
PRO-MOTION: M A N A G E M E N T OF MOBILE TRANSACTIONS*

G a ~ D. Walborn
Dept . o f C o m p u t e r S c i e n c e

U n i v e r s i t y o f P i t t s b u r g h

P i t t s b u r g h , PA 1 5 2 6 0

g w a l b o r n @ p i t t . edu

Panos K. Ch~santhis
D e p t . o f C o m p u t e r S c i e n c e

U n i v e r s i t y o f P i t t s b u r g h

P i t t s b u r g h , P A 1 5 2 6 0

p a n o s @ c s . p i t t . e d u

Keywords: Data Caching, Mobile Computing, Transac-
tion Processing, Semantics-based Concurrency Control.

A B S T R A C T

In order to provide data consistency in the presence
of failures and concurrency, database methods will con-
tinue to be important to the processing of shared informa-
tion in a mobile computing environment. It is important,
therefore, that we develop transaction processing sys-
tems that accommodate the limitations of mobile com-
putirig, such as frequent disconnection, limited battery
life, low-bandwidth communication and reduced stor-
age capacity, so that we can migrate existing database
applications to mobile environments. In this paper, mo-
tivated by these needs, we propose a mobile transaction
processing system that supports disconnected transac-
tion processing in a mobile client-server environment.
The proposed system employs compacts, which encap-
sulate access methods, state information and consistency
constraints, to allow for local management of database
transactions. Finally, we discuss the basic infrastructure
needed to support this transaction processing system.

1 INTRODUCTION

Pentop and laptop computers are becoming smaller,
lighter, more powerful, cheaper and easier to use. As
these devices evolve, innovative new applications will
be created to utilize their capabilities. A surge in the
use of mobile computers as personal digital assistants
(PDAs) is expected in the next few years [15]. The
impact of PDAs has already been felt in some niche
environments. Mobile computers are already being
used by transportation companies, field maintenance
teams and in telemedicine.

*This material is based upon work supported by the National
Science Foundation under grants IRI-9210588 and IRI-95020091 and
partially funded by B-Right Trucking Company.

?ermission to make digital or hard copies of part or all of this work tbr
.~rsonal or classroom use is granted without lee provided that copies are not
.ade or distributed for profit or commcrcial advantage and that copies bear
.is notice and the full citation on the first page. Copyrights for components
.'this work owned by others than ACM must be honored. Abstracting with
edit is permitted. To cop)' otherwise, to republish, to post on servers or to
distribute to lists, requires prior specific permission and/or a fee."

1997 ACM 0-89791-850-9 97 0002 3.50

In a mobile computing environment, the network is made
up of stationao, and mobile hosts (MHs) [16]. Unlike
stationary hosts, MHs change location and network
connections while computations are being processed.
While in motion, MHs retain their network connection
through the support of specialized stationary hosts with
telecommunication ability, called mobility support sta-
tions (MSSs) (Figure 1). Each MSS is responsible for
all of the MHs within a given geographical or logical
area, known as a cell. When a MH leaves a cell serviced
by an MSS, a handoffprotocol is used to transfer the re-
sponsibility for support to the MSS of the new cell,. This
handoff may be as simple as establishing new commu-
nication links, or as complicated as migrating executing
processes and database transactions in progress.

It is possible, even probable, that a mobile computer will
become disconnected from the network due to (acciden-
tally or intentionally) broken communication links. For
example, in Figure 1, rahq becomes accidentally dis-
connected when entering a region out of the reach of
any MSS. Many disconnections will be intentional (i.e.,
planned) or predicted. For instance, a weak radio link
or a partially depleted battery may warn of impending
disconnection. Also, mobile computers may enter an
energy conservation mode (sleep), which resembles dis-
connection, in an attempt to extend battery life or to save
on communication cost. Clearly, such a disconnection
does not imply the failure of the disconnected machine.
Today many mobile computers have enough memory,
storage and processing ability to store a portion of the
database and process transactions against that portion
while disconnected. Once disconnected, a MH may
reconnect after an indefinite time to an indeterminate
stationary host.

To provide data consistency in the presence of failures
and concurrency, database methods will continue to be
important to the processing of shared information. It is
important, therefore, that we find transaction processing
models which accommodate the limitations of mobile
computing, such as frequent disconnection, limited bat-
tery life, low-bandwidth communication and reduced
storage capacity. Operations on shared data must insure
correctness of transactions executed on both the station-
ary hosts and MHs. Blocking of transactions which
are executed on either the stationary or mobile hosts
must be minimized and autonomy of the MH should
be maximized to reduce communications and increase

!01

http://crossmark.crossref.org/dialog/?doi=10.1145%2F331697.331718&domain=pdf&date_stamp=1997-04-01

mh: Mobile Host

MSS: Mobility-Support Station

Figure 1: Mobile Network

concurrency on both mobile and stationary hosts.

Recent research has attempted to develop appropriate
transaction models for mobile computing that aim to
support transactions Which perform updates at the mo-
bile computer [9, 23]. These efforts propose new mobile
transaction models and correctness criteria for data con-
sistency that are weaker than the standard serializabilit3,
[7] so that they can cope more effectively with the
restrictions of mobility and wireless communication.
Even though serializability might be too strong as a cor-
rectness criterion for a number of applications, there are
important applications, including existing business ap-
plications such as inventory databases [20], that require
the data consistency guarantees offered by serializability.

Our goal has been to devise methods to ensure serializ-
ability and traditional ACID transaction properties I for
mobile database applications, despite the various limi-
tations introduced by mobility and portability. To this
end, we have revisited and extended escrow methods [22]
and certain caching strategies [18, 1 I] to support discon-
nected database operations in a mobile environment in
which data are moved between the stationary servers and
mobile clients. Our transaction processing model, called
PRO-MOTION 2, employs compacts to provide support
for both dynamic replication for escrowable items with
improved caching techniques for non-escrowable items.
This combination of dynamic replication and caching
techniques allows competing transactions executing on
mobile and stationary clients to share data items with-
out blocking (and with minimum coordination) while
maintaining integrity constraints [32]. Transactions ex-
ecuting on a disconnected mobile host are allowed to
commit locally (i.e., unilaterally), permitting mobile
database clients to execute competing transactions on
cached and replicated data items, incorporating the mod-
ifications into the database when reconnection occurs.

In the next section, we present a real-world scenario
which demonstrates some of the various requirements
of mobile transaction processing. In Section 3, we

1 ACID: atomicity, consistency, isolation and durability
-" PRO-MOTION stands for the "'Pro-active Management of Mobile

Transactions". In addition, the title serves to indicate that the system
is designed to provide support for mobility, i.e., motion.

describe our approach to mobile transaction processing,
introduce the notion of compacts and discuss the advan-
tages they provide. In Section 4, we discuss how the
proposed PRO-MOTION system can be used to support
our motivating application. Finally, in Section 5, we
present our conclusions and suggest areas for further
inquiries and testing.

2 M O T I V A T I N G A P P L I C A T I O N

Mobile computers are becoming more and more com-
mon in the trucking industry. Each truck is fitted with
a small computer which communicates via satellite or
radio links to a central site managed by the trucking com-
pany. The mobile computer runs specialized software
which gathers data from vehicle instruments, digitizer
pens and keyboard. The collected data is used to update
the corporate database and is used for billing, compli-
ance, equipment management and driver payroll. Often
electronic means will be used to transmit funds directly
to the driver for fuel, tolls, permits, living expenses and
repairs.

In order to better understand the requirements of mobile
transaction processing, let us look at a typical scenario
faced by a contract carrier which has accepted a contract
to move a large quantity of fertilizer from the manufac-
turing facility to a number of rural farms and co-ops. If
the trucks are privately owned and sub-contracted to the
trucking company, each driver is free to accept or reject
any load that is offered. Even though the company has
little control over each individual truck, the company
will be penalized if it fails to complete delivery of the
fertilizer within a specified period.

Many interesting problems are raised here. For example,
each truck should be offered a portion of the available
loads, but care should be taken so that the quantity of
fertilizer offered to all of the trucks does not greatly
exceed the quantity available. If, for example, every
truck is offered the entire quantity, trucks could be
stranded with insufficient loads to pay for expenses. In
this case, the total amount of fertilizer allocated to each
truck may be allowed to vary from actual availability
(controlled divergence), as long as the total variance
is within limits and eventual consistency is obtained.
Since a cached copy at the mobile host may carry
sufficient information to make an attempted pickup,
connection to the centralized computer is not required
before proceeding to the factory for a toad.

As trucks arrive to load with fertilizer, each truck must
obtain a shipping manifest from the trucking company.
Each manifest uniquely identifies a specific load of
fertilizer and indicates the location and time of loading,
the pertinent information about the truck and driver,
the exact measure of material loaded and a description
of any exceptions that should be noted for insurance
.purposes. This information should be made permanent
m the centralized database before the truck is permitted
to travel or receive advances for fuel. Therefore, it may
be necessary to be connected to successfully complete
this transaction.

!02

Once the load is delivered, the driver records the delivery
date and time, obtains a signature from the receiving
party, notes any discrepancies between the delivered
goods and the original bill of lading and checks the list of
available loads in order to proceed to the next shipper for
loading. The delivery information should incorporated
in the centralized database as soon as possible, but a
delay will only postpone the billing process. With the
proper cache control and reconciliation, this transaction
could be finalized locally, in spite of disconnection, but
made permanent in the centralized database whenever
reconnection occurs.

In this scenario, one can easily identify three distinct
types of transactions with respect to data consistency
requirements:

• transactions which tolerate controlled divergence,
with the possible existence of a global constraint
(i.e., total offers do not exceed available fertilizer
+/- tolerance),

• a traditional (ACID) transaction which must be
made permanent in the database before any other
transactions pertaining to the load may be pro-
cessed (i.e., recording load information and obtain-
ing unique manifest number) and,

• an update of manifest information which should be
made permanent in the database "as soon as possi-
ble", but need not delay the acquisition and loading
of more material (i.e., eventual consistency).

The transaction processing system presented in the bal-
ance of this paper will provide the mechanisms to sup-
port these different types of transactions which maintain
database consistency while allowing flexibility in coor-
dinating and reconciling competing transactions.

3 PRO-MOTION: A MOBILE TRANS-
ACTION P R O C E S S I N G S Y S T E M

The limitations of the mobile environment present a
number of challenges to traditional transaction pro-
cessing systems. To that end, in this section, we
propose a new transaction processing system, called
PRO-MOTION, to deal with the problems introduced
by disconnection and limited resources. The salient
features of PRO-MOTION are:

• the use of compacts, which function as the basic
unit of caching and control,

• exploitation of object semantics wherever possible
to improve site autonomy and increase concurrency
and, finally,

• the introduction of a transaction management sub-
system. (consisting of a compact manager at the
database server, a compact agent at the mobile host
and a mobility, manager executing at the MSS) to
negotiate and manage compacts and provide local
transaction management for the MH.

~ mon T y ~
ompacts Methods

1 ^ . . N ~ / Oblioations] Data Cons!,stency , __ __ Ag;- HuIes /

In f S t r a t : t i ° n ~

Figure 2: Compacts as Objects

These features which are described below, when used
together, can minimize the handicap imposed by mobile
limitations.

3.1 Compacts

As mentioned above, our mobile database system ar-
chitecture assumes that there is a database server which
resides on one or more stationary hosts and that mo-
bile applications executing on the MHs operate on data
managed by this database server. In a traditional client-
server environment, each transaction executing on the
MH would send requests for data and updates directly
to the database server. If the MH is currently connected
to the network, this is expensive because each operation
requires a set of messages, placing a heavy demand on
batteries and bandwidth. If the mobile happens to be
disconnected, it is impossible, prohibiting the process-
ing of transactions during disconnection. This clearly
indicates the need to support database operations locally
on the MHs.

In PRO-MOTION, we propose to support the caching
of data on the MHs for access to mobile applications by
means of compacts. A compact is, broadly speaking, a
satisfied request to cache data, enhanced with obligations
(such as a deadline), restrictions (such as a set of
allowable operations) and state information (such as
the number of accesses to the object). The compact
represents an agreement between the database server
and the mobile host. In this agreement, the database
server delegates control of the data to the MH. The
MH, in return, agrees to assume responsibility for the
data and to honor specific conditions set forth by the
database server. As a result, the database server need not
be aware of individual operations executed by individual
transactions on the MH but. rather, sees periodic updates
to a compact for each of the data items manipulated by
the mobile transactions.

Compacts are represented in our system as objects (Fig-
ure 2) which encapsulate

• the cached data,

• methods (i.e., code) for the access of the cached
data,

• information about the current state of the compact,

103

• consistency rules, if any, which must be followed
to guarantee global consistency of the data item,

• obligations, such as a deadline which creates a
bound on the time for which the rights to a resource
are held by the mobile host, and

• methods which provide an interface with which the
MH may manage the compact.

The management of compacts is a cooperative effort by
the database server and the mobile hosts. Compacts are
obtained from the database via requests by the MH when
a real or anticipated demand is created. The compacts
are periodically updated as the result of processing
transactions on the MH. When the needs of the mobile
host or the database server change, compacts may be
renegotiated to redistribute resources and, when the MH
no longer needs the resources, compacts are returned to
the database server and deleted from the local store.

Whenever a MH needs data, the MH sends a request for
the data to the database server. If data is available to
satisfy the request, the database server creates a compact
which is transmitted to the MH to provide the data and
methods to satisfy the needs of transactions executing
on the MH. The request can be tailored to cause only
the transmission of missing or outdated components
of a compact. In this way, transmitting the compact
methods, which may be very expensive, is avoided
if they are already available on the MH. Once the MH
receives the compact, it is recorded in a compact registry
which is used by the compact agent to track the location
and status of all open compacts.

Each compact has a common interface which is used by
the compact agent to manage the compacts listed in the
compact registry. The basic set of methods necessary to
manage compacts includes,

• inquire, so that the compact agent can obtain the
current status of the compact,

• notify, so that the compact can receive notification
when status of the MH changes,

• d ispatch, used to process operations on the com-
pact issued by transactions executing on the MH,

• commit , to make the operations of a specified
transaction permanent on the database, and

• abort, to abandon the changes made to the compact
data by a given transaction.

The implementation of a common interface simplifies
the design of the compact agent and guarantees the
minimum acceptable functionality of a specific compact
instance.

The flexibility offered by compacts allows PRO-
MOTION to support a number of dynamic replication
schemes (as well as caching) with a variety of consis-
tency constraints. Compacts can be used to represent
both simple schemes such as check-in/check-out items

f Inquire() Abe.0 M,~li fyO

Last_UlYJate=39383.93 J
DB Server_lD=gully J

Figure 3: Leases as Compacts

and leases [11], as well as other more complex correct-
ness criteria [26]. Let us illustrate this by showing how
leases can be realized using compacts.

Lease semantics provide that a shared data item is given
to all requesters (leaseholders) with an expiration time.
Leaseholders are free to read the item (as long as the
lease has not expired), but must obtain permission from
all other leaseholders before modifying a leased item.
Therefore, a compact designed to support leases (Figure
3) includes, in addition to the methods for the common
interface, two type-specific methods, reacl and modify.
The read method simply checks the expiration (specified
in the compact as an obligation) and, if unexpired,
satisfies the read request, returning the value of the
compact data (Fritz...). When the modify method
is invoked, the compact must communicate with the
database server. The database server obtains permission
from the other leaseholder compacts and communicates
permission (or refusal) to the lease compact on the MH
performing the modification. A lease compact requires
no consistency rules and a contains a single obligation,
the expiration time (Deadl ine=48999.00) .The compact
state (Last_Update) is maintained by the type-specific
and interface methods.

Because compacts include the code for access to shared
objects, compacts provide a high degree of adaptabil-
ity which may be exploited to respond dynamically to
changes in the mobile environment. For example, com-
pacts may react to an increased availability of hard disk
by automatically increasing the amount of data cached
or adapt to an overloaded communication subsystem by
reducing the frequency of transmitted updates. The use
of compacts, therefore, creates a flexible and adaptable
framework to support mobile transaction processing.

In the next section, we elaborate further on the usage of
compacts and illustrate one additional advantage offered
by compact, namely, their ability to support concurrency
control methods which exploit object structure and/or
semantics [4, 3, 12, 10].

3.2 Using Compacts to Support Semantics.
Based Concurrency Control

In order to better support disconnected operations and
strict data consistency, such as that provided by se-
rializability, the mobile transaction processing system

104

Inquire0
N o t i f y 0

Dispatch() Increase()

C o m m i t ()

A b o r t 0 Decrease()

Dead l ine=Inf in i t e 267
M a x _ V a l u e < 300

[Min Va lue > 100

M a x Value=2(~)

M i n _ v a l u e = 1 3 0
' Esc row Journal ' Last Upda te=39383 ,93
t_ r - - - m -
, Trx ID ' In¢ ' Dec , DB Serve r_ lD=gu l ly

4292 x x x x

', 1203 i xx ', x x I

Figure 4: Escrows as Compacts

can exploit object semantic information to provide finer
granularity of caching and concurrency control and to al-
low for asynchronous manipulation of the cached objects
and unilateral commitment of transactions on the mobile
host. As an example, escrow items and fragmentable
items have characteristics that make them especially
suitable for mobile transactions.

The basic idea behind both escrow and fragmentable
items [32] is to split large or complex objects into
smaller fragments of the same type by exploiting the
object organization. With the appropriate split, a mobile
host can cache an data partition (consisting of one or
more fragments) of just the right size, minimizing the
storage requirements on a mobile host. The second idea
is to make these fragments the unit of reconciliation
of updates, that is, the unit of consistency. To allow
more flexibility (as well as to deal with situations in
which fragmentation under strict consistency require-
ments is not possible) applications can explicitly define
the consistency constraints to be enforced.

A "master copy" of the escrowable or fragmentable data
resides on a database server. Mobile hosts specify the
granularity of the data to be cached when placing a
compact request by specifying the required size of the
data partition. The data partition is logically removed
from the "master copy", packaged into a compact and
transmitted to the MH. The data contained in the compact
is only accessible by the transactions on the mobile
host. However, the remaining part of the "master copy"
is not affected and it is available to other MHs as
subsequent compacts. Object fragments can be logical
(i.e., escrow) or physical (i.e., fragments) divisions of
the data object. During the update, physical fragments
need to be physically re-assembled into a single object
while logical fragments are combined with some logical
or arithmetic operation,

In order to support unilateral commitment of transaction
executing on a mobile host. we must retain the effects
of transaction operations on each fragment when the
fragments are merged. The consistency conditions
embodied in the compact methods specify constraints
on the fragment which need to be satisfied to maintain
the consistency of the entire object. These conditions
might include allowable operations and constraints on
their input values and conditions on the state of the
object. Some operations on fragmentable items may be

disallowed or restricted to guarantee that the fragments
may be properly merged.

Figure 4 illustrates a compact designed to support es-
crowable data (i.e., a portion of an aggregate 3 item
which has been allocated to satisfy requests from trans-
actions executing on the mobile host). In addition to
the methods which provide a common interface, this
compact contains two type-specific methods, increase
and decrease. The data (i.e., 267) may only be ac-
cessed by these two methods. Each call to increase is
validated against the maximum value (i.e., 300) speci-
fied in the consistency rules, and the compact state (i.e.,
Esc row Journal) , which reflects validated requests by
concurrent transactions. The call succeeds only if the
consistency rules will not be violated. Similarly, each
call to d e c r e a s e is validated against the minimum value
(i.e., 100) and the compact state. Adherence to the con-
sistency rules will insure that the global consistency of
the aggregate values will be guaranteed even if trans-
actions are allowed to commit unilaterally on the MH.
Because unilateral commitment is possible, transactions
on other MHs may proceed even though the only obli-
gation, a deadline for return of the escrow quantity, has
been set to unlimited (i.e., Infinite).

3.3 Infrastructure

As mentioned in the introduction, one of our motivations
has been to support existing database applications by
facilitating data access by transactions on mobile hosts.
In such an environment, it might not be easy, or even
possible, to incorporate logic to manage compacts into
the legacy database server 4. If a database server lacks
compact management capabilities, a compact manager
can provide that functionality. The compact manager
acts as a front-end to a database server, shielding the
database server from the idiosyncrasies of the mobile
environment [27]. The compact manager may execute
on an independent host, or it may execute on the same
host as the database server.

If a compact manager is added to a legacy database, our
system utilizes an open nested transaction model as the
basis for concurrency control and recovery for mobile
transactions processed against the database server. To
the database server, the compact manager appears to be
an ordinary database client, executing a single, large,
long-lived transaction. This single, large transaction
becomes the root of our nested transaction. Resources
needed to create compacts are obtained by this trans-
action through normal database operations (reads and
writes). Mobile transactions (transactions processed by
each mobile host) appear as children in the open nested
transaction. The transactions processed on the mobile
host appear as siblings. Each sibling transaction may
commit or abort independently as long as the consistency
constraints expressed in the compacts are not violated.

3An aggregate is a data objects which represents a quantity of
identical and interchangeable items, such as bushels of wheat or
dollars in an advance account.

ZA similar situation exists in multidatabase systems that attempt
to integrate pre-existing database systems while retaining the design
autonomy of the component database systems [8].

105

The responsibility for the correct execution of mobile
transactions is assumed by the MH and accomplished
by utilizing the methods encapsulated in the compacts.
The root transaction is managed by the database server
and committed by the compact manager.

On each MH, a compact agent is responsible for pro-
cessing requests on behalf of transactions executing on
the MH. These compact agents are more than just the
interface between the compact manager and the transac-
tions on the mobile hosts. The compact agent is much
like the daemon responsible for cache management in
the CODA file system [18]. The compact agent han-
dles disconnections and manages storage on a MH. It
monitors activity and interacts with the user and appli-
cations to maintain lists of items which are candidates
for caching. However, unlike the CODA daemon, or
other cache managers [6, 29], the compact agent is ac-
tively involved in transaction processing on the mobile
host, acting as a transaction manager for transactions
executing on the mobile host. The compact agent is re-
sponsible for concurrency control, logging and recovery.
Consequently, transaction requests, commits, aborts and
journals are managed by the compact agent. Requests
from local transactions are processed against the com-
pacts and are granted or denied. When a transaction
commits or aborts, the compacts and transaction journals
are updated accordingly.

Each compact includes a set of methods used for man-
agement which are common to all compacts. In addition,
each compact may contain specialized methods which
support the particular type of data or concurrency con-
trol specific to that particular compact. As a result,
many of the functions associated with the compact agent
are actually executed by the compacts themselves upon
receipt of messages from the compact agent triggered
by executing transactions or changes in the MH state.

At strategic intervals, the compact's state at the compact
manager is updated to reflect the effects of all outstanding
committed transactions. The specific triggers for updates
may vary, but should include:

1. When renegotiation must be performed for addi-
tional resources and the update can be piggybacked
onto the request.

2. As part of a handoff procedure when a transfer to a
new cell is initiated.

3. When the number of commit requests reaches a
predetermined threshold, usually determined by
the memory capacity of the mobile host.

4. In a "panic" situation arising from impending dis-
connection from:

• weak or low battery power,

• deliberate disconnection by the user,

• or partial loss or weakness of signal detected
by the communication subsystem.

5. A "'sale'" interval before an approaching deadline.
(e.g., a trigger could be set for midway between the
last attempt and the deadline,

106

6. When specifically requested by a critical applica-
tion being processed on the mobile host.

Once the update is acknowledged by the compact man-
ager, the compact agent updates journals and logs ap-
propriately. In this manner, entire groups of committed
transactions may be processed with a single update to
the compact at each end, with significant savings in
commumcation overhead.

Remember that each of the interactions between the
compact agent and the compact manager are processed
via the MSS. To improve system performance, the MSS
can take an active role in the processing of compacts
between the compact agent and the compact manager.
The module which performs these functions on the MSS
is called the mobility manager (MM). Once an update is
sent to the MM, the MM functions on behalf of the com-
pact agent to complete delivery of the update message.
This update by proxy helps insure that the updates are
received by the compact manager in a timely fashion.
In case of disconnection, the update can be recorded by
the compact manager and the acknowledgment can be
stored by the MM and properly processed later, once the
MH reconnects. The MM maintains mobilio, tables in
which each mobile control block (MCB) contains loca-
tion and database access information which pertains to a
single MH. When a MH moves between cells, the MM
uses the information stored in the MCB to facilitate the
handoff to a new MSS (and corresponding MM).

The addition of the compact manager, compact agent and
mobility manager provides a functional infrastructure
that will move some of the responsibility for processing
and committing transactions down to the MSS and the
MH, reducing the dependence on communications with
the database server.

4 D I S C U S S I O N

Let's examine how the proposed transaction processing
system based on compacts can be used to permit the
various types of transactions set forth in the motivating
application (Section 2). To recap, the requirements
were:

to make the quantity of fertilizer available to
all of the trucks, while preventing gross over-
commitment,

• the recording of manifest information before pro-
ceeding, and

• the eventual logging of delivery information, con-
current with the beginning of the next load.

The first transaction type is well suited to escrow opera-
tions. The quantity of fertilizer represents an aggregate
item which can be roughly distributed among the mo-
bile hosts (trucks) so that each truck would have some
idea of the amount of fertilizer remaining to be moved
without reconnecting to the centralized computer. The
deadline could be set so that the truck would have to

obtain periodic updates reflecting the amount of material
remaining. Eventually, the deadline might be set ac-
cording to the actual contract deadline, if no loads will
be available after that point. Renegotiation of compacts
would be used to allow aggressive drivers to control the
bulk of material to be hauled.

In the case of the second transaction, a compact would be
used to obtain exclusive access to the manifest. Perhaps
a small set of manifests would be reserved to each truck
and kept in a single compact. The deadline would be
arranged so that if the unit disappeared, the manifests
would eventually return to the centralized system to be
allocated to other trucks. No use of a manifest from
an expired compact would be allowed to satisfy the
transaction, as that manifest may have already been re-
assigned to another load. An indefinite deadline would
reserve the manifest to the requesting truck forever. It
would require some type of administrative intervention
to return the manifest to the central database.

In the final type of transaction, the assigned manifest
is held by the truck for update. Since the manifest is
the sole property of the truck holding the compact, the
update can be applied locally to the compact and updated
in the central database when reconnection occurs. If the
compact has expired, there are two possibilities:

If no other transaction has modified the manifest,
the update may be stored despite the expired dead-
line. This is equivalent to optimistic concurrency
control procedures.

If the copy of the manifest in the centralized
database has been modified, the update will be
aborted and the truck driver will be requested to
repeat the proof of delivery.

The notify method in this particular compact could be
written to reflect this activity.

In each of these cases, we have processed as much of the
transaction on the mobile host as possible, without re-
sorting to communication with the centralized database.
The central database is contacted only when convenient
or when absolutely required by the semantics of the
transaction. The compacts associated with each trans-
action type are designed to meet the requirements of
that particular tranSaction, simplifying the job of local
transaction management.

5 CONCLUSIONS

PRO-MOTION allows for improved transaction pro-
cessing by disconnected mobile hosts without grossly
impairing access by transactions executed by the station-
ary host and other MHs. Furthermore, these techniques
allow for automatic recovery of resources held by MHs
which exceed negotiated deadlines for reconnection.
Since each compact encapsulates access methods with
data, the mobile will automatically receive code neces-
sary to manipulate data in the compact. This eliminates
the need to write a comprehensive local transaction man-
ager which contains code for types which may never be

used and allows for the automatic updating of access
methods as the system evolves.

Commit processing in our system is handled by a single
round of update messages with an associated acknowl-
edgment. Consolidation of multiple update messages
reduces messages even further. The consolidation of
multiple updates into a single message by the compacts
should also provide for improved scalability and reduced
message traffic when compared to "flat" methods. Even
though additional overhead is required to transmit and
manage the compacts, we believe that these methods will
reduce overall message traffic and improve autonomy
while maintaining data consistency. Because compacts
include the code necessary to manage the associated
data, the size of each transfer is larger than sending
the data alone, but the overall traffic is much less than
what would be required to manage the same data at
the database server. More importantly, compacts pro-
vide the means to build a flexible and adaptable support
system for the management of mobile transactions.

We are building PRO-MOTION to test these techniques
and experiment with various implementations. The
common interface has been specified and the design of
the compact agent is partially completed. Also, we
have developed various topologies that we would like to
investigate further [31].

References

[1] Alonso R., D. Barbara and H. Garcia-Molina.
Data Caching Issues in an Information Retrieval
Systems. A CM Transactions on Database Systems,
15(3):359-384, Sept. 1990.

[2] Acharya A. and B.R. Badrinath. Delivering Mul-
ticast Messages in Networks with Mobile Hosts.
Proc. of the 13th lnt'l Conf. on Distributed Com-
puting Systems, pp. 292-300, 1993.

[3] Agrawal D., A. El Abbadi and A. K. Singh. Con-
sistency and Orderability: Semantics-Based. ACM
Transactions on Database Systems, 18(3):460-
486, Sep. 1993.

[4] Badrinath B. R. and K. Ramamritham. Semantics-
based Concurrency Control: Beyond Commuta-
tivity. ACM Transactions on Database Systems,
17(1): 163-199, Mar. 1992.

[5] Barbara D. and H. Garcia-Molina. The Demarca-
tion Protocol: A Technique for Maintaining Con-
straints in Distributed Database Systems. Proc. of
the h~t 'l Conf. on Extending Data Base Technology,
pp. 377-392 Mar. 1992.

[6] Barbara D. and T. Imielifiski. Sleepers and Worka-
holics: Caching Strategies in Mobile Environment.
Proc. of the 1994 ACM SIGMOD lnt'l Conf. on
Management of Data, pp. 1-12, May 1994.

[7] Bernstein P. A., V. Hadzilacos and N. Goodman.
Concurrency Control and Recover~' in Database
Systems. A~Jdison-Wesley, Reading] MA, 1987.

[8] Breitbart Y., H. Garcia-Molina and A. Silberschatz.
Overview of Multidatabase Transaction Manage-
ment. VLDB Journal, 1 (2): 181-293, Apr. 1992.

107

[9] Chrysanthis R K. Transaction Processing in a Mo-
bile Computing Environment. IEEE Workshop on
Advances in Parallel and Distributed Systems, pp.
77-82, Oct. 1993.

[10] Chrysanthis R K., S. Raghuram and K. Ramam-
ritham. Extracting Concurrency from Objects: A
Methodology. Proc. of the 1991 ACM SIGMOD
lnt'l Conf. on Management of Data, pp. 108-117,
May 1991.

[11] Gray C. G. and D. Cheriton. Leases: An Ef-
ficient Fault-Tolerant Mechanism for Distributed
File Cache Consistency. CS Technical Report CS-
TR-90-1298, Standford University, Jan. 1990.

[12] Herlihy M. P. and W. Weihl. Hybrid Concurrency
Control for Abstract Data Types. Proc. of the 7th
ACM SIGACT-SIGMOD-SIGART S~,m. on Prin-
ciples of Database Systems, pp. 261-210, Mar.
1988.

[13] Huang Y., P. Sistla and O. Wolfson. Data Replica-
tion for Mobile Computers. Proc. of the 1994 ACM
SIGMOD hzt'l Conf. on Management of Data, pp.
13-24, May 1994.

[14] Imielifiski T. and B. R. Badrinath. Querying in
Highly Mobile Distributed Environment. Proc. of
the 18th Conf on VLDB, pp. 41-52, Aug. 1992.

[15] Imielifiski T. and B. R. Badrinath. Mobile Wire-
less Computing: Challenges in Data Management.
Communication of ACM, 37(10): 18-28, Oct. 1994.

[16] Ioannidis J., D. Duchamp and G. Q. Maguire.
IP-Based protocols for mobile internetworking.
Proc. of A CM SIGCOMM Sym. on Communication,
Architectures and Protocols, pp. 235-245, 1991.

[17] Jain R. and K. Narayanan. Network Support
for Personal Information Services to PCS Users.
Preprint: IEEE Conf. Networks for Personal Com-
munications, Mar. 1994.

[I 8] Kisler J. and M. Satyanarayanan. Disconnected op-
eration in the Coda file system. ACM Transactions
on Computer Systems, 10(1):3-25, 1992.

[19] Krishnakumar N. and A. Bernstein. High Through-
put Escrow Algorithms for Replicated Databases.
Proc. of the 18th Conf. on VLDB, pp. 175-186,
Aug. 1992.

[20] Krishnakumar N. and R. Jain. Protocols for main-
taining inventory databases and user service pro-
files in mobile sales applications. Proc. of the
Mobidata Workshop, Nov. 1994.

[21] Kumar A. and M. Stonebraker. Semantics-based
Transaction Management Techniques for Repli-
cated Data. Proc. of the 1988 ACM SIGMOD lnt'l
Conf on Management of Data, pp. 379-388, May
1988.

[22] O'Neil R The Escrow Transactional Method. ACM
Transactions on Database Systems, 11(4):405-
430, Dec. 1986.

[23] Pitoura E. and B. Bhargava. Maintaining Consis-
tency of Data in Mobile Distributed Environments.
Proc. of 15th Int 'l Conf on Distributed Computing
Systems, pp. 404-414, June 1995.

[24] Pu C. and A. Left. Replica Control in Distributed
Systems: An Asynchronous Approach. Proc. of the
1991 ACM SIGMOD Int'l Conf on Management
of Data, pp. 377-386, May 1991.

[25] Ramamritham K. Real-Time Databases. lnt'l
Journal of Distributed and Parallel Databases,
1(2): 199-226, Apr. 1993.

[26] Ramamritham K. and E K. Chrysanthis. A Taxon-
omy of Correctness Criteria in Database Applica-
tions. VLDB Journal, 4(1): 181-293, Jan. 1996.

[27] Seal K. and S. Singh. Loss Profiles: A Quality of
Service Measure in Mobile Computing. Submitted
for publication.

[28] Soparkar N. and A. Silberschatz. Data-value Parti-
tioning and Virtual Messages. Proc. of the 9th A CM
SIGA CT-SIGMOD Sym. on Principles of Database
Systems, pp. 357-367, 1990.

[29] Tait D. C. and D. Duchamp. Service Interface and
Replica Management Algorithm for Mobile File
System Clients. Proc. of the 1st lnt'l Conf. on
Parallel and Distributed Information Systems, pp.
190-197, 1991.

[30] Yeo L. H. and A. Zaslavsky. Submission of Trans-
actions from Mobile Workstations in a Coopera-
tive Multidatabase Processing Environment. Proc.
of the 14th Int'l Conf. on Distributed Computing
Systems, June 1994.

[31] Walborn G. and P. K. Chrysanthis. An Escrow
Method to Support Disconnected Mobile Database
Operations. CS Technical Report 95-09, University
of Pittsburgh, Feb. 1995.

[32] Walborn G. and E K. Chrysantbis. Supporting
Semantics-Based Transaction Processing in Mo-
bile Database Applications. Proc. of the l l th
Syrup. of Reliable Distributed Systems, pp. 31-40,
Sept. 1995.

108

