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Abstract

In this paper, we discuss the initial results of a de-
tailed simulation of the group two-phase locking (g-2PL)
protocol which was developed for gigabit-networked
databases. These results show that the grouping of lock
grants, client-end caching and data migration proposed
in the g-2PL protocol improves the transaction response
time upto 25% at moderate to high network latencies,
when compared to traditional schemes.

1 Introduction

Several exciting advances are being made in the gen-
eral area of high speed distributed computing. For in-
stance, the rate at which information can be transmit-
ted [11] and the rate at which information can be pro-
cessed 1s increasing. There are two basic components
of the delay involved in moving data between two com-
puters over a communication network: the transmission
time, 1.e., the time to transfer all the data bits, and the
propagation latency, i.e., the time the first bit takes to
arrive. As the data rate in wide area networks continues
to increase due to technological breakthroughs, the data
transmission delay will decrease almost linearly. How-
ever, the signal propagation delay which is a function of
the length of the communication link and a physical con-
stant, the speed of light, will remain almost constant,
and relative to the data transmission delay, will actu-
ally seem to increase. At gigabit rates in a wide area
network, the propagation latency is the dominant com-
ponent of the overall delay [9]. The minimum coast-to-
coast (U.S.) round trip network latency on the internet
has been observed to be 70 msec [10].

The above basic characteristic of high speed wide
area networks (referred to as a high bandwidth-delay
product) has significant implications on distributed ap-
plications. Moreover, since bits cannot travel faster
than the speed of light, and the distance between com-
municating computers cannot be reduced, the only way
to combat propagation latency is to hide 1t in innova-
tive protocols. This is not to say that the performance
of a traditional distributed distributed algorithm will be
worse in a high speed environment than in a low speed
environment. However, the marginal performance im-
provement will decrease as the data rate continues to
increase. Beyond a certain data rate, there will be no
further improvement, no matter what the increase in the
data rate is, and unless newer database protocols are de-
veloped that are distance-independent, scalable perfor-
mance will not be achieved. This observation motivated
us to develop a concurrency control protocol [1], and a
corresponding recovery algorithm in [2], which are the
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first ones in the family of algorithms which we refer to
as APLODDS for Algorithms for Propagation Latency
Optimization in Distributed Database Systems.

Our proposed concurrency control protocol in [1],
called group two-phase locking (or g-2PL), is a variant
of the strict two-phase locking (s-2PL) protocol [6] and
is targeted for client-server distributed database sys-
tem [, 12] in a shared-nothing environment. The g-2PL
protocol is specially tailored for a gigabit wide area envi-
ronment in which the size of the message is less of a con-
cern than the number of sequential phases or rounds of
message passing. The g-2PL protocol enhances perfor-
mance of the database system by exploiting these char-
acteristics of gigabit networks and in particular reduces
the number of rounds of message passing by grouping
the lock grants, client-end caching and data migration.
In this paper, the performance of the g-2PL protocol
is evaluated using simulation, and compared with the s-
2PL protocol, the most widely used concurrency control
protocol, assuming no site and communication failures.
The salient results of this performance evaluation are
that the g-2PL protocol exhibits better response time
for hot data and in general outperforms the s-2PL pro-
tocol when the percentage of reads performed by trans-
actions is relatively low compared to the writes in the
database system.

The rest of the paper is structured as follows. In
Section 2, the g-2PL protocol is described in some detail.
The simulation system model is presented in 3, followed
by the numerical results of the performance evaluation
obtained by simulation in section 4.

2 The g-2PL Protocol

To simplify the presentation of the g-2PL protocol,
we consider here a distributed database with a single
traditional database (DB) server and multiple clients
with local processing capabilities. When a client needs
a data item, it sends a request to the DB server which
responds with the requested data item. That 1s, we
assume a dala shipping client-server environment [7].

One of the motivations in a high speed environment
1s to minimize both the number of messages as well as
the rounds. The g-2PL protocol proposes to reduce the
number of phases of message passing by grouping the
lock (data) granting and release. The DB server col-
lects the lock requests for each data item for a specified
interval. At the end of this interval (referred to as the
collection window or simply, the window from now on),
the lock is granted to the first transaction, and the data
item is sent to the respective client along with the or-
dered list (also referred to as the forward list) of the
clients that have pending lock requests for that data



item, that arrived within the window. Within each win-
dow, the forward list may be created according to one of
several rules (see [1] for details) to improve performance
further. While the data items have been sent out to a
group of clients, the server continues to collect requests.

When a transaction commits, the client sends the
new version of the data items to the clients next on the
respective forward lists. A copy of the forward list is also
sent with each data item. If the transaction aborts, the
client forwards the unchanged data to the next client.
Finally, when the last client on the forward list termi-
nates, it sends the new version of the data to the server
with the outcome of each transaction executed on the
clients on the forward list. That is, in the g-2PL pro-
tocol, the lock release message of the previous client is
combined with the lock grant message of the next client,
thereby eliminating one sequential message compared to
the standard s-2PL protocol.

In the description of the basic protocol, only exclu-
sive access to data was considered. Obviously, access to
some data may be done in a shared fashion, with multi-
ple clients reading the data item simultaneously. Shared
access 18 incorporated into the basic protocol by allow-
ing multiple readers and a single writer to execute con-
currently while still preserving strict consistency. For
each data item required in the shared mode by mul-
tiple (reading) clients, the DB server can send a copy
of the data item to each of the reading clients, with
the forward list containing the client C; that requires
the data item next in the exclusive mode. At the same
time, a message containing the data item and the list of
the shared-mode clients is also sent to C; that requires
exclusive access. Although this enables C; to execute
concurrently with the reading clients, C; cannot release
its updates until it receives a release message from all
the reading clients. Here it is interesting to point out
that the protocol just described behaves similar to the
two-copy version s-2PL protocol [4] which allows more
concurrency than the standard s-2PL protocol. If there
are no waiting transactions that need exclusive access,
the release messages are returned to the server.

Two-phase locking protocols are deadlock-prone [6],
and so is the g-2PL protocol. Two or more transactions
are said to be in a deadlock when neither of the trans-
actions can proceed because at least one of the locks
required by each of the transactions is held by one of
the other transactions. In the case of the g-2PL proto-
col, deadlocks can be prevented if in each of the forward
lists, the order of the transactions is the same. Formally,
the forward list for each data item can be represented by
a transaction precedence graph, which need to be made
consistent. That is two transactions 7; and 7} must fol-
low the same order < T;,7; > or < 1j,1T; > in every
precedence graph involving 7; and 7. The transaction
precedence graph is a directed graph which determines
the order in which each data item will move from one
client site to another. Also, the precedence graph is
consistent with the lock granting order and hence con-
sistent with the serialization order. In the case that
such reordering of forward lists is not possible, some
transactions may have to be aborted.

The rest of the paper discusses a simulation study
of the performance of the g-2PL protocol. To keep the
paper more focused, several enhancements to the basic
protocol [3] have not been discussed. The most impor-
tant performance aspect in concurrency control proto-

cols is the handling of hot data items (see TPC bench-
marks and [7]). Note that in the g-2PL protocol, the
more a certain data item is requested as for hot data
items, more is the performance gain, since the group-
ing effect is more emphasized when the forward list is
longer.

3 System Model for Performance Eval-
uation

In order to evaluate the performance of g-2PL, a sim-
ulation model of the protocol was developed using the
C programming language. The simulation is a discrete-
event simulation using the unit-time approach to ad-
vance the simulation clock [8]. The performance of g-
2PL is compared with the well known s-2PL protocol
which is the industry standard. Thus, in the simulation
model, both g-2PL and s-2PL are implemented. We
consider a client-server database system, with a single
server and multiple clients connected by a high speed
network. As described earlier, the transmission delays
in a high speed network can be assumed to be negligi-
ble, and the network latency consists of the signal prop-
agation and switching delays. In this paper, we make
the simplifying assumption that the network latency be-
tween any two sites (server-client, client-client) and in
either direction is the same. For instance, thisis the case
if the network topology has a star configuration with a
switch at the center and each node (clients or server) is
connected to the switch by a link with the same capac-
ity and length. Thus, communication between any two
nodes is achieved in 2 hops through the switch with the
same network latency.

Our transaction workload is similar to that in pre-
vious work (e.g., [7]). All clients are assumed to be
identical and run transactions that have the same sta-
tistical profile. The multi-programming level at each
client is assumed to be one, i.e.; at any given time, each
client processes a single transaction only. Further, at
the end of each transaction, it 1s replaced with another
transaction at that client site after some idle time that
is uniformly distributed between a given minimum and
maximum values (see Table 1). Each transaction ac-
cesses between 1 and N data items uniformly. These
data items are drawn from a pool of M data items that
reside at the DB server. Each access may be of the type
read with a given read probability p, and of the type
write with a probability p, = 1 — p,.. The transaction
execution 1s sequential, 1.e., requests for data items are
generated sequentially, with each request being gener-
ated only after the previous request has been granted
and some think time (for computations) has elapsed.
In our model, this computation time is uniformly dis-
tributed between a given minimum and maximum val-
ues (see Table 1).

As mentioned in the previous section, two-phase lock-
ing protocols are deadlock-prone [6]. In the s-2PL imple-
mentation, deadlocks are detected by computing wait-
for-graphs and aborting the transactions necessary to
remove the deadlocks. This is the typical implementa-
tion found in commercial systems that use the s-2PL
protocol. In the case of g-2PL, the forward lists are
reordered to ensure that deadlocks are prevented. In
the case that such reordering is not possible, the offend-
ing transactions are aborted. Each transaction that is
aborted 1s replaced by another transaction.



1. Number of Servers 1

2. Number of Clients varying

3. Number of hot data items 25

4. Transaction Execution Pattern Sequential

5. Multiprogramming level at clients 1

6. Number of data items accessed by a transaction | 1 -5

7. Percentage of read accesses 0-100%

8. Network Latency 100 — 1000 time units
9. Computation Time per database operation 1 — 3 time units
10. | Idle Time between transactions 2 — 10 time units
11. | Window Size (g-2PL only) varying

12. | Timeout (g-2PL only) varying

Table 1: Simulation Parameters

Two parameters are of particular importance in the
g-2PL implementation: the window size and the time-
out value. The window size is measured in the number
of requests for a data item that must accumulate in
the forward list before the server can dispatch the data
item to the first client site on the forward list. In real-
ity, the window size may be tuned for each data item
depending on its demand. In our case, since we assume
uniform access to all data items, the window parameter
for each data item is the same. A large window size will
cause more grouping of requests, thus saving the num-
ber of rounds and improving the performance. At the
same time, a large window size will also cause requests
to be delayed while waiting for the requisite number of
requests to accumulate. Thus, a timeout parameter is
used that bounds the total waiting time; once the time-
out expires, the pending requests in the forward list are
served. If the timeout expires without any pending re-
quests in the forward list, the server restarts the timer.
Note that with a window size of 1, the timeout param-
eter has no effect on the performance.

Table 1 contains a list of all the experimental pa-
rameters and the corresponding range of values of the
performance study. Note that parameters 8-10 and 12
are specified in simulation time units rather than real
time in seconds. The conversion between the two is
easily achieved and realistic values can be chosen by
specifying the appropriate conversion factor. However,
it is important to recognize that the relative values of
these parameters have been chosen correctly. Since we
assume a wide area high speed networking environment,
the network latency is significantly higher than the com-
putation/idle times. For example, if we assume that 1
simulation time unit = 0.5 msec, then the network
latencies considered are between 50 and 500 msec,
which are realistic for wide area networks including
satellite transmission links. The computation time per
database operation is then between 500 and 1500 psec.

4 Simulation Results

In this section, for the sake of brevity only the salient
results of the simulation study are presented. More de-
tails can be found in [3]. The g-2PL and s-2PL simula-
tions were run on a Sun Ultra machine with the Solaris
2.5.1 operating system. The transient phase of the sim-
ulation runs was eliminated. In each simulation run,

10000 transactions were generated, requiring a simula-
tion time of upto 25 million time units (upto 20 minutes
in real time).

As discussed earlier; the g-2PL protocol is particu-
larly suited to accessing hot data items. Thus we sim-
ulated cases where a small number of data items are
accessed by a large number of clients. Figure 1 contains
the average transaction response time plotted against
the network latency, for low values of the read probabil-
ity (pr = 0.00, 0.25) in a database system with 25 hot
data items, 50 clients and each transaction accessing be-
tween 1 and b data items, using the g-2PL and s-2PL
protocols. The window size for the g-2PL protocol is
kept at the minimum possible value of 1. Figure 2 con-
tains a plot of the average transaction response time for
both protocols with the same database and transaction
parameters, but with high values of the read probabil-
ity (pr = 0.75, 1.00). Obviously as the network latency
is increased, the average transaction response time in-
creases correspondingly. From Figures 1 and 2, it is
evident that only when the read probability is 1.00 is
the performance of s-2PL better than the g-2PL proto-
col. The reason for this is that in the g-2PL protocol
described here, access requests are granted only at the
end of the window periods, and not in between. Thus,
the reads are penalized in the g-2PL system. As the
write probability is increased, g-2PL outperforms s-2PL
by grouping access requests and saving on the number of
rounds. From Figures 1 and 2, the s-2PL response time
is upto 26% higher than that with the g-2PL protocol.

The loading on the database system can be increased
in several ways. We chose to do so by increasing the
number of clients while keeping the transaction profile
the same: each transaction uniformly accesses between 1
and b data items out of 25 hot data items. The network
latency is fixed at 500 time units. Figure 3 contains the
plots of the average transaction response time for the g-
2PL and s-2PL protocols versus the number of clients,
with a fixed read probability of 0.25. Figure 5 contains
similar plots for a read probability of 0.75. In both cases
(pr=0.25 and p,=0.75), the g-2PL protocol outperforms
the s-2PL protocol at high loads. In the system model
described in Section 3, deadlocks are the only cause for
transactions to be aborted, i.e., no communication or
site failures are assumed. Figures 4 and 6 contain the
plots of the fraction of transactions aborted in the g-



2PL and s-2PL protocols for read probabilities of 0.25
and 0.75 respectively. From these figures it is evident
that the fraction of transactions aborted in both pro-
tocols is relatively close. However, 1t can be seen that
at both values of p,, a cross-over in performance occurs
and beyond a certain loading, the fraction of transac-
tions aborted in the s-2PL protocol is higher.

The last aspect researched in our performance eval-
uation was the effect of the window parameter values
and the timeout durations on the performance of the
g-2PL protocol. Ideally, the window parameter and the
timeout duration should be chosen such that the aver-
age response time is the minimum possible. The results
discussed so far were computed assuming a window size
of 1, which renders the timeout duration of no conse-
quence. Note that the window size and the timeout
together determine the grouping of requests achieved,
and thereby the overall performance. We approached
this problem by fixing the window size at a large enough
value so that the timeout duration alone determined the
grouping. Then the timeout duration was varied and
the average transaction response time was studied. As
expected, as the timeout duration is increased, the av-
erage response time increases as well. However, for the
cases studied, there was a range of timeout durations (0
< timeout < T) for which the average response time is
low and approximately the same with only small varia-
tions. Thus it appears that for the cases studied, using
a small timeout duration (or a window size of 1) would
provide performance close to the best. Further, the dif-
ference between the best response time achieved and
that with a very small timeout duration was less than
1%. Keeping the timeout duration at a high value and
changing the window size produced similar results.

5 Conclusions

The group two-phase locking (g-2PL) protocol was
developed for gigabit-networked database systems rec-
ognizing that propagation latencies as the bottleneck
and that migrating large amounts of data between
database servers is not a problem. In order to study
the performance of the g-2PL protocol, we have imple-
mented a simulator of a shared nothing, client-server
distributed database system. In this paper, we reported
on the performance of g-2PL in the absence of com-
munication and site failures by comparing it with the
performance of the strict 2PL protocol.

The results of our experiments confirmed our hypoth-
esis that the g-2PL protocol is particularly suited to con-
trol access to hot data items and showed that the g-2PL
protocol, in general, outperforms the s-2PL protocol for
update transactions. Specifically, the g-2PL protocol
exhibits superior performance when the percentage of
reads performed by transactions is relatively low com-
pared to the writes in the database system. Interest-
ingly, the g-2PL protocol exhibits worse response time
for read-only transactions although one might have ex-
pected that both g-2PL and s-2PL protocols would have
behaved the same. This shows that the g-2PL protocol
fails to fully explore the commutativity of read opera-
tions as in the case of s-2PL. Another interesting result
is that the window size determining the grouping of re-
quests has almost no influence on the performance of
g-2PL and it seems that using a small timeout duration
for controlling the grouping of requests is sufficient.

Our future research will investigate inter-transaction
caching issues in the context of data shipping protocols,
and the ensuing performance trade-offs in the g-2PL
protocol.
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