Utilizing Versions of Viewswithin a Mobile Environment

Susan Weissman Lauz#&anos K. Chrysanthis
Department of Computer Science
University of Pittsburgh
Pittsburgh, PA 15260, U.S.A.
{suew,panog@cs.pitt.edu

Utilizing Versions of Viewswithin a Mobile Environment

Abstract

Data caching and hoarding provide the only means to supperoihected mobile opera-
tions. In the context of mobile database applications, ciathed can take the form of a material-
ized view. In this paper, we present a mechaniswi@w holdemwithin the fixed network, whose
job is to maintain versions of the views that are required pgricular mobile host. These views
are very likely to be a small and specialized portion of tHerimation found within the various
data sources and, therefore, versions can be dynamicalhtaireed by the view holder without
incurring huge storage requirements. In addition, the ielder will respond to mobile host’s
gueries by communicating only the differences betweenaass Thus, a view holder mediates
and exports the views needed by a mobile host, and updatenimguted and delivered in a
flexible and batch manner.

e Keywords: Mobile Computing, View Maintenance, Mobile Query Processing, Data Ware-
housing

1 Introduction

Currently, relational database management systems are the most widebtlateslease management
systems in supporting database applications. Within a relational databamm® syata are structured
as a set of (base) tables whereaseavdefines a function from a subset of base tables to a derived ta-
ble. A view ismaterializedoy physically storing the tuples of the view derived from the base tables.
Thesematerialized viewsave the tuples of important or frequent queries. In distributed environ-
ments with client-server configurations, materialized views can bedtair the clients to support
local query processing. Materialized views operate in a fashion sinoildata caches. Available
data is accessed quickly through the materialized views without having to quenycie database
server. The retrieval of data from materialized views, as in the chsables at the server, can be
made even faster through indices associated with the appropriate magernabws [ZGMHW95].
Research in mobile computers and wireless networks is allowing mobdetslio become an
integrated part of distributed computing environments along with their staji@oanterparts. Due
to the communication costs and frequent disconnections of wireless networks, atifmmatored

within the mobile computer becomes crucial to maintaining productivity. If tha daeeded to
complete a task are present on the mobile computer, remote access mayithatetirand processing
may continue even though disconnection has occurred. Thus, the role of materiaénedavid
view maintenance is becoming increasingly important in the context of mobile datapplcations
because of their ability to support local data processing. Given that most ofatigattions in a
database environment are read-only transactions, in this paper, we focus orzimgtithese read-
only transaction on mobile computers by utilizing versions of materializeas/i¢However, write
transactions can still occur, but are only performed directly with the slatgces and not through
the materialized views stored on the mobile client. This work complemkeeatsxisting research on
mobile read-only transaction that has focused on the efficient disseminatiotadbdarge number
of mobile computers by exploring the broadcaset characteristics of the wieessiunication
[IVB97, AAFZ95, DCVKK97].

Within the context of a known group of application processes, a mobile computer wilanee
specific subset of the data available to be organized, summarized and gatheefticient manner
from very different information systems. Therefore, there is a need foeehamism within the
fixed network that can reduce computation and communication costs by being alileloffér the
data that cannot fit on the mobile host due to inadequate storage capabilities, (2) be toptoay
mobile host in order to receive updates from the sources during periods of inadequatekmagw
conditions, and (3) become a cache within the fixed network that represents theohaeusbile
host. In other words, we need to providdynamic and customizable view maintenance mechanism
so that thecache or view consisten@chieved between the data stored on the mobile host and the
data sources match the availability or cost of the network and the capabditie mobile host.
This mechanism is what we will call theew holder

A view holder is similar to alata warehous¢hat stores materialized views from multiple base
table sources found in various information systems. In contrast to view hottergiews in a data
warehouse are oftdarge, staticand consideredenericandstatelessvith respect to the individual
clients. Hence, while data warehouses reduce the cost for answering vepaiitries, they doot
reduce the cost for communicating these answers in the case that they arméherdaave small
differences. View holders, on the other hand, respond to a mobile host’s queries byioaratimg
only the differences between answers. A view holder is programmed to mamtdiiple versions
of a view in order to compensate for the data changes that occurred to the nmadnaews that
were used during disconnection. In short, a view holder mediates and exports the vesles gy
a mobile host, and updates are computed and delivered in a flexible and batch rfiansea view

holder can be thought of as a customizable client-oriented data warehouse.

Within our example application environment there exists a data warehouse witkex aetwork
utilizing a versioning maintenance algorithm and multiple mobile hosts. Theofes$iis paper
continues as follows: Section 2 presents a scenario for our example appligatidhen describes
its limitations within a mobile environment and explains the need for a view holéshamism.
Section 3 describes the view holder within the context of the example, and thentgrakgprithms
for the view holder which allow for interactions with the data warehouse asasé¢he mobile hosts.
Section 4 describes our prototype currently being developed that incorporates thptsali®eussed
in this paper. Finally, the conclusions and future work are presented in Séction

2 Motivating Example

In this section, we motivate further the need for a view holder by means of an exa®pppose
that the database structure of our fixed network environment includes not only the databas's
responsible for storing base relations, but alsla& warehousghich stores materialized views de-
rived from these base tables sources. Itis very important to understarnilisi@dta warehouse holds
thestaticviews that contain useful summary information which must be maintained pealtydoy
the execution of anaintenance transactiowhich is initiated by the data servers. Queries from a
client or mobile host (MH) can be answered in the form ofaterialized viewand throughout this
paper a view will be considered materialized once it is defined withirfixled network

Let us assume that the data warehouse is maintained with a versioning algstittinas th&wo
version no locking” (i.e., 2VNLalgorithm [QW97], where one or two versions may be available for
the readers at any time without having them wait on any locks.

2.1 Thedatawarehouse' sview: DailySales

Our data warehouse in this example supplies summary information from baseftaldeshain of
sporting goods stores and will contain two separate versions of the data. Theaglatmuse has the
following materialized view which totals daily sales by city and date:

DailySales(tupl eVN, operation, city, product, date, total _sales,
pre_total sal es)

t upl eVNkeeps the version number of the maintenance transaction that last updated is tupl
while oper at i on keeps the ladbgical operation performed. The attributest y, product,

anddat e are non-updatable attributes that do not change, whé@asal _sal es must be period-
ically updated by a maintenance transaction. Since two copies or versionsubdatable attribute
will be made available, the most current version is heltlant al _sal es while the previous ver-
sion is withinpr e_t ot al sal es. When a maintenance transaction is currently updating the tuples,
only thecurrentversion is available to readers while the new version is being creatéeén\there
IS N0 maintenance transaction executing, both the previous and current versionattriliige can
be read [QW97].

Now suppose that a MH starts an application which will allow the user t@asdgerform some
rough calculations regarding the sales of racquetball equipment. This MH willsegueew from
the data warehouseBailySales inquiring about the day to day sales of racquetball equipment by
stores in each city.

Query: RgballSales
SELECT city, date, product, totalales
FROM DailySales
WHERE product = “rgball”
GROUP BY city, date

We want this query to be processed within the fixed network to save both the emmetggsources
of the MH. The results are then communicated to the MH’s as a matedaliee&v. The MH may
keep this view for some time and maypt receive the current day’s sales figures due to traveling
or communication delays. Eventually, another application such as a spreadsthgeajhing tool
could be started that would allow the user to create slides for an upcomingnpaten. At this
point, the most recent results may be available, or communication conditions mayntyaroved
(e.g., the user is dialing up from a hotel room after work). Within the new applicath@nmost
recent sales figures can be incorporated into the spreadsheet.

Typically, once the MH receives the most recent version of the data, the ukleewnning two
applications and accessing two separate versions of theatilve same timerhis is in contrast to
a singlereader sessignn a data warehousing environment, where each consecutive query comes
from the same version. Once many maintenance transactions occur and thectaisidered too
old, the user must end its current work and gather a new version because the older exgireas
Therefore, view maintenance is achieved by forcing the client or MH tove@enew version of the
materialized view. However, such a view maintenance strategy is rtabtiand potentially very
expensive for a MH. We elaborate on this next.

2.2 Problems

Although it may appear that directly accessing the data warehouse for dateaue, there are
actually a wide range of difficulties. Some of these problems stem from theetmesources of
the MH and wireless networking conditions, while others come from the staticenafuhe data
warehouse.

From the viewpoint of a mobile host these problems include:

¢ It is notalways convenient or even possible for a MH to receive a new version of theatiew
the time of expiration, especially during a period of disconnection or under poor networking
conditions.

e If the MH can not receive a new version then the work done during a period of discaymecti
with an expired version may have to be discarded upon reconnection.

e The MH may not have enougidequate storagé hold several versions of a materialized
View or even one entire version.

The data warehouse and data servers are stateless and do not keep tracksoimtdrested in
their ongoing changes. They wilbt contact a mobile hosind inform them when updates are to be
performed. From this we can see the following difficulties:

e To update the MH, the data warehouse will have to send the entire new versionvaéuhe
each time since it can not compute the difference between versions. Comtmgnikbes entire
recomputed version isostly, especially if there are very few differences between versions.

¢ Since data warehouse’s views atatic, the queryRgballSaleswill notbe maintained by the
data warehouse. It would be a waste of space for the data warehouse to buildesejgsva
for only a couple of users.

e Each time a MH’s materialized view is to be updated the data warehoulSeawd to recon-
struct the materialized view from scratch.

e The data warehouse wilbtcreate or maintain aindexingstructure for the queriRgballSales
that can be communicated to the MH.

¢ It would be difficult for the data warehouse to combine data from several heterogeneous
sources if it did not have all the data being requested by the MH.

e The data warehouse becomes a centralized source, and therefore, a bottledhedystem.

2.3 Our Solution

The above discussion clearly pointed out that direct interaction betweenHranilithe data sources
cannot be supported in a flexible manner. To alleviate the problems discwesieolt requir-
ing modifications to the existing databases and data warehouses (i.e., unlikersopresented
in [BDMW95]), the mechanism we created for maintaining the materidhzews requested by a
mobile host is called theiew holder The goal of the view holder is to bring the data closer to the
mobile hosts and control the interactions between the mobile hosts and the data.sources

Every application of a mobile host can only use a subset of the data that existswutices or,
in our example, the data warehouse DW. We say the applicatiparset or superview S¥ntains
all the information that will be used by an application. The superview is r@adtya materialized
view defined as a que® applied to the data warehousg\(= Q(DW).

For a specific application environment, MH can request that a view holder nresrtbas super-
view SVof the data that it could possibly need. Then the MH can cache or haadbset of this
superviewSVbefore a period of disconnection or a weak connection. In the example given, the mo-
bile machine may not have the ability to store all the data regarding evegythtrsells racquetball
equipment in every city from the queBgballSales. However, if the user is traveling to Pittsburgh,
only the data concerning stores in this city will be downloaded to the mobile macheerequest
for the queryRqgballSales is what we call thanitiation messagend forms the superview, while,
the request for all information concerning Pittsburgh from the view holder isd¢#fie MH’scache
message

The view holder can keep track of the updates performed to the dragrgllSales, as well as,
the specific changes to the data from Pittsburgh. In other words, the supervidve witrementally
maintained §V' = SV + A), and only data from thé& will need to be communicated to the mobile
host. In this way, the view holder will be able to reduce the amount of wireless coimation
required to update a MH when it is possible. Other structures, such as indarese built and
maintained by the view holder and later communicated to the MH.

! The termhoardingwas introduced in [KS92] to identify the state a MH is in when it is eciing useful data in
anticipation of disconnection.

As shown in Figure 1, we propose a layered system architecture where the Wata s@d data
warehouse are more closely coupled within the fixed network than the metedialews maintained
by the view holders. The data server layer is responsible for periodically cotisgr@aomaintenance
transaction in order to update the data warehouse. A data warehouse, usingringrsiaintenance
algorithm, is created where the views are static and the number of conse@rsi@ns of each view
also remains static. Hence, the amount of space made available for ve@particular attribute
is known and fixed.

In contrast, a view holder will maintain a version of a view requested by a dftdg$ long as the
host needs it. So, the view holder can be seen lasffer, holding versions of a specialized view
for a particular MH. Space allocated for the updated attributes of a view lbeugbne dynamically
since it is not known beforehand how many versions will be maintained. The ideashbst the
views requested by an MH are very likely to be a small and specializediat of the information
from within the data servers and/or data warehouses. The current size of nmanyatahouses
and other decision support databases (up to 4.6 TB [WA97, WA98]) precludes the simytiersol
of duplicating the available data on the mobile machine. To avoid these huge stegagements,
versions of the requested data are dynamically maintained by the view holder.

It is possible some of the data sources including data warehousesahsypport explicit ver-
sions of data. In such a case, the view holder will query the source in order totekieadata at a
given moment. A timestamp for this implicit “version” could be the lastdithe tuple, attribute, or
table was modified and found by querying the catalog of the data source.

For the rest of this paper, we assume the mobile internetworking environment proposed i
[KVP96], which contains a statidixed network of hosts and data servers. Each MH retains its
network connection while moving by remaining in contact with spesiationaryhosts equipped
with wireless interfaces, called timeobility support station@SS). Each MSS is responsible for an
area called &ell. A MH can only communicate with one MSS at any given time, and therefore, be
in only one cell. A view holder can reside anywhere in the fixed network, for exgrapla MSS
or within a location management server. The view holder could then migrate tasf @ahand-off
procedure based on the MH’s movement within the system. However, this is b#y®sdope of
this paper.

Data Data Data
Server Server Server

Maintenance
Transaction

Data Data
Warehouse Warehouse Fixed

Network

Figure 1: Overview of Architecture

3 View Holders

A view holder can potentially support many mobile clients. However, fortyidet us assume one
view holder per MH in order to understand the interaction between the systgmais ld&ssentially,
under this scenario, the view holder behaves gsoxy for the MH since the fixed network has
greater storage capabilities and does not incur expensive communication costs.

The data structure used by the view holder is calledlinge Version Lis{TVL) (see Figure 2).
Each TVL maintains all the data necessary to keep available seegsabns of a tuple from the data
warehouse. A TVL contains the key attributes and other non-updatable attribiesmé. It also
has a linked list of versions for the updatable attributes used by the MH (i.distthlsed) as well as
the most current version of the tuple (Latest). The most current version numbkept in the view
holder’s local integer variable, LateSersion, while an ordered list of available version numbers is
also maintained by the view holder. The latest version can be prefetchedéiere it is needed)
or materialized on demand. If it is prefetched then the MH does not have tdowétie TVLs to be
updated before receiving the latest version. Any additional indices cabestililt for the TVLs if
desired to facilitate faster access during repetitive updates ancegueri

The main purpose of the view holder is to always maintain any version being usediby a
application as well as the latest version. Every time there is a nesiovecommitted by the data

TVL

L _ T~ KeyAttributes (Group By Attributes)

. _ o~ other non-updatable attributes
- = .= Used: linked list of (version number | value) used by MH

u - — I Latest version
/

I
flag LatestinUse to determine if Latest is part of Used

Figure 2: One Tuple Version List

tupleVN | operation city product| date | totalsales| pre.totalsales
2 update | Pittsburgh| golf | 2-3-97| 10,000 1,000
1 insert Erie golf | 2-4-97| 2,000 null
1 insert | Pittsburgh| rgball | 2-5-97| 3,000 null
2 update | Pittsburgh| rgball | 2-6-97| 40,000 4,000
1 insert Erie rgball | 2-5-97| 5,000 null
2 update | Lancaster| rgball | 2-6-97| 60,000 6,000

Table 1: Warehouse Materialized View DailySales

warehouse, the space allocated to the latest version is overwfittes MH is not using it. Thus,
anytime the MH starts a new application and requests the latest vers®is #uded to the linked
list of versions currently being used preventing it from being overwritten.

Suppose that versioh of the data warehouseBailySales has been created and that our MH
was interested in the smaller view regarding only racquetball equipmenéasrs8ection 2. After
the MH contacted its view holder with its query, the view holder supplied versimom the data
warehouse. If a maintenance transaction decides to update th®waiéy$ales, then two versions
of the view become available. Table 1 shows our materialized view withiddtewarehouse where
both versions are committed and no new maintenance transaction is cursetiyiag.

Theoper at i on attribute of a tuple stored in the data warehouse reflectai¢heffectof all
operations performed on this particular tuple during the execution of a maintemansadtion. In
a similar manner, the newest version of an attribute held by the latesepointhe TVL shows the
net effect of all the versions that took place between MH requests.

The view holder can access either versibror 2 from the data warehouse by looking at
the t upl eVN andoper at i on attributes of each tuple. These attributes will determine if the
t ot al _sal es or thepr e_t ot al sal es attribute should be read for each tuple. Since the view
holder must maintain the version needed by the MH and the latest version, our visv bofrently
looks like the left-hand side of Figure 3. Recall that the flag LatestinUsekgdd)) indicates that
the latest version of this tuple is currently being used by the MH. We camdée ifirst and third
TVLs that there has been no changes in these tuples between veesidnversior.

— - Pittsburgh 2/5/97 — - Pittsburgh 2/5/97

- - rqball - -> rqball

--> 1| 3,000 - -> 1| 3,000
Ut 4 I N
[| - Pittsburgh 2/6/97 [| - Pittsburgh 2/6/97

- - rqgball - -> rqgball

--> 1| 4,000 --> 1| 4,000- -=> 240,000
| [-t 240,000 (U F-o P
— -~ Erie 2/5/97 — -~ Erie 2/5/97

- - > rqpball - - > rqball

--> 1] 5000 --> 1| 5000--> 3| null
Ul ¢ [U =~ -
[~ |- Lancaster 2/6/97 [|- Lancaster 2/6/97

- - rqgball - -> rqpall

--> 1] 6,000 - -> 1| 6,000- -> 36,000,000
=™ 260000 U b~ o
Latest Version number =2 Latest Version number =3
Version 1isused by MH Versions 1 and 3 are used by MH

Version 2 isno longer needed or supported

Figure 3: TVL before and after version 3 is stored

3.1 Updatingthe View Holder

So far, two maintenance transactions originating from a data server hacetes within a data
warehouse creating the two versions of tuples we see in our TVL structures sijagpose a third
maintenance transaction goes into effect at the data warehouse. Once thmedinitehance trans-
action commits there are only two versions available within the datahease, versiong and3.

Any tuple labeled versiom which has not been touched since its creation, still belongs to the other
versions, although, versianis now considereéxpired

10

tupleVN | operation city product| date | total sales| pre totalsales
2 update | Pittsburgh| golf | 2-3-97| 10,000 1,000
1 insert Erie golf | 2-4-97| 2,000 null
1 insert | Pittsburgh| rgball | 2-5-97| 3,000 null
2 update | Pittsburgh| rgball | 2-6-97| 40,000 4,000
3 delete Erie rgball | 2-5-97| 5,000 5,000
3 update | Lancaster| rgball | 2-6-97| 6,000,000 60,000

Table 2: Updated Materialized View DailySales

Once the maintenance transaction releases vessairthe view, the view holder is allowed to
read this version and store it as the latest version available. heigab of the view holder to
periodically monitor the data servers and/or data warehouses to know when updates/ersiens
have been created. Recall that the data warehouse and data serverselrssséad do not keep
track of who is interested in their ongoing changes. The view holder can requesi@awef a view
from the data warehouse by supplying a version number. The algotbdateVVHshown below
describes how the TVLs are updated when a new version is released.

Algorithm UpdateVH)

Let VN = LatestVersion+1

SELECT operation, city, date, product, tatales
FROM DailySales version VN

WHERE product = “rgball”

GROUP BY city, date

For each tuple T
Find the TVL that matches the Group By
attributes of T
If found
If TVL.LatestinUse = TRUE
append TVL.Latest to Used
set TVL.LatestinUse = FALSE
End If

11

If operation = “update”
let Latest = (VN]| total sales)
Else operation = “delete”
let Latest = (VN| null)
End if
Else
create new TVL
insert key and non-updatable attributes
let Latest = (VN| totalsales)
End If
End for
Update the Latestersion number to VN

When a MH starts amapplication sessiofit must keep track of which version it is using for that
particular session. If our MH now starts a new application such as the spreadsitegraphing
tool discussed, then it may want thatestversion (i.e., version numb@) maintained by its view
holder. When this happens the latest version of each tuple becomes partusfatienked list so

that they are saved for future use and not overwritten. ThelfidgstinUseassociated with each
Latestfield in the TVL can be marked used) as each tuple is given to the MH if it is not already
set. Therefore, the next time an update happens, new space must be allocated aiyntonitie

new Latestversion of a tuple. Our TVLs now look like the right-hand side of Figure 3. We can see
that the first TVL was not changed and, therefore, both versiand versior8 will see the same
value for this tuple.

Notice that only version$ and3 are maintained by the view holder, and vershois the latest.
Version2 cannot be constructed using this view holder even though stils availablethrough the
data warehouse. Versi@nwas not needed by the MH and, therefore, its space was reclaimed within
the view holder to hold and save versidnTherefore, the view holder is a buffer for the MH and
doesnotalways store the versions found in the data warehouse. The last TVL of the righsidand
of Figure 3 demonstrates this since versisdata, (2| 60,000), is now no longer available to the
MH.

Whenever the MH wants the tuples for a particular application it must supply trstone
number (VN) it is interested. Then the linked list Okedis followed for each tuple until the
MaximumV ersionNumber < VN is found. As a result, theull values obtained when a tuple is

12

deleted must be explicitly placed within the TVL, otherwise, a previousmessill be mistaken for
the deleted tuple.

3.2 Communicating Changesin Versions

A MH can describe the view it is interested in by sending a select statesweh as the one used in
the example, within amitiation messagéo its MSS. The fixed network will then assign this request
to a view holder where the current version of this view will be gathered from thee Watehouse
and/or data servers. After the initiation, the MH can then perform queriestmyranicating with
the view holder which will now buffer any versions necessary for as long as thelsly need them.
The result of these queries cache messagesll be stored on the MH.

The view holder can build an indices tree structure for the TVLs attribotpeavide faster access
during repetitive updates and queries. If the MH also uses TVL structurésreocache messages it
is possible to transfer any indices built in a view holder along with the cadesage. This allows
the MH to reconstruct the indices tree within its own memory.

Whenever the MH asks for the storage of a new version, the view holder can then askuttme
data warehouse for its latest version if it has not already prefetchediingthe process of updating
the view holder’'s TVLs, the exact differences between versions will be aitlylicalculated since
the TVL will contain a new tuple entry if there has been an update, and a null aloe tuple
has been deleted. Therefore, at any time, the differencéslmtween any two versions contained
within a view holder can be computed easily.

---> Erie 2/4/97

--- = golf

---+o1] 2,000--=5]10,000--=8]| 14,000 - -+ 9| null
U IR ”_____,_—7

Latest Version number =9
Versions 2, 4,5, 6, 8, 9 are used by MH and kept by the view holder
Oldest available version is 2

Figure 4: One TVL storing Multiple Versions

For example, take the TVL shown in Figure 4. From the example we see that teeeddé
between versioR and versiors is an update from the valug 000 to the valuel4, 000. However,
there is no difference in values between versi@and versiont since both of them use the tuple|(1

13

2,000). The difference between versivand versiord would be to completely delete the tuple and
its contents from the view. Whenever the view holder needs to send a version or aasrsion to

the MH, it will use the algorithnsendLatestlescribed below. When there is no change between the
latest version of a tuple and the version already stored within the MH,def@eminedho-change
token is sent.

Algorithm SendLategtLatestVersion)

For each TVL
If Latest.value# the last element of Used.value
let TVL.LatestinUse = TRUE
send latest.value to MH
Else
send the no-change token
End If
End for
append LatesYersion number to the
list of available versions
send LatesWersion number to the MH

In the mobile environment, communicating only the changes between versions sawasces,
especially when changes can be computed and incorporated easily, as in owheasave com-
municate tuples. If few changes have happened between versions, only the vatbegddpies that
have experienced change will be communicated to the MH. This is also useful uymmeetion
when a MH may want to know the difference between the currently latesowen$ the view and
the data it was able to work with while being disconnected, for example, as padaif validation
procedure.

Although we have concentrated on the view holder prefetching and maintaining datéysed
the MH, there are other possibilities to consider when deciding the exact rokeetlidnolder plays
within the fixed network. These possibilities, which we alluded to in theothiction, arise from
matching the placement and functionalities provided by the view holder with théitiipa of both
the MH and the static hosts within the fixed netwoBssentially, the view holder can support any
of these possible roles:

e Holder-as-Proxy: The view holder only stores the latest version found in both the fixed

14

network and MH in order to compute tleand build any required indices. All other versions
are on the MH who has the adequate storage capabilities. In this case, the dewssihte
can be made small within a MSS and possibly migrated as part of the hand-ofEnet&Ss.

e Holder-as-Buffer: The view holder provides the same features as above. In addition, there
is a full replication of the views currently in use (except the latest) on betiMH and view
holder. Whenever a MH exhausts its resources while disconnected, it can suspend one or
more of its active applications and reclaim the space of the respectis®nsr Later, when
reconnected, these processes can finish with the view holder’s copy of the dedgliae

e Holder-as-Cache: The view holder maintains a supervi&¥ of the information required by
the MH’s application sessions. The MH can then hoard a subset of this data fohaselis-
connected. The MH has limited storage capabilities. Here the view holder nowvsi@more
functionality including some query processing and will most likely exist as aihtexjrated
within the fixed network.

Which role the view holder assumes is decided by the preferences and capabilitee MH.
Thus, the view holder becomes a customizable client-oriented view maintenanbhamsn. The
MH specifies these customizations by using an extension to SQL that we prop¢¥ddiag.

3.3 Deleting a Version from a View Holder

Once a MH completes the application sessions utilizing a particular veveriew, that view can
be removed from the view holder. However, as we have seen, tuples from otdiemgethat are not
touched are used by the newer versions (see Section 3.2). Using the following porpoese can

develop agarbage collectioprocedure for deleting tuples from a TVL that are no longer useful.

Proposition 1 If a tuple doesot belong to a version then it will not belong to any versior for
all j > 1.

This proposition is useful when implementing the garbage collection routine sineeitsiens
of a view holder are placed in the linked ligsedin order of their creation. Once we find a version
number that doesot use the tuple we want to delete, then we know it can be deleted safely since it
will not exist in any other later versions.

As an example, consider the TVL of Figure 4. Notice that versions 2,4,5,6,8, and 9 amtlgurre
being used by the MH making version number 2 the oldest available version. Neauppose that

15

the MH no longer requires version number 2. As a result, we see that versiohnnbwibecome the
oldest available version. The question for the garbage collection routine is wbetli it is safe to
delete tuple (1 2,000). Recall that whenever we want to access a particular version of ahple (
we have to make sure that the tuple witMaizimumV ersionNumber < V N is found. In order
to find out if the tuple in question can now be deleted from the Used list, wehfsst to find the
MazimumVersionNumber < 4. The result in this case is & azimumV ersionNumber = 1.
Therefore, we camot delete the tuple (12,000) since the information it contains is still required
by version 4 and possibly other versions. However, if the tuplerftatieen a part of version 4, the
tuple could have been safely deleted since, by the proposition, we would be ¢bdaimo other
later versions of this view would ever require this tuple.

4 An Implementation

Our prototype, currently developed in collaboration with the University of Cypmplements the
concepts of view holders. This prototype supports database applications within a mebibe-en
ment by utilizing mobile Java agents, callBdBMS-agletsdeveloped at the University of Cyprus
[PPS99].

4.1 Aglet Technology

An Aglet(agile applet) is a lightweight mobile Java object (approximately 2 kilobyte®ldped at
IBM Japan [AGLET98]. An aglet carries along its program code, state, uniquéifidation, and
guery trip plan as it moves from host to host. If there are any communicatabigms, such as a
host failure, the trip plan allows the aglet to try alternate hosts andisonfutA host interacts with
an aglet by utilizing an aglet server program. This Java program listensdoming aglets and
provides a context in which they can resume their suspended execution. Figure S,ssvanal
aglets operating between two hosts A and B. Aglets can be created, talk &motieer, move from
host to host, and be disposed of at any time.

4.2 DBMS-Aglets: Mobile Java Agentsfor Database Access

If the aglets are equipped with database capabilities they beBBMS-aglet{PPS99], that can
connect to a remote data server and collect data updates. Our DBMS-agldispatched from the
view holder in order to obtain new versions from the data sources. Once the DBMSaagles at

16

Aglet Context A Aglet Context B

- o
Dispatch / Retrack —> AgletX . Dispose

>
k
CIonei \ka/

Talk

Create

TCP/IP

Host A Host B

Figure 5: Aglet Life Cycle

the data server and passes any security checks, it then attempts to dorthectiatabase. To do
this it must load the correct Java Database Connectivity (JDBC) Di@amently, there are JDBC
drivers for most desktop and distributed systems including drivers crepésdfisally for Microsoft
and Sun systems [H97]. With the correct driver the DBMS-aglet can then cbtmthe database
and obtain the version requested by the view holder. The results can be dispatckéal tha view
holder while the DBMS-aglet continues its trip to the next host until releasetidoyiew holder
(see Figure 6). At any time the view holder can dynamically adjust the DBM&=sdtip plan.
After receiving updates from an issued DBMS-aglet, it is the view holdespansibility to process
the updates and present the MH with specific view data changes (i.e) t#ew). By utilizing
DBMS-aglets, a view holder can either move with the MH or remain statyowdéthin the fixed
network.

In a distributed database environment, processing queries reliably amoogs/aeterogeneous
databases becomes a problem. To alleviate this problem, a CORBA systemllis insaked. Our
prototype uses a CORBA system enhanced for mobile clients, dddgaber developed in Java by

17

= [1] Create Materialized
View Request

[e]

—

Laptop computer Cached Data

[2] Coordinator DBMS-aglet
creates as many DBMS-aglets
as the number of the remote accesses

and fires them to their destination

HDHHDDD;
Database Server Data Warehouse Replicated Data Server
+ Aglet Server + Aglet Server + Aglet Server

Figure 6: Aglets for View Holders

ObjectSpace [0S98]. In addition, we are working on implementing view holders inmcipn with
PRO-MOTION, our mobile transaction infrastructure, also under developmig dava [WC97].

5 Conclusonsand Future Wor k

This paper addresses the problem of caching/hoarding and maintaining data within@enelvdn-
ment in the form of a materialized view. Our main contribution is the devetoypraf a mechanism
or view holderthat maintains customizable versions of cached views. The view holder reduces the
communication between the fixed network and the MH. This happens while incréasifupnction-
ality of view maintenance, for example, a MH now has the option to reclaim menemded while
disconnected, and when reconnected, allow processes to finish with the viewshotgsr of the
required data. Finally, an implementation using Java based mobile DBMSavas described.

An extension of this work was the introduction of an extended form of SQL that atlmevsIH to
specify (1) whatole the view holder will play in its interaction with the MH, (2) which constraint

18

determine how often view maintenance occurs or is communicated, and (3) whidhcsgata

changes are most important to the MH [WLC98]. Our future work involves allowingg transac-
tions through the MH’s materialized views. This must be done while maintainingstensy across
multiple versions among many mobile clients.

Acknowledgments

We would like to thank Stavros K. Papastavrou and George K. Kyrou for their helithrgtimple-
mentation of this project.

References

[AAFZ95] S. Acharya, R. Alonso, M. Franklin and S. Zdonik. Broadcast Disks: M-
agement for Asymmetric Communication EnvironmentsPoc. of the 1995 ACM
SIGMOD Int’l Conf. on Management of Datpp. 199-210, 1995.

[IVB9I7] T. Imielinski, S. Viswanathan, and B. R. Badrinath. Data on Airg@nization and
access. IMEEE Transactions on Knowledge and Data Engineerivigl. 9, No. 3,
pp. 353-372, May/June 1997.

[AGLET98] Aglets Workbench. by IBM Japan Research Group.
Web site: http://aglets.trl.ibm.co.jp

[BDMW95] J. Bailey, G. Dong, M. Mohania, and X. Wang. Efficient IncrementawiMain-
tenance Using Tagging in Distributed Databases. Technical Report 95-37,00niv.
Melbourne, 1995.

[CKLM97] L. S. Colby, A. Kawaguchi, D. F. Lieuwen, and I. Mumick. Supporting Mok
View Maintenance Polices. line ACM SIGMOD Conf1997.

[DCVKK97] A. Datta, A. Celik, D. VanderMeer, J. Kim and V. Kumar. Ada@iBroadcast Pro-
tocols to Support Power Conservant Retrieval by Mobile UsePRrbt. of the 13th
IEEE International Conference on Data Engineeripg. 124-133, 1997.

[HO7] B. V. Haecke JDBC: Java Database Connectivity. chapters 1,2,3, pages3=33. |
Books Worldwide, 1997.

19

[IVB92]

[KLM +97]

[KS92]

[KVP6]

[MWC96]

[0S98]

[PPS99]

[PSWCD97]

[QW97]

[WAQ7]

[WA98]

[WCO7]

[Wid95]

T . Imielinski, S. Viswanathan, and B. R. Badrinath. Querying in HigNMgbile
Environments. Irthe 18th VLDB Confpages 41-52, Aug. 1992.

A. Kawaguchi, D. Lieuwen, D. Mumick, D. Quass, and K. A. Ross. Concurrency
Control Theory for Deferred Materialized Views. time 1997 ICDT ConfJan. 1997.

J. J. Kistler and M. Satyanarayanan. Disconnected Operation in theFedays-
tem. ACM Trans. on Computer Sy40(1):3-25, Feb. 1992.

P. Krishna, N. H. Vaidya, and D. K. Prodhan. Static and Adaptive Locadflanage-
ment in Mobile Wireless Networkslour. of Computer Comml19(4), Mar. 1996.

A. Massari, P. K. Chrysanthis, and S. Weissman. Supporting Mobil@iaat Access
through Query by IconsDistributed and Parallel Databases Jou(3), Jul. 1996.

Voyager(tm) Technical Overview. by ObjectSpace.
Web site: http://www.objectspace.com/voyager

S. Papastavrou, E. Pitoura, and G. Samaras. Mobile Agents for Wi zad
Database Access. the 15th Int'l Conf. on Data EnginMar. 1999.

A. Prasad Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Nigdatid Querying
Mobile Objects. Irthe 13th Int'l Conf. on Data EnginApr. 1997.

D. Quass and J. Widom. On-Line Warehouse View Maintenance for Batch é#pdat
In the ACM SIGMOD Confpages 147-158, May 1997.

R. Winter and K. Auerbach. Giants walk the Earth: the 1997 VLDB Survey.
Database Programming and Desigt0(9):S2-S9+, Sept. 1997.

R. Winter and K. Auerbach. The Big Time: the 1998 VLDB Surveyatabase
Programming and Desigri1(8), Aug. 1998.

G. Walborn and P.K. Chrysanthis. Pro-motion: Management of Mobile Traosacti
In the 11th ACM Annual Symp. on Applied Computivgr. 1997.

J. Ed. Widom. Special Issue on Materialized Views and Data Warahpud=EEE
Data Engin. Bulletin18(2), Jun. 1995.

20

[WLC98] S. Weissman Lauzac and P. K. Chrysanthis. Programming Views for |&lobi
Database ClientsProceedings of the Nineth International Workshop on Database

and Expert Systems and Applicatippages 408413, Aug. 1998.

[ZGMHW095] Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom. View Manance in a
Warehousing Environment. the ACM SIGMOD Conf1995.

21

