”, and thus it always makes sense to try “stealing” some cycles from the base table updates in order to

refresh the views. However, we want to experiment with cases where there is a distinction between “hot”

and “cold” data in the warehouse and see if allowing different view update frequencies per view can give a

better solution for these cases.
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A Table of Symbols

Symbol Meaning

R, S base tables

VR;S materialized view

R0, S 0 updated versions of R, S

V 0
R;S updated version of VR;S

IR; IS set of insertions on R, S respectively

DR; DS set of deletions on R, S respectively

Ta base table update arrival time

Tb actual time when update is applied to base table

Teb earliest possible Tb, i.e. time when update would have

been applied to base table, had there been no view updates

Tv time when update is propagated to view

VS view staleness (VS = S1 + S2)

VSn view staleness when view update frequency = n

S1 base table updates delay

S2 presumed view staleness

U total time to update base tables

Vn average view update time

Table 1: Table of symbols
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