
In Proceedings of the 10th Intl. Conf. on Parallel and Distributed Computing Systems (PDCS), pp. 428{432, 1997.Performance Evaluation of the Group Two-Phase Locking ProtocolSujata Banerjee Panos K. ChrysanthisInfo. Sci. & Telecommunications dept. Computer Science dept.University of Pittsburgh University of PittsburghPittsburgh, PA 15260 Pittsburgh, PA 15260AbstractIn this paper, we discuss the initial results of a de-tailed simulation of the group two-phase locking (g-2PL)protocol which was developed for gigabit-networkeddatabases. These results show that the grouping of lockgrants, client-end caching and data migration proposedin the g-2PL protocol improves the transaction responsetime upto 25% at moderate to high network latencies,when compared to traditional schemes.1 IntroductionSeveral exciting advances are being made in the gen-eral area of high speed distributed computing. For in-stance, the rate at which information can be transmit-ted [11] and the rate at which information can be pro-cessed is increasing. There are two basic componentsof the delay involved in moving data between two com-puters over a communication network: the transmissiontime, i.e., the time to transfer all the data bits, and thepropagation latency, i.e., the time the �rst bit takes toarrive. As the data rate in wide area networks continuesto increase due to technological breakthroughs, the datatransmission delay will decrease almost linearly. How-ever, the signal propagation delay which is a function ofthe length of the communication link and a physical con-stant, the speed of light, will remain almost constant,and relative to the data transmission delay, will actu-ally seem to increase. At gigabit rates in a wide areanetwork, the propagation latency is the dominant com-ponent of the overall delay [9]. The minimum coast-to-coast (U.S.) round trip network latency on the internethas been observed to be 70 msec [10].The above basic characteristic of high speed widearea networks (referred to as a high bandwidth-delayproduct) has signi�cant implications on distributed ap-plications. Moreover, since bits cannot travel fasterthan the speed of light, and the distance between com-municating computers cannot be reduced, the only wayto combat propagation latency is to hide it in innova-tive protocols. This is not to say that the performanceof a traditional distributed distributed algorithmwill beworse in a high speed environment than in a low speedenvironment. However, the marginal performance im-provement will decrease as the data rate continues toincrease. Beyond a certain data rate, there will be nofurther improvement, no matter what the increase in thedata rate is, and unless newer database protocols are de-veloped that are distance-independent, scalable perfor-mance will not be achieved. This observation motivatedus to develop a concurrency control protocol [1], and acorresponding recovery algorithm in [2], which are the

�rst ones in the family of algorithms which we refer toas APLODDS for Algorithms for Propagation LatencyOptimization in Distributed Database Systems.Our proposed concurrency control protocol in [1],called group two-phase locking (or g-2PL), is a variantof the strict two-phase locking (s-2PL) protocol [6] andis targeted for client-server distributed database sys-tem [5, 12] in a shared-nothing environment. The g-2PLprotocol is specially tailored for a gigabit wide area envi-ronment in which the size of the message is less of a con-cern than the number of sequential phases or rounds ofmessage passing. The g-2PL protocol enhances perfor-mance of the database system by exploiting these char-acteristics of gigabit networks and in particular reducesthe number of rounds of message passing by groupingthe lock grants, client-end caching and data migration.In this paper, the performance of the g-2PL protocolis evaluated using simulation, and compared with the s-2PL protocol, the most widely used concurrency controlprotocol, assuming no site and communication failures.The salient results of this performance evaluation arethat the g-2PL protocol exhibits better response timefor hot data and in general outperforms the s-2PL pro-tocol when the percentage of reads performed by trans-actions is relatively low compared to the writes in thedatabase system.The rest of the paper is structured as follows. InSection 2, the g-2PL protocol is described in some detail.The simulation system model is presented in 3, followedby the numerical results of the performance evaluationobtained by simulation in section 4.2 The g-2PL ProtocolTo simplify the presentation of the g-2PL protocol,we consider here a distributed database with a singletraditional database (DB) server and multiple clientswith local processing capabilities. When a client needsa data item, it sends a request to the DB server whichresponds with the requested data item. That is, weassume a data shipping client-server environment [7].One of the motivations in a high speed environmentis to minimize both the number of messages as well asthe rounds. The g-2PL protocol proposes to reduce thenumber of phases of message passing by grouping thelock (data) granting and release. The DB server col-lects the lock requests for each data item for a speci�edinterval. At the end of this interval (referred to as thecollection window or simply, the window from now on),the lock is granted to the �rst transaction, and the dataitem is sent to the respective client along with the or-dered list (also referred to as the forward list) of theclients that have pending lock requests for that data1



item, that arrived within the window. Within each win-dow, the forward list may be created according to one ofseveral rules (see [1] for details) to improve performancefurther. While the data items have been sent out to agroup of clients, the server continues to collect requests.When a transaction commits, the client sends thenew version of the data items to the clients next on therespective forward lists. A copy of the forward list is alsosent with each data item. If the transaction aborts, theclient forwards the unchanged data to the next client.Finally, when the last client on the forward list termi-nates, it sends the new version of the data to the serverwith the outcome of each transaction executed on theclients on the forward list. That is, in the g-2PL pro-tocol, the lock release message of the previous client iscombined with the lock grant message of the next client,thereby eliminating one sequential message compared tothe standard s-2PL protocol.In the description of the basic protocol, only exclu-sive access to data was considered. Obviously, access tosome data may be done in a shared fashion, with multi-ple clients reading the data item simultaneously. Sharedaccess is incorporated into the basic protocol by allow-ing multiple readers and a single writer to execute con-currently while still preserving strict consistency. Foreach data item required in the shared mode by mul-tiple (reading) clients, the DB server can send a copyof the data item to each of the reading clients, withthe forward list containing the client Ci that requiresthe data item next in the exclusive mode. At the sametime, a message containing the data item and the list ofthe shared-mode clients is also sent to Ci that requiresexclusive access. Although this enables Ci to executeconcurrently with the reading clients, Ci cannot releaseits updates until it receives a release message from allthe reading clients. Here it is interesting to point outthat the protocol just described behaves similar to thetwo-copy version s-2PL protocol [4] which allows moreconcurrency than the standard s-2PL protocol. If thereare no waiting transactions that need exclusive access,the release messages are returned to the server.Two-phase locking protocols are deadlock-prone [6],and so is the g-2PL protocol. Two or more transactionsare said to be in a deadlock when neither of the trans-actions can proceed because at least one of the locksrequired by each of the transactions is held by one ofthe other transactions. In the case of the g-2PL proto-col, deadlocks can be prevented if in each of the forwardlists, the order of the transactions is the same. Formally,the forward list for each data item can be represented bya transaction precedence graph, which need to be madeconsistent. That is two transactions Ti and Tj must fol-low the same order < Ti; Tj > or < Tj ; Ti > in everyprecedence graph involving Ti and Tj . The transactionprecedence graph is a directed graph which determinesthe order in which each data item will move from oneclient site to another. Also, the precedence graph isconsistent with the lock granting order and hence con-sistent with the serialization order. In the case thatsuch reordering of forward lists is not possible, sometransactions may have to be aborted.The rest of the paper discusses a simulation studyof the performance of the g-2PL protocol. To keep thepaper more focused, several enhancements to the basicprotocol [3] have not been discussed. The most impor-tant performance aspect in concurrency control proto-

cols is the handling of hot data items (see TPC bench-marks and [7]). Note that in the g-2PL protocol, themore a certain data item is requested as for hot dataitems, more is the performance gain, since the group-ing e�ect is more emphasized when the forward list islonger.3 System Model for Performance Eval-uationIn order to evaluate the performance of g-2PL, a sim-ulation model of the protocol was developed using theC programming language. The simulation is a discrete-event simulation using the unit-time approach to ad-vance the simulation clock [8]. The performance of g-2PL is compared with the well known s-2PL protocolwhich is the industry standard. Thus, in the simulationmodel, both g-2PL and s-2PL are implemented. Weconsider a client-server database system, with a singleserver and multiple clients connected by a high speednetwork. As described earlier, the transmission delaysin a high speed network can be assumed to be negligi-ble, and the network latency consists of the signal prop-agation and switching delays. In this paper, we makethe simplifying assumption that the network latency be-tween any two sites (server-client, client-client) and ineither direction is the same. For instance, this is the caseif the network topology has a star con�guration with aswitch at the center and each node (clients or server) isconnected to the switch by a link with the same capac-ity and length. Thus, communication between any twonodes is achieved in 2 hops through the switch with thesame network latency.Our transaction workload is similar to that in pre-vious work (e.g., [7]). All clients are assumed to beidentical and run transactions that have the same sta-tistical pro�le. The multi-programming level at eachclient is assumed to be one, i.e., at any given time, eachclient processes a single transaction only. Further, atthe end of each transaction, it is replaced with anothertransaction at that client site after some idle time thatis uniformly distributed between a given minimum andmaximum values (see Table 1). Each transaction ac-cesses between 1 and N data items uniformly. Thesedata items are drawn from a pool of M data items thatreside at the DB server. Each access may be of the typeread with a given read probability pr and of the typewrite with a probability pw = 1 � pr. The transactionexecution is sequential, i.e., requests for data items aregenerated sequentially, with each request being gener-ated only after the previous request has been grantedand some think time (for computations) has elapsed.In our model, this computation time is uniformly dis-tributed between a given minimum and maximum val-ues (see Table 1).As mentioned in the previous section, two-phase lock-ing protocols are deadlock-prone [6]. In the s-2PL imple-mentation, deadlocks are detected by computing wait-for-graphs and aborting the transactions necessary toremove the deadlocks. This is the typical implementa-tion found in commercial systems that use the s-2PLprotocol. In the case of g-2PL, the forward lists arereordered to ensure that deadlocks are prevented. Inthe case that such reordering is not possible, the o�end-ing transactions are aborted. Each transaction that isaborted is replaced by another transaction.



1. Number of Servers 12. Number of Clients varying3. Number of hot data items 254. Transaction Execution Pattern Sequential5. Multiprogramming level at clients 16. Number of data items accessed by a transaction 1 { 57. Percentage of read accesses 0 { 100%8. Network Latency 100 { 1000 time units9. Computation Time per database operation 1 { 3 time units10. Idle Time between transactions 2 { 10 time units11. Window Size (g-2PL only) varying12. Timeout (g-2PL only) varyingTable 1: Simulation ParametersTwo parameters are of particular importance in theg-2PL implementation: the window size and the time-out value. The window size is measured in the numberof requests for a data item that must accumulate inthe forward list before the server can dispatch the dataitem to the �rst client site on the forward list. In real-ity, the window size may be tuned for each data itemdepending on its demand. In our case, since we assumeuniform access to all data items, the window parameterfor each data item is the same. A large window size willcause more grouping of requests, thus saving the num-ber of rounds and improving the performance. At thesame time, a large window size will also cause requeststo be delayed while waiting for the requisite number ofrequests to accumulate. Thus, a timeout parameter isused that bounds the total waiting time; once the time-out expires, the pending requests in the forward list areserved. If the timeout expires without any pending re-quests in the forward list, the server restarts the timer.Note that with a window size of 1, the timeout param-eter has no e�ect on the performance.Table 1 contains a list of all the experimental pa-rameters and the corresponding range of values of theperformance study. Note that parameters 8{10 and 12are speci�ed in simulation time units rather than realtime in seconds. The conversion between the two iseasily achieved and realistic values can be chosen byspecifying the appropriate conversion factor. However,it is important to recognize that the relative values ofthese parameters have been chosen correctly. Since weassume a wide area high speed networking environment,the network latency is signi�cantly higher than the com-putation/idle times. For example, if we assume that 1simulation time unit = 0.5 msec, then the networklatencies considered are between 50 and 500 msec,which are realistic for wide area networks includingsatellite transmission links. The computation time perdatabase operation is then between 500 and 1500 �sec.4 Simulation ResultsIn this section, for the sake of brevity only the salientresults of the simulation study are presented. More de-tails can be found in [3]. The g-2PL and s-2PL simula-tions were run on a Sun Ultra machine with the Solaris2.5.1 operating system. The transient phase of the sim-ulation runs was eliminated. In each simulation run,

10000 transactions were generated, requiring a simula-tion time of upto 25 million time units (upto 20 minutesin real time).As discussed earlier, the g-2PL protocol is particu-larly suited to accessing hot data items. Thus we sim-ulated cases where a small number of data items areaccessed by a large number of clients. Figure 1 containsthe average transaction response time plotted againstthe network latency, for low values of the read probabil-ity (pr = 0.00, 0.25) in a database system with 25 hotdata items, 50 clients and each transaction accessing be-tween 1 and 5 data items, using the g-2PL and s-2PLprotocols. The window size for the g-2PL protocol iskept at the minimum possible value of 1. Figure 2 con-tains a plot of the average transaction response time forboth protocols with the same database and transactionparameters, but with high values of the read probabil-ity (pr = 0.75, 1.00). Obviously as the network latencyis increased, the average transaction response time in-creases correspondingly. From Figures 1 and 2, it isevident that only when the read probability is 1.00 isthe performance of s-2PL better than the g-2PL proto-col. The reason for this is that in the g-2PL protocoldescribed here, access requests are granted only at theend of the window periods, and not in between. Thus,the reads are penalized in the g-2PL system. As thewrite probability is increased, g-2PL outperforms s-2PLby grouping access requests and saving on the number ofrounds. From Figures 1 and 2, the s-2PL response timeis upto 25% higher than that with the g-2PL protocol.The loading on the database system can be increasedin several ways. We chose to do so by increasing thenumber of clients while keeping the transaction pro�lethe same: each transaction uniformly accesses between 1and 5 data items out of 25 hot data items. The networklatency is �xed at 500 time units. Figure 3 contains theplots of the average transaction response time for the g-2PL and s-2PL protocols versus the number of clients,with a �xed read probability of 0.25. Figure 5 containssimilar plots for a read probability of 0.75. In both cases(pr=0.25 and pr=0.75), the g-2PL protocol outperformsthe s-2PL protocol at high loads. In the system modeldescribed in Section 3, deadlocks are the only cause fortransactions to be aborted, i.e., no communication orsite failures are assumed. Figures 4 and 6 contain theplots of the fraction of transactions aborted in the g-



2PL and s-2PL protocols for read probabilities of 0.25and 0.75 respectively. From these �gures it is evidentthat the fraction of transactions aborted in both pro-tocols is relatively close. However, it can be seen thatat both values of pr, a cross-over in performance occursand beyond a certain loading, the fraction of transac-tions aborted in the s-2PL protocol is higher.The last aspect researched in our performance eval-uation was the e�ect of the window parameter valuesand the timeout durations on the performance of theg-2PL protocol. Ideally, the window parameter and thetimeout duration should be chosen such that the aver-age response time is the minimumpossible. The resultsdiscussed so far were computed assuming a window sizeof 1, which renders the timeout duration of no conse-quence. Note that the window size and the timeouttogether determine the grouping of requests achieved,and thereby the overall performance. We approachedthis problem by �xing the window size at a large enoughvalue so that the timeout duration alone determined thegrouping. Then the timeout duration was varied andthe average transaction response time was studied. Asexpected, as the timeout duration is increased, the av-erage response time increases as well. However, for thecases studied, there was a range of timeout durations (0< timeout < T) for which the average response time islow and approximately the same with only small varia-tions. Thus it appears that for the cases studied, usinga small timeout duration (or a window size of 1) wouldprovide performance close to the best. Further, the dif-ference between the best response time achieved andthat with a very small timeout duration was less than1%. Keeping the timeout duration at a high value andchanging the window size produced similar results.5 ConclusionsThe group two-phase locking (g-2PL) protocol wasdeveloped for gigabit-networked database systems rec-ognizing that propagation latencies as the bottleneckand that migrating large amounts of data betweendatabase servers is not a problem. In order to studythe performance of the g-2PL protocol, we have imple-mented a simulator of a shared nothing, client-serverdistributed database system. In this paper, we reportedon the performance of g-2PL in the absence of com-munication and site failures by comparing it with theperformance of the strict 2PL protocol.The results of our experiments con�rmed our hypoth-esis that the g-2PL protocol is particularly suited to con-trol access to hot data items and showed that the g-2PLprotocol, in general, outperforms the s-2PL protocol forupdate transactions. Speci�cally, the g-2PL protocolexhibits superior performance when the percentage ofreads performed by transactions is relatively low com-pared to the writes in the database system. Interest-ingly, the g-2PL protocol exhibits worse response timefor read-only transactions although one might have ex-pected that both g-2PL and s-2PL protocols would havebehaved the same. This shows that the g-2PL protocolfails to fully explore the commutativity of read opera-tions as in the case of s-2PL. Another interesting resultis that the window size determining the grouping of re-quests has almost no in
uence on the performance ofg-2PL and it seems that using a small timeout durationfor controlling the grouping of requests is su�cient.
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Figure 1: g-2PL and s-2PL: Mean responsetime vs network latency: 25 data items, 50clients and high write probability 0 100 200 300 400 500 600 700 800 900 1000
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Figure 2: g-2PL and s-2PL: Mean responsetime vs network latency: 25 data items, 50clients and high read probability
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Figure 4: Percentage of transactions abortedvs number of clients: 25 data items, 75%write accesses with a network latency of 500time units
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Figure 6: Percentage of transactions abortedvs number of clients: 25 data items, 25%write accesses with a network latency of 500time units


