
Utilizing Versions of Views within a Mobile Environment

Susan Weissman Lauzac, Panos K. Chrysanthis

Department of Computer Science

University of Pittsburgh

Pittsburgh, PA 15260, U.S.A.fsuew,panosg@cs.pitt.edu

Utilizing Versions of Views within a Mobile Environment

Abstract

Data caching and hoarding provide the only means to support disconnected mobile opera-

tions. In the context of mobile database applications, datacached can take the form of a material-

ized view. In this paper, we present a mechanism orview holderwithin the fixed network, whose

job is to maintain versions of the views that are required by aparticular mobile host. These views

are very likely to be a small and specialized portion of the information found within the various

data sources and, therefore, versions can be dynamically maintained by the view holder without

incurring huge storage requirements. In addition, the viewholder will respond to mobile host’s

queries by communicating only the differences between versions. Thus, a view holder mediates

and exports the views needed by a mobile host, and updates arecomputed and delivered in a

flexible and batch manner.� Keywords: Mobile Computing, View Maintenance, Mobile Query Processing, Data Ware-

housing

1 Introduction

Currently, relational database management systems are the most widely useddatabase management

systems in supporting database applications. Within a relational database system, data are structured

as a set of (base) tables whereas aviewdefines a function from a subset of base tables to a derived ta-

ble. A view ismaterializedby physically storing the tuples of the view derived from the base tables.

Thesematerialized viewssave the tuples of important or frequent queries. In distributed environ-

ments with client-server configurations, materialized views can be stored at the clients to support

local query processing. Materialized views operate in a fashion similar to data caches. Available

data is accessed quickly through the materialized views without having to query aremote database

server. The retrieval of data from materialized views, as in the case of tables at the server, can be

made even faster through indices associated with the appropriate materialized views [ZGMHW95].

Research in mobile computers and wireless networks is allowing mobile clients to become an

integrated part of distributed computing environments along with their stationary counterparts. Due

to the communication costs and frequent disconnections of wireless networks, information stored

1

within the mobile computer becomes crucial to maintaining productivity. If the data needed to

complete a task are present on the mobile computer, remote access may be eliminated and processing

may continue even though disconnection has occurred. Thus, the role of materialized views and

view maintenance is becoming increasingly important in the context of mobile database applications

because of their ability to support local data processing. Given that most of the transactions in a

database environment are read-only transactions, in this paper, we focus on optimizing these read-

only transaction on mobile computers by utilizing versions of materialized views. However, write

transactions can still occur, but are only performed directly with the datasources and not through

the materialized views stored on the mobile client. This work complements the existing research on

mobile read-only transaction that has focused on the efficient dissemination of data to large number

of mobile computers by exploring the broadcaset characteristics of the wirelesscommunication

[IVB97, AAFZ95, DCVKK97].

Within the context of a known group of application processes, a mobile computer will need a

specific subset of the data available to be organized, summarized and gathered in a efficient manner

from very different information systems. Therefore, there is a need for a mechanism within the

fixed network that can reduce computation and communication costs by being able to: (1) buffer the

data that cannot fit on the mobile host due to inadequate storage capabilities, (2) be a proxyfor the

mobile host in order to receive updates from the sources during periods of inadequate networking

conditions, and (3) become a cache within the fixed network that represents the needsof a mobile

host. In other words, we need to provide adynamic and customizable view maintenance mechanism

so that thecache or view consistencyachieved between the data stored on the mobile host and the

data sources match the availability or cost of the network and the capabilities of the mobile host.

This mechanism is what we will call theview holder.

A view holder is similar to adata warehousethat stores materialized views from multiple base

table sources found in various information systems. In contrast to view holders,the views in a data

warehouse are oftenlarge, staticand consideredgenericandstatelesswith respect to the individual

clients. Hence, while data warehouses reduce the cost for answering repetitive queries, they donot

reduce the cost for communicating these answers in the case that they are the same or have small

differences. View holders, on the other hand, respond to a mobile host’s queries by communicating

only the differences between answers. A view holder is programmed to maintainmultiple versions

of a view in order to compensate for the data changes that occurred to the materialized views that

were used during disconnection. In short, a view holder mediates and exports the views needed by

a mobile host, and updates are computed and delivered in a flexible and batch manner.Thus, a view

2

holder can be thought of as a customizable client-oriented data warehouse.

Within our example application environment there exists a data warehouse within afixed network

utilizing a versioning maintenance algorithm and multiple mobile hosts. The restof this paper

continues as follows: Section 2 presents a scenario for our example applicationand then describes

its limitations within a mobile environment and explains the need for a view holder mechanism.

Section 3 describes the view holder within the context of the example, and then presents algorithms

for the view holder which allow for interactions with the data warehouse as wellas the mobile hosts.

Section 4 describes our prototype currently being developed that incorporates the concepts discussed

in this paper. Finally, the conclusions and future work are presented in Section5.

2 Motivating Example

In this section, we motivate further the need for a view holder by means of an example. Suppose

that the database structure of our fixed network environment includes not only the database servers

responsible for storing base relations, but also adata warehousewhich stores materialized views de-

rived from these base tables sources. It is very important to understand thatthis data warehouse holds

thestaticviews that contain useful summary information which must be maintained periodically by

the execution of amaintenance transactionwhich is initiated by the data servers. Queries from a

client or mobile host (MH) can be answered in the form of amaterialized view, and throughout this

paper a view will be considered materialized once it is defined within thefixed network.

Let us assume that the data warehouse is maintained with a versioning algorithm, such as the“two

version no locking” (i.e., 2VNL)algorithm [QW97], where one or two versions may be available for

the readers at any time without having them wait on any locks.

2.1 The data warehouse’s view: DailySales

Our data warehouse in this example supplies summary information from base tablesfor a chain of

sporting goods stores and will contain two separate versions of the data. The data warehouse has the

following materialized view which totals daily sales by city and date:

DailySales(tupleVN, operation, city, product, date, total sales,

pre totalsales)

tupleVN keeps the version number of the maintenance transaction that last updated this tuple,

while operation keeps the lastlogical operation performed. The attributescity, product,

3

anddate are non-updatable attributes that do not change, whereastotal sales must be period-

ically updated by a maintenance transaction. Since two copies or versions of thisupdatable attribute

will be made available, the most current version is held intotal sales while the previous ver-

sion is withinpre totalsales. When a maintenance transaction is currently updating the tuples,

only thecurrentversion is available to readers while the new version is being created. When there

is no maintenance transaction executing, both the previous and current versions of theattribute can

be read [QW97].

Now suppose that a MH starts an application which will allow the user to seeand perform some

rough calculations regarding the sales of racquetball equipment. This MH will request a view from

the data warehouse’sDailySales inquiring about the day to day sales of racquetball equipment by

stores in each city.

Query: RqballSales

SELECT city, date, product, totalsales

FROM DailySales

WHERE product = “rqball”

GROUP BY city, date

We want this query to be processed within the fixed network to save both the energyand resources

of the MH. The results are then communicated to the MH’s as a materialized view. The MH may

keep this view for some time and maynot receive the current day’s sales figures due to traveling

or communication delays. Eventually, another application such as a spreadsheet and graphing tool

could be started that would allow the user to create slides for an upcoming presentation. At this

point, the most recent results may be available, or communication conditions may have improved

(e.g., the user is dialing up from a hotel room after work). Within the new application,the most

recent sales figures can be incorporated into the spreadsheet.

Typically, once the MH receives the most recent version of the data, the user will be running two

applications and accessing two separate versions of the viewat the same time. This is in contrast to

a singlereader session, in a data warehousing environment, where each consecutive query comes

from the same version. Once many maintenance transactions occur and the data isconsidered too

old, the user must end its current work and gather a new version because the older one hasexpired.

Therefore, view maintenance is achieved by forcing the client or MH to receive a new version of the

materialized view. However, such a view maintenance strategy is not suitable and potentially very

expensive for a MH. We elaborate on this next.

4

2.2 Problems

Although it may appear that directly accessing the data warehouse for data is acceptable, there are

actually a wide range of difficulties. Some of these problems stem from the limited resources of

the MH and wireless networking conditions, while others come from the static nature of the data

warehouse.

From the viewpoint of a mobile host these problems include:� It is not always convenient or even possible for a MH to receive a new version of the viewat

the time of expiration, especially during a period of disconnection or under poor networking

conditions.� If the MH can not receive a new version then the work done during a period of disconnection

with an expired version may have to be discarded upon reconnection.� The MH may not have enoughadequate storageto hold several versions of a materialized

view or even one entire version.

The data warehouse and data servers are stateless and do not keep track of whois interested in

their ongoing changes. They willnot contact a mobile hostand inform them when updates are to be

performed. From this we can see the following difficulties:� To update the MH, the data warehouse will have to send the entire new version of theview

each time since it can not compute the difference between versions. Communicating this entire

recomputed version iscostly, especially if there are very few differences between versions.� Since data warehouse’s views arestatic, the queryRqballSales will notbe maintained by the

data warehouse. It would be a waste of space for the data warehouse to build separate views

for only a couple of users.� Each time a MH’s materialized view is to be updated the data warehouse will have to recon-

struct the materialized view from scratch.� The data warehouse willnotcreate or maintain anindexingstructure for the queryRqballSales

that can be communicated to the MH.

5

� It would be difficult for the data warehouse to combine data from several heterogeneous

sources if it did not have all the data being requested by the MH.� The data warehouse becomes a centralized source, and therefore, a bottleneck ofthe system.

2.3 Our Solution

The above discussion clearly pointed out that direct interaction between the MH and the data sources

cannot be supported in a flexible manner. To alleviate the problems discussed,without requir-

ing modifications to the existing databases and data warehouses (i.e., unlike solutions presented

in [BDMW95]), the mechanism we created for maintaining the materialized views requested by a

mobile host is called theview holder. The goal of the view holder is to bring the data closer to the

mobile hosts and control the interactions between the mobile hosts and the data sources.

Every application of a mobile host can only use a subset of the data that exists in thesources or,

in our example, the data warehouse DW. We say the applicationsuperset or superview SVcontains

all the information that will be used by an application. The superview is reallyjust a materialized

view defined as a queryQ applied to the data warehouse (SV = Q(DW)).

For a specific application environment, MH can request that a view holder maintains this super-

view SVof the data that it could possibly need. Then the MH can cache or hoard1 a subset of this

superviewSVbefore a period of disconnection or a weak connection. In the example given, the mo-

bile machine may not have the ability to store all the data regarding every store that sells racquetball

equipment in every city from the queryRqballSales. However, if the user is traveling to Pittsburgh,

only the data concerning stores in this city will be downloaded to the mobile machine. The request

for the queryRqballSales is what we call theinitiation messageand forms the superview, while,

the request for all information concerning Pittsburgh from the view holder is called the MH’scache

message.

The view holder can keep track of the updates performed to the queryRqballSales, as well as,

the specific changes to the data from Pittsburgh. In other words, the superview willbe incrementally

maintained (SV 0 = SV +�), and only data from the� will need to be communicated to the mobile

host. In this way, the view holder will be able to reduce the amount of wireless communication

required to update a MH when it is possible. Other structures, such as indices,can be built and

maintained by the view holder and later communicated to the MH.1 The termhoardingwas introduced in [KS92] to identify the state a MH is in when it is collecting useful data in
anticipation of disconnection.

6

As shown in Figure 1, we propose a layered system architecture where the data servers and data

warehouse are more closely coupled within the fixed network than the materialized views maintained

by the view holders. The data server layer is responsible for periodically constructing a maintenance

transaction in order to update the data warehouse. A data warehouse, using a versioning maintenance

algorithm, is created where the views are static and the number of consecutiveversions of each view

also remains static. Hence, the amount of space made available for versionsof a particular attribute

is known and fixed.

In contrast, a view holder will maintain a version of a view requested by a MH for as long as the

host needs it. So, the view holder can be seen as abuffer, holding versions of a specialized view

for a particular MH. Space allocated for the updated attributes of a view mustbe done dynamically

since it is not known beforehand how many versions will be maintained. The idea hereis that the

views requested by an MH are very likely to be a small and specialized amount of the information

from within the data servers and/or data warehouses. The current size of many data warehouses

and other decision support databases (up to 4.6 TB [WA97, WA98]) precludes the simple solution

of duplicating the available data on the mobile machine. To avoid these huge storage requirements,

versions of the requested data are dynamically maintained by the view holder.

It is possible some of the data sources including data warehouses maynot support explicit ver-

sions of data. In such a case, the view holder will query the source in order to extract the data at a

given moment. A timestamp for this implicit “version” could be the last time the tuple, attribute, or

table was modified and found by querying the catalog of the data source.

For the rest of this paper, we assume the mobile internetworking environment proposed in

[KVP96], which contains a static,fixed network of hosts and data servers. Each MH retains its

network connection while moving by remaining in contact with specialstationaryhosts equipped

with wireless interfaces, called themobility support stations(MSS). Each MSS is responsible for an

area called acell. A MH can only communicate with one MSS at any given time, and therefore, be

in only one cell. A view holder can reside anywhere in the fixed network, for example, on a MSS

or within a location management server. The view holder could then migrate as part of a hand-off

procedure based on the MH’s movement within the system. However, this is beyondthe scope of

this paper.

7

MH

MH Query

MH

MH Query

Server
Data

Server
Data Data

Server

Data
Warehouse

MH

MH Query

View Holders

Data
Warehouse

Maintenance
Transaction

Network
Fixed

Figure 1: Overview of Architecture

3 View Holders

A view holder can potentially support many mobile clients. However, for clarity let us assume one

view holder per MH in order to understand the interaction between the system’s layers. Essentially,

under this scenario, the view holder behaves as aproxy for the MH since the fixed network has

greater storage capabilities and does not incur expensive communication costs.

The data structure used by the view holder is called theTuple Version List(TVL) (see Figure 2).

Each TVL maintains all the data necessary to keep available severalversions of a tuple from the data

warehouse. A TVL contains the key attributes and other non-updatable attributes ofa tuple. It also

has a linked list of versions for the updatable attributes used by the MH (i.e., thelist Used) as well as

the most current version of the tuple (Latest). The most current version number is kept in the view

holder’s local integer variable, LatestVersion, while an ordered list of available version numbers is

also maintained by the view holder. The latest version can be prefetched (i.e., before it is needed)

or materialized on demand. If it is prefetched then the MH does not have to waitfor the TVLs to be

updated before receiving the latest version. Any additional indices can stillbe built for the TVLs if

desired to facilitate faster access during repetitive updates and queries.

The main purpose of the view holder is to always maintain any version being used by aMH

application as well as the latest version. Every time there is a new version committed by the data

8

Key Attributes (Group By Attributes)

other non-updatable attributes

TVL

Latest version

flag LatestInUse to determine if Latest is part of Used

Used: linked list of (version number | value) used by MH

Figure 2: One Tuple Version List

tupleVN operation city product date total sales pre totalsales

2 update Pittsburgh golf 2-3-97 10,000 1,000

1 insert Erie golf 2-4-97 2,000 null

1 insert Pittsburgh rqball 2-5-97 3,000 null

2 update Pittsburgh rqball 2-6-97 40,000 4,000

1 insert Erie rqball 2-5-97 5,000 null

2 update Lancaster rqball 2-6-97 60,000 6,000

Table 1: Warehouse Materialized View DailySales

warehouse, the space allocated to the latest version is overwritten if the MH is not using it. Thus,

anytime the MH starts a new application and requests the latest version, this is added to the linked

list of versions currently being used preventing it from being overwritten.

Suppose that version1 of the data warehouse’sDailySales has been created and that our MH

was interested in the smaller view regarding only racquetball equipment as seen in Section 2. After

the MH contacted its view holder with its query, the view holder supplied version1 from the data

warehouse. If a maintenance transaction decides to update the viewDailySales, then two versions

of the view become available. Table 1 shows our materialized view within thedata warehouse where

both versions are committed and no new maintenance transaction is currently executing.

Theoperation attribute of a tuple stored in the data warehouse reflects thenet effectof all

operations performed on this particular tuple during the execution of a maintenance transaction. In

a similar manner, the newest version of an attribute held by the latest pointer of the TVL shows the

net effect of all the versions that took place between MH requests.

9

The view holder can access either version1 or 2 from the data warehouse by looking at

the tupleVN andoperation attributes of each tuple. These attributes will determine if the

total sales or thepre totalsales attribute should be read for each tuple. Since the view

holder must maintain the version needed by the MH and the latest version, our view holder currently

looks like the left-hand side of Figure 3. Recall that the flag LatestInUse (marked U) indicates that

the latest version of this tuple is currently being used by the MH. We can see in the first and third

TVLs that there has been no changes in these tuples between version1 and version2.

Version 1 is used by MH

 U

1 | 4,000
2 | 40,000

1 | 6,000

1 | 5,000

1 | 3,000
 U

2 | 60,000

Latest Version number = 2

rqball

rqball

rqball

rqball

Pittsburgh 2/5/97

Pittsburgh 2/6/97

Erie 2/5/97

Lancaster 2/6/97

U

1 | 4,000

1 | 5,000

1 | 3,000
 U

Latest Version number = 3

2 | 40,000

3 | null

U

U

rqball

rqball

rqball

rqball

1 | 6,000

Lancaster 2/6/97

Erie 2/5/97

Pittsburgh 2/6/97

Pittsburgh 2/5/97

3 | 6,000,000

Version 2 is no longer needed or supported
Versions 1 and 3 are used by MH

Figure 3: TVL before and after version 3 is stored

3.1 Updating the View Holder

So far, two maintenance transactions originating from a data server have executed within a data

warehouse creating the two versions of tuples we see in our TVL structures. Now suppose a third

maintenance transaction goes into effect at the data warehouse. Once the thirdmaintenance trans-

action commits there are only two versions available within the data warehouse, versions2 and3.
Any tuple labeled version1 which has not been touched since its creation, still belongs to the other

versions, although, version1 is now consideredexpired.

10

tupleVN operation city product date total sales pre totalsales

2 update Pittsburgh golf 2-3-97 10,000 1,000

1 insert Erie golf 2-4-97 2,000 null

1 insert Pittsburgh rqball 2-5-97 3,000 null

2 update Pittsburgh rqball 2-6-97 40,000 4,000

3 delete Erie rqball 2-5-97 5,000 5,000

3 update Lancaster rqball 2-6-97 6,000,000 60,000

Table 2: Updated Materialized View DailySales

Once the maintenance transaction releases version3 of the view, the view holder is allowed to

read this version and store it as the latest version available. It is the job of the view holder to

periodically monitor the data servers and/or data warehouses to know when updates or new versions

have been created. Recall that the data warehouse and data servers are stateless and do not keep

track of who is interested in their ongoing changes. The view holder can request a version of a view

from the data warehouse by supplying a version number. The algorithmUpdateVHshown below

describes how the TVLs are updated when a new version is released.

Algorithm UpdateVH()

Let VN = LatestVersion+1
SELECT operation, city, date, product, totalsales

FROM DailySales version VN

WHERE product = “rqball”

GROUP BY city, date

For each tuple T

Find the TVL that matches the Group By

attributes of T

If found

If TVL.LatestInUse = TRUE

append TVL.Latest to Used

set TVL.LatestInUse = FALSE

End If

11

If operation = “update”

let Latest = (VNj total sales)

Else operation = “delete”

let Latest = (VNj null)

End if

Else

create new TVL

insert key and non-updatable attributes

let Latest = (VNj total sales)

End If

End for

Update the LatestVersion number to VN

When a MH starts anapplication sessionit must keep track of which version it is using for that

particular session. If our MH now starts a new application such as the spreadsheet and graphing

tool discussed, then it may want theLatestversion (i.e., version number3) maintained by its view

holder. When this happens the latest version of each tuple becomes part of theUsedlinked list so

that they are saved for future use and not overwritten. The flagLatestInUseassociated with each

Latestfield in the TVL can be marked used (U) as each tuple is given to the MH if it is not already

set. Therefore, the next time an update happens, new space must be allocated dynamically for the

newLatestversion of a tuple. Our TVLs now look like the right-hand side of Figure 3. We can see

that the first TVL was not changed and, therefore, both version1 and version3 will see the same

value for this tuple.

Notice that only versions1 and3 are maintained by the view holder, and version3 is the latest.

Version2 cannot be constructed using this view holder even though it isstill availablethrough the

data warehouse. Version2 was not needed by the MH and, therefore, its space was reclaimed within

the view holder to hold and save version3. Therefore, the view holder is a buffer for the MH and

doesnotalways store the versions found in the data warehouse. The last TVL of the right-handside

of Figure 3 demonstrates this since version2’s data, (2j 60,000), is now no longer available to the

MH.

Whenever the MH wants the tuples for a particular application it must supply the version

number (VN) it is interested. Then the linked list ofUsed is followed for each tuple until theMaximumV ersionNumber � V N is found. As a result, thenull values obtained when a tuple is

12

deleted must be explicitly placed within the TVL, otherwise, a previous version will be mistaken for

the deleted tuple.

3.2 Communicating Changes in Versions

A MH can describe the view it is interested in by sending a select statement, such as the one used in

the example, within aninitiation messageto its MSS. The fixed network will then assign this request

to a view holder where the current version of this view will be gathered from the data warehouse

and/or data servers. After the initiation, the MH can then perform queries by communicating with

the view holder which will now buffer any versions necessary for as long as the MH may need them.

The result of these queries orcache messageswill be stored on the MH.

The view holder can build an indices tree structure for the TVLs attributes to provide faster access

during repetitive updates and queries. If the MH also uses TVL structures to store cache messages it

is possible to transfer any indices built in a view holder along with the cache message. This allows

the MH to reconstruct the indices tree within its own memory.

Whenever the MH asks for the storage of a new version, the view holder can then in turnask the

data warehouse for its latest version if it has not already prefetched it. During the process of updating

the view holder’s TVLs, the exact differences between versions will be implicitly calculated since

the TVL will contain a new tuple entry if there has been an update, and a null value if the tuple

has been deleted. Therefore, at any time, the differences or� between any two versions contained

within a view holder can be computed easily.

U

 golf

1 | 2,000 5 | 10,000 9 | null8 | 14,000

Erie 2/4/97

Oldest available version is 2
Versions 2, 4, 5, 6, 8, 9 are used by MH and kept by the view holder
Latest Version number = 9

Figure 4: One TVL storing Multiple Versions

For example, take the TVL shown in Figure 4. From the example we see that the difference

between version2 and version8 is an update from the value2; 000 to the value14; 000. However,

there is no difference in values between version2 and version4 since both of them use the tuple (1j
13

2,000). The difference between version2 and version9 would be to completely delete the tuple and

its contents from the view. Whenever the view holder needs to send a version or part ofa version to

the MH, it will use the algorithmSendLatestdescribed below. When there is no change between the

latest version of a tuple and the version already stored within the MH, a predeterminedno-change

token is sent.

Algorithm SendLatest(LatestVersion)

For each TVL

If Latest.value6= the last element of Used.value

let TVL.LatestInUse = TRUE

send latest.value to MH

Else

send the no-change token

End If

End for

append LatestVersion number to the

list of available versions

send LatestVersion number to the MH

In the mobile environment, communicating only the changes between versions saves resources,

especially when changes can be computed and incorporated easily, as in our casewhere we com-

municate tuples. If few changes have happened between versions, only the values forthe tuples that

have experienced change will be communicated to the MH. This is also useful upon reconnection

when a MH may want to know the difference between the currently latest version of the view and

the data it was able to work with while being disconnected, for example, as part ofa data validation

procedure.

Although we have concentrated on the view holder prefetching and maintaining data usedby

the MH, there are other possibilities to consider when deciding the exact role theview holder plays

within the fixed network. These possibilities, which we alluded to in the introduction, arise from

matching the placement and functionalities provided by the view holder with the capabilities of both

the MH and the static hosts within the fixed network.Essentially, the view holder can support any

of these possible roles:� Holder-as-Proxy: The view holder only stores the latest version found in both the fixed

14

network and MH in order to compute the� and build any required indices. All other versions

are on the MH who has the adequate storage capabilities. In this case, the view holder’s state

can be made small within a MSS and possibly migrated as part of the hand-off between MSSs.� Holder-as-Buffer: The view holder provides the same features as above. In addition, there

is a full replication of the views currently in use (except the latest) on both the MH and view

holder. Whenever a MH exhausts its resources while disconnected, it can suspend one or

more of its active applications and reclaim the space of the respective versions. Later, when

reconnected, these processes can finish with the view holder’s copy of the required data.� Holder-as-Cache: The view holder maintains a superviewSVof the information required by

the MH’s application sessions. The MH can then hoard a subset of this data for use when dis-

connected. The MH has limited storage capabilities. Here the view holder must provide more

functionality including some query processing and will most likely exist as a hostintegrated

within the fixed network.

Which role the view holder assumes is decided by the preferences and capabilities of the MH.

Thus, the view holder becomes a customizable client-oriented view maintenance mechanism. The

MH specifies these customizations by using an extension to SQL that we proposed in[WLC98].

3.3 Deleting a Version from a View Holder

Once a MH completes the application sessions utilizing a particular versionof a view, that view can

be removed from the view holder. However, as we have seen, tuples from older versions that are not

touched are used by the newer versions (see Section 3.2). Using the following proposition, we can

develop agarbage collectionprocedure for deleting tuples from a TVL that are no longer useful.

Proposition 1 If a tuple doesnot belong to a versioni then it will not belong to any versionj for

all j > i.
This proposition is useful when implementing the garbage collection routine since theversions

of a view holder are placed in the linked listUsedin order of their creation. Once we find a version

number that doesnot use the tuple we want to delete, then we know it can be deleted safely since it

will not exist in any other later versions.

As an example, consider the TVL of Figure 4. Notice that versions 2,4,5,6,8, and 9 are currently

being used by the MH making version number 2 the oldest available version. Now let’s suppose that

15

the MH no longer requires version number 2. As a result, we see that version 4 will now become the

oldest available version. The question for the garbage collection routine is whether or not it is safe to

delete tuple (1j 2,000). Recall that whenever we want to access a particular version of a tuple (VN)

we have to make sure that the tuple with aMaximumV ersionNumber � V N is found. In order

to find out if the tuple in question can now be deleted from the Used list, we firsthave to find theMaximumV ersionNumber � 4. The result in this case is aMaximumV ersionNumber = 1.
Therefore, we cannot delete the tuple (1j 2,000) since the information it contains is still required

by version 4 and possibly other versions. However, if the tuple hadnot been a part of version 4, the

tuple could have been safely deleted since, by the proposition, we would be certainthat no other

later versions of this view would ever require this tuple.

4 An Implementation

Our prototype, currently developed in collaboration with the University of Cyprus,implements the

concepts of view holders. This prototype supports database applications within a mobile environ-

ment by utilizing mobile Java agents, calledDBMS-agletsdeveloped at the University of Cyprus

[PPS99].

4.1 Aglet Technology

An Aglet(agile applet) is a lightweight mobile Java object (approximately 2 kilobytes) developed at

IBM Japan [AGLET98]. An aglet carries along its program code, state, unique identification, and

query trip plan as it moves from host to host. If there are any communication problems, such as a

host failure, the trip plan allows the aglet to try alternate hosts and solutions. A host interacts with

an aglet by utilizing an aglet server program. This Java program listens for incoming aglets and

provides a context in which they can resume their suspended execution. Figure 5, shows several

aglets operating between two hosts A and B. Aglets can be created, talk to oneanother, move from

host to host, and be disposed of at any time.

4.2 DBMS-Aglets: Mobile Java Agents for Database Access

If the aglets are equipped with database capabilities they becomeDBMS-aglets[PPS99], that can

connect to a remote data server and collect data updates. Our DBMS-aglets are dispatched from the

view holder in order to obtain new versions from the data sources. Once the DBMS-aglet arrives at

16

Talk

Aglet Context A

Host A Host B

TCP/IP

Aglet X

Aglet Y

Aglet Context B

Aglet XDispatch / Retrack

Create

Aglet ZClone

Dispose

Talk

Figure 5: Aglet Life Cycle

the data server and passes any security checks, it then attempts to connectto the database. To do

this it must load the correct Java Database Connectivity (JDBC) Driver.Currently, there are JDBC

drivers for most desktop and distributed systems including drivers created specifically for Microsoft

and Sun systems [H97]. With the correct driver the DBMS-aglet can then connect to the database

and obtain the version requested by the view holder. The results can be dispatched back to the view

holder while the DBMS-aglet continues its trip to the next host until released by the view holder

(see Figure 6). At any time the view holder can dynamically adjust the DBMS-aglet’s trip plan.

After receiving updates from an issued DBMS-aglet, it is the view holder’s responsibility to process

the updates and present the MH with specific view data changes (i.e., the� view). By utilizing

DBMS-aglets, a view holder can either move with the MH or remain stationary within the fixed

network.

In a distributed database environment, processing queries reliably among various heterogeneous

databases becomes a problem. To alleviate this problem, a CORBA system is usually invoked. Our

prototype uses a CORBA system enhanced for mobile clients, calledVoyager, developed in Java by

17

[1] Create Material ized
View Request

Database Server
+ Aglet Server

Data Warehouse
+ Aglet Server

Replicated Data Server
+ Aglet Server

[2] Coordinator DBMS-aglet
creates as many DBMS-aglets

as the number of the remote accesses
and f ires them to their destinat ion

Cached DataLaptop computer View Holder + Aglet router

Figure 6: Aglets for View Holders

ObjectSpace [OS98]. In addition, we are working on implementing view holders in conjunction with

PRO-MOTION, our mobile transaction infrastructure, also under development using Java [WC97].

5 Conclusions and Future Work

This paper addresses the problem of caching/hoarding and maintaining data within a mobile environ-

ment in the form of a materialized view. Our main contribution is the development of a mechanism

or view holderthat maintains customizable versions of cached views. The view holder reduces the

communication between the fixed network and the MH. This happens while increasingthe function-

ality of view maintenance, for example, a MH now has the option to reclaim memory needed while

disconnected, and when reconnected, allow processes to finish with the view holder’s copy of the

required data. Finally, an implementation using Java based mobile DBMS-aglets was described.

An extension of this work was the introduction of an extended form of SQL that allowsthe MH to

specify (1) whatrole the view holder will play in its interaction with the MH, (2) which constraints

18

determine how often view maintenance occurs or is communicated, and (3) which specific data

changes are most important to the MH [WLC98]. Our future work involves allowingwrite transac-

tions through the MH’s materialized views. This must be done while maintaining consistency across

multiple versions among many mobile clients.

Acknowledgments

We would like to thank Stavros K. Papastavrou and George K. Kyrou for their help with the imple-

mentation of this project.

References

[AAFZ95] S. Acharya, R. Alonso, M. Franklin and S. Zdonik. Broadcast Disks: DataMan-

agement for Asymmetric Communication Environments. InProc. of the 1995 ACM

SIGMOD Int’l Conf. on Management of Data, pp. 199–210, 1995.

[IVB97] T. Imielinski, S. Viswanathan, and B. R. Badrinath. Data on Air: Organization and

access. InIEEE Transactions on Knowledge and Data Engineering, Vol. 9, No. 3,

pp. 353–372, May/June 1997.

[AGLET98] Aglets Workbench. by IBM Japan Research Group.

Web site: http://aglets.trl.ibm.co.jp

[BDMW95] J. Bailey, G. Dong, M. Mohania, and X. Wang. Efficient Incremental View Main-

tenance Using Tagging in Distributed Databases. Technical Report 95-37, Univ.of

Melbourne, 1995.

[CKLM97] L. S. Colby, A. Kawaguchi, D. F. Lieuwen, and I. Mumick. Supporting Multiple

View Maintenance Polices. Inthe ACM SIGMOD Conf., 1997.

[DCVKK97] A. Datta, A. Celik, D. VanderMeer, J. Kim and V. Kumar. Adaptive Broadcast Pro-

tocols to Support Power Conservant Retrieval by Mobile User. InProc. of the 13th

IEEE International Conference on Data Engineering, pp. 124–133, 1997.

[H97] B. V. Haecke JDBC: Java Database Connectivity. chapters 1,2,3, pages 3-33. IDG

Books Worldwide, 1997.

19

[IVB92] T . Imielinski, S. Viswanathan, and B. R. Badrinath. Querying in HighlyMobile

Environments. Inthe 18th VLDB Conf., pages 41-52, Aug. 1992.

[KLM +97] A. Kawaguchi, D. Lieuwen, D. Mumick, D. Quass, and K. A. Ross. Concurrency

Control Theory for Deferred Materialized Views. Inthe 1997 ICDT Conf., Jan. 1997.

[KS92] J. J. Kistler and M. Satyanarayanan. Disconnected Operation in the CodaFile Sys-

tem. ACM Trans. on Computer Sys., 10(1):3–25, Feb. 1992.

[KVP96] P. Krishna, N. H. Vaidya, and D. K. Prodhan. Static and Adaptive Location Manage-

ment in Mobile Wireless Networks.Jour. of Computer Comm., 19(4), Mar. 1996.

[MWC96] A. Massari, P. K. Chrysanthis, and S. Weissman. Supporting Mobile Database Access

through Query by Icons.Distributed and Parallel Databases Jour., 4(3), Jul. 1996.

[OS98] Voyager(tm) Technical Overview. by ObjectSpace.

Web site: http://www.objectspace.com/voyager

[PPS99] S. Papastavrou, E. Pitoura, and G. Samaras. Mobile Agents for WWW Distribued

Database Access. Inthe 15th Int’l Conf. on Data Engin., Mar. 1999.

[PSWCD97] A. Prasad Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Modeling and Querying

Mobile Objects. Inthe 13th Int’l Conf. on Data Engin., Apr. 1997.

[QW97] D. Quass and J. Widom. On-Line Warehouse View Maintenance for Batch Updates.

In the ACM SIGMOD Conf., pages 147-158, May 1997.

[WA97] R. Winter and K. Auerbach. Giants walk the Earth: the 1997 VLDB Survey.

Database Programming and Design, 10(9):S2-S9+, Sept. 1997.

[WA98] R. Winter and K. Auerbach. The Big Time: the 1998 VLDB Survey.Database

Programming and Design, 11(8), Aug. 1998.

[WC97] G. Walborn and P.K. Chrysanthis. Pro-motion: Management of Mobile Transactions.

In the 11th ACM Annual Symp. on Applied Computing, Mar. 1997.

[Wid95] J. Ed. Widom. Special Issue on Materialized Views and Data Warehousing. IEEE

Data Engin. Bulletin, 18(2), Jun. 1995.

20

[WLC98] S. Weissman Lauzac and P. K. Chrysanthis. Programming Views for Mobile

Database Clients.Proceedings of the Nineth International Workshop on Database

and Expert Systems and Applications, pages 408–413, Aug. 1998.

[ZGMHW95] Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom. View Maintenance in a

Warehousing Environment. Inthe ACM SIGMOD Conf., 1995.

21

