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Abstract: In order to provide data consistency in the presence of failures and concurrency, database methods will continue to be important 
to the processing of shared information in a mobile computing environment. It is important, therefore, that we develop transaction processing 
systems that accommodate the limitations of mobile computing, such as frequent disconnection, limited battery life, low-bandwidth 
communication and reduced storage capacity, so that we can migrate existing database applications to mobile environments. In this paper, 
motivated by these needs, we propose a mobile transaction processing system that supports disconnected transaction processing in a mobile 
client-server environment. The proposed system employs compacts, which encapsulate access methods, state information and consistency 
constraints, to allow for local management of database transactions on mobile computers. 

1. Introduction 

Several exciting advances in wireless technology 
have made data access by mobile computer users 
possible anywhere, anytime, in any way. To be 
effective, mobile users should have the ability to 
both query and update public as well as private 
corporate databases which typically utilise trans- 
actions to provide data consistency and reliability 
despite concurrent updates and system failures. 
Thus far, the focus on data management in mobile 
environments has been primarily on supporting 
efficient data retrieval while attempting to min- 
imise energy consumption by the mobile computer 
[1-3]. Transaction processing and efficient update 
techniques for disconnected mobile operations 
have just recently attracted some attention. 

Our goal has been to devise methods to allow 
remote database access and update by mobile com- 
puters regardless of connection status and despite 
the various limitations introduced by mobility and 
portability. Furthermore, we want to be able to 

support existing (legacy) database applications 
without modification and, at the same time, sup- 
port the development of new applications which 
respond to the mobile environment. To this end, 
we have developed PRO-MOTION [4], a flexible 
and adaptive infrastructure for the support of 
transaction processing in a multi-tier, mobile 
client-server operating environment. It allows 
mobile clients to continue executing competing 
transactions on data items cached locally while 
they are moving and not connected to the network, 
incorporating the modified data back into the 
database when reconnection occurs. In this paper, 

we will provide a high-level description of PRO- 
MOTION, its goals, and, in particular, its fun- 
damental building block, the compact. Compacts 
are PRO-MOTION's basic unit of caching and 
consistency and the basis for PRO-MOTION's 
flexibility and adaptability to support a number of 
concurrency control methods which provide vary- 
ing levels of data consistency. 

In our discussion in this paper, we assume a 
general mobile computing environment (see Fig. 
1) in which the network is made up of stationary 
and mobile hosts (MHs) [5]. Unlike stationary 
hosts, MHs change location and network connec- 
tions while computations are being performed. 
MHs maintain their connection to the high-speed 
fixed network by means of specialised stationary 

hosts, called Mobility Support Stations (MSSs), 
which are equipped with compatible wireless com- 
munications capabilities. We will assume that, at 
any given instant, each MH is either connected 
to the network by a specific MSS or completely 
disconnected from the fixed portion of the net- 
work. The logical or physical area served by a single 
MSS is called a cell. 

MHs are, in general, less robust than station- 
ary hosts. MHs typically have limited battery life, 
reduced storage capacity, and are subject to phys- 
ical hazards, such as falls, immersion, and theft. 
In addition, the wireless connection to the station- 
ary network tends to be low-bandwidth, expen- 
sive, and tenuous. As a result, MHs may become 
disconnected from the stationary portion of the 
network if they move beyond the range of any 
MSS (for example, mh_l in Fig. 1). Also, an MH 
becomes disconnected if the communication sub- 
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Fig. 1. Mobile network. 

system is powered down to conserve energy, save 
money, and extend battery life. Such a discon- 
nection (unlike a dead battery) does not imply the 
failure of the MH and processing may continue as 
long as the MH has the needed resources (e.g. 
database items or objects) stored locally. 

The rest of the paper is structures as follows. In 
the next section, we provide a broad overview of 
transaction processing concepts and elaborate on 
the motivations underlying PRO-MOT ION.  In 
Section 3, we present a real-world scenario which 
demonstrates some of the various requirements 
of mobile transaction processing. In Section 4, we 
describe our approach to mobile transaction pro- 
cessing, introduce the not ion of compacts, discuss 
the advantages they provide and show how they 
can be used to support our motivating application. 
Finally, in Section 5, we present our conclusions 
and suggest areas for further inquiries and testing. 

2. Background 

In this section, we first briefly review the notion 
of transactions and how transactions can provide 
advantages for the building of reliable distributed 
systems. We then discuss the current proposals for 
mobile management of data including mobile file 
systems. 

Just as database management  systems have 
proven important to guarantee data consistency 

in multi-user systems, transactions have proven a 
useful abstraction for database systems. A trans- 
action is a set of interdependent operations on a 
database that perform a function or carry out a task. 
Transactions can be used to model a variety of'real 
world' activities. Since partial completion of a task 
can result in data inconsistencies and corrupt the 
database, a transaction either executes in its entir- 
ety, completing the task, or has no effect on the 
system. That  is, each set of operations in a trans- 
action is either committed, making the changes 
permanent in the database, or aborted, obliterating 
all effects and leaving the database unchanged. 

Traditionally, each transaction is assumed to 
have the following A C I D  properties: 

�9 Atomicity - if any of the operations contained 
in a transaction are executed, all of the opera- 
tions in the transaction are executed. 

�9 Consistency - any transaction, executed singly 
against a 'correct' database, completes with the 
database in a 'correct' state. 

�9 Isolation - each transaction executes inde- 
pendently of other transactions. 

�9 Durability - once committed, the effects of a 
transaction become permanent in the database, 
ensured to survive any failure. 

By definition, a 'correct' database will remain cor- 
rect after the execution of any number of transac- 
tions in a serial fashion (i.e. one at a time). W h e n  
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transactions are executed concurrently, we can 
guarantee the correctness of the database if the 
concurrent execution of the transactions results 
in a database state identical to that achieved by 
some serial execution of the same transactions 
(i.e. seriaIisability) [6]. The serialisability of trans- 
actions is the basis for the correctness and reliability 
of database systems and enormous strides have 
been made to improve the concurrency control, 
recovery, and commit processing protocols to 
ensure serialisability and the ACID transaction 
properties [7]. 

Most current transaction processing systems 
are built upon the client-server paradigm. In a 
client-server system, the database resides on one 
or more large (and, presumably, fast) computers 
called servers. The application programs are 
actually executed on smaller, connected computers 
known as clients. Each operation is communicated 
to the server, which executes the operation against 
the database and, in turn, communicates the result 
to the client. If the clients are mobile, all com- 
munications must be completed over the wireless 
connection. In typical client-server environments, 
a disconnected client is powerless because all 
queries and updates must be executed by the server. 
It becomes clear, therefore, that to process trans- 
actions while disconnected, we must keep data on 
the MH and manage database operations locally. 

In order to better describe local transaction pro- 
cessing on an MH, it is often helpful to generalise 
the traditional ACID properties and talk instead 
about visibility, consistency, permanence, and 
recovery. Visibility, for instance, refers to the ability 
of a transaction to see the effects on data items 
caused by other transactions which are still ex- 
ecuting, whereas recovery is the ability to take the 
database to some state that is considered correct, 
not necessarily reflecting updates from all com- 
mitted transactions. Traditionally the effects of a 
transaction are not made visible until the trans- 
act ion commits and the changes are made 
permanent in the database. Since no transactions 
on a disconnected MH can be incorporated in 
the server database, subsequent transaction using 
the same data items could not proceed until con- 
nection occurs and the mobile transaction com- 
mits. By making the results of a transaction visible 
as soon as it begins to commit at the MH, we can 
allow additional transactions to progress even 
though the data items involved have been modi- 
fied by an active transaction. This leads to the 
notion of local visibility and local (vs. global) 
commitment. 

If the system is augmented to operate upon 
local copies of the data (e.g. data shipping), the 
dependence on the server can be reduced but more 
resources will be consumed on the MH and the 
availability of data to the mobile host can still be 
crippled by disconnection. We might be tempted 
to tolerate such a handicap as a penalty for mobil- 
ity. We discover, however, that such a discon- 
nection threatens system-wide throughput. Many 
systems use lock-based concurrency control to 
ensure controlled access to data to prevent data 
inconsistencies and preserve database integrity 
constraints. Suppose, for example, that an MH 
sends a lock operation to the server in preparation 
for an update and then disconnects. In most 
database systems, the locked data would be 
unavailable to any client, stationary or mobile, 
until the MH reconnects and releases the lock. 
Worse, if the MH is damaged and fails to reconnect 
at all, the resources could be held indefinitely. If, 
on the other hand, an optimistic concurrency 
control scheme is employed, competing transac- 
tions are allowed to access an item held by the 
disconnected MH and any operations performed 
during disconnection are likely to be invalidated, 
making it difficult, if not impossible, to do useful 
work on a disconnected MH [8]. All client-server 
systems are ultimately limited by the reliability and 
performance of the wireless connection. 

The first systems that were intended to support 
processing by a disconnected mobile shared data 
at the file level and were based on data shipping 
or caching [9-12]. While many Unix operations 
can be supported at the file level, transaction 
processing requires finer granularity for caching 
and control. Recent research has attempted to 
develop appropriate transaction models for mobile 
computing. Of these, some approaches examine 
how traditional transactions could support remote 
access from a mobile computer with no local 
database processing capabilities, such as a dumb 
terminal [13, 14]. In contrast, approaches that aim 
to support transactions which perform updates at 
the mobile computer (e.g. [15-18]), propose new 
mobile transaction models and correctness criteria 
for data consistency that are weaker than the stand- 
ard serialisability so that they can cope more 
effectively with the restrictions of mobility and 
wireless communication. Even though many appli- 
cations do not require strict serialisability, there 
are important applications, including existing 
business applications such as inventory databases 
[19], that require the data consistency guarantees 
offered by serialisability. 
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Clearly, there is no single proposed transaction 
model which satisfies all of the requirements for 
transaction processing within the confines of 
mobile limitations. It is possible, therefore, that 
the best system for the management of mobile 
transactions would involve a number of transaction 
models and their associated concurrency control 
protocols and consistency guarantees. In the next 
section, we present a practical example which 
illustrates the need for a flexible mobile transaction 
processing system. This particular example is based 
upon the actual experience of a common and con- 
tract carrier and serves to illustrate the need to 
support multiple transaction types and varied 
consistency requirements. 

3. Motivating Application: 
Commodity Dispatch 

Mobile computers are becoming more and more 
common in the trucking industry. Each truck is 
fitted with a small computer which communicates 
via satellite or radio links to a database site man- 
aged by the trucking company. The mobile com- 
puter runs specialised software which gathers 
data from vehicle instruments, digitiser pens and 
keyboard. The collected data is used to update 
the corporate database and is used for billing, 
compliance, equipment management and driver 
payroll. Often electronic means will be used to 
transmit funds directly to the driver for fuel, tolls, 
permits, living expenses and repairs. 

In order to better understand the requirements 
of mobile transaction processing, let us look at a 
typical scenario faced by a contract carrier which 
has accepted a contract to move a large quantity 
of fertiliser from the manufacturing facility to a 
number of rural farms and co-ops. If the trucks are 
privately owned and sub-contracted to the trucking 
company, each driver is free to accept or reject any 
load that is offered. Even though the company has 
little control over each individual truck, the 
company will be penalised if it fails to complete 
delivery of the fertiliser within a specified period. 

Many interesting problems are raised here. 
For example, each truck should be offered a portion 
of the available loads, but care should be taken 
so that the quantity of fertiliser offered to all of 
the trucks does not greatly exceed the quantity 
available. If, for example, every truck is offered the 
entire quantity, trucks could be stranded with insuf- 
ficient loads to pay for expenses. In this case, the 
total amount of fertiliser allocated to each truck 

may be allowed to vary from actual availability 
(controlled divergence), as long as the total vari- 
ance is within limits and eventual consistency is 
obtained. Since a copy of available load informa- 
tion cached at the mobile host may carry sufficient 
information to make an attempted pickup, con- 
nection to the database server is not required before 
proceeding to the factory for a load. 

As trucks arrive to load with fertiliser, each 
truck must obtain a shipping manifest from the 
trucking company. Each manifest uniquely iden- 
tifies a specific load of fertiliser and indicates the 
location and time of loading, the pertinent infor- 
mation about the truck and driver, the exact meas- 
ure of material loaded and a description of any 
exceptions that should be noted for insurance pur- 
poses. This information should be made permanent 
in the database before the truck is permitted to 
travel or receive advances for fuel. Therefore, it 
may be necessary to be connected to successfully 
complete this transaction. 

Once the load is delivered, the driver records 
the delivery date and time, obtains a signature 
from the receiving party, notes any discrepancies 
between the delivered goods and the original 
bill of lading and checks the list of available loads 
in order to proceed to the next shipper for loading. 
The delivery information should be incorporated 
in the database as soon as possible, but a delay 
will only postpone the billing process. This trans- 
action could be finalised locally, in spite of discon- 
nection, but made permanent in the database 
whenever reconnection occurs. 

In this scenario, one can easily identify three 
distinct types of transactions with respect to data 
consistency requirements: 

�9 DISPATCH transactions which tolerate con- 
trolled divergence, with the possible existence 
of a global constraint (i.e. total offers do not 
exceed available fertiliser _+ tolerance); 

�9 MANIFEST (ACID) transactions, whose updates 
must be made permanent in the server database 
before any other transactions pertaining to the 
load may be processed (i.e. recording load 
information and obtaining unique manifest 
number); and 

�9 BILLING transactions, which update manifest 
information and make their results visible 
locally so as to not delay the acquisition and 
loading of more fertiliser, but update the data- 
base only when connected. 

The transaction processing system presented in the 
balance of this paper will provide the mechanisms 
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to support these different types of transactions 
which maintain database consistency while allow- 
ing flexibility in coordinating and reconciling 
competing transactions. 

4. PRO-MOTION: A Mobile 
Transaction Processing 
System 

host to negotiate and manage compacts and 
provide local transaction management for the MH, 
and a mobility manager executing at the MSS to 
help manage the flow of updates and data between 
the other components in the system. The use of 
the mobility managers allows PRO-MOTION to 
be generalised into a multi-tier client-server archi- 
tecture. In this paper, however, we will deal only 
with a three-tier structure. 

The limitations of the mobile environment pre- 
sent a number of challenges to traditional transac- 
tion processing systems (as discussed in Section 
2). To that end, in this section, we propose a new 
t ransact ion  processing system, called PRO- 
MOTION, to deal with the problems introduced 
by disconnection and limited resources. The salient 
features of PRO-MOTION are: 

�9 the use of compacts, which function as the basic 
unit of data replication for caching, prefetching, 
and hoarding, 

�9 transaction management on the mobile host 
and, finally, 

�9 exploi tat ion of object semantics wherever 
possible to improve site autonomy and increase 
concurrency. 

These features, which are described below, when 
used together, can minimise the handicap imposed 
by mobile limitations. 

The high-level architecture of PRO-MOTION, 
shown in Fig. 2, consists of a compact manager at 
the database server, a compact agent at the mobile 

4.1. Compacts 

A compact is, broadly speaking, a satisfied re- 
quest to cache data, enhanced with obligations 
(such as a deadline), restrictions (such as a set of 
allowable operations) and state information (such 
as the number of accesses to the object). The 
compact represents an agreement between the 
database server and the mobile host. In this 
agreement, the database server delegates control 
of the data to the MH. The MH, in return, agrees 
to assume responsibility for the data and to honor 
specific conditions set forth by the database server. 
As a result, the database server need not be aware 
of the operations executed by individual trans- 
actions on the MH but, rather, sees periodic up- 
dates to a compact for each of the data items 
manipulated by the mobile transactions. Compacts 
are represented in our system as objects (Fig. 3) 
which encapsulate 

�9 the cached data; 

�9 methods (i.e. code) for the access of the cached 
data; 
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Fig. 3. Compacts as objects. 

�9 information about the current state of the 
compact; 

�9 consistency rules, if any, which must be followed 
to guarantee global consistency of the data 
item; 

�9 obligations, such as a deadline which creates 
a bound on the time for which the rights to a 
resource are held by the mobile host or restric- 
tions on the visibility of locally committed 
updates; and 

�9 methods which provide an interface with which 
the MH may manage the compact. 

The management of compacts is a cooperative 
effort by the database server and the mobile hosts. 
Compacts are obtained from the database via 
requests by the MH when a real or anticipated data 
demand is created. If data is available to satisfy 
the request, the database server creates a compact 
(with the help of the compact manager) which is 
recorded in the compact store and transmitted to 
the MH to provide the data and methods to satisfy 
the needs of transactions executing on the MH. 
The request can be tailored to cause only the trans- 
mission of missing or outdated components of a 
compact. In this way, transmitting the compact 
methods, which may be very expensive, is avoided 
if they are already available on the MH. Once 
the MH receives the compact, it is recorded in a 
compact re~stry which is used by the compact agent 
to track the location and status of all active 
compacts. 

Each compact has a common interface which 
is used by the compact agent to manage the com- 
pacts listed in the compact registry and to perform 
updates submitted by transactions run by appli- 
cations executing on the MH. The basic set of 
methods necessary to manage compacts includes 

�9 inquire(), which retrieves useful information 
about the state of the compact (such as name, 
data type and version, cache status, outstanding 
transaction IDs, and remaining storage); 

�9 notify(), used to notify the compact when the 
mobile environment changes; 

�9 dispatch(), used to perform operations on the 
compact on behalf of transactions executing on 
the MH; 

�9 commit(), to make the operations of a specified 
transaction permanent on the database; 

�9 abort(), to abandon the changes made to the 
compact data by a given transaction; and, 

�9 checkpoint(), to store the current state of the 
compact for purposes of recovery. 

The implementation of a common interface simpli- 
fies the design of the compact agent and guarantees 
the minimum acceptable functionality of a specific 
compact instance. 

The compacts are periodically updated as the 
result of processing transactions on the MH. 
When the needs of the mobile host or the database 
server change, compacts may be renegotiated to 
redistribute resources and, when the MH no longer 
needs the resources, compacts are returned to the 
database server and deleted from the local compact 
registry and the compact store (if necessary). 

4.2. Using compacts to implement 
dynamic replication 

The flexibility offered by compacts allows PRO- 
MOTION to support a number of dynamic replica- 
tion schemes (as well as caching) with a variety of 
consistency constraints. Compacts can be used to 
represent both simple schemes such as check-in/ 
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check-out items and leases [20], as well as other 
more complex correctness criteria [21]. Let us ill- 
ustrate this by showing how leases and check-in/ 
check-out items can be realised using compacts and 
how these compacts can be used to support transac- 
tions with different visibility properties, such as the 
last two transactions in the example in Section 3. 

Lease semantics provide that a shared data item 
is given to all requesters (leaseholders) with an 
expiration time. Leaseholders with read access are 
free to read the item (as long as the lease has not 
expired), but must obtain permission from all other 
leaseholders before modifying a leased item. There- 
fore, a compact designed to support leases (Fig. 4) 
includes, in addition to the methods for the com- 
mon interface, two type-specific methods, read() 
and modify(). The read() method simply checks 
the expiration (specified in the compact as an 
obligation) and, if unexpired, satisfies the read 
request, returning the value of the compact data 
(Manifest 10292, B/L#A3439392...). When the 
modify() method is invoked and the lease has not 
already been converted to write access, the com- 
pact must communicate with the database server. 
The database server obtains permission from the 
other leaseholder compacts and communicates 
permission (or refusal) to the lease compact on the 
MH performing the modification. This might be 
an opportune time to renegotiate the compact 
deadline to prevent monopolisation of the resource 
by the MH requesting write access. A lease com- 
pact requires no consistency rules and a contains a 
single obligation, the expiration time (Dead- 
line=48999.00). The compact state (Last Update) 
is maintained by the type-specific and interface 
methods. 

Our trucker can use such a compact to obtain 
exclusive access to the manifest needed to offi- 
cially record his/her acceptance of a load (i.e. the 
MANIFEST transaction in our example). Perhaps a 
small set of manifests would be reserved to each 
truck and kept in a single compact. The deadline 
would then be arranged so that, if the unit disap- 
peared, the manifests would eventually be assigned 
to another truck. No use of a manifest from an 
expired compact would be allowed to satisfy the 
transaction, as that manifest may have already been 
re-assigned to another load. An indefinite dead- 
line (i.e. infinite) would reserve the manifest to 
the requesting truck forever, requiring some type 
of administrative intervention to return the mani- 
fest to the database server. 

Compacts may also be used to manage check- 
in/check-out items. A check-in/check-out item is 

little more than a lease item with exclusive read 
and write access to the data item. When a data 
item is first requested for check-out, no associated 
active compact object (i.e. a compact with an 
unexpired deadline) will exist in the compact store 
at the database server. 

A check-in/check-out compact could be used 
for the final BILLING transaction in our example. 
Since the MH holds complete read and write access 
to the data item, the MH becomes ultimately 
responsible for the correctness of the data in the 
compact. When local transactions update the 
manifest and signal an intent to commit, the results 
can be made immediately visible to subsequent 
transactions, even though the results may not 
have been recorded at the database server. This 
technique allows multiple transactions to access 
and update the manifest data even though the 
MH is disconnected. The central database can be 
updated when the MH reconnects. If the compact 
has expired, there are two possibilities: 

�9 If no other  t ransact ion has modified the 
manifest, the update may be stored despite the 
expired deadline. This is an example of optim- 
istic concurrency control. 

�9 If the copy of the manifest in the centralised 
database has been modified, the update will be 
aborted and the truck driver will be requested 
to repeat the entry of the proof of delivery, effec- 
tively 'redoing' the transaction. 

The notify() method of this particular compact, 
triggered by the reconnection of the MH to the 
fixed network, could be written to handle this 
reconciliation of the manifest compact with the 
database server. 

Because compacts include the code for access 
to shared objects, compacts provide a high degree 
of adaptability which may be exploited to respond 
dynamically to changes in the mobile environ- 
ment. For example, compacts may react to an 
increased availability of hard disk by automatically 
increasing the amount of data cached through 
prefetching and hoarding, or may adapt to an over- 
loaded communication subsystem by reducing the 
frequency of transmitted updates. The use of 
compacts, therefore, creates a flexible and adapt- 
able framework to support mobile transaction 
processing. 

In each of these cases, we have processed as 
much of the transaction on the mobile host as 
possible, without resorting to communication with 
the database server. The database server is con- 
tacted only when convenient or when absolutely 
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required by the semantics of the transaction. The 
compacts associated with each data type (and, by 
association, each transaction type) are designed 
to meet the requirements of a particular data 
object, simplifying the job of local transaction 
management. 

In the next section, we elaborate further on the 
usage of compacts and illustrate one additional 
advantage offered by compacts, namely, their 
ability to support concurrency control methods 
which exploit object structure and/or semantics 
[22-24]. 

4.3. Using compacts to support  
semantics-based concurrency control 

In order to better support disconnected operations 
and strict data consistency, such as that provided 
by serialisability, the mobile transaction processing 
system can exploit object semantic information to 
provide finer granularity of caching and concur- 
rency control and to allow for asynchronous 
manipulation of the cached objects and unilateral 
commitment of transactions on the mobile host. 
As an example, escrow items and fragmentable 
items have characteristics that make them espe- 
cially suitable for mobile transactions. 

The basic idea behind both escrow [25] and 
fragmentable items [18] is to split large or complex 
objects into smaller fragments of the same type 
by exploiting the object organisation. With the 
appropriate split, a mobile host can cache a data 
partition (consisting of one or more fragments) of 
just the right size, minimising the storage require- 
ments on a mobile host. The second idea is to 
make these fragments the unit of reconciliation of 
updates, that is, the unit of consistency. To allow 
more flexibility (as well as to deal with situations 
in which fragmentation under strict consistency 
requirements is not possible) applications can 

explicitly define the consistency constraints to be 
enforced. 

A 'master copy' of the escrowable or fragmen- 
table data resides on a database server. Mobile 
hosts specify the granularity of the data to be 
cached when placing a compact request by speci- 
fying the required size of the data partition. The 
data partition is logically removed from the 'master 
copy', packaged into a compact and transmitted 
to the MH. The data contained in the compact is 
only accessible by the transactions on the mobile 
host. However, the remaining part of the 'master 
copy' is not affected and it is available to other 
MHs as subsequent compacts. Object fragments 
can be logical (i.e. escrow) or physical (i.e. frag- 
ments) divisions of the data object. During the 
update, physical fragments need to be physically 
re-assembled into a single object while logical 
fragments are combined with some logical or 
arithmetic operation. 

In order to support unilateral commitment of 
transaction executing on a mobile host, we must 
retain the effects of transaction operations on each 
fragment when the fragments are merged. The 
consistency conditions embodied in the compact 
methods specify constraints on the fragment which 
need to be satisfied to maintain the consistency of 
the entire object. These conditions might include 
allowable operations and constraints on their input 
values and conditions on the state of the object. 
Some operations on fragmentable items may be 
disallowed or restricted to guarantee that the 
fragments may be properly merged. 

Figure 5 illustrates a compact designed to sup- 
port escrowable data (i.e. a portion of an aggregate t 
item which has been allocated to satisfy requests 

1An aggregate is a data object which represents a quantity of 
identical and interchangeable items, such as bushels of wheat 
or dollars in an advance account. 
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from transactions executing on the mobile host). 
In this particular case, taken from the DISPATCH 
transaction in our trucking example, the quantity 
indicates the amount of fertiliser available to the 
truck. In addition to the methods which provide 
a common interface, this compact contains two 
type-specific methods: increase and decrease.  
The data (i.e. 267) may only be accessed by these 
two methods. Each call to increase is validated 
against the maximum value (i.e. 300) specified 
in the consistency rules, and the compact state 
(i.e. Escrow Journal), which reflects validated 
requests by concurrent transactions. The call 
succeeds only if the consistency rules will not be 
violated. Similarly, each call to decrease (caused, 
for example, by the truck's acceptance of a load) 
is validated against the minimum value (i.e. 
100) and the compact state. Adherence to the 
consistency rules will insure that the global con- 
sistency of the aggregate values will be guaranteed 
even if transactions are allowed to commit uni- 
laterally on the MH. Because unilateral commit- 
ment is possible, transactions on other MHs may 
proceed even though the only obligation, a 
deadline for return of the escrow quantity, has been 
set to unlimited (i.e. Infinite). In most cases a 
definitive deadline would be set to insure that any 
quantity of fertiliser not moved by this truck would 
be made available to competing units. At  some 
point the expiration of the compact could be set 
to coincide with the expiration of the contract with 
the fertiliser shipper, if no loads will be available 
beyond that time. Renegotiation of these escrow 
contracts would be used to allow aggressive drivers 
to control the bulk of the material being hauled. 

4.4. System architecture 

As mentioned in the introduction, one of our 
motivations has been to support existing database 
applications by facilitating data access by trans- 
actions on mobile hosts. In such an environment, 
it might not be easy, or even possible, to incorp- 
orate logic to manage compacts into the legacy 
database server 2. If a database server lacks compact 
management capabilities, a compact manager can 
provide that functionality. The compact manager 
acts as a front-end to a database server, shielding 
the database server from the idiosyncrasies of the 
mobile environment. The compact manager may 

2A similar situation exists in multidatabase systems that attempt 
to integrate pre-existing database systems while retaining the 
design autonomy of the component database systems [6]. 

execute on an independent host, or it may execute 
on the same host as the database server (as shown 
in Fig. 2). 

If a compact manager is added to a legacy data- 
base, our system utilises an open nested transaction 
model as the basis for concurrency control and 
recovery for mobile transactions processed against 
the database server. To the database server, the 
compact manager appears to be an ordinary data- 
base client, executing large, long-lived trans- 
actions. These transactions become the root trans- 
actions of our nested transaction model. Resources 
needed to create compacts are obtained by these 
transactions through normal database operations 
(reads and writes). Mobile transactions (transac- 
tions processed by each mobile host) appear as 
children in the open nested transactions. The 
transactions processed on the mobile host appear 
as siblings. Each sibling transaction may commit 
or abort independently as long as the consistency 
constraints expressed in the compacts that have 
shared access are not violated. It should be noted 
that a mobile transaction may invoke multiple 
compacts and a compact may support the execu- 
tion of multiple transactions. The responsibility 
for the correct execution of mobile transactions is 
assumed by the MH and accomplished by utilising 
the methods encapsulated in the compacts. The 
root transactions are managed by the database 
server and committed by the compact manager. 

On each MH, a compact agent is responsible for 
processing requests on behalf of transactions exe- 
cuting on the MH. These compact agents are more 
than just the interface between the compact man- 
ager and the transactions on the mobile hosts. The 
compact agent is much like the daemon responsible 
for cache management in the CODA file system 
[17]. The compact agent handles disconnections 
and manages storage on a MH. It monitors activity 
and interacts with the user and applications to 
maintain lists of items which are candidates for 
caching. However, unlike the CODA daemon, or 
other cache managers, the compact  agent is 
actively involved in transaction processing on the 
mobile host, acting as a transaction manager for 
transactions executing on the mobile host. The 
compact agent is responsible for concurrency 
control, logging and recovery. Consequently, 
transaction requests, commits, aborts and journals 
are managed by the compact agent. Requests from 
local t ransact ions are processed against the 
compacts and are granted or denied. When  a 
transaction commits or aborts, the compacts and 
transaction journals are updated accordingly. 
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Recall that each compact includes a set of 
methods used for management which are common 
to all compacts. In addition, each compact may 
contain specialised methods which support the 
particular type of data or concurrency control spe- 
cific to that particular compact. As a result, many 
of the functions associated with the compact agent 
are actually executed by the compacts themselves 
upon receipt of messages from the compact agent 
triggered by executing transactions or changes in 
the MH state. 

Some system events will cause the compact's 
state at the compact manager to be updated to 
reflect the effects of all outstanding committed 
transactions. The specific triggers for updates may 
vary, but should include: 

1. When renegotiation must be performed for 
additional resources and the update can be 
piggybacked onto the request. 

2. As part of a handoff procedure when a transfer 
to a new cell is initiated. 

3. When the number of commit requests reaches 
a predetermined threshold, usually determined 
by the memory capacity of the mobile host. 

4. In a 'panic' situation arising from impending 
disconnection from: 

�9 weak or low battery power; 
�9 deliberate disconnection by the user; 
�9 or partial loss or weakness of signal detected 

by the communication subsystem. 

5. A 'safe' interval before an approaching deadline 
(e.g. a trigger could be set for midway between 
the last attempt and the deadline). 

6. When specifically requested by a critical applica- 
tion being processed on the mobile host. 

Once the update is acknowledged by the com- 
pact manager, the compact agent updates journals 
and logs appropriately. In this manner, entire 
groups of committed transactions may be pro- 
cessed with a single update to the compact at each 
end, with significant savings in communication 
overhead. 

Recall that each of the interactions between 
the compact agent and the compact manager are 
processed via the MSS. To improve system per- 
formance, the MSS can take an active role in the 
processing of compacts between the compact agent 
and the compact manager. The module which 
performs these functions on the MSS is called 
the mobility manager (MM). Once an update i s sent 
to the MM, the MM functions on behalf of the 
compact agent to complete delivery of the update 

message. This update by proxy helps insure that the 
updates are received by the compact manager in a 
timely fashion. If the MH sends an update and 
immediately disconnects, the update can be 
recorded by the compact manager and the acknow- 
ledgment can be stored by the MM and properly 
processed later, once the MH reconnects. The MM 
maintains mobility tables in which each mobile 
control block (MCB) contains location and database 
access information which pertains to a single MH. 
When a MH moves between ceils, the MM uses 
the information stored in the MCB to facilitate the 
handoff to a new MSS (and corresponding MM). 

The addition of the compact manager, com- 
pact agent and mobility manager provides a func- 
tional infrastructure that will move some of the 
responsibility for processing and committing 
transactions down to the MSS and the MH, redu- 
cing the dependence on communications with the 
database server. 

5. Conclusions 

Recognising the need for a suitable mobile trans- 
action processing system, in this paper we have 
presented PRO-MOTION, which provides support 
for transaction processing by disconnected mobile 
hosts without grossly impairing access by transac- 
tions executed by the stationary host and other 
MHs. PRO-MOTION is designed to facilitate the 
migrat ion of existing applicat ions and the 
development of new database applications in a 
mobile environment. 

We have introduced compacts, PRO-MOTION's 
basic unit of caching, prefetching, and hoarding, 
which encapsulate access methods with database 
data to allow uniform management of transac- 
tions despite varying consistency constraints and 
correctness criteria. Compacts provide a mechan- 
ism for flexible, adaptive, and extensible support 
of traditional transactions, extended transaction 
models, and new schemes exploiting data structure 
or operation semantics to achieve efficiency and 
correctness. The management of compact dead- 
lines allows for automatic recovery of resources 
held by MHs which exceed negotiated limits on 
disconnection.  By associating data with the 
methods (i.e. code) that manipulate the data, 
PRO-MOTION provides the mechanism by which 
the MH will automatically receive code necessary 
to manipulate data in the compact. This eliminates 
the need to write a comprehensive local transac- 
tion manager which contains code for types which 
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may never be used and allows for the automatic 
updating of access methods as the system evolves. 

We are building a prototype PRO-MOTION 
system based upon the ideas presented in this paper 
to test the concept and experiment with various 
implementations. Our implementation is well 
underway using Java. A number of data types, 
including fragmentable stacks and leases, have 
been coded in the form of a portable compact 
library that will enhance sharing and reusability. 
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