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Abstract

The advent of high-speed networks will enable the de-
ployment of data-server systems currently used in local-
area networks, over wide-area networks. The usersof these
systems will have the same high expectationswith respect to
performance parameters such as the transaction through-
put, response time and system rdiability as in the case
of local-area networks. Thus, it is important to study the
performance of existing distributed database protocolsin
the new networ king environment, identify the performance
bottlenecks and devel op protocolsthat are capable of tak-
ing advantage of the high speed networking technology.
As a first step, in this paper we examine the scalability of
the server-based two-phase locking (s-2PL) protocol, and
discuss three opti mi zationswhich allow the s-2PL protocol
to be tailored for high-speed wide-area network environ-
ments where the size of the message is less of a concern
than the number of rounds of message passing. These opti-
mizations, collectively called the group two-phase locking
(g-2PL) protocol, reduce the number of rounds of message
passing by grouping lock grants, client-end caching and
data migration. In a simulation study, 20-25% improve-
ment in the response time of the g-2PL protocol over that
of the s-2PL protocol was observed.

1 Introduction

Several exciting advances are being made in the general
area of high speed distributed computing. Network and
processor speeds are increasing. Also, user desktops are
being enhanced to the point that servers and clients may
be completely indistinguishablein the future, with regards
to computing power and functionality. The combination of
faster and cheaper computers, cheaper stablememory, high-
speed networks and network-aware applications is caus-
ing unprecedented growth in distributed information/data-
server systems over wide area networks. The World Wide
Web (WWW) is a prime example of a data-server system
which is primarily read-only presently. In the future, it
is expected that genera data-server systems (also caled
data shipping or enhanced client-server systems) [1-7] in
which clients perform much of their query and transaction
processing localy, will be deployed over wide-area net-
works (WANs). We aso believe that the WWW as well
will evolveto require transactional support for some types
of data access [8] rather than acting only as an interface to
database systems [9, 10].

The initial data server systems were deployed over |o-
ca area networks (LANSs), owing to the low latency and
relatively high speed of LANs as compared to previous
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generation WANS, primarily to support object oriented
databases[7,11-13]. Inthese systems, when aclient needs
a data item, it sends a request to the data-server which
responds with the requested data item. Three families of
caching algorithm have been proposed to preserve data
consistency in the presence of concurrent requests, all de-
rived from the widely used strict two-phase locking proto-
col (2PL) [14], namely, Server-based 2PL, Optimistic 2PL
and Callback Locking [1,2,12,13,15,16]. When data
servers become available over WANS, the users of these
systems will have the same high expectations with respect
to performance parameters such as the transaction through-
put, transaction response time, system reliability and data
availability as in the case of LANs. But as elaborated
in this paper, some significant differences between LANs
and WANSs remain, which will necessitate modifications
and optimizations to existing database protocolsto obtain
scalable performance to satisfy users adequately.

Given that the basic server-based 2PL (s-2PL) proto-
col has been found to have the best performance in situa
tions with high data contentionin LANS[5], in this paper,
we study its scalability and propose three types of opti-
mizations, namely, lock grouping, deadlock avoidance and
multiple-readssingle-write, which allow server-based 2PL
protocols to be tailored for high-speed wide-area network
environmentsin which the size of the message isless of a
concern than the number of sequentia phases or rounds of
message passing. These optimizations enhance the perfor-
mance of the database system by exploitingthese character-
isticsof gigabit networksand in particular, they reduce the
number of rounds of message passing by grouping thelock
grants, client-end caching and data migration. The basic
lock grouping optimization combined with the deadlock
avoidance and the multiple-reads single-write optimiza
tions are collectively called the group two-phase locking
(or g-2PL) protocol. Although we do not deal with the re-
covery aspects of the g-2PL protocol here, we assume that
the sitesfollow the standard protocol adopted by the s-2PL
protocol where each site uses WAL and garbage collectsits
log once the data are made permanent at the server [17]. A
recovery framework for the g-2PL protocol was discussed
in[18].

The performance of the g-2PL protocol is evaluated us-
ing simulation, and compared with the s-2PL protocol, as-
suming no site and communication failures. The salient
results of this performance evaluation are that the g-2PL
protocol exhibits better response time for hot data and out-
performs the s-2PL protocol in the presence of updatesin
the database system. The margin of improvement in the



response time is significant at about 20-25%.

In the next section we el aborate on the characteristics of
high speed networks. In Section 3, wefirst briefly overview
the s-2PL protocol and then present thethree optimizations
that form the g-2PL protocol and discuss the problem of
read-dependencies in the g-2PL protocol. The simulation
system model is presented in Section 4, followed by the
numerical results of the performance evauation obtained
by simulationin Section 5. Section 6 concludes the paper.

2 Background

Beforeintroducingour high speed network-specific con-
currency optimizations, it isimportant to first discuss the
characteristics of the high speed WANSs and the traditional
low speed networks, and understand their differences.

There aretwo basic componentsof thedelay involvedin
moving data between two computers over acommunication
network: thetransmissiontime, i.e., thetimeto transfer all
the data bits, and the propagation latency, i.e., the time
the first bit takes to arrive. Further, intermediate network
components in the path of the data introduce extra delays
as well. We define the sum of the delays introduced by
the intermediate network components and the propagation
delay as the network latency. As the data rate in WANSsS
continues to increase due to technological breakthroughs,
the data transmission delay will decrease almost linearly.
However, the signal propagation delay which is afunction
of thelength of the communication link and a physical con-
stant, the speed of light, will remain almost constant, and
relative to the data transmission delay, will actualy seem
toincrease. Thisisnot to say that the performance of atra-
ditional distributed a gorithmwill beworse in a high speed
environment than in a low speed environment. However,
themarginal performanceimprovement will decrease asthe
data rate continues to increase and beyond a certain data
rate there will be no further improvement since traditional
database algorithmsare primarily designed to optimizethe
data transmission delay.

Clearly, the above basic characteristic of high speed
WAN:Ss (referred to as a high bandwidth-delay product) has
significant implications on distributed applications. At gi-
gabit rates in a WAN, the propagation latency is the dom-
inant component of the overal delay [19] and the only
way to combat propagation latency is to hide it in inno-
vative protocols. Thus newer database protocols need to
be developed that are distance-independent and scalable
to wide-area high-speed networks. This observation has
motivated the development of the server-based 2PL opti-
mizationspresented in thenext section. Anearly discussion
can be found in[20].

3 A New Server-based 2PL Protocol: g-2PL

In this section, after a brief review of the s-2PL pro-
tocol, we present three optimizations which can be used
to enhance the performance of the s-2PL protocol in data-
server systems in awide-area high-speed network.

3.1 Server-Based Two-Phase L ocking Protocol
Inthebasic server-based two-phaselocking (s-2PL) pro-
tocol, adata-server basically preserves data consistency by
following the strict two-phase locking protocol [14] which
is the de-facto industry standard. The s-2PL protocol en-
sures data consistency as defined by serializability which
requires the concurrent, interleaved, execution of requests
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to be equivalent to some serial, non-interleaved, execution
of the same requests[21, 22].

In the s-2PL protocol, each transaction goes through a
growing phase and a shrinking phase. During the growing
phase, atransaction requests data items which are shipped
to it after the data-server acquires a lock on them. In
the shrinking phase, all the locks are released when the
transaction is either aborted or committed and all modified
data items are returned to the data-server. The clients are
not alowed to cache locks across transaction boundaries
and a client can be viewed as executing one transaction
at atime A variation of s2PL that adlows caching of
locks across transaction boundariesis called caching 2PL
(c-2PL) protocoal [1,5,13]. To simplify the discussion, in
the rest of the paper we focus only on the s-2PL protocol
but the results can be easily extended to the c-2PL protocol.

Access to some data may be done in a shared fashion,
with multipleclientsreading the data item simultaneously.
However, in the interest of strict consistency, while mul-
tiple clients may read the data simultaneously, no client
may write on it. Hence, locks are distinguished into read
(shared) and write (exclusive) types and a client cannot ac-
quire a write lock on a data item until the clients reading
the data have released their shared locks and vice versa.
If the data-server cannot acquire alock on a dataitem be-
cause another transaction is holding a conflicting lock on
the same data, the request is enqueued and the requesting
transactionisforced to wait until thelock is released.

Assuming that atransaction needsto accessn dataitems,
the first phase of the protocol as described above will in-
volven requests from the client to the server and n replies
from the server to the client, exchanged in minimum 2
messages if al requests are sent at the same time or maxi-
mum 2n messages if therequestsare sent sequentialy. The
second phase of the s-2PL protocol will involve a single
message. That is, for each transaction, in the best case,
the s-2PL protocol involves three rounds, i.e., sequentia
phases of message passing corresponding to lock request,
lock grant and lock release and 2n 4 1 roundsinworst case.

3.2 Lock Grouping Optimization

As mentioned above, at gigabit rates in wide area net-
works, propagation latency is the dominant communica
tion cost which can only be reduced by minimizing both
the rounds as well as the number of messages. In other
words, the performance of the s-2PL protocol can be en-
hanced only if either the number of messages or rounds or
both, involved in the protocol are reduced. We propose
to reduce both messages and rounds by applying the con-
cept of groupinginanovel way, previously used invarious
optimizations (e.g., group commit [23, 24]), and in mutual
exclusion agorithms (e.g., [29]).

Specifically, we propose to group the lock (data) grant-
ingand release asfollows. Thedata-server collectsthelock
requestsfor each dataitem and createsaforwardlist (FL) of
al the clients that have pending lock requests for that data
item. When alock becomes available, the lock is granted
tothefirst client on theforward list and the dataitemis sent
to theclient along with theforward list. For each dataitem
required in the shared mode by multiple(reading) clients, a
copy of the dataitem is sent to each of the reading clients.
In the genera case, the data structure for the forward list
for each dataitem will be alist with appropriate markers to



Figure 1: Example execution of the g-2PL protocol: Exclusive access

delimit the parallel shared accesses and the serial exclusive
access. Thewritehastowait until all readers have rel eased
their read locks and sent the release to the writer. While
the data items have been sent out to a group of clients, the
server continues to collect requests. We define the period
during which the server does not possess thelock on adata
item and is collecting requests as the coll ection window for
the data item?’.

When a transaction commits, the client sends the new
version of the committed data items to the clients next on
the respective forward lists. A copy of the forward list is
also sent with each data item. If the transaction aborts,
the client forwards the unchanged data to the next client.
Finally, when the last client on the forward list terminates,
it sends the new version of the data to the data-server with
the outcome of each transaction executed on the clientson
the forward list. Once a data-server receives and installs
the new version of adataitemin the database, it dispatches
thedataitemtothefirst client onthe new forwardlist. Note
thatinitially at start-up timeand during periodsof extremely
light loading, the forward-list will contain asingleclient.

In thisoptimizationwhich wecall basi c group two-phase
locking (g-2PL) protocol, the lock release message of the
previous client is combined with the lock grant message of
the next client, thereby eliminating one sequential message
required by the s-2PL protocol. For example, assume m
clients under the best case where each transaction either
requests a single data item or requests multiple data items
within a single message. The s-2PL protocol will require
3m messages and 3m rounds as opposed to the g-2PL
protocol which will require 2m + 1 messages and 2m + 1
rounds. The messagesintheg-2PL protocol are larger than
that in the s-2PL protocol, but in a high speed network
environment, the message sizeis not a big constraint.

Asanother example, consider a data-server system with
three clients numbered 1-3. Assume each client hasissued
atransaction (say, 11, 1>, and 73) that exclusively access
the same dataitem. Let us assume that each message/data
transfer is accompanied with 2 units of network latency
and the processing time per transaction after receiving the
data item be 1 unit. Further, al three transactions arrive
within the same collection window. Figure 1 depicts the

10ur early experimentationwith a tunable collection window size and
atimeout resulted in the outcome that tuning the collection window does
not produce significant performancegains[26].
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execution for the g-2PL and s-2PL protocols. The total
execution time for our protocol is 12 units, versus 15 units
with s-2PL. Thisis a 20% reduction in the response time
of the s2PL protocol, which will be validated later by
simulation as well.

The forward list may be created according to one of
severa orderingrulestoimprove performancefurther. The
default rule is First-In-First-Out or sort by arriva of the
request as in the s-2PL protocol. As discussed below, the
second and third optimizations capture two ordering rules
that attempt to reduce the number of deadlocks.

3.3 Deadlock Avoidance Optimization

Two-phase locking protocols are susceptible to dead-
locks [14], and so is the g-2PL protocol. Two or more
transactions are said to be in a deadlock when neither of
the transactions can proceed because at least one of the
locks required by each of the transactions is held by one
of the other transactions. Interestingly, the g-2PL proto-
col, described above, is susceptible to a unique type of
deadlock which is created due to read-only dependencies
formed across different collection windows. This situation
is better illustrated using an example.

Consider two transactions t1 : readi(x) ready(y) and
ty @ reada(y) ready(x) both of which request data items
z and y for reading in a serial manner but in opposite
order. Assoonasthedata-server getstherequestsreads(z)
and readg(y?1 will release = to 1 and y to ¢,. Now, both
transactions have one dataitem and will not release it until
they commit or abort. Subsequently, the data-server will
get the requests readi(y) and ready(z) but neither data
item can be released until ¢4 or ¢, either commits or aborts
returning = and y back to the server respectively. Thisisa
deadlock situation where ¢; waits for ¢, to release the read
lock fory and ¢, waitsfor ¢; to release theread lock for x.

Although read-only dependencies can be eliminated by
expanding a dispatched forward list to include new read
request hence avoiding read-only dependencies between
read-only transactions, this g-2PL variation is not consid-
ered in this paper due to space limitation [27].

A deadlock detection and resolution agorithm that
maintains a Wait-for graph and checks for cycles in the
graph is usually coupled with any s-2PL implementation.
Deadlock avoidance algorithmsthat ensure linear ordering
are typically pessimistic requiring predeclaration of locks
or leading to livelocks and hence have been considered in-
appropriate for dynamic databases [21,22]. However, in



the case of the g-2PL protocol, deadlocks can be avoided
without being pessimistic by intelligently creating the for-
ward lists.

Specifically, deadlocks can be avoided if in each of the
forward lists, the order of the transactions is the same.
Formally, the forward list for each dataitem can be repre-
sented by atransaction precedence graph. The transaction
precedence graph is adirected graph which determines the
order in which each data item will move from one client
siteto another. In order to ensure linear ordering, transac-
tion precedence graphs need to be made consistent. That
is, two transactions 7; and 7; must follow the same or-
der < 7;,7; > or < T;,T; > in every precedence graph
involving 7; and 7;. Note that the precedence graph is
consistent with the lock granting order and hence consis-
tent with the serialization order.

Clearly, thisreordering of requests does not requirepre-
declaration and because it occurs within a collection win-
dow, the problem of starvation is not encountered. In the
worst case, some transactions will be pushed towards the
end of the forward list but they will have the chance to
access the data. In the case that such reordering of for-
ward listsis not possible, some transactions may have to
be aborted and restarted. Repeated (cyclic) restarts can be
avoided in a similar way using an aging mechanism asin
deadlock detection agorithms. It should be stressed that
all these reordering computations are done whilethe server
iswaiting for the data items to be returned from the clients
in the previous window. Thus, these computations do not
increase the transaction blocking timeon alock and in fact
increase the utilization of data-server CPU while reducing
the transaction response time.

3.4 Multiple Reads Single Write Access

In the above optimizations, we have considered read
locks and shared access to data by multiple clients. How-
ever, intheinterest of strict consistency and in accord with
thes-2PL protocol, whilemultipleclientsmay read thedata
simultaneoudly, no client may write on it until the clients
reading the data have released the shared lock. Actudly,
we can do better than this by allowing multiplereaders and
a single writer to execute concurrently while preserving
strict consistency.

In the MR1W (Multiple Reads Single Write) optimiza-
tion, the data-server (or areleasing client) sends a copy of
a data item to each of the clients on the forward list that
require the data item in the shared mode along with the
forward list. At the same time, it also sends a message
containing the data item and the list of the shared-mode
clientsto the next client C; on theforward list that requires
exclusive access. Inthisway, C; isenabled to execute and
update the data item concurrently with the reading clients.
However, C; cannot release its updates until it receives a
release message from all the reading clients. As before, if
thereare no waiting transactionsthat need exclusive access,
the rel ease messages are returned to the server.

Here, it isinteresting to point out that with the MR1W
optimization the g-2PL protocol just described behaves
similar to the two-copy version s-2PL protocol [21] which
allowsmore concurrency than the standard s-2PL protocol.

To recapitulate, in thissection wefirst discussed agroup
locking optimization and derived the basic g-2PL protocol
from the server-based two-phase locking protocol. Then,
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we discussed two more optimization types, one that avoids
deadl ocks and the other that enhances shared access in the
basic g-2PL protocol. A detailed simulation study of the
performance of thebasic g-2PL protocol combined withthe
deadlock avoidance and MR1W optimizationsis discussed
in the rest of the paper. While no data access patterns have
been assumed, note that the more a certain data item is
requested such as hot data items, more is the performance
gain, since the grouping effect is emphasized when the
forward list islonger.

4 System Model for Performance Evaluation
In order to evauate the performance of the s-2PL and
g-2PL protocolsunder different high-speed networking la-
tencies, simulation models of both protocols were devel-
oped using the C programming language. The simulation
isadiscrete-event simulation using the unit-time approach
to advance the simulation clock [28]. We consider a data
server database system, with a single server and multiple
clients connected by a high speed network. As described
earlier, the transmission delays in a high speed network
can be assumed to be negligible, and the network latency
consists of the signal propagation and switching delays.
In this paper, we make the simplifying assumption that
the network latency between any two sites (server-client,
client-client) and in either direction isthe same.

All clients are assumed to be identica and run trans-
actions that have the same statistical profile. The multi-
programming level at each client is assumed to be one,
i.e, a any giventime, each client processes asingletrans-
action only. Further, a the end of each transaction, it
is replaced with another transaction at that client site af-
ter some idle time that is uniformly distributed between
a given minimum and maximum values Each transaction
accesses between 1 and NV dataitems uniformly These data
items are drawn from a pool of M data items that reside
at the data server. M is purposely kept smal to emulate
hot data access. Each data access may be of the type read
with a given read probability p, and of the type write with
a probability p, = 1 — p,. The transaction execution is
sequential, i.e., requests for data items are generated se-
quentially, with each request being generated only after the
previousrequest has been granted and some think time (for
computations) has elapsed. I1n our model, thiscomputation
time is uniformly distributed between a given minimum
and maximum values.

Asmentionedinthe previoussection, two-phaselocking
protocols are deadlock-prone. In the s-2PL implementa-
tion, deadlocks are detected by computing wait-for-graphs
and aborting thetransacti onsnecessary to removethe dead-
locks. Thisisthetypica implementationfoundin commer-
cia systemsthat use the s-2PL protocol. In order to avoid
the use of tunable timeouts, deadlock detection isinitiated
when a lock cannot be granted. In the case of g-2PL, the
forward lists are reordered using transaction precedence
graphsto ensure that deadlocks are prevented. Recall from
Section 3that thetransaction precedence graphs capturethe
order of lock granting and is consistent with the seridiza
tion order. In the case that such reordering is not possible,
the offending transactions are aborted. Each transaction
that isaborted isreplaced by another transaction. The sim-
ulation model assumesthat the computation cost at the data
server to reorder the forward lists as well as computing the



Number of Servers 1

Percentage of read accesses 0.00-1.00

Number of Clients varying

Network Latency 100 — 1000 time units

Number of hot dataitems 25

Computation Time per operation 1-3time units

Transaction Execution Pattern

Sequential

Idle Time between transactions 2 —10time units

Number of data items accessed by atransaction | 1-5

Multiprogramming level at clients | 1

Table 1: Simulation Parameters

Network Type Latency
Single Segment Local Area Network (ss-LAN) 1
Multi-Segment Local Area Network (ms-LAN) 50
Campus Area Network (CAN) 100
Metropolitan Area Network (MAN) 250
Small Wide Area Network (s"WAN) 500
Large Wide Area Network (I-WAN) 750

Table 2: Networking Environments Simulated

wait-for-graphsisthe same.

Table 1 summarizes all the experimenta parametersand
the correspondingrange of val ues of the performance study.
Note that time durations are specified in simulation time
unitsrather than real timein seconds. The conversion be-
tween the two is easily achieved and readlistic values can
be chosen by specifying the appropriate conversion factor.
However, it isimportant to recognize that the relative val-
ues of these parameters have been chosen correctly. Since
we assume a high speed WAN environment, the network
latency is significantly higher than the computation/idle
times. For example, if we assume that 1 simulation
time unit = 0.5 msec, thenthe network latenciescon-
sidered are between 50 and 500 msec, which areredis
tic for wide area networks including satellite transmission
links. The computation time per database operation isthen
between 500 and 1500 psec. Inour simulations, we emu-
late various high speed networking scenarios, ranging from
LANsto WANS, aslistedin Table 2 with the corresponding
network latency values.

5 Simulation Results

In this section, the results of the simulation study are
presented. The g-2PL and s-2PL simulations were run
on a Sun Ultra machine with the Solaris 2.5.1 operating
system. The transient phase of the simulation runs was
eliminated. In each simulation run, 50000 transactions
(excluding the transient phase) were generated, requiring
a simulation time of upto 88 million time units (upto 3-
4 hours in rea time). 95% confidence intervals on the
average transaction response time were calculated from 5
independent simulation runs. The relative precision of the
measurements never exceeded 2% of the mean values.

It is our hypothesis that the g-2PL protocol is particu-
larly suited to accessing hot dataitems. Thuswe simulated
cases where a small number of dataitems are accessed by
alarge number of clients. Figures2 — 4 contain the aver-
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age transaction response time plotted against the network
latency, for 3 values of the read probability (p, = 0.0, 0.6,
or 1.0) in a database system with 25 hot data items, 50
clientsand each transaction accessing between 1 and 5 data
items (uniform access) for the g-2PL and s-2PL protocols.
Obviously as the network latency isincreased, the average
transaction response time increases correspondingly, but
the lower slope of the g-2PL curve is proof of its better
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scalability to WANSs. From Figures 2 — 4, it is evident that
only when the read probability is 1.00 (Figure 4) is the
performance of s-2PL better than the g-2PL protocol. In
the other cases, over the entire range of network latency,
g-2PL outperformss-2PL. The percentage improvement in
the response time of the g-2PL protocol over that of the
s-2PL protocol was observed to be between 19.50% and
26.92% in the presence of update transactions. The reason
for the better performance of s-2PL inread-only systemsis
that in the g-2PL protocol described here, access requests
are granted only at the end of the window periods, and not
in between. Thus, the reads are penalized in the g-2PL
system and the s-2PL protocol has better performance?.

To obtain another perspective on the performance com-
parison, Figures 5 — 7 contain plots of the average transac-

2|nread-only systems, the averagetransaction responsetime for trans-
actions accessing a single dataitem in the s-2PL protocol should be the
round-trip network latency.
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clients: 25 dataitems, p, = 0.25insWAN

tionresponsetimeversustheread probability for 3 different
values of the network latency in simulation time units (see
Table 2). At low read probabilities, theg-2PL protocol out-
performs the s-2PL protocol by grouping access requests
and saving on the number of rounds and only at very high
read probabilities (close to 1.0) is the performance of the
s-2PL protocol better. Astheread probability isincreased,
a cross-over in performance is observed. At the smallest
valueof the network latency (= 1 unit), theread probability
at which the cross-over occurs is high (around 0.85). Fur-
ther, the cross-over point seemsto shift totheright at higher
values of the network latency, indicating that in WANS, the
performance of the g-2PL protocol is superior to that of
the s-2PL protocol over amost the entire range of read
probabilities.

The g-2PL and s-2PL protocols both suffer from the
transaction deadl ock phenomenon which resultsin transac-
tion aborts. Thusitisimportant to compare the percentage
of transaction abortsin both protocols, as afunction of the
network latency and the read probability. Figures 8 — 9
contain the percentage of transactions aborted versus the
network latency, for p, values of 0.6 and 0.8 respectively.
The trends are similar for the other values of p, and hence
are not presented here. As expected, the percentage of
transactions aborted decreases with increase in the read
probability. The percentage of transactions aborted in both
protocolsis fairly close, athough the g-2PL protocol out-
performs the s-2PL protocol in the entire range of network
latency values studied despite its unique problem of read-
only deadlocks (as described in Section 3.3). Further, the
percentage of transactions aborted staysfairly constant for
all latencies above the single segment LAN case.

When theread probability ishigh (p,.=0.8) asin Figure9,
for the single segment LAN, the percentage of aborted
transactions is unexpectedly high for the g-2PL protocol
and the read deadlocks may be the cause. To study this
issue further, in Figure 10, the percentage of transactions
aborted is plotted versus the network latency in aread-only
system. The fraction of transactions aborted due to read-
deadlocks decreases with increase in the network |atency,
and is negligible beyond a network latency of 10 unitsin
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the experiments conducted. The percentage of transactions
aborted due to read-deadlocks is never more than a little
over 5%. Thus the impact of the read-deadlocks is small
and dominant only inthe LAN environment. Further, since
we have demonstrated that the g-2PL protocol is particu-
larly suited to the WAN environments where the network
latency ishigh, theeffect of read-deadlocks can beignored.
The above observation can be explained as follows. With
sequential transaction execution patterns (as has been as-
sumed in the system model), at high network latencies, the
datarequestsat the server are spread out over time, causing
less conflicts across multiple windows, leading to fewer
deadlocks. At a lower network latency, data requests by
different transactions occur close together, causing more
transaction conflictsin asmaller time frame.

A large collection window allows for the reordering of
requests to reduce the deadlock probability. To study this
effect we controlled the collection window in terms of the
length of the forward list. In Figure 11, the percentage
of transactions aborted is plotted against the forward list
length in a single segment LAN. The fraction of transac-
tionsaborted decreases astheforward list length increases.
Beyond aforward list length of 5 requests, the fraction of
transactions aborted is less than 1%.

Finaly, we studied the effects of increased data con-
tention. The loading on the database system can be in-
creased in several ways. We chose to do so by increasing
the number of clients while keeping the transaction profile
the same: each transaction uniformly accesses between 1
and 5 data items out of 25 hot data items. The network
latency isfixed at 500 time units (small WAN). Figure 12
contains the plots of the average transaction response time
for the g-2PL and s-2PL protocols versus the number of
clients, with a fixed read probability of 0.25. Figure 14
contains similar plots for a read probability of 0.75. In
both cases (p.=0.25 and p,=0.75), the g-2PL protocol out-
performs the s-2PL protocol a high loads. In the system
model described in Section 4, deadlocks are the only cause
for transactions to be aborted, i.e., no communication or
site failures are assumed. Figures 13 and 15 contain the
plotsof thefraction of transactionsaborted intheg-2PL and
s-2PL protocolsfor read probabilitiesof 0.25 and 0.75 re-
spectively. Fromthesefiguresit isevident that thefraction
of transactions aborted in both protocolsis close. How-
ever, it can be seen that at both values of p,, across-over in
performance occurs and beyond a certain loading, ahigher
fraction of transactions are aborted in the s-2PL protocol.

6 Conclusions

Recogni zing propagati on | atencies as the bottl eneck and
that migrating large amounts of data between clients and
serverswill not be aproblem infuture WANS, in this paper
we have derived, from the basic server-based two-phase
locking protocol (s-2PL), a new protocol called the group
two-phase locking protocol (g-2PL) targeted for gigabit-
networked client-server systems. In order to study the
performance of g-2PL, we have implemented a simulator
of a shared nothing, data-server system. In this paper, we
reported on the performance of g-2PL in the absence of
communication and site failures by comparing it with the
performance of s-2PL. The g-2PL scalability hasbeen eval-
uated with respect to the network latency and the number
of clients.



The results of our experiments confirmed our hypothe-
sisthat g-2PL is particularly suited to control access to hot
dataitems and showed that g-2PL, in general, outperforms
s-2PL for update transactions. Specifically, g-2PL exhibits
superior performance when the percentage of reads per-
formed by transactions is relatively low compared to the
writes in the database system and the network latency is
high. Between 20-25% Improvement in the response time
wasobserved. |nterestingly, g-2PL exhibitsworseresponse
timefor read-only transactionsalthough one might have ex-
pected that both g-2PL and s-2PL would have behaved the
same. This showsthat g-2PL unnecessarily penalizes read
operations, failing to fully explore the commutativity of
read operationsasin the case of s-2PL.

As part of our future research, we would like to inves-
tigate the performance of g-2PL protocol in the context of
read-only transactions by applying the read-only optimiza-
tion mentioned in this paper. Further, we would like to
investigate ways to enhance its performance by consider-
ing the various ordering disciplinesin forming the forward
lists, i.e., the ordering of lock granting within a group. Fi-
naly, we would like to extend our simulator in order to
compare the g-2PL protocol with more caching protocols.
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