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Abstract
The advent of high-speed networks will enable the de-

ployment of data-server systems currently used in local-
area networks, over wide-area networks. The users of these
systems will have the same high expectations with respect to
performance parameters such as the transaction through-
put, response time and system reliability as in the case
of local-area networks. Thus, it is important to study the
performance of existing distributed database protocols in
the new networking environment, identify the performance
bottlenecks and develop protocols that are capable of tak-
ing advantage of the high speed networking technology.
As a first step, in this paper we examine the scalability of
the server-based two-phase locking (s-2PL) protocol, and
discuss three optimizations which allow the s-2PL protocol
to be tailored for high-speed wide-area network environ-
ments where the size of the message is less of a concern
than the number of rounds of message passing. These opti-
mizations, collectively called the group two-phase locking
(g-2PL) protocol, reduce the number of rounds of message
passing by grouping lock grants, client-end caching and
data migration. In a simulation study, 20-25% improve-
ment in the response time of the g-2PL protocol over that
of the s-2PL protocol was observed.

1 Introduction
Several exciting advances are being made in the general

area of high speed distributed computing. Network and
processor speeds are increasing. Also, user desktops are
being enhanced to the point that servers and clients may
be completely indistinguishable in the future, with regards
to computing power and functionality. The combination of
faster and cheaper computers, cheaper stable memory, high-
speed networks and network-aware applications is caus-
ing unprecedented growth in distributed information/data-
server systems over wide area networks. The World Wide
Web (WWW) is a prime example of a data-server system
which is primarily read-only presently. In the future, it
is expected that general data-server systems (also called
data shipping or enhanced client-server systems) [1–7] in
which clients perform much of their query and transaction
processing locally, will be deployed over wide-area net-
works (WANs). We also believe that the WWW as well
will evolve to require transactional support for some types
of data access [8] rather than acting only as an interface to
database systems [9, 10].

The initial data server systems were deployed over lo-
cal area networks (LANs), owing to the low latency and
relatively high speed of LANs as compared to previous

generation WANs, primarily to support object oriented
databases [7, 11–13]. In these systems, when a client needs
a data item, it sends a request to the data-server which
responds with the requested data item. Three families of
caching algorithm have been proposed to preserve data
consistency in the presence of concurrent requests, all de-
rived from the widely used strict two-phase locking proto-
col (2PL) [14], namely, Server-based 2PL, Optimistic 2PL
and Callback Locking [1, 2, 12, 13, 15, 16]. When data-
servers become available over WANs, the users of these
systems will have the same high expectations with respect
to performance parameters such as the transaction through-
put, transaction response time, system reliability and data
availability as in the case of LANs. But as elaborated
in this paper, some significant differences between LANs
and WANs remain, which will necessitate modifications
and optimizations to existing database protocols to obtain
scalable performance to satisfy users adequately.

Given that the basic server-based 2PL (s-2PL) proto-
col has been found to have the best performance in situa-
tions with high data contention in LANs [5], in this paper,
we study its scalability and propose three types of opti-
mizations, namely, lock grouping, deadlock avoidance and
multiple-reads single-write, which allow server-based 2PL
protocols to be tailored for high-speed wide-area network
environments in which the size of the message is less of a
concern than the number of sequential phases or rounds of
message passing. These optimizations enhance the perfor-
mance of the database system by exploitingthese character-
istics of gigabit networks and in particular, they reduce the
number of rounds of message passing by grouping the lock
grants, client-end caching and data migration. The basic
lock grouping optimization combined with the deadlock
avoidance and the multiple-reads single-write optimiza-
tions are collectively called the group two-phase locking
(or g-2PL) protocol. Although we do not deal with the re-
covery aspects of the g-2PL protocol here, we assume that
the sites follow the standard protocol adopted by the s-2PL
protocol where each site uses WAL and garbage collects its
log once the data are made permanent at the server [17]. A
recovery framework for the g-2PL protocol was discussed
in [18].

The performance of the g-2PL protocol is evaluated us-
ing simulation, and compared with the s-2PL protocol, as-
suming no site and communication failures. The salient
results of this performance evaluation are that the g-2PL
protocol exhibits better response time for hot data and out-
performs the s-2PL protocol in the presence of updates in
the database system. The margin of improvement in the

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:47:12 UTC from IEEE Xplore.  Restrictions apply. 



response time is significant at about 20-25%.
In the next section we elaborate on the characteristics of

high speed networks. In Section 3, we first briefly overview
the s-2PL protocol and then present the three optimizations
that form the g-2PL protocol and discuss the problem of
read-dependencies in the g-2PL protocol. The simulation
system model is presented in Section 4, followed by the
numerical results of the performance evaluation obtained
by simulation in Section 5. Section 6 concludes the paper.

2 Background
Before introducingour high speed network-specific con-

currency optimizations, it is important to first discuss the
characteristics of the high speed WANs and the traditional
low speed networks, and understand their differences.

There are two basic components of the delay involved in
moving data between two computers over a communication
network: the transmission time, i.e., the time to transfer all
the data bits, and the propagation latency, i.e., the time
the first bit takes to arrive. Further, intermediate network
components in the path of the data introduce extra delays
as well. We define the sum of the delays introduced by
the intermediate network components and the propagation
delay as the network latency. As the data rate in WANs
continues to increase due to technological breakthroughs,
the data transmission delay will decrease almost linearly.
However, the signal propagation delay which is a function
of the length of the communication link and a physical con-
stant, the speed of light, will remain almost constant, and
relative to the data transmission delay, will actually seem
to increase. This is not to say that the performance of a tra-
ditional distributed algorithm will be worse in a high speed
environment than in a low speed environment. However,
the marginal performance improvement will decrease as the
data rate continues to increase and beyond a certain data
rate there will be no further improvement since traditional
database algorithms are primarily designed to optimize the
data transmission delay.

Clearly, the above basic characteristic of high speed
WANs (referred to as a high bandwidth-delay product) has
significant implications on distributed applications. At gi-
gabit rates in a WAN, the propagation latency is the dom-
inant component of the overall delay [19] and the only
way to combat propagation latency is to hide it in inno-
vative protocols. Thus newer database protocols need to
be developed that are distance-independent and scalable
to wide-area high-speed networks. This observation has
motivated the development of the server-based 2PL opti-
mizations presented in the next section. An early discussion
can be found in [20].

3 A New Server-based 2PL Protocol: g-2PL
In this section, after a brief review of the s-2PL pro-

tocol, we present three optimizations which can be used
to enhance the performance of the s-2PL protocol in data-
server systems in a wide-area high-speed network.
3.1 Server-Based Two-Phase Locking Protocol

In the basic server-based two-phase locking (s-2PL) pro-
tocol, a data-server basically preserves data consistency by
following the strict two-phase locking protocol [14] which
is the de-facto industry standard. The s-2PL protocol en-
sures data consistency as defined by serializability which
requires the concurrent, interleaved, execution of requests

to be equivalent to some serial, non-interleaved, execution
of the same requests [21, 22].

In the s-2PL protocol, each transaction goes through a
growing phase and a shrinking phase. During the growing
phase, a transaction requests data items which are shipped
to it after the data-server acquires a lock on them. In
the shrinking phase, all the locks are released when the
transaction is either aborted or committed and all modified
data items are returned to the data-server. The clients are
not allowed to cache locks across transaction boundaries
and a client can be viewed as executing one transaction
at a time. A variation of s-2PL that allows caching of
locks across transaction boundaries is called caching 2PL
(c-2PL) protocol [1, 5, 13]. To simplify the discussion, in
the rest of the paper we focus only on the s-2PL protocol
but the results can be easily extended to the c-2PL protocol.

Access to some data may be done in a shared fashion,
with multiple clients reading the data item simultaneously.
However, in the interest of strict consistency, while mul-
tiple clients may read the data simultaneously, no client
may write on it. Hence, locks are distinguished into read
(shared) and write (exclusive) types and a client cannot ac-
quire a write lock on a data item until the clients reading
the data have released their shared locks and vice versa.
If the data-server cannot acquire a lock on a data item be-
cause another transaction is holding a conflicting lock on
the same data, the request is enqueued and the requesting
transaction is forced to wait until the lock is released.

Assuming that a transaction needs to accessn data items,
the first phase of the protocol as described above will in-
volve n requests from the client to the server and n replies
from the server to the client, exchanged in minimum 2
messages if all requests are sent at the same time or maxi-
mum 2nmessages if the requests are sent sequentially. The
second phase of the s-2PL protocol will involve a single
message. That is, for each transaction, in the best case,
the s-2PL protocol involves three rounds, i.e., sequential
phases of message passing corresponding to lock request,
lock grant and lock release and 2n+1 rounds in worst case.

3.2 Lock Grouping Optimization
As mentioned above, at gigabit rates in wide area net-

works, propagation latency is the dominant communica-
tion cost which can only be reduced by minimizing both
the rounds as well as the number of messages. In other
words, the performance of the s-2PL protocol can be en-
hanced only if either the number of messages or rounds or
both, involved in the protocol are reduced. We propose
to reduce both messages and rounds by applying the con-
cept of grouping in a novel way, previously used in various
optimizations (e.g., group commit [23, 24]), and in mutual
exclusion algorithms (e.g., [25]).

Specifically, we propose to group the lock (data) grant-
ing and release as follows. The data-server collects the lock
requests for each data item and creates a forward list (FL) of
all the clients that have pending lock requests for that data
item. When a lock becomes available, the lock is granted
to the first client on the forward list and the data item is sent
to the client along with the forward list. For each data item
required in the shared mode by multiple (reading) clients, a
copy of the data item is sent to each of the reading clients.
In the general case, the data structure for the forward list
for each data item will be a list with appropriate markers to

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:47:12 UTC from IEEE Xplore.  Restrictions apply. 



Figure 1: Example execution of the g-2PL protocol: Exclusive access

delimit the parallel shared accesses and the serial exclusive
access. The write has to wait until all readers have released
their read locks and sent the release to the writer. While
the data items have been sent out to a group of clients, the
server continues to collect requests. We define the period
during which the server does not possess the lock on a data
item and is collecting requests as the collection window for
the data item1.

When a transaction commits, the client sends the new
version of the committed data items to the clients next on
the respective forward lists. A copy of the forward list is
also sent with each data item. If the transaction aborts,
the client forwards the unchanged data to the next client.
Finally, when the last client on the forward list terminates,
it sends the new version of the data to the data-server with
the outcome of each transaction executed on the clients on
the forward list. Once a data-server receives and installs
the new version of a data item in the database, it dispatches
the data item to the first client on the new forward list. Note
that initially at start-up time and during periods of extremely
light loading, the forward-list will contain a single client.

In this optimization which we call basic group two-phase
locking (g-2PL) protocol, the lock release message of the
previous client is combined with the lock grant message of
the next client, thereby eliminating one sequential message
required by the s-2PL protocol. For example, assume m
clients under the best case where each transaction either
requests a single data item or requests multiple data items
within a single message. The s-2PL protocol will require
3m messages and 3m rounds as opposed to the g-2PL
protocol which will require 2m + 1 messages and 2m + 1
rounds. The messages in the g-2PL protocol are larger than
that in the s-2PL protocol, but in a high speed network
environment, the message size is not a big constraint.

As another example, consider a data-server system with
three clients numbered 1–3. Assume each client has issued
a transaction (say, T1, T2, and T3) that exclusively access
the same data item. Let us assume that each message/data
transfer is accompanied with 2 units of network latency
and the processing time per transaction after receiving the
data item be 1 unit. Further, all three transactions arrive
within the same collection window. Figure 1 depicts the

1Our early experimentation with a tunable collection window size and
a timeout resulted in the outcome that tuning the collection window does
not produce significant performance gains [26].

execution for the g-2PL and s-2PL protocols. The total
execution time for our protocol is 12 units, versus 15 units
with s-2PL. This is a 20% reduction in the response time
of the s-2PL protocol, which will be validated later by
simulation as well.

The forward list may be created according to one of
several ordering rules to improve performance further. The
default rule is First-In-First-Out or sort by arrival of the
request as in the s-2PL protocol. As discussed below, the
second and third optimizations capture two ordering rules
that attempt to reduce the number of deadlocks.

3.3 Deadlock Avoidance Optimization
Two-phase locking protocols are susceptible to dead-

locks [14], and so is the g-2PL protocol. Two or more
transactions are said to be in a deadlock when neither of
the transactions can proceed because at least one of the
locks required by each of the transactions is held by one
of the other transactions. Interestingly, the g-2PL proto-
col, described above, is susceptible to a unique type of
deadlock which is created due to read-only dependencies
formed across different collection windows. This situation
is better illustrated using an example.

Consider two transactions t1 : read1(x) read1(y) and
t2 : read2(y) read2(x) both of which request data items
x and y for reading in a serial manner but in opposite
order. As soon as the data-server gets the requests read1(x)
and read2(y) will release x to t1 and y to t2. Now, both
transactions have one data item and will not release it until
they commit or abort. Subsequently, the data-server will
get the requests read1(y) and read2(x) but neither data
item can be released until t1 or t2 either commits or aborts
returning x and y back to the server respectively. This is a
deadlock situation where t1 waits for t2 to release the read
lock for y and t2 waits for t1 to release the read lock for x.

Although read-only dependencies can be eliminated by
expanding a dispatched forward list to include new read
request hence avoiding read-only dependencies between
read-only transactions, this g-2PL variation is not consid-
ered in this paper due to space limitation [27].

A deadlock detection and resolution algorithm that
maintains a Wait-for graph and checks for cycles in the
graph is usually coupled with any s-2PL implementation.
Deadlock avoidance algorithms that ensure linear ordering
are typically pessimistic requiring predeclaration of locks
or leading to livelocks and hence have been considered in-
appropriate for dynamic databases [21, 22]. However, in
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the case of the g-2PL protocol, deadlocks can be avoided
without being pessimistic by intelligently creating the for-
ward lists.

Specifically, deadlocks can be avoided if in each of the
forward lists, the order of the transactions is the same.
Formally, the forward list for each data item can be repre-
sented by a transaction precedence graph. The transaction
precedence graph is a directed graph which determines the
order in which each data item will move from one client
site to another. In order to ensure linear ordering, transac-
tion precedence graphs need to be made consistent. That
is, two transactions Ti and Tj must follow the same or-
der < Ti; Tj > or < Tj ; Ti > in every precedence graph
involving Ti and Tj . Note that the precedence graph is
consistent with the lock granting order and hence consis-
tent with the serialization order.

Clearly, this reordering of requests does not require pre-
declaration and because it occurs within a collection win-
dow, the problem of starvation is not encountered. In the
worst case, some transactions will be pushed towards the
end of the forward list but they will have the chance to
access the data. In the case that such reordering of for-
ward lists is not possible, some transactions may have to
be aborted and restarted. Repeated (cyclic) restarts can be
avoided in a similar way using an aging mechanism as in
deadlock detection algorithms. It should be stressed that
all these reordering computations are done while the server
is waiting for the data items to be returned from the clients
in the previous window. Thus, these computations do not
increase the transaction blocking time on a lock and in fact
increase the utilization of data-server CPU while reducing
the transaction response time.

3.4 Multiple Reads Single Write Access
In the above optimizations, we have considered read

locks and shared access to data by multiple clients. How-
ever, in the interest of strict consistency and in accord with
the s-2PL protocol, while multiple clients may read the data
simultaneously, no client may write on it until the clients
reading the data have released the shared lock. Actually,
we can do better than this by allowing multiple readers and
a single writer to execute concurrently while preserving
strict consistency.

In the MR1W (Multiple Reads Single Write) optimiza-
tion, the data-server (or a releasing client) sends a copy of
a data item to each of the clients on the forward list that
require the data item in the shared mode along with the
forward list. At the same time, it also sends a message
containing the data item and the list of the shared-mode
clients to the next clientCi on the forward list that requires
exclusive access. In this way, Ci is enabled to execute and
update the data item concurrently with the reading clients.
However, Ci cannot release its updates until it receives a
release message from all the reading clients. As before, if
there are no waiting transactions that need exclusive access,
the release messages are returned to the server.

Here, it is interesting to point out that with the MR1W
optimization the g-2PL protocol just described behaves
similar to the two-copy version s-2PL protocol [21] which
allows more concurrency than the standard s-2PL protocol.

To recapitulate, in this section we first discussed a group
locking optimization and derived the basic g-2PL protocol
from the server-based two-phase locking protocol. Then,

we discussed two more optimization types, one that avoids
deadlocks and the other that enhances shared access in the
basic g-2PL protocol. A detailed simulation study of the
performance of the basic g-2PL protocol combined with the
deadlock avoidance and MR1W optimizations is discussed
in the rest of the paper. While no data access patterns have
been assumed, note that the more a certain data item is
requested such as hot data items, more is the performance
gain, since the grouping effect is emphasized when the
forward list is longer.

4 System Model for Performance Evaluation
In order to evaluate the performance of the s-2PL and

g-2PL protocols under different high-speed networking la-
tencies, simulation models of both protocols were devel-
oped using the C programming language. The simulation
is a discrete-event simulation using the unit-time approach
to advance the simulation clock [28]. We consider a data-
server database system, with a single server and multiple
clients connected by a high speed network. As described
earlier, the transmission delays in a high speed network
can be assumed to be negligible, and the network latency
consists of the signal propagation and switching delays.
In this paper, we make the simplifying assumption that
the network latency between any two sites (server-client,
client-client) and in either direction is the same.

All clients are assumed to be identical and run trans-
actions that have the same statistical profile. The multi-
programming level at each client is assumed to be one,
i.e., at any given time, each client processes a single trans-
action only. Further, at the end of each transaction, it
is replaced with another transaction at that client site af-
ter some idle time that is uniformly distributed between
a given minimum and maximum values Each transaction
accesses between 1 and N data items uniformly These data
items are drawn from a pool of M data items that reside
at the data server. M is purposely kept small to emulate
hot data access. Each data access may be of the type read
with a given read probability pr and of the type write with
a probability pw = 1 � pr. The transaction execution is
sequential, i.e., requests for data items are generated se-
quentially, with each request being generated only after the
previous request has been granted and some think time (for
computations) has elapsed. In our model, this computation
time is uniformly distributed between a given minimum
and maximum values.

As mentioned in the previous section, two-phase locking
protocols are deadlock-prone. In the s-2PL implementa-
tion, deadlocks are detected by computing wait-for-graphs
and aborting the transactions necessary to remove the dead-
locks. This is the typical implementation found in commer-
cial systems that use the s-2PL protocol. In order to avoid
the use of tunable timeouts, deadlock detection is initiated
when a lock cannot be granted. In the case of g-2PL, the
forward lists are reordered using transaction precedence
graphs to ensure that deadlocks are prevented. Recall from
Section 3 that the transaction precedence graphs capture the
order of lock granting and is consistent with the serializa-
tion order. In the case that such reordering is not possible,
the offending transactions are aborted. Each transaction
that is aborted is replaced by another transaction. The sim-
ulation model assumes that the computation cost at the data
server to reorder the forward lists as well as computing the
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Number of Servers 1 Percentage of read accesses 0.00 – 1.00
Number of Clients varying Network Latency 100 – 1000 time units
Number of hot data items 25 Computation Time per operation 1 – 3 time units
Transaction Execution Pattern Sequential Idle Time between transactions 2 – 10 time units
Number of data items accessed by a transaction 1 – 5 Multiprogramming level at clients 1

Table 1: Simulation Parameters

Network Type Latency
Single Segment Local Area Network (ss-LAN) 1
Multi-Segment Local Area Network (ms-LAN) 50

Campus Area Network (CAN) 100
Metropolitan Area Network (MAN) 250
Small Wide Area Network (s-WAN) 500
Large Wide Area Network (l-WAN) 750

Table 2: Networking Environments Simulated

wait-for-graphs is the same.
Table 1 summarizes all the experimental parameters and

the corresponding range of values of the performance study.
Note that time durations are specified in simulation time
units rather than real time in seconds. The conversion be-
tween the two is easily achieved and realistic values can
be chosen by specifying the appropriate conversion factor.
However, it is important to recognize that the relative val-
ues of these parameters have been chosen correctly. Since
we assume a high speed WAN environment, the network
latency is significantly higher than the computation/idle
times. For example, if we assume that 1 simulation

time unit = 0.5 msec, then the network latencies con-
sidered are between 50 and 500 msec, which are realis-
tic for wide area networks including satellite transmission
links. The computation time per database operation is then
between 500 and 1500�sec. In our simulations, we emu-
late various high speed networking scenarios, ranging from
LANs to WANs, as listed in Table 2 with the corresponding
network latency values.

5 Simulation Results
In this section, the results of the simulation study are

presented. The g-2PL and s-2PL simulations were run
on a Sun Ultra machine with the Solaris 2.5.1 operating
system. The transient phase of the simulation runs was
eliminated. In each simulation run, 50000 transactions
(excluding the transient phase) were generated, requiring
a simulation time of upto 88 million time units (upto 3-
4 hours in real time). 95% confidence intervals on the
average transaction response time were calculated from 5
independent simulation runs. The relative precision of the
measurements never exceeded 2% of the mean values.

It is our hypothesis that the g-2PL protocol is particu-
larly suited to accessing hot data items. Thus we simulated
cases where a small number of data items are accessed by
a large number of clients. Figures 2 – 4 contain the aver-
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Figure 2: Mean transaction response time of
g-2pl & s-2pl versus network latency, pr=0.0
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Figure 3: Mean transaction response time of
g-2pl & s-2pl versus network latency, pr=0.6

age transaction response time plotted against the network
latency, for 3 values of the read probability (pr = 0.0, 0.6,
or 1.0) in a database system with 25 hot data items, 50
clients and each transaction accessing between 1 and 5 data
items (uniform access) for the g-2PL and s-2PL protocols.
Obviously as the network latency is increased, the average
transaction response time increases correspondingly, but
the lower slope of the g-2PL curve is proof of its better
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Figure 4: Mean transaction response time of
g-2pl & s-2pl versus network latency, pr=1.0
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Figure 5: Mean response time of g-2pl & s-2pl
versus pr in ss-LAN
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Figure 6: Mean response time of g-2pl & s-2pl
versus pr in MAN
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Figure 7: Mean response time of g-2pl & s-2pl
versus pr in l-WAN
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Figure 8: Percentage transactions aborted in g-2pl &
s-2pl, pr=0.6, 50 clients and 25 data items

0 100 200 300 400 500 600 700 800
19.5

20

20.5

21

21.5

22

22.5

P
er

ce
nt

ag
e 

of
 tr

an
sa

ct
io

ns
 a

bo
rt

ed

Network latency

* : g−2PL
x : s−2PL

Figure 9: Percentage transactions aborted in g-2pl &
s-2pl, pr=0.8, 50 clients and 25 data items
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Figure 10: Percentage of transactions aborted as a
function of the network latency in a read-only system
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Figure 11: Percentage of transactions aborted versus
window size, pr = 1:0 in ss-LAN

scalability to WANs. From Figures 2 – 4, it is evident that
only when the read probability is 1.00 (Figure 4) is the
performance of s-2PL better than the g-2PL protocol. In
the other cases, over the entire range of network latency,
g-2PL outperforms s-2PL. The percentage improvement in
the response time of the g-2PL protocol over that of the
s-2PL protocol was observed to be between 19.50% and
26.92% in the presence of update transactions. The reason
for the better performance of s-2PL in read-only systems is
that in the g-2PL protocol described here, access requests
are granted only at the end of the window periods, and not
in between. Thus, the reads are penalized in the g-2PL
system and the s-2PL protocol has better performance2.

To obtain another perspective on the performance com-
parison, Figures 5 – 7 contain plots of the average transac-

2In read-only systems, the average transaction response time for trans-
actions accessing a single data item in the s-2PL protocol should be the
round-trip network latency.
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Figure 12: Mean response time versus number of
clients: 25 data items, pr = 0:25 in s-WAN

tion response time versus the read probabilityfor 3 different
values of the network latency in simulation time units (see
Table 2). At low read probabilities, the g-2PL protocol out-
performs the s-2PL protocol by grouping access requests
and saving on the number of rounds and only at very high
read probabilities (close to 1.0) is the performance of the
s-2PL protocol better. As the read probability is increased,
a cross-over in performance is observed. At the smallest
value of the network latency (= 1 unit), the read probability
at which the cross-over occurs is high (around 0.85). Fur-
ther, the cross-over point seems to shift to the right at higher
values of the network latency, indicating that in WANs, the
performance of the g-2PL protocol is superior to that of
the s-2PL protocol over almost the entire range of read
probabilities.

The g-2PL and s-2PL protocols both suffer from the
transaction deadlock phenomenon which results in transac-
tion aborts. Thus it is important to compare the percentage
of transaction aborts in both protocols, as a function of the
network latency and the read probability. Figures 8 – 9
contain the percentage of transactions aborted versus the
network latency, for pr values of 0.6 and 0.8 respectively.
The trends are similar for the other values of pr and hence
are not presented here. As expected, the percentage of
transactions aborted decreases with increase in the read
probability. The percentage of transactions aborted in both
protocols is fairly close, although the g-2PL protocol out-
performs the s-2PL protocol in the entire range of network
latency values studied despite its unique problem of read-
only deadlocks (as described in Section 3.3). Further, the
percentage of transactions aborted stays fairly constant for
all latencies above the single segment LAN case.

When the read probability is high (pr=0.8) as in Figure 9,
for the single segment LAN, the percentage of aborted
transactions is unexpectedly high for the g-2PL protocol
and the read deadlocks may be the cause. To study this
issue further, in Figure 10, the percentage of transactions
aborted is plotted versus the network latency in a read-only
system. The fraction of transactions aborted due to read-
deadlocks decreases with increase in the network latency,
and is negligible beyond a network latency of 10 units in
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Figure 13: Percentage transactions aborted vs. num-
ber of clients: 25 data items, pr = 0:25 in s-WAN
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Figure 14: Mean response time versus number of
clients: 25 data items, pr = 0:75 in s-WAN
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Figure 15: Percentage transactions aborted vs. num-
ber of clients: 25 data items, pr = 0:75 in s-WAN

the experiments conducted. The percentage of transactions
aborted due to read-deadlocks is never more than a little
over 5%. Thus the impact of the read-deadlocks is small
and dominant only in the LAN environment. Further, since
we have demonstrated that the g-2PL protocol is particu-
larly suited to the WAN environments where the network
latency is high, the effect of read-deadlocks can be ignored.
The above observation can be explained as follows. With
sequential transaction execution patterns (as has been as-
sumed in the system model), at high network latencies, the
data requests at the server are spread out over time, causing
less conflicts across multiple windows, leading to fewer
deadlocks. At a lower network latency, data requests by
different transactions occur close together, causing more
transaction conflicts in a smaller time frame.

A large collection window allows for the reordering of
requests to reduce the deadlock probability. To study this
effect we controlled the collection window in terms of the
length of the forward list. In Figure 11, the percentage
of transactions aborted is plotted against the forward list
length in a single segment LAN. The fraction of transac-
tions aborted decreases as the forward list length increases.
Beyond a forward list length of 5 requests, the fraction of
transactions aborted is less than 1%.

Finally, we studied the effects of increased data con-
tention. The loading on the database system can be in-
creased in several ways. We chose to do so by increasing
the number of clients while keeping the transaction profile
the same: each transaction uniformly accesses between 1
and 5 data items out of 25 hot data items. The network
latency is fixed at 500 time units (small WAN). Figure 12
contains the plots of the average transaction response time
for the g-2PL and s-2PL protocols versus the number of
clients, with a fixed read probability of 0.25. Figure 14
contains similar plots for a read probability of 0.75. In
both cases (pr=0.25 and pr=0.75), the g-2PL protocol out-
performs the s-2PL protocol at high loads. In the system
model described in Section 4, deadlocks are the only cause
for transactions to be aborted, i.e., no communication or
site failures are assumed. Figures 13 and 15 contain the
plots of the fraction of transactions aborted in the g-2PL and
s-2PL protocols for read probabilities of 0.25 and 0.75 re-
spectively. From these figures it is evident that the fraction
of transactions aborted in both protocols is close. How-
ever, it can be seen that at both values of pr, a cross-over in
performance occurs and beyond a certain loading, a higher
fraction of transactions are aborted in the s-2PL protocol.

6 Conclusions
Recognizing propagation latencies as the bottleneck and

that migrating large amounts of data between clients and
servers will not be a problem in future WANs, in this paper
we have derived, from the basic server-based two-phase
locking protocol (s-2PL), a new protocol called the group
two-phase locking protocol (g-2PL) targeted for gigabit-
networked client-server systems. In order to study the
performance of g-2PL, we have implemented a simulator
of a shared nothing, data-server system. In this paper, we
reported on the performance of g-2PL in the absence of
communication and site failures by comparing it with the
performance of s-2PL. The g-2PL scalability has been eval-
uated with respect to the network latency and the number
of clients.
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The results of our experiments confirmed our hypothe-
sis that g-2PL is particularly suited to control access to hot
data items and showed that g-2PL, in general, outperforms
s-2PL for update transactions. Specifically, g-2PL exhibits
superior performance when the percentage of reads per-
formed by transactions is relatively low compared to the
writes in the database system and the network latency is
high. Between 20-25% improvement in the response time
was observed. Interestingly, g-2PL exhibits worse response
time for read-only transactions although one might have ex-
pected that both g-2PL and s-2PL would have behaved the
same. This shows that g-2PL unnecessarily penalizes read
operations, failing to fully explore the commutativity of
read operations as in the case of s-2PL.

As part of our future research, we would like to inves-
tigate the performance of g-2PL protocol in the context of
read-only transactions by applying the read-only optimiza-
tion mentioned in this paper. Further, we would like to
investigate ways to enhance its performance by consider-
ing the various ordering disciplines in forming the forward
lists, i.e., the ordering of lock granting within a group. Fi-
nally, we would like to extend our simulator in order to
compare the g-2PL protocol with more caching protocols.
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