Performance of Five Atomic Commit Protocols in Gigabit-Networked
Database Systems

Y. J. Al-Houmaily
Dept. of Computer Programs
Institute of Public Administration

Riyadh 11141, Saudi Arabia

Abstract

In this paper, based on an empirical simulation study,
we report on the performance implications of five
atomic commit protocols on transaction throughput
in future, wide-area gigabit-networked database sys-
tems. In our study, in addition to the three well known
two-phase commit (2PC) variants, we considered two
single-phase commit protocols, namely, the implicit
yes-vote (IYV) and coordinator log. Salient results
of our study show that IYV is, in general, better than
all the other evaluated protocols during normal pro-
cessing. Performance enhancements due to a read-only
optimization are more pronounced with short transac-
tions. The choice of a 2PC variant has very little im-
pact on performance in the case of long transactions as
opposed to short ones, with presumed commit being
better than presumed abort in most cases.

1 Introduction

In order to study the performance implications
of atomic commit protocols (ACPs) on transaction
throughput in both the absence and presence of site
failures, we have implemented a comprehensive simu-
lator of a distributed database system. With the cur-
rent advances in network technologies, in the future,
database servers will be interconnected via high speed
wide-area networks with data transfer rates in the or-
der of gigabits per second. We used our simulator to
evaluate five atomic commit protocols with respect to
their applicability in these future, gigabit-networked
distributed database systems. Specifically, we consid-
ered the three well known two-phase commit (2PC)
variants, namely, basic 2PC, presumed abort (PrA) and
presumed commit (PrC) [9], and two new, single-phase
commit protocols, namely, the implicit yes-vote and
coordinator log protocols which were designed to uti-
lize the bandwidths available in high speed networks
to enhance transaction throughput.

R. Conticello, J. Pike, P. K. Chrysanthis
Dept. of Computer Science
University of Pittsburgh
Pittsburgh, PA 15260

We considered the basic 2PC as a baseline in our
experimentations together with PrA which is currently
part of the standards. The selection of PrC to be part
of the evaluation was motivated by the fact that PrC
was designed to reduce the cost of committing trans-
actions and the expectation that gigabit-networked
database systems will be characterized by high relia-
bility and high probability of transactions being com-
mitted rather than aborted. Also, motivated by the
fact that the majority of transactions in any gen-
eral database system are read-only, we considered two
read-only optimizations in our study, specifically, the
traditional read-only [9] and unsolicited update-vote [3]
optimizations.

In contrast to the other comparative performance
evaluations of 2PC variants in local area networks
[8, 7], we explicitly model (a) the propagation latency
of the communication network, (b) the overhead of
the management of the database buffer and of flushing
the transaction and protocol execution log records in
accordance to the type of write-ahead logging (WAL)
used (i.e., centralized, distributed or replicated WAL)
and (c) the overhead of recovery from site failures.

In the rest of the paper, we first briefly describe
the evaluated protocols and optimizations, present our
simulation system model and its associated parame-
ters and discuss the results of our study in the absence
of failures. The results of the failure experiments are
not presented in this paper due to space limitations.

2 Commit Protocols Under Evaluation

In a distributed database system, a distributed
transaction accesses data by submitting database op-
erations to its coordinator which in turn, forwards
them to the appropriate site for execution. Typi-
cally, the coordinator of a transaction is the trans-
action manager at the site where the transaction has
been initiated. When a transaction finishes its execu-

tion and submits its commit request, its coordinator
engages all the participant sites in an ACP, such as
the protocols in our evaluation and which we briefly
review in this section. (See [11, 4] for a survey of ACPs
and 2PC optimizations).

2.1 The Two-Phase Commit Protocol

The basic two-phase commit protocol (2PC) [6], as
the name implies, consists of two phases, namely a
voting phase and a decision phase. During the voting
phase, the coordinator of a distributed transaction re-
quests all the participating sites in the transaction’s
execution to prepare to commit whereas, during the
decision phase, the coordinator either decides to com-
mit the transaction if all the participants are prepared
to commit (voted Yes), or to abort if any participant
has decided to abort (voted No). If a participant has
voted Yes, it can neither commit nor abort the transac-
tion until it receives the final decision. When a partic-
ipant receives the final decision, it complies, releasing
the resources held by the transaction, and acknowl-
edges the decision. The coordinator discards any in-
formation in its protocol table in main memory regard-
ing the transaction when it receives acknowledgments
from all the participants and forgets the transaction.

To cope with failures, the coordinator force-writes
a decision log record prior to sending out the final
decision to the participants. Since a force-write en-
sures that a log record is written into a stable storage
that survives system failures, the final decision is not
lost if the coordinator fails. Similarly, each participant
force-writes a prepared record before sending its Yes
vote and a decision record before acknowledging the
final decision. When the coordinator completes the
protocol, it writes a non-forced end record, indicating
that the log records pertaining to the transaction can
be garbage collected when necessary. When a partic-
ipant is in doubt about the outcome of a transaction,
it sends an Inquiry to the coordinator.

2.2 The Presumed Abort Protocol

The presumed abort protocol (PrA) [9] is designed
to reduce the cost of aborting transactions by inter-
preting no knowledge about a transaction’s outcome
as an abort decision. Specifically, in PrA, when a co-
ordinator decides to abort a transaction, it does not
force-write the abort decision in its log as in 2PC. In-
stead, it just sends out abort messages to all the par-
ticipants that have voted Yes and discards all infor-
mation about the transaction from its protocol table.
That is, the coordinator of an aborted transaction does

not have to write any log records or wait for acknowl-
edgments. Since the participants do not have to ac-
knowledge abort decisions, they are also not required
to force-write such decisions. After a coordinator or
a participant failure, if the participant inquires about
a transaction that has been aborted, the coordinator,
not remembering the transaction, will direct the par-
ticipant to abort it (by presumption).
On commit decision, PrA behaves like 2PC.

2.3 The Presumed Commit Protocol

The presumed commit protocol (PrC) is designed to
reduce the cost of committing transactions [9]. As op-
posed to PrA, in PrC, coordinators interpret missing
information about transactions as commit decisions.
To prevent missing information about a transaction
to be misinterpreted as a commit after a coordinator
failure, a coordinator has to force-write an initiation
record before sending prepare to commit messages.

On a commit decision, the coordinator force writes
a commit record to logically eliminate the initiation
record of the transaction, sends out the commit de-
cision and discards all information about the trans-
action. When a participant receives the decision, it
writes a non-forced commit record and commits the
transaction without sending an acknowledgment. Af-
ter a coordinator or a participant failure, if the partic-
ipant inquires about a transaction that has been com-
mitted, the coordinator, not remembering the trans-
action, will direct the participant to commit it (by
presumption).

On an abort decision, on the other hand, the co-
ordinator does not write the abort decision in its log.
Instead, the coordinator sends out the abort decision
and waits for acknowledgments as in 2PC.

2.4 One-Phase Commit Protocols

The two one-phase commit protocols in our study,
coordinator log protocol (CL) [12] and implicit yes-
vote protocol (IYV) [2], share the same basic idea.
That is, the (explicit) voting phase of 2PC is elimi-
nated by overlapping it with the execution of opera-
tions. Assuming strict two-phase locking [b], coordi-
nators in both protocols interpret an acknowledgment
received from a participant in response to an opera-
tion request to mean that the transaction is in a pre-
pared to commit state at the participant. When a
participant receives a new operation for execution, the
transaction becomes active again at the participant.
When a transaction is aborted by a participant, the
participant responds to an operation with a negative

acknowledgment message that forces the coordinator
to abort the transaction.

CL eliminates the need for logging at the partic-
ipants, and hence forced log writes, by having the
coordinators maintain the logs and using distributed
write-ahead logging (DWAL) with cache management.
When a participant executes an operation, the partic-
ipant propagates any redo and undo log records gen-
erated during the execution of the operation to the
transaction’s coordinator to write them in its log.

To commit a transaction, in CL, the coordinator
first force-writes a commit log record and then sends
out commit messages to all participants. When a par-
ticipant receives a commit message, it commits the
transaction without sending an acknowledgment as in
PrC. On the other hand, when the coordinator decides
to abort the transaction, it writes a non-forced abort
record and sends out abort messages to all partici-
pants. Each abort message includes the undo records
needed to rollback the transaction. When a partici-
pant rolls back the transaction, it sends an acknowl-
edgment that includes the log records generated dur-
ing the transaction rollback. CL assumes ARIES for
recovery [10] in which an operation is undone by ex-
ecuting its inverse operation. When the coordinator
receives the acknowledgments, it writes both the at-
tached log records and an end record in its log in a
non-forced manner and forgets the transaction.

As opposed to CL, IYV supports participant logs
but it eliminates the forced prepared records at the
participants by using replicated write-ahead logging
(RWAL), i.e., replicating the redo part of its log per-
taining to a transaction at the transaction’s coordi-
nator site. As in CL, this is achieved by including
the redo records generated during the execution of an
operation in its acknowledgment.

When all the operations of a transaction are ex-
ecuted and acknowledged, the coordinator commits
the transaction. On a commit decision, the coordi-
nator force-writes a commit record, sends out the
commit decision to all the participants and waits for
their acknowledgments. When a participant receives
a commit message, it commits the transaction releas-
ing all its resources, and writes a non-forced commit
log record. When the commit log record is flushed
into a stable storage, due to a periodic flushing of the
log, the participant acknowledges the commit decision.
Once the coordinator receives acknowledgments from
all participants, it writes a non-forced end log record
and forgets the transaction.

On an abort decision, IYV behaves like PrA in
which the participants undo the transaction using
their local log.

3 Read-Only Optimizations

In this section, we discuss the two read-only opti-
mizations used in our study.

3.1 Traditional Read-Only (TRO)

In TRO [9], when a participant that has executed
only read operations on behalf of a transaction is pre-
pared to commit the transaction, it replies with a
Read-Only vote instead of a Yes and forgets about
the transaction, releases its resources and writes no
log records. A read-only participant is not involved in
the decision phase because it does not matter whether
the transaction is finally committed or aborted to en-
sure its atomicity. The Read-Only vote is enough to
let the coordinator know that the transaction has read
consistent data.

If a transaction is read-only (i.e., all its partici-
pants performed only read operations), the coordina-
tor, in both PrA and PrC, treats the transaction as
an aborted one. This is because it is cheaper to abort
than to commit a transaction with respect to logging.

3.2 Unsolicited Update-Vote (UUV)

In UUV [3], a coordinator determines read-only par-
ticipants without having to explicitly poll their votes.
When a transaction starts executing, its coordinator
marks the transaction as a read-only one as well as all
its participants. When a participant executes the first
update operation (which is recognized by the genera-
tion of undo/redo log record(s)) on behalf of the trans-
action, the participant sends an unsolicited update-
vote to the coordinator.

When a transaction submits its commit request,
its coordinator checks the protocol table to determine
which participants have sent an unsolicited update-
vote. For each such participant, the coordinator knows
that it is an update participant and sends to it a pre-
pare to commit message during the voting phase. The
coordinator excludes the read-only participants from
voting by sending a read-only message indicating to
the participant that the transaction has been termi-
nated. When a read-only participant receives a read-
only message, it releases all the resources held by the
transaction without writing any log records.

A special case of UUV is used with IYV and CL.
Since a coordinator in both protocols can determine
read-only participants based on whether it has re-
ceived any log records from them, participants do not
have to send unsolicited update-votes. Thus, in this

special case, which we call RO in this paper, the coor-
dinator sends read-only messages to read-only partici-
pants before force writing the commit record, thereby
allowing read-only participants to release resources
earlier than their update counterparts.

4 Simulation System

We have implemented our simulator in C/C++ us-
ing the CSIM simulation library (by Mesquite Soft-
ware Inc.) on Linux running on Pentium workstations.

4.1 Simulation System Model

We model our system in a manner similar to other
database simulation models (e.g., [1, 7]). Table 1 con-
tains our simulation model parameters.

In our model, a database is a collection of objects
that are uniformly distributed across a number of sites
without data replication. A data objects is uniquely
identified by the tuple < Site;q, O;q >. The num-
ber of sites (NumSites) and objects (NumObjs) are
specified as database parameters.

The propagation latency (PropLatency) of the net-
work is specified as a resource parameter. Wide-area
networks implemented in current technology have a
propagation delay 300-500ms, while the WANs of the
future are expected to have delays of 150-250ms. We
selected a propagation delay of 200ms.

Each site in our system consists of (1) a transaction
manager (TM), (2) a data manager (DM), (3) a lock
manager (LM), (4) a communication manager (CM),
(5) a resource manager (RSM), (6) a database cache
manager (DCM) and (7) a recovery manager (RM).

At a site, the TM manages the transaction IDs,
dispatches operations to the appropriate DMs, and co-
ordinates the commit processing for transactions ini-
tiated at its site. A TM maintains a log for those
transaction that it coordinates.

A DM receives operation requests from both the
local TM and remote TMs, accesses the resources nec-
essary to fulfill these requests, acknowledges the com-
pletion of the request, and participates in the commit
processing of those transactions that have performed
operations at its site. A DM maintains a log for all
database operations that it executes and for transac-
tions in which it participates in their commitment.

A LM at a site follows the strict two-phase lock-
ing protocol [5] in granting and releasing of locks at
its site. If the LM cannot satisfy a lock request, the
requesting transaction is blocked, and deadlock detec-
tion is performed. If a deadlock is found, the youngest
transaction involved in the deadlock is aborted.

A RSM is a logical entity that represents the phys-
ical resources available at any given site. Access to
all physical resources within a site is served on a first-
come-first-serve basis without any preference to the
type of service requested from a resource. In our sys-
tem, the physical resources available at a site con-
sist of a number of CPUs (NumCPUs) and disks
(NumDisks). All CPUs within a site share a com-
mon queue and are responsible for the processing of
messages and database operations. When a message
is received or about to be sent by a CM, it consumes
some CPU(MFESG) of CPU time. The receipt of a
message may require additional CPU time. For ex-
ample, receiving a message requesting an operation
will require CPU(READ) for a read operation, or
CPU(WRITE) for a write operation. Further, some
messages will need to be acknowledged requiring an-

other C PU(M ESG) of CPU time.

At a site, there are one or more disks dedicated to
storing data, and separate disks dedicated to storing
the logs. The RSM maintains a separate queue for
each disk at its site. We assume that a database page
is equivalent to a disk block. For log disks, the log
buffer may be limited to LogSize. When the log buffer
reaches LogSize, the log buffer must be flushed to
disk. We assume that a log record has a size of 1 KB;
therefore our parameter of 10,000 pages would require
a 10 MB log buffer. Sensitivity analysis has shown
us that once the log buffer size becomes greater than
640 KB, there is no longer an impact on throughput
performance. The cost of flushing to or reading from
disk is represented by the access time (DiskTime),
and a transfer rate (DiskTransfTime) for each page
moved to/from the disk. Thus, the cost associated
with disk services can be summarized as follows:

Cost(Disk) =
DiskTime + (DiskTransfTime x NumberO f Pages)

A DCM at a site is responsible for the manage-
ment of the data transfer between database cache and
data disk(s). A DCM determines if a page needs to
be fetched from the data disks based on a HitRate pa-
rameter. Similarly, a DCM is responsible for locating
a slot in the cache to swap the requested database
page in the case of a miss. If the page to be replaced
in the cache is dirty, the page must first be flushed
to disk before it is replaced. However, before flush-
ing the replaced page to disk, the DCM determines
if WAL logging needs to be performed based on the
LogFlushRate.

Database Parameters

1. NumSites The number of database sites 8
2. NumObys The number of data items per database site | 1000
| Transaction Parameters
3. FEzecPattern Execution Model Sequential
4. DistDegree Number of participants 3
5. ParticipantSize Transaction’s average access per participant | 6 (long), 2 (short)
6. ThinkTime Think time between database operations 0 msec
7. PercRead-OnlyTrz | percentage of read-only transactions 0 (update), 70%
Site Parameters
8. NumCPUs Number of CPUs 1
9. NumDisks Number of disks 4
10. | MPL Degree of multiprogramming per site 2-14 (long); 5-50, 10-80 (short)
11. | HitRate Buffer pool hit probability 0%
12. | LogFlushRate Log pool flush probability due to WAL 50%
13. | LogSize Maximum log buffer size in pages 10000 pages
Resource Parameters
14. | CPU(MESG) CPU Time for processing a message 1 msec
15. | CPU(READ) CPU Time for processing a read operation 5 msec
16. | CPU(WRITE) CPU Time for processing a write operation 5 msec
17. | DiskTime Disk access time 20 msec
18. | DiskTransfTime Page transfer time 0.1 msec
19. | PropLatency Propagation time for a message 200 msec
20. | Timeout Message timeout 0 msec

Table 1: Simulation parameters.

4.2 Transaction Execution and Workload

In our system, the execution model of distributed
transactions (FwzecPattern) can be either sequential,
participant-sequential or parallel. The sequential exe-
cution model is more general than the other two and
for this reason we consider only this in this paper. In
this model, before a transaction submits an operation,
it waits until the previous submitted operation has
been executed and acknowledged by the corresponding
participant. When a transaction receives the results of
an operation, it spends some T hinkTime which repre-
sents the processing time of the received results before
it sends the next operation for execution.

Each site is associated with a multiprogramming
level (M PL) that is specified as a parameter to the
system. MPL is used to limit the number of active
transactions at a site at any given time. The simula-
tor is run at full capacity (i.e., peak load). That is,
when a transaction terminates, a new transaction en-
ters the system and starts executing at the site where
the previous transaction has terminated. For aborted
transactions, we use fake restarts where an aborted
transaction is restarted as an independent transaction
after a delay time that is equal to the mean transaction
response time.

The trace used with all protocols in a run is gen-
erated based on the FxecPattern of transactions,

the percentage of read-only transactions (PercRead-
OnlyTrz), the number of sites participating in a
transaction’s execution, which is specified by the
Dist Degree parameter, the number of data opera-
tions that a transaction performs at each participant
site, which is uniformly distributed between 0.5 and
1.5 of the ParticipantSize parameter. For each run,
the simulator executes until 30,000 transactions are
committed. The performance curves in all our experi-
ments represent the statistical mean of three indepen-
dent runs with a confidence half-length interval of no
more than 2.7 at the 90% confidence level and no more
than 3.5% relative precision (i.e., relative error).

5 Performance of ACPs

In this section, we evaluate the performance of
ACPs in the absence of failures, assuming that when
a transaction submits its commit request, the trans-
action will be committed. The parameter settings for
these experiments are shown in Table 1. Since 2PC
and PrA behave the same in the absence of failures
for committing transactions, we show only the perfor-
mance curves of PrA in our figures.

To isolate the impact of ACPs on the overall system
performance, the study also simulates the behavior
of the system when distributed-execution centralized-

commit (DECC) is used as in [7]. Though artificial
(no ACP is used), DECC shows the highest attainable
system performance allowing us to better relate the
performance enhancement of the evaluated ACPs.

We conducted four sets of experiments. The first
set E1 focuses on the impact of ACPs on the system’s
performance in the case of relatively long transactions,
while the second set E2 on the impact of relatively
short transactions. Given the size of the simulated
database, long transactions execute, on average, 6 op-
erations at each participant, while short transactions
execute, on average, 2 operations at each participant.
Two types of traces were simulated, one composed of
update transactions, and the second one of 70% read-
only transactions. An update transaction invokes at
least one write operation. E1 and E2 included no op-
timizations. The last two sets of experiments, E3 and
E4, focus on the effects of read-only optimizations on
the performance of ACPs for long and short, 70% read-
only transactions, respectively.

In all experiments we measure system throughput,
which is the total number of committed transactions
per second, while varying the MPL. As indicated in
other studies that use a closed-queuing system model
(e.g., [7]), the performance curves of the response time
of transactions is the inverse of the system throughput.

El. Long Transactions: As shown in Fig 1(a),
for update transactions, the performance curves of all
ACPs start to increase at the beginning, peak at MPL
6 and then start to decline. This thrashing behavior
of the system is due to the contention of transactions
over the data objects as well as system resources and
appears in all our experiments as well as other simu-
lation studies [1, 8, 7]. Due to this contention, at high
MPLs, transactions tend to abort because of dead-
locks, reducing the overall system performance.

In the case of long transactions, IYV outperforms
all other protocols. For update transactions, at the
peak MPL 6, DECC outperforms 1YV by about 6%
whereas the performance difference between DECC,
the ideal case, and the worst case (PrA), is 0.7 trans-
actions per second which translates to about 16% per-
formance difference. 1YV is better than CL by 8%
at the peak MPL whereas it outperforms all the 2PC
variants at the peak MPL by about 10%. An interest-
ing observation is that all three 2PC variants support
about the same throughput in case of long transac-
tions.

By comparing Figures 1(a) and 1(b), we notice that,
when read-only transactions are introduced, the per-
formance of all the evaluated ACPs was enhanced by
at least 10%, across all MPLs (which is the case of

PrC protocol). and the peak performance point of all
protocols shifted from MPL 6 to 10. This is consistent
with the fact that transactions do not conflict at the
same rate as in the case of update transactions.

Another interesting observation in this and the
other experiments is the existence of a cross-over point
between the performance curves of PrA and PrC even
though all transactions are committed once they reach
their commit point. Based on the simple counting of
messages and log writes, this point should not exist
since PrC always have the least number of coordi-
nation messages and forced log writes. Clearly, our
experiments reveal that under low system loads, the
initiation records of PrC affect its performance and
makes it worse than PrA. After a certain point (at
higher MPLs), the effects of the forced log writes at the
participants in PrA as well as the acknowledgments
overshadow the cost of the initiation records of PrC,
making PrC performing better than PrA. Our experi-
ments also indicate that the location of this cross-over
point depends on the transaction mix, the length of
transactions and whether or not a read-only optimiza-
tion is used.

E2. Short Transactions: Compared to long trans-
actions, in the case of short transactions, the overall
system performance has significantly enhanced. At the
same time, although the relative performance of the
different ACPs, with the exception of PrC, has not
changed, the actual performance gaps between one-
phase and two-phase commit variants have become
wider. For example, in Fig. 2(a), DECC outperforms
CL by about 20% while it outperforms IYV by about
15%. With respect to PrA and PrC, DECC outper-
forms PrC by about 50% whereas DECC outperforms
PrA by about 45%, a situation which is reversed in
the case of predominately short, read-only transac-
tions (Fig. 2(b)) with PrC outperforming PrA by 35%.

CL and IYV are clear winners compared to the
three 2PC variants. This result clearly supports the
motivation behind the design of CL which assumes
short transactions with high probability of being com-
mitted once they reach their commit point, and IYV
with its reduced message count (compared to CL).
However, we note that the performance of CL starts to
degrade very quickly after the peak MPLs in the two
figures in Fig. 2. This is due to CL’s DWAL which
forces a participant that aborts a transaction to wait
until it receives the undo log records pertaining to the
transaction from the coordinator before it can release
the locks held by the transaction. In contrast, the
other protocols do not suffer from such an overhead
since the undo records of an aborting transaction at a

Throughput

Throughput

Throughput

12 I

: : : : : : DECC -%--

10 bbb IYV e
A CL -

H H H H H H PrC _+__.

PrA —<—

8 s P S —

=
a.

=
LT O T T PR S - %0
)

=

=

(a) Update Transactions (b) 70% Read-Only Transactions

Figure 1: The performance of ACPs for long transactions.

160 T T T T T T T 1
R pECC .- 160
P IYV e
140 CL -&- 140
PrC -+--
120 PrA —<— 120
100 100
2
80 =
280
=
60 =
60
40
40
20
A S S S R 20
0 AR T TN Y N A M B A ‘
0O 5 10 15 20 25 30 35 40 45 50 0 1 L L L L L L
MPL 0 10 20 30 40 50 60 70 80
. MPL
(a) Update Transactions
(b) 70% Read-Only Transactions
Figure 2: The performance of ACPs for short transactions.
60 =TT T T T 1 DECC
: : : : : : : 1Yv
140 CL .
PrC —+-
120 PrA —<—
100 =
o
=
80 =
g
60 =
40 40
20 [20 i
P N T N N O I I T O N O
0O 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
MPL MPL
(a) Read-Only with TRO Optimizations (b) Read-Only with UUV Optimizations

Figure 3: The performance of ACPs for short transactions with read-only optimizations.

participant are available locally in its own log.

E3. Long Transactions with Read-Only Opti-
mizations: In this experiment, we factored in the
effects of TRO, UUV and RO (special case of UUV)
optimizations, discussed in Section 3, on the behavior
of the evaluated ACPs. IYV and CL have only gained
a small overall performance enhancement, yet this is
very significant because it has yielded a performance
which is 70% closer to the optimal performance pos-
sible represented by the DECC protocol. Clearly, the
2PC variants have greatly benefited from TRO and
UUYV as well reducing the performance gap with IYV
at high MPLs from about 10% before to 5%.

E4. Short Transactions with Read-Only Opti-
mizations: As above, IYV and CL combined with
UUYV exhibit the best performance for short transac-
tions. As we have seen in E2, any extra messages or
forced log writes in the case of short transactions, have
a significant impact on performance of an ACP, com-
pared to long transactions. Conversely, any reduction
in the messages or forced log writes greatly enhances
the performance of an ACP in the case of short trans-
actions. Thus, unlike the results of E3, the perfor-
mance of all protocols has been enhanced with PrA
gaining the most and CL the least, as shown in Fig. 3.
PrA has gained about 65% performance enhancement
using TRO, bringing its performance comparable to
PrC, which clearly indicates why PrA combined with
TRO is the choice of the standards.

6 Conclusion

In this paper, we evaluated five ACPs for their ap-
plicability in gigabit-networked distributed database
systems, expressing it in terms of transaction through-
put in the absence of failures. Our results confirmed
that one-phase commit protocols are a better choice,
when applicable, with IYV exhibiting the best overall
performance. The exception was CL combined with
the read-only optimization performing better than
IYV in the case of short, predominately read-only
transactions. Qur results also showed that, as op-
posed to IYV, CL is greatly influenced by the transac-
tions’ length and the degree of multiprogramming. CL
performance degrades rapidly for long transactions or
high MPLs. Another interesting result is that, when
there is a performance difference between 2PC vari-
ants, PrC is generally the winner at peak MPLs. This
is especially the case for short transactions. This re-
sult is in contrast with the general belief that PrA is
better than PrC.

Acknowledgments: This was supported in part
by N.S.F. under grants TRI-9210588 and TRI-9502091.

References

[1] Agrawal, R., M. Carey and M. Livny. Concurrency
Control Performance Modeling: Alternatives and Im-
plications. ACM Transactions on Database Systems,
12(4):609-654, 1987

[2] Al-Houmaily, Y., P. Chrysanthis. Two-Phase Commit
in Gigabit-Networked Distributed Databases. Proc. of
the 8th Int’l Conf. on Parallel and Distributed Com-
puting Systems, pp. 554-560, 1995.

[3] Al-Houmaily, Y., P. Chrysanthis and S. Levitan. An
Argument in Favor of the Presumed Commit Proto-
col. Proc. of the 13th Int’l Conf. on Data Fngineering,
pp. 255-265, 1997.

[4] Chrysanthis P., G. Samaras and Y. J. Al-Houmaily.
Recovery and Performance of Atomic Commit Pro-
cessing in Distributed Database Systems. Perfor-
mance of Database Recovery Mechanism, V. Kumar

and M. Hsu, eds., pp. 370-416, Prentice Hall, 1998.
[5] Eswaran K., J. Gray, R. Lorie and 1. Traiger. The

Notion of Consistency and Predicate Locks in a
Database System. Communications of the ACM,
19(11):624-633, 1976.

[6] Gray, J. Notes on Data Base Operating Systems. In
Bayer R. et al. (Eds), Operating Systems: An Ad-
vanced Course, Lecture Notes in Computer Science,
Vol. 60 pp. 393-481, Springer-Verlag, 1978.

[7] Gupta, R., J. Haritsa, and K. Ramamritham. Revisit-
ing Commit Processing in Distributed Database Sys-
tems. Proc. of the ACM SIGMOD Int’l Conf. on the
Management of Data, pp. 486-496, 1997.

[8] Liu, M. L., D. Agrawal and A. El Abbadi. The Perfor-
mance of Two-Phase Commit Protocols in the Pres-
ence of Site Failures. Proc. of the 24th Int’l Symp. on
Fault-Tolerant Computing, pp. 234-243, 1994.

[9] Mohan, C., B. Lindsay and R. Obermarck. Trans-
action Management in the R* Distributed Data
Base Management System. ACM Transactions on
Database Systems, 11(4):378-396, 1986.

[10] Mohan, C., D. Hderle, B. Lindsay, H. Pirahesh and
P. Schwarz. ARIES: A Transaction Recovery Method
Supporting Fine-Granularity Locking and Partial
Rollbacks Using Write-Ahead Logging. ACM Trans-
action on Database Systems, 17(1):94-162, 1992.

[11] Samaras, G., K. Britton, A. Citron, C. Mohan.
Two-Phase Commit Optimizations in a Commercial
Distributed Environment. Distributed and Parallel
Databases, 3(4):325-360, 1995.

[12] Stamos, J. and F. Cristian. Coordinator Log Trans-
action Execution Protocol, Distributed and Parallel

Databases, 1(4):383-408, 1993.

