
PRO-HOTION: Support for Hobite
Database Access

Gary D. Walborn and Panos K. Chrysanthis
Department of Computer Science, University of Pittsburgh, Pittsburgh, PA, USA

Abstract: In order to provide data consistency in the presence of failures and concurrency, database methods will continue to be important
to the processing of shared information in a mobile computing environment. It is important, therefore, that we develop transaction processing
systems that accommodate the limitations of mobile computing, such as frequent disconnection, limited battery life, low-bandwidth
communication and reduced storage capacity, so that we can migrate existing database applications to mobile environments. In this paper,
motivated by these needs, we propose a mobile transaction processing system that supports disconnected transaction processing in a mobile
client-server environment. The proposed system employs compacts, which encapsulate access methods, state information and consistency
constraints, to allow for local management of database transactions on mobile computers.

1. Introduction

Several exciting advances in wireless technology
have made data access by mobile computer users
possible anywhere, anytime, in any way. To be
effective, mobile users should have the ability to
both query and update public as well as private
corporate databases which typically utilise trans-
actions to provide data consistency and reliability
despite concurrent updates and system failures.
Thus far, the focus on data management in mobile
environments has been primarily on supporting
efficient data retrieval while attempting to min-
imise energy consumption by the mobile computer
[1-3]. Transaction processing and efficient update
techniques for disconnected mobile operations
have just recently attracted some attention.

Our goal has been to devise methods to allow
remote database access and update by mobile com-
puters regardless of connection status and despite
the various limitations introduced by mobility and
portability. Furthermore, we want to be able to

support existing (legacy) database applications
without modification and, at the same time, sup-
port the development of new applications which
respond to the mobile environment. To this end,
we have developed PRO-MOTION [4], a flexible
and adaptive infrastructure for the support of
transaction processing in a multi-tier, mobile
client-server operating environment. It allows
mobile clients to continue executing competing
transactions on data items cached locally while
they are moving and not connected to the network,
incorporating the modified data back into the
database when reconnection occurs. In this paper,

we will provide a high-level description of PRO-
MOTION, its goals, and, in particular, its fun-
damental building block, the compact. Compacts
are PRO-MOTION's basic unit of caching and
consistency and the basis for PRO-MOTION's
flexibility and adaptability to support a number of
concurrency control methods which provide vary-
ing levels of data consistency.

In our discussion in this paper, we assume a
general mobile computing environment (see Fig.
1) in which the network is made up of stationary
and mobile hosts (MHs) [5]. Unlike stationary
hosts, MHs change location and network connec-
tions while computations are being performed.
MHs maintain their connection to the high-speed
fixed network by means of specialised stationary

hosts, called Mobility Support Stations (MSSs),
which are equipped with compatible wireless com-
munications capabilities. We will assume that, at
any given instant, each MH is either connected
to the network by a specific MSS or completely
disconnected from the fixed portion of the net-
work. The logical or physical area served by a single
MSS is called a cell.

MHs are, in general, less robust than station-
ary hosts. MHs typically have limited battery life,
reduced storage capacity, and are subject to phys-
ical hazards, such as falls, immersion, and theft.
In addition, the wireless connection to the station-
ary network tends to be low-bandwidth, expen-
sive, and tenuous. As a result, MHs may become
disconnected from the stationary portion of the
network if they move beyond the range of any
MSS (for example, mh_l in Fig. 1). Also, an MH
becomes disconnected if the communication sub-

�9 Springer-Verlag London Ltd
Personal Technologies (1997) 1: l 71-181

1 72

/

// '\\ (~
Q \\ mh: Mobile Host

\ MSS: Mobility-Support Station

Wired Connection
Wireless Connection
Cell Boundary

Fig. 1. Mobile network.

system is powered down to conserve energy, save
money, and extend battery life. Such a discon-
nection (unlike a dead battery) does not imply the
failure of the MH and processing may continue as
long as the MH has the needed resources (e.g.
database items or objects) stored locally.

The rest of the paper is structures as follows. In
the next section, we provide a broad overview of
transaction processing concepts and elaborate on
the motivations underlying PRO-MOT ION. In
Section 3, we present a real-world scenario which
demonstrates some of the various requirements
of mobile transaction processing. In Section 4, we
describe our approach to mobile transaction pro-
cessing, introduce the not ion of compacts, discuss
the advantages they provide and show how they
can be used to support our motivating application.
Finally, in Section 5, we present our conclusions
and suggest areas for further inquiries and testing.

2. Background

In this section, we first briefly review the notion
of transactions and how transactions can provide
advantages for the building of reliable distributed
systems. We then discuss the current proposals for
mobile management of data including mobile file
systems.

Just as database management systems have
proven important to guarantee data consistency

in multi-user systems, transactions have proven a
useful abstraction for database systems. A trans-
action is a set of interdependent operations on a
database that perform a function or carry out a task.
Transactions can be used to model a variety of'real
world' activities. Since partial completion of a task
can result in data inconsistencies and corrupt the
database, a transaction either executes in its entir-
ety, completing the task, or has no effect on the
system. That is, each set of operations in a trans-
action is either committed, making the changes
permanent in the database, or aborted, obliterating
all effects and leaving the database unchanged.

Traditionally, each transaction is assumed to
have the following A C I D properties:

�9 Atomicity - if any of the operations contained
in a transaction are executed, all of the opera-
tions in the transaction are executed.

�9 Consistency - any transaction, executed singly
against a 'correct' database, completes with the
database in a 'correct' state.

�9 Isolation - each transaction executes inde-
pendently of other transactions.

�9 Durability - once committed, the effects of a
transaction become permanent in the database,
ensured to survive any failure.

By definition, a 'correct' database will remain cor-
rect after the execution of any number of transac-
tions in a serial fashion (i.e. one at a time). W h e n

G. D. Walborn and E K. Chrysanthis

transactions are executed concurrently, we can
guarantee the correctness of the database if the
concurrent execution of the transactions results
in a database state identical to that achieved by
some serial execution of the same transactions
(i.e. seriaIisability) [6]. The serialisability of trans-
actions is the basis for the correctness and reliability
of database systems and enormous strides have
been made to improve the concurrency control,
recovery, and commit processing protocols to
ensure serialisability and the ACID transaction
properties [7].

Most current transaction processing systems
are built upon the client-server paradigm. In a
client-server system, the database resides on one
or more large (and, presumably, fast) computers
called servers. The application programs are
actually executed on smaller, connected computers
known as clients. Each operation is communicated
to the server, which executes the operation against
the database and, in turn, communicates the result
to the client. If the clients are mobile, all com-
munications must be completed over the wireless
connection. In typical client-server environments,
a disconnected client is powerless because all
queries and updates must be executed by the server.
It becomes clear, therefore, that to process trans-
actions while disconnected, we must keep data on
the MH and manage database operations locally.

In order to better describe local transaction pro-
cessing on an MH, it is often helpful to generalise
the traditional ACID properties and talk instead
about visibility, consistency, permanence, and
recovery. Visibility, for instance, refers to the ability
of a transaction to see the effects on data items
caused by other transactions which are still ex-
ecuting, whereas recovery is the ability to take the
database to some state that is considered correct,
not necessarily reflecting updates from all com-
mitted transactions. Traditionally the effects of a
transaction are not made visible until the trans-
act ion commits and the changes are made
permanent in the database. Since no transactions
on a disconnected MH can be incorporated in
the server database, subsequent transaction using
the same data items could not proceed until con-
nection occurs and the mobile transaction com-
mits. By making the results of a transaction visible
as soon as it begins to commit at the MH, we can
allow additional transactions to progress even
though the data items involved have been modi-
fied by an active transaction. This leads to the
notion of local visibility and local (vs. global)
commitment.

If the system is augmented to operate upon
local copies of the data (e.g. data shipping), the
dependence on the server can be reduced but more
resources will be consumed on the MH and the
availability of data to the mobile host can still be
crippled by disconnection. We might be tempted
to tolerate such a handicap as a penalty for mobil-
ity. We discover, however, that such a discon-
nection threatens system-wide throughput. Many
systems use lock-based concurrency control to
ensure controlled access to data to prevent data
inconsistencies and preserve database integrity
constraints. Suppose, for example, that an MH
sends a lock operation to the server in preparation
for an update and then disconnects. In most
database systems, the locked data would be
unavailable to any client, stationary or mobile,
until the MH reconnects and releases the lock.
Worse, if the MH is damaged and fails to reconnect
at all, the resources could be held indefinitely. If,
on the other hand, an optimistic concurrency
control scheme is employed, competing transac-
tions are allowed to access an item held by the
disconnected MH and any operations performed
during disconnection are likely to be invalidated,
making it difficult, if not impossible, to do useful
work on a disconnected MH [8]. All client-server
systems are ultimately limited by the reliability and
performance of the wireless connection.

The first systems that were intended to support
processing by a disconnected mobile shared data
at the file level and were based on data shipping
or caching [9-12]. While many Unix operations
can be supported at the file level, transaction
processing requires finer granularity for caching
and control. Recent research has attempted to
develop appropriate transaction models for mobile
computing. Of these, some approaches examine
how traditional transactions could support remote
access from a mobile computer with no local
database processing capabilities, such as a dumb
terminal [13, 14]. In contrast, approaches that aim
to support transactions which perform updates at
the mobile computer (e.g. [15-18]), propose new
mobile transaction models and correctness criteria
for data consistency that are weaker than the stand-
ard serialisability so that they can cope more
effectively with the restrictions of mobility and
wireless communication. Even though many appli-
cations do not require strict serialisability, there
are important applications, including existing
business applications such as inventory databases
[19], that require the data consistency guarantees
offered by serialisability.

Support for Mobile Database Access

1 74

Clearly, there is no single proposed transaction
model which satisfies all of the requirements for
transaction processing within the confines of
mobile limitations. It is possible, therefore, that
the best system for the management of mobile
transactions would involve a number of transaction
models and their associated concurrency control
protocols and consistency guarantees. In the next
section, we present a practical example which
illustrates the need for a flexible mobile transaction
processing system. This particular example is based
upon the actual experience of a common and con-
tract carrier and serves to illustrate the need to
support multiple transaction types and varied
consistency requirements.

3. Motivating Application:
Commodity Dispatch

Mobile computers are becoming more and more
common in the trucking industry. Each truck is
fitted with a small computer which communicates
via satellite or radio links to a database site man-
aged by the trucking company. The mobile com-
puter runs specialised software which gathers
data from vehicle instruments, digitiser pens and
keyboard. The collected data is used to update
the corporate database and is used for billing,
compliance, equipment management and driver
payroll. Often electronic means will be used to
transmit funds directly to the driver for fuel, tolls,
permits, living expenses and repairs.

In order to better understand the requirements
of mobile transaction processing, let us look at a
typical scenario faced by a contract carrier which
has accepted a contract to move a large quantity
of fertiliser from the manufacturing facility to a
number of rural farms and co-ops. If the trucks are
privately owned and sub-contracted to the trucking
company, each driver is free to accept or reject any
load that is offered. Even though the company has
little control over each individual truck, the
company will be penalised if it fails to complete
delivery of the fertiliser within a specified period.

Many interesting problems are raised here.
For example, each truck should be offered a portion
of the available loads, but care should be taken
so that the quantity of fertiliser offered to all of
the trucks does not greatly exceed the quantity
available. If, for example, every truck is offered the
entire quantity, trucks could be stranded with insuf-
ficient loads to pay for expenses. In this case, the
total amount of fertiliser allocated to each truck

may be allowed to vary from actual availability
(controlled divergence), as long as the total vari-
ance is within limits and eventual consistency is
obtained. Since a copy of available load informa-
tion cached at the mobile host may carry sufficient
information to make an attempted pickup, con-
nection to the database server is not required before
proceeding to the factory for a load.

As trucks arrive to load with fertiliser, each
truck must obtain a shipping manifest from the
trucking company. Each manifest uniquely iden-
tifies a specific load of fertiliser and indicates the
location and time of loading, the pertinent infor-
mation about the truck and driver, the exact meas-
ure of material loaded and a description of any
exceptions that should be noted for insurance pur-
poses. This information should be made permanent
in the database before the truck is permitted to
travel or receive advances for fuel. Therefore, it
may be necessary to be connected to successfully
complete this transaction.

Once the load is delivered, the driver records
the delivery date and time, obtains a signature
from the receiving party, notes any discrepancies
between the delivered goods and the original
bill of lading and checks the list of available loads
in order to proceed to the next shipper for loading.
The delivery information should be incorporated
in the database as soon as possible, but a delay
will only postpone the billing process. This trans-
action could be finalised locally, in spite of discon-
nection, but made permanent in the database
whenever reconnection occurs.

In this scenario, one can easily identify three
distinct types of transactions with respect to data
consistency requirements:

�9 DISPATCH transactions which tolerate con-
trolled divergence, with the possible existence
of a global constraint (i.e. total offers do not
exceed available fertiliser _+ tolerance);

�9 MANIFEST (ACID) transactions, whose updates
must be made permanent in the server database
before any other transactions pertaining to the
load may be processed (i.e. recording load
information and obtaining unique manifest
number); and

�9 BILLING transactions, which update manifest
information and make their results visible
locally so as to not delay the acquisition and
loading of more fertiliser, but update the data-
base only when connected.

The transaction processing system presented in the
balance of this paper will provide the mechanisms

G. D. Walbom and P. K. Chrysanthis

Mobile Host

I App II App I

I Compact .
Agent

I
Compact HClass /
Registry Library I

Mobile Network

= | �9

MSS

�9 ~ Mobility
Manager ~"

0
Fixed Network

Server

Compact Manager F'I DBM~

Fig. 2. System architecture.

to support these different types of transactions
which maintain database consistency while allow-
ing flexibility in coordinating and reconciling
competing transactions.

4. PRO-MOTION: A Mobile
Transaction Processing
System

host to negotiate and manage compacts and
provide local transaction management for the MH,
and a mobility manager executing at the MSS to
help manage the flow of updates and data between
the other components in the system. The use of
the mobility managers allows PRO-MOTION to
be generalised into a multi-tier client-server archi-
tecture. In this paper, however, we will deal only
with a three-tier structure.

The limitations of the mobile environment pre-
sent a number of challenges to traditional transac-
tion processing systems (as discussed in Section
2). To that end, in this section, we propose a new
t ransact ion processing system, called PRO-
MOTION, to deal with the problems introduced
by disconnection and limited resources. The salient
features of PRO-MOTION are:

�9 the use of compacts, which function as the basic
unit of data replication for caching, prefetching,
and hoarding,

�9 transaction management on the mobile host
and, finally,

�9 exploi tat ion of object semantics wherever
possible to improve site autonomy and increase
concurrency.

These features, which are described below, when
used together, can minimise the handicap imposed
by mobile limitations.

The high-level architecture of PRO-MOTION,
shown in Fig. 2, consists of a compact manager at
the database server, a compact agent at the mobile

4.1. Compacts

A compact is, broadly speaking, a satisfied re-
quest to cache data, enhanced with obligations
(such as a deadline), restrictions (such as a set of
allowable operations) and state information (such
as the number of accesses to the object). The
compact represents an agreement between the
database server and the mobile host. In this
agreement, the database server delegates control
of the data to the MH. The MH, in return, agrees
to assume responsibility for the data and to honor
specific conditions set forth by the database server.
As a result, the database server need not be aware
of the operations executed by individual trans-
actions on the MH but, rather, sees periodic up-
dates to a compact for each of the data items
manipulated by the mobile transactions. Compacts
are represented in our system as objects (Fig. 3)
which encapsulate

�9 the cached data;

�9 methods (i.e. code) for the access of the cached
data;

Support for Mobile Database Access

! 76

~ m o n " r y p ~ / ' i " .e,o,.

Fig. 3. Compacts as objects.

�9 information about the current state of the
compact;

�9 consistency rules, if any, which must be followed
to guarantee global consistency of the data
item;

�9 obligations, such as a deadline which creates
a bound on the time for which the rights to a
resource are held by the mobile host or restric-
tions on the visibility of locally committed
updates; and

�9 methods which provide an interface with which
the MH may manage the compact.

The management of compacts is a cooperative
effort by the database server and the mobile hosts.
Compacts are obtained from the database via
requests by the MH when a real or anticipated data
demand is created. If data is available to satisfy
the request, the database server creates a compact
(with the help of the compact manager) which is
recorded in the compact store and transmitted to
the MH to provide the data and methods to satisfy
the needs of transactions executing on the MH.
The request can be tailored to cause only the trans-
mission of missing or outdated components of a
compact. In this way, transmitting the compact
methods, which may be very expensive, is avoided
if they are already available on the MH. Once
the MH receives the compact, it is recorded in a
compact re~stry which is used by the compact agent
to track the location and status of all active
compacts.

Each compact has a common interface which
is used by the compact agent to manage the com-
pacts listed in the compact registry and to perform
updates submitted by transactions run by appli-
cations executing on the MH. The basic set of
methods necessary to manage compacts includes

�9 inquire(), which retrieves useful information
about the state of the compact (such as name,
data type and version, cache status, outstanding
transaction IDs, and remaining storage);

�9 notify(), used to notify the compact when the
mobile environment changes;

�9 dispatch(), used to perform operations on the
compact on behalf of transactions executing on
the MH;

�9 commit(), to make the operations of a specified
transaction permanent on the database;

�9 abort(), to abandon the changes made to the
compact data by a given transaction; and,

�9 checkpoint(), to store the current state of the
compact for purposes of recovery.

The implementation of a common interface simpli-
fies the design of the compact agent and guarantees
the minimum acceptable functionality of a specific
compact instance.

The compacts are periodically updated as the
result of processing transactions on the MH.
When the needs of the mobile host or the database
server change, compacts may be renegotiated to
redistribute resources and, when the MH no longer
needs the resources, compacts are returned to the
database server and deleted from the local compact
registry and the compact store (if necessary).

4.2. Using compacts to implement
dynamic replication

The flexibility offered by compacts allows PRO-
MOTION to support a number of dynamic replica-
tion schemes (as well as caching) with a variety of
consistency constraints. Compacts can be used to
represent both simple schemes such as check-in/

G. D. Walborn and E K. Chrysanthis

check-out items and leases [20], as well as other
more complex correctness criteria [21]. Let us ill-
ustrate this by showing how leases and check-in/
check-out items can be realised using compacts and
how these compacts can be used to support transac-
tions with different visibility properties, such as the
last two transactions in the example in Section 3.

Lease semantics provide that a shared data item
is given to all requesters (leaseholders) with an
expiration time. Leaseholders with read access are
free to read the item (as long as the lease has not
expired), but must obtain permission from all other
leaseholders before modifying a leased item. There-
fore, a compact designed to support leases (Fig. 4)
includes, in addition to the methods for the com-
mon interface, two type-specific methods, read()
and modify(). The read() method simply checks
the expiration (specified in the compact as an
obligation) and, if unexpired, satisfies the read
request, returning the value of the compact data
(Manifest 10292, B/L#A3439392...). When the
modify() method is invoked and the lease has not
already been converted to write access, the com-
pact must communicate with the database server.
The database server obtains permission from the
other leaseholder compacts and communicates
permission (or refusal) to the lease compact on the
MH performing the modification. This might be
an opportune time to renegotiate the compact
deadline to prevent monopolisation of the resource
by the MH requesting write access. A lease com-
pact requires no consistency rules and a contains a
single obligation, the expiration time (Dead-
line=48999.00). The compact state (Last Update)
is maintained by the type-specific and interface
methods.

Our trucker can use such a compact to obtain
exclusive access to the manifest needed to offi-
cially record his/her acceptance of a load (i.e. the
MANIFEST transaction in our example). Perhaps a
small set of manifests would be reserved to each
truck and kept in a single compact. The deadline
would then be arranged so that, if the unit disap-
peared, the manifests would eventually be assigned
to another truck. No use of a manifest from an
expired compact would be allowed to satisfy the
transaction, as that manifest may have already been
re-assigned to another load. An indefinite dead-
line (i.e. infinite) would reserve the manifest to
the requesting truck forever, requiring some type
of administrative intervention to return the mani-
fest to the database server.

Compacts may also be used to manage check-
in/check-out items. A check-in/check-out item is

little more than a lease item with exclusive read
and write access to the data item. When a data
item is first requested for check-out, no associated
active compact object (i.e. a compact with an
unexpired deadline) will exist in the compact store
at the database server.

A check-in/check-out compact could be used
for the final BILLING transaction in our example.
Since the MH holds complete read and write access
to the data item, the MH becomes ultimately
responsible for the correctness of the data in the
compact. When local transactions update the
manifest and signal an intent to commit, the results
can be made immediately visible to subsequent
transactions, even though the results may not
have been recorded at the database server. This
technique allows multiple transactions to access
and update the manifest data even though the
MH is disconnected. The central database can be
updated when the MH reconnects. If the compact
has expired, there are two possibilities:

�9 If no other t ransact ion has modified the
manifest, the update may be stored despite the
expired deadline. This is an example of optim-
istic concurrency control.

�9 If the copy of the manifest in the centralised
database has been modified, the update will be
aborted and the truck driver will be requested
to repeat the entry of the proof of delivery, effec-
tively 'redoing' the transaction.

The notify() method of this particular compact,
triggered by the reconnection of the MH to the
fixed network, could be written to handle this
reconciliation of the manifest compact with the
database server.

Because compacts include the code for access
to shared objects, compacts provide a high degree
of adaptability which may be exploited to respond
dynamically to changes in the mobile environ-
ment. For example, compacts may react to an
increased availability of hard disk by automatically
increasing the amount of data cached through
prefetching and hoarding, or may adapt to an over-
loaded communication subsystem by reducing the
frequency of transmitted updates. The use of
compacts, therefore, creates a flexible and adapt-
able framework to support mobile transaction
processing.

In each of these cases, we have processed as
much of the transaction on the mobile host as
possible, without resorting to communication with
the database server. The database server is con-
tacted only when convenient or when absolutely

Support for Mobile Database Access

! 78

f DispatchO r 0
Commit()

Abort() Decrease()
Notify()

~ D e a d l i n e = I n f i n i t e 267

,-] ~n_~ > 100 /

Max_Value=200 ' Escrow Journal I Last Update=39383393 J
�9 -T - - I I

' 4292 xx xx ~
', 1203 E, xx i xx '

Fig. 5. Escrows as compacts.

required by the semantics of the transaction. The
compacts associated with each data type (and, by
association, each transaction type) are designed
to meet the requirements of a particular data
object, simplifying the job of local transaction
management.

In the next section, we elaborate further on the
usage of compacts and illustrate one additional
advantage offered by compacts, namely, their
ability to support concurrency control methods
which exploit object structure and/or semantics
[22-24].

4.3. Using compacts to support
semantics-based concurrency control

In order to better support disconnected operations
and strict data consistency, such as that provided
by serialisability, the mobile transaction processing
system can exploit object semantic information to
provide finer granularity of caching and concur-
rency control and to allow for asynchronous
manipulation of the cached objects and unilateral
commitment of transactions on the mobile host.
As an example, escrow items and fragmentable
items have characteristics that make them espe-
cially suitable for mobile transactions.

The basic idea behind both escrow [25] and
fragmentable items [18] is to split large or complex
objects into smaller fragments of the same type
by exploiting the object organisation. With the
appropriate split, a mobile host can cache a data
partition (consisting of one or more fragments) of
just the right size, minimising the storage require-
ments on a mobile host. The second idea is to
make these fragments the unit of reconciliation of
updates, that is, the unit of consistency. To allow
more flexibility (as well as to deal with situations
in which fragmentation under strict consistency
requirements is not possible) applications can

explicitly define the consistency constraints to be
enforced.

A 'master copy' of the escrowable or fragmen-
table data resides on a database server. Mobile
hosts specify the granularity of the data to be
cached when placing a compact request by speci-
fying the required size of the data partition. The
data partition is logically removed from the 'master
copy', packaged into a compact and transmitted
to the MH. The data contained in the compact is
only accessible by the transactions on the mobile
host. However, the remaining part of the 'master
copy' is not affected and it is available to other
MHs as subsequent compacts. Object fragments
can be logical (i.e. escrow) or physical (i.e. frag-
ments) divisions of the data object. During the
update, physical fragments need to be physically
re-assembled into a single object while logical
fragments are combined with some logical or
arithmetic operation.

In order to support unilateral commitment of
transaction executing on a mobile host, we must
retain the effects of transaction operations on each
fragment when the fragments are merged. The
consistency conditions embodied in the compact
methods specify constraints on the fragment which
need to be satisfied to maintain the consistency of
the entire object. These conditions might include
allowable operations and constraints on their input
values and conditions on the state of the object.
Some operations on fragmentable items may be
disallowed or restricted to guarantee that the
fragments may be properly merged.

Figure 5 illustrates a compact designed to sup-
port escrowable data (i.e. a portion of an aggregate t
item which has been allocated to satisfy requests

1An aggregate is a data object which represents a quantity of
identical and interchangeable items, such as bushels of wheat
or dollars in an advance account.

G. D. Walbom and E K. Chrysanthis

from transactions executing on the mobile host).
In this particular case, taken from the DISPATCH
transaction in our trucking example, the quantity
indicates the amount of fertiliser available to the
truck. In addition to the methods which provide
a common interface, this compact contains two
type-specific methods: increase and decrease.
The data (i.e. 267) may only be accessed by these
two methods. Each call to increase is validated
against the maximum value (i.e. 300) specified
in the consistency rules, and the compact state
(i.e. Escrow Journal), which reflects validated
requests by concurrent transactions. The call
succeeds only if the consistency rules will not be
violated. Similarly, each call to decrease (caused,
for example, by the truck's acceptance of a load)
is validated against the minimum value (i.e.
100) and the compact state. Adherence to the
consistency rules will insure that the global con-
sistency of the aggregate values will be guaranteed
even if transactions are allowed to commit uni-
laterally on the MH. Because unilateral commit-
ment is possible, transactions on other MHs may
proceed even though the only obligation, a
deadline for return of the escrow quantity, has been
set to unlimited (i.e. Infinite). In most cases a
definitive deadline would be set to insure that any
quantity of fertiliser not moved by this truck would
be made available to competing units. At some
point the expiration of the compact could be set
to coincide with the expiration of the contract with
the fertiliser shipper, if no loads will be available
beyond that time. Renegotiation of these escrow
contracts would be used to allow aggressive drivers
to control the bulk of the material being hauled.

4.4. System architecture

As mentioned in the introduction, one of our
motivations has been to support existing database
applications by facilitating data access by trans-
actions on mobile hosts. In such an environment,
it might not be easy, or even possible, to incorp-
orate logic to manage compacts into the legacy
database server 2. If a database server lacks compact
management capabilities, a compact manager can
provide that functionality. The compact manager
acts as a front-end to a database server, shielding
the database server from the idiosyncrasies of the
mobile environment. The compact manager may

2A similar situation exists in multidatabase systems that attempt
to integrate pre-existing database systems while retaining the
design autonomy of the component database systems [6].

execute on an independent host, or it may execute
on the same host as the database server (as shown
in Fig. 2).

If a compact manager is added to a legacy data-
base, our system utilises an open nested transaction
model as the basis for concurrency control and
recovery for mobile transactions processed against
the database server. To the database server, the
compact manager appears to be an ordinary data-
base client, executing large, long-lived trans-
actions. These transactions become the root trans-
actions of our nested transaction model. Resources
needed to create compacts are obtained by these
transactions through normal database operations
(reads and writes). Mobile transactions (transac-
tions processed by each mobile host) appear as
children in the open nested transactions. The
transactions processed on the mobile host appear
as siblings. Each sibling transaction may commit
or abort independently as long as the consistency
constraints expressed in the compacts that have
shared access are not violated. It should be noted
that a mobile transaction may invoke multiple
compacts and a compact may support the execu-
tion of multiple transactions. The responsibility
for the correct execution of mobile transactions is
assumed by the MH and accomplished by utilising
the methods encapsulated in the compacts. The
root transactions are managed by the database
server and committed by the compact manager.

On each MH, a compact agent is responsible for
processing requests on behalf of transactions exe-
cuting on the MH. These compact agents are more
than just the interface between the compact man-
ager and the transactions on the mobile hosts. The
compact agent is much like the daemon responsible
for cache management in the CODA file system
[17]. The compact agent handles disconnections
and manages storage on a MH. It monitors activity
and interacts with the user and applications to
maintain lists of items which are candidates for
caching. However, unlike the CODA daemon, or
other cache managers, the compact agent is
actively involved in transaction processing on the
mobile host, acting as a transaction manager for
transactions executing on the mobile host. The
compact agent is responsible for concurrency
control, logging and recovery. Consequently,
transaction requests, commits, aborts and journals
are managed by the compact agent. Requests from
local t ransact ions are processed against the
compacts and are granted or denied. When a
transaction commits or aborts, the compacts and
transaction journals are updated accordingly.

Support for Mobile Database Access

r

180

Recall that each compact includes a set of
methods used for management which are common
to all compacts. In addition, each compact may
contain specialised methods which support the
particular type of data or concurrency control spe-
cific to that particular compact. As a result, many
of the functions associated with the compact agent
are actually executed by the compacts themselves
upon receipt of messages from the compact agent
triggered by executing transactions or changes in
the MH state.

Some system events will cause the compact's
state at the compact manager to be updated to
reflect the effects of all outstanding committed
transactions. The specific triggers for updates may
vary, but should include:

1. When renegotiation must be performed for
additional resources and the update can be
piggybacked onto the request.

2. As part of a handoff procedure when a transfer
to a new cell is initiated.

3. When the number of commit requests reaches
a predetermined threshold, usually determined
by the memory capacity of the mobile host.

4. In a 'panic' situation arising from impending
disconnection from:

�9 weak or low battery power;
�9 deliberate disconnection by the user;
�9 or partial loss or weakness of signal detected

by the communication subsystem.

5. A 'safe' interval before an approaching deadline
(e.g. a trigger could be set for midway between
the last attempt and the deadline).

6. When specifically requested by a critical applica-
tion being processed on the mobile host.

Once the update is acknowledged by the com-
pact manager, the compact agent updates journals
and logs appropriately. In this manner, entire
groups of committed transactions may be pro-
cessed with a single update to the compact at each
end, with significant savings in communication
overhead.

Recall that each of the interactions between
the compact agent and the compact manager are
processed via the MSS. To improve system per-
formance, the MSS can take an active role in the
processing of compacts between the compact agent
and the compact manager. The module which
performs these functions on the MSS is called
the mobility manager (MM). Once an update i s sent
to the MM, the MM functions on behalf of the
compact agent to complete delivery of the update

message. This update by proxy helps insure that the
updates are received by the compact manager in a
timely fashion. If the MH sends an update and
immediately disconnects, the update can be
recorded by the compact manager and the acknow-
ledgment can be stored by the MM and properly
processed later, once the MH reconnects. The MM
maintains mobility tables in which each mobile
control block (MCB) contains location and database
access information which pertains to a single MH.
When a MH moves between ceils, the MM uses
the information stored in the MCB to facilitate the
handoff to a new MSS (and corresponding MM).

The addition of the compact manager, com-
pact agent and mobility manager provides a func-
tional infrastructure that will move some of the
responsibility for processing and committing
transactions down to the MSS and the MH, redu-
cing the dependence on communications with the
database server.

5. Conclusions

Recognising the need for a suitable mobile trans-
action processing system, in this paper we have
presented PRO-MOTION, which provides support
for transaction processing by disconnected mobile
hosts without grossly impairing access by transac-
tions executed by the stationary host and other
MHs. PRO-MOTION is designed to facilitate the
migrat ion of existing applicat ions and the
development of new database applications in a
mobile environment.

We have introduced compacts, PRO-MOTION's
basic unit of caching, prefetching, and hoarding,
which encapsulate access methods with database
data to allow uniform management of transac-
tions despite varying consistency constraints and
correctness criteria. Compacts provide a mechan-
ism for flexible, adaptive, and extensible support
of traditional transactions, extended transaction
models, and new schemes exploiting data structure
or operation semantics to achieve efficiency and
correctness. The management of compact dead-
lines allows for automatic recovery of resources
held by MHs which exceed negotiated limits on
disconnection. By associating data with the
methods (i.e. code) that manipulate the data,
PRO-MOTION provides the mechanism by which
the MH will automatically receive code necessary
to manipulate data in the compact. This eliminates
the need to write a comprehensive local transac-
tion manager which contains code for types which

G. D. Walborn and P. K. Chrysanthis

may never be used and allows for the automatic
updating of access methods as the system evolves.

We are building a prototype PRO-MOTION
system based upon the ideas presented in this paper
to test the concept and experiment with various
implementations. Our implementation is well
underway using Java. A number of data types,
including fragmentable stacks and leases, have
been coded in the form of a portable compact
library that will enhance sharing and reusability.

Acknowledgements

We would like to express our thanks to the
anonymous reviewers for their thoughtful com-
ments. This material is based upon work supported
by the National Science Foundation under grant
IRI-95020091 and partially funded by B-Right
Trucking Company.

References

1. Imieliflski T, Viswanathan S, Badrinath B Energy efficient
indexing on air. In: Proceedings of the 1994 ACM
SIGMOD International Conference on Management of
Data, 1994

2. Acharya S, Alonso R, Franklin M, Zdonik S. Broadcast
disks: data management for asymmetric communication
environments. In: Proceedings. of the 1995 ACM
SIGMOD International Conference on Management of
Data, 1995 pp 199-210

3. Datta A, VanderMeer D, Kim J, Celik A, Kumar V. Adap-
tive broadcast protocols to support power conservant
retrieval by mobile user. In: Proceedings of the 13th
IEEE International Conference on Data Engineering, 1997
pp 124-133

4. Walbom G, Chrysanthis P K. PRO-MOTION: manage-
ment of mobile transactions. In: Proceedings. of the
Symposium on Applied Computing, 1997 pp 101 108.

5. loannidis J, Duchamp D, Maguire G Q. IP-Based protocols
for mobile intemetworking. In: Proceedings of ACM
SIGCOMM Symposium on Communication, Architec-
tures and Protocols, 1991 pp 235-245

6. Bernstein P A, Hadzilacos V, Goodman N. Concurrency
Control and Recovery in Database Systems. Addison-
Wesley, Reading, MA, 1987

7. Ramamritham K, Chrysanthis P K. Advances in Concur-
rency Control and Transaction Processing. IEEE Computer
Society Press, Washington, DC, 1996

8. Barbara D. Certi cation reports: supporting transactions
in wireless systems. In: Proceedings of the 17th International
Conference on Distributed Computing Systems, 1997

9. Kisler J, Satyanarayanan M. Disconnected operation in
the Coda file system. ACM Trans Computer Systems 1992
10(1): 3-25

10. Tait D C, Lei H, Chang H. Intelligent file hoarding for
mobile computing. In: Proceedings of the Workshop on
Mobile Computing, 1995. pp 119-125

11. Kuenning G, Popek G J, Reiher E An analysis of trace
data for predictive file caching in mobile computing. In:
Proceedings of USENIX Summer 1994 Conference, 1994

12. Tait D C, Duchamp D. Service interface and replica
management algorithm for mobile file system clients. In:
Proceedings of the 1st International Conference on Parallel
and Distributed Information Systems, 1991 pp 190-197

13. Jain R, Narayanan K. Network support for personal
information services to PCS users. In: Proceedings of IEEE
Conference Networks for Personal Communications, 1994

14. Yeo L H, Zaslavsky A. Submission of transactions from
mobile workstations in a cooperative multidatabase pro-
cessing environment. In: Proceedings of the 14th
International Conference on Distributed Computing
Systems, 1994

15. Dunham M, Helal A, Balakrishnan S. A mobile trans-
action model that captures both the data and movement
behavior. ACM/Baltzer Journal on Special Topics in
Mobile Networks (to appear).

16. Chrysanthis P K. Transaction processing in a mobile
computing environment. In: Proceedings of IEEE Work-
shop on Advances in Parallel and Distributed Systems,
1993 pp 77-82

17. Pitoura E, and Bhargava B. Maintaining consistency of
data in mobile distributed environments. In: Proceedings
of 15th International Conference on Distributed Com-
puting Systems, 1995 pp 404-414

18. Walborn G, Chrysanthis P K. Supporting semantics-based
transaction processing in mobile database applications. In:
Proceedings of the 1 l th Symposium of Reliable Distributed
Systems, 1995 pp 31~.0.

19. Krishnakumar N, Jain R. Protocols for maintaining inven-
tory databases and user service profiles in mobile sales
applications. In: Proceedings of the Mobidata Workshop,
1994

20. Gray C G, Cheriton D. Leases: an efficient fault-tolerant
mechanism for distributed file cache consistency. In:
Proceedings of 12th ACM Symposium on Operating
Systems Principles, 1989 pp 202-210.

21. Ramamritham K, Chrysanthis P K. A taxonomy of
correctness criteria in database applications. VLDBJ 1996;
4(1): 181-293

22. Badrinath B R, Ramamritham K. Semantics-based
concurrency control: beyond commutativity. ACM Trans
Database Systems. 1992; 17(1): 163-199.

23. Chrysanthis P K, Raghuram S, Ramamritham K.
Extracting concurrency from objects: a methodology. In:
Proceedings of the 1991 ACM S1GMOD International
Conference on Management of Data. 1991 pp 108-117

24. Agrawal D, El Abbadi A, Singh A K. Consistency and
orderability: semantics-Based. ACM Trans Database
Systems. 1993; 18(3): 460486

25. O'Neil E The escrow transactional method. ACM Trans
Database Systems 1986; 11(4): 405~r30

26. Breitbart Y, Garcia-Molina H, Silberschatz A. Overview
of multidatabase transaction management. VLDB J 1992;
1(2): 181-293.

27. Jing J, Bukhres O, Elmagarmid A. Distributed lock
management for mobile transactions. In: Proceedings of
the 15th International Conference on Distributed
Computing Systems. 1995 pp 118-125

28. Imieliflski T, Badrinath B R. Mobile wireless computing:
challenges in data management. Commun ACM 1994;
37(10): 18-28

Correspondence and offprint requests to: Gary D. Walborn,
(gwalton@cs.pitt.edu) Department of Computer Science,
University of Pittsburgh, Pittsburgh, PA 15260, USA.

Support for Mobile Database Access

