
E N H A N C I N G T H E P E R F O R M A N C E O F P R E S U M E D C O M M I T P R O T O C O L ~

Yousef J. Al-Houmaily
Dept. of Electrical Engineering

University of Pittsburgh
Pittsburgh, PA 15261

yjast 1 +@pitt.edu

Panos K. Ch~santhis
Dept. of Computer Science

University of Pittsburgh
Pittsburgh, PA 15260

panos@cs.pitt.edu

Steven P. Levitan
Dept. of Electrical Engineering

University of Pittsburgh
Pittsburgh, PA 15261

steve@ee.pitt.edu

Keywords: Atomic Commit Protocols, Read-Only
Transactions, Distributed Database Systems.

A B S T R A C T

This paper presents a new read-only optimization called
the unsolicited update-vote that when combined with
the presumed commit protocol (PrC), eliminates all the
logging activities from PrC for read-only transactions
and significantly reduces them for partially read-only
ones.

1 I N T R O D U C T I O N

To ensure consistent termination of distributed transac-
tions despite site and communication failures, all the
sites participating in a transaction's execution engage
in an atomic commit protocol (ACP). The two-phase
commit (2PC) protocol [1] is the simplest and most
used ACR Since 2PC consumes a substantial amount
of a transaction's execution time due to the cost of its
coordination messages and forced log writes to stable
storage required for recovery, a number of 2PC variants
appear in the literature, most notably, presumed abort
(PrA) and presumed commit (PrC) [2]. As opposed to
PrA, PrC has been designed to reduce the cost associated
with committing transactions rather than aborting ones.
However, PrC applicability is curtailed due to its cost
to commit read-only transactions which are the majority
of transactions in any general database system. Even
though the traditional read-only optimization reduces,
when applied to PrC, the cost of commit processing
associated with read-only participants, it fails to elimi-
nate the £ n i t i a n i o n log records required by PrC for
read-only transactions.

In this paper, we present a new read-only optimization
called the unsolicited update-vote (UUV) that enhances
performance over the traditional read-only optimiza-
tion by eliminating all the logging activities from PrC
for completely read-only transactions. UUV exploits
the semantics of the underlying database management
mechanisms to achieve this performance enhancement.
The underlying assumptions in UUV is that each site
employs a conservative and avoiding cascading abort
scheduler, and write-ahead logging, for recovery [1].

*Supported in part by N.S.H under grants IRI-9210588 and IRI-
95020091 and a Saudi Arabian graduate student scholarship.

ermission to make digital or hard copies of part or all of tiffs work Ibr
sonal or classroom use is granted without lee provided that copies are not
.de or distributed for profit or commercial advantage and that copies bear
s notice and the full citation on the first page. Copyrights for components
this work owned by others than ACM must be honored. Abstracting with
(tit is permitted. 1"o copy otherwise, to republish, to post on servers or to
,istributc to lists, requires prior specific permission and/or a fee."
1997 ACM 0-89791-850-9 97 0002 3.50

2 THE PRESUMED C O M M I T P R O T O C O L

As in the basic 2PC, PrC consists of a voting phase and
a decision phase as shown in Figure 1. However, PrC
reduces the cost of committing a transaction by not re-
quiring that the participants to force write a commit log
record to a stable storage and to acknowledge a commit
decision during the decision phase. PrC achieves this by
making an explicit commit presumption about the out-
come of transactions in the absence of information about
the transactions. That is, after recovering from a failure,
when a participant in the execution of a distributed trans-
action inquires the coordinator of the transaction (i.e.,
the site where the transaction has been initiated) about
the status of the transaction, the coordinator responds
with a commit decision if it has no recollection about
the transaction.

In order to prevent a coordinator from wrongly inter-
preting missing information as a commitment, a coordi-
nator, in PrC, has to force write an i n i t i a t i o n log
record before sending out prepare to commit messages
to the participants during the voting phase. When a par-
ticipant receives a prepare to commit message, it force
writes a p r e p a r e d log record before replying with a
Yes vote. During the decision phase, to commit a trans-
action after all the participants have voted Yes (Figure 1
(a)), the coordinator first force writes a c o m m i t record
to logically eliminate the i n i t i a t i o n record of the
transaction, then sends out the commit decision and
finally discards any information about the transaction.
When a participant receives the decision, it writes a
non-forced c o m m i t record and commits the transac-
tion without having to acknowledge the decision. To
abort a transaction (Figure 1 (b)), on the other hand,
the coordinator does not write the abort decision in
its log. Instead, the coordinator, sends out the abort
decision and waits for acknowledgments from the par-
ticipants. When a participant receives the decision, it
force writes an a b o r t record and then acknowledges
the decision. The coordinator writes a non-forced e n d
record and forgets about the transaction once it receives
acknowledgments from all the participants.

In some distributed database environments, dis-
tributed transactions are not processed based on the
two-level transaction processing model assumed above.
Instead, these environments adopt a multi-level trans-
action processing model, such as the tree of processes
model in which a participant in the execution of a
transaction is a process that can initiate other partici-
pant processes at its site or other sites resulting in a
transaction execution tree [2]. To commit a distributed
transaction in a multi-level transaction processing model
using PrC. the participants need to be distinguished into

1.3!

http://crossmark.crossref.org/dialog/?doi=10.1145%2F331697.331725&domain=pdf&date_stamp=1997-04-01

Coordinator

Force-write
Initiation log

.Re_co_rd_

Force-write
Commit Log
.R_es°sd_

Participant
State

Active

IZorce-- w rite 15r e p-ar-e ~
_L_o% R_e_cord_

Prepared

Write Commit Committeq
Log Record

(a) C o m m i t case

Figure 1: The presumed

the coordinator (i.e., root participant), leaf participants
and cascaded coordinators (i.e., non-root and non-leaf
participants). The behavior of the coordinator and each
leaf participant in the transaction execution tree remains
the same as we have discussed above. However, each
cascaded coordinator behaves as a leaf participant with
respect to its direct ancestor and a coordinator with
respect to its direct descendants. Thus, a cascaded co-
ordinator has to force write an initiation record
before propagating the prepare to commit message to its
descendants.

2.1 PrC and Read-Only Transactions

When a participant that has executed only read oper-
ations on behalf of a transaction receives a prepare to
commitmessage, it validates the transaction with respect
to serializabilio" and recoverability [1], as would be the
case when the transaction had executed some update op-
erations. If the transaction is validated, the participant
responds with a r e a d - o n l y vote. Otherwise, the par-
ticipant votes No. In either case, the participant releases
all the resources held by the transaction once it votes
without writing any log records. A r e a d - o n l y vote
means that the transaction has read consistent data and
the participant does not need to be involved in the second
phase of the protocol because it does not matter whether
the transaction is finally committed or aborted. This
is the traditional read-only optimization [2] that allows
each read-only participant to release all the resources
held by a read-only transaction earlier than its update
counterparts, without having to write any log records
and be involved in the second phase of the protocol.

When PrC is combined with the read-only optimiza-
tion, not knowing whether a transaction is read-only or
not. a coordinator or a cascaded coordinator of a read-
only transaction still has to force write an i n i t i a t i o n
record before sending out prepare to commit messages to
its direct descendants. However, a coordinator and each
cascaded coordinator complete the protocol by writ-
ing a non-tbrced e n d log record (as if the transaction
was aborted) since it is cheaper than writing a forced
c o m m i t record. For a partially read-only transaction
(i.e.. only some of the participants in its execution have
executed only read operations), the coordinator and each
cascaded coordinator behave, as in the case of an update
transaction discussed earlier, considering only update
participants in the second phase of the protocol.

From the above discussion, it is clear that the ma-

Coordinator

Force-write
Initiation log
.R_tc°_rd_

Participant State

Active

]:~rce2wnte 15re p-~-e a
LogRecord

Prepared

Force-write Abort Aboaing
Log Record

. ~ k;o-.;d-
Non-forced
End Lo~
Record ~

(b) A b o r t c a s e

commit protocol.

jor overhead associated with PrC is the forcing of the
initiation log records. Thus, in order to utilize PrC's
advantages, there is a need to limit the adversary ef-
fects of the forcing of i n i t i a t i o n records. In our
approach, we eliminate the need for initiation records
in the presence of read-only participants and read-only
transactions which are the majority of transactions in
any general database system.

3 THE U N S O L I C I T E D U P D A T E - V O T E
O P T I M I Z A T I O N

The cost associated with read-only participants can be
reduced further if the coordinator of a transaction knows,
before the initiation of the commit protocol, which par-
ticipants are read-only in the execution of the transac-
tion. In this way, if all participants are read-only, the
coordinator can avoid writing any log records. This is
the essence of the unsolicited update-vote optimization
(u u v) .

Due to simplicity and ease of implementation, most
commercial database management systems use the strict
two-phase locking protocol (S2PL) [1] for concurrency
control and physical write-ahead logging (WAL) for
recovery [1]. Now, consider a distributed system in
which all the sites employ S2PL. In such a distributed
system, a transaction is guaranteed to be serializable and
recoverable if all its operations have been executed and
acknowledged (see [1] for proof).

To determine which participants are read-only with-
out having to (explicitly) poll their votes (which would
be the case in the traditional read-only optimization),
UUV looks at the participants from the other perspec-
tive. That is, which participants are update participants.
To determine which participants are update participants
at run time, UUV utilizes piggybacking in the acknowl-
edgment messages of the operations. Specifically, each
transaction, when it starts, is marked as a read-only
transaction. Once a participant executes thefirst update
operation (which generates an undo/redo log record) on
behalf of a transaction, it sends an unsolicited update-
vote, as part of the operation's acknowledgment to the
coordinator.

When a transaction finishes its execution and submits
its final commit primitive, its coordinator determines
which participants have sent unsolicited update-votes as
part of their operations' acknowledgments. For each
participant that has sent an unsolicited update-vote, the

332

Coordinator Participant
m n p m n q

Commit 2 2 2 2 1 1
Abort 2 1 2 2 2 2
RO 2 1 1 0 0 1
UUV 0 0 1 0 0 0

Table 1: The cost associated with PrC.

coordinator knows that the participant is an update par-
ticipant and declares it as such. Otherwise, the partici-
pant is declared read-only. At this point, the coordinator
knows all read-only participants. Furthermore, it knows
that the transaction is serializable and recoverable at each
one of them. For a completely read-only transaction, the
coordinator does not write an initiation log record
(as it would have been the case if the traditional read-
only optimization were used). Instead, the coordinator
sends a r e a d - o n l y final message to each participant
and forgets about the transaction. Once a participant
receives a read-only message, it releases the resources
held by the transaction and forgets the transaction.

For a partially read-only transaction, the coordinator
sends a read-only message to each read-only participant
without waiting for the i n i t i a t i o n record to be in
the stable storage. Thus, a read-only participant does not
have to suffer from the cost associated with forcing the
i n i t i a t i on record before it can release the resources
held by the transaction.

In multi-level transaction trees and using UUV, neither
the coordinator nor any cascaded coordinator in a read-
only transaction tree writes any log records. Further-
more, each participant receives only a single message
from its direct ancestor without sending back a reply.
For a partially read-only transaction, only cascaded co-
ordinators with update descendants (i.e., descendants
that have sent an unsolicited update-vote) need to force
write an initiation record.

Table 1 summarizes the cost associated with PrC
for update as well as read-only, two-level transactions
assuming a Yes vote from each update participant: m
is the number of log records, n is the number of forced
log writes, p is the number of messages sent from the
coordinator to each participant and q is the number
of messages sent back to the coordinator. The first
row in the table captures the cost associated with a
committing transaction while the second one captures
the cost associated with an aborting transaction. The
third row in the table summarizes the cost associated
with a read-only transaction using the traditional read-
only optimization. Recall that in a two-level transaction,
there is a single forced i n i t i a t i o n record for each
read-only transaction and a single round of messages
required by the voting phase. The traditional read-only
optimization eliminates the decision phase. The last
row in the table shows the cost associated with read-
only transaction using UUV. Using UUV, all log records
are eliminated as well as the voting phase. The only
cost associated with UUV is the decision message sent
to each participant by the coordinator.

3.1 Discussion

For completeness, we discuss in this section three other
methods that can be used to determine read-only partic-
ipants and point at their limitations.

1. By predeclaration in which each transaction indi-
cates that it will perform only read operations [2].

2. By analyzing each submitted (high level) operation
of each transaction.

3. By assuming that each participant knows when
it has executed the last operation on behalf of a
transaction, as it is the case in the unsolicited vote
optimization [5]. In this case, a participant does
not have to wait for the prepare to commit message.
Instead, it sends its vote proclaiming itself as read-
only in its own initiative once it recognizes that the
transaction has no more operations to process.

The first method is very restrictive because transac-
tions are written in an ad hoc fashion and their behavior
cannot be determined a priori except in very special
cases. The second method assumes that a coordinator is
able to process and analyze high level operations as well
as the return results from the participants. To realize
this method requires expansion in the functionality of
coordinators in current database management systems
as opposed to UUV which requires the interpretation of
a bit in an acknowledgment message. The third method
assumes that the coordinator either submits to a partici-
pant all the operations at the same time, which is again
a form of predeclaration, or indicates to the participant
the last operation at the time the operation is submitted.
The latter is possible if each transaction has knowledge
about data distribution and indicates to the coordinator
the last operation to be executed at a participant.

4 SUMMARY

In conclusion, UUV significantly enhances the perfor-
mance of PrC making it an attractive alternative to PrA
which is the choice of current commercial database stan-
dards, especially in the future highly reliable distributed
database systems with transactions having high prob-
ability of being committed rather than being aborted.
UUV can be also applied to a number of two-phase
commit variants including presumed abort [2] and lin-
ear [1]. Furthermore, UUV facilitates the applicability
of another widely advocated optimization, namely, the
last agent [4]. Specifically, UUV provides a solution to
the problem of selecting the last agent which requires
knowledge that the selected node is an update participant
and not a read-only one [3].

References

[1] Bernstein, P. A., V. Hadzilacos and N. Goodman.
Concurrenc~" Control and Recover), in Database
Systems. Addison-Wesley, Reading, MA, 1987.

[2] Mohan, C., B. Lindsay and R. Obermarck. Trans-
action Management in the R" Distributed Data
Base Management System. ACM Transactions on
Database Systems, 11(4), Dec. 1986.

[3] Samaras, G. Personal communications, Pitts-
burgh, Aug. 1996.

[4] Samaras, G., K. Britton, A. Citron and C. Mohan.
Two-Phase Commit Optimizations in a Commer-
cial Distributed Environment. Distributed and
Parallel Databases, 3(4):325-360, Oct. 1995.

[5] Stonebraker, M. Concurrency Control and Con-
sistency of Multiple Copies of Data in Distributed
INGRES. IEEE Transactions on Sofi~'are Engi-
neering, 5(3):188-194, May 1979.

33

