An Argument in Favor of the Presumed Commit Protocol*

Yousef J. Al-Houmaily
Dept. of Electrical Engineering
University of Pittsburgh
Pittsburgh, PA 15261

yjastl +H@pitt.edu

Abstract

We argue in favor of the presumed commit protocol by
proposing two new presumed commit variants that signifi-
cantly reduce the cost of logging activities associated with
the original presumed commit protocol. Furthermore, for
read-only transactions, we apply our unsolicited update-
vote optimization and show that the cost associated with this
type of transactions is the same in both presumed commit
and presumed abort protocols, thus, nullifying the basis for
the argument that favors the presumed abort protocol. This
is especially important for modern distributed environments
which are characterized by high reliability and high proba-
bility of transactions being committed rather than aborted.

1. Introduction

In order to ensure consistent termination of distributed
transactions despite site and communication failures, all the
sites participating in a transaction’s execution engage in
an atomic commit protocol such as the two-phase commit
protocol (2PC) [8, 10]. Since 2PC consumes a substantial
amount of a transaction’s execution time during normal pro-
cessing [19] and is blocking in the case of both communica-
tion and site failures [17], a number of 2PC variants have
appeared in the literature, e.g., (1, 3, 9, 11, 15, 18], most no-
tably, the presumed abort protocol (PrA) and the presumed
commit protocol (PrC) [12, 11].

PrA has been designed to reduce the cost associated
with aborting transactions while, its counterpart, PrC has
been designed to reduce the cost associated with commit-
ting transactions. To reduce the cost of commit processing
further, a number of optimizations have also been proposed,
of which the read-only optimization [12] is the most signif-
icant, given that read-only transactions are the majority in

*Supported in part by N.S.FE under grants IRI-9210588 and IRI-
95020091 and a Saudi Arabian graduate student scholarship.

1063-6382/97 $10.00 © 1997 IEEE

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:48:23 UTC from IEEE Xplore. Restrictions apply.

Panos K. Chrysanthis
Dept. of Computer Science
University of Pittsburgh
Pittsburgh, PA 15260
panos@cs.pitt.edu

Steven P. Levitan
Dept. of Electrical Engineering
University of Pittsburgh
Pittsburgh, PA 15261
steve@ee.pitt.edu

any general database system. (See [15] for a survey of the
most common two-phase commit optimizations.)

Due to the cost of the logging activities associated with
PrC even for read-only transactions, the argument usually
goes in favor of PrA. However, modern communication net-
works as well as computing systems are becoming more re-
liable and distributed transactions tend to commit after all
their operations have been successfully executed and ac-
knowledged. Therefore, we were prompted to revisit the de-
bate between PrA and PrC and to investigate techniques that
enhance the performance of PrC. Our investigationsled us to
three techniques which are presented in this paper and which
reduce, and under certain circumstances even eliminate, the
logging activities from PrC. Whereas PrA has been the cur-
rent choice of commercial systems and standards [6], the
proposed three techniques when combined with PrC form
an argument in its favor to become part of the standards.
This argument is further strengthened by the fact that the in-
compatibility between these two variants is not an issue any-
more because PrA and PrC can be interoperated in a practi-
cal manner [2].

The rest of this paper is structured as follows. In the
next section, to establish the stage for our arguments, we
briefly overview the basic 2PC, PrA and PrC in the con-
text of two-level as well as multi-level transaction execution
models. We also discuss the traditional read-only optimiza-
tion. In Section 3, we review why the argument usually goes
in favor of PrA rather than PrC. In Section 4, given that the
multi-level transaction execution model is the one specified
in the transaction processing standards and adopted by com-
mercial database systems, we propose two new PrC variants
for the multi-level transaction execution model that reduce
the logging activities significantly when compared with the
original PrC. Then, we show how we can eliminate the log-
ging activities from read-only transactions in PrC as well as
in the newly proposed PrC variants by applying our unso-
licited update-vote optimization. We conclude with a sum-
mary in Section 5.

http://pitt.edu
mailto:panos@cs.pitt.edu
mailto:steve@ee.pitt.edu

Coordinator Participant
vV P
Prepare o h
\ t a
s 8
Force Write :; e
Yes Prepared Record p
__________ K‘_______________-_._____.__
Force Write
Decision Record . D P
Decision e h
o a
i s
Force Write A
Ack Decision Record °
n
Write non-forced
End Record

Figure 1. The basic two-phase commit protocol.

2. Background

In a distributed database system, data are typically stored
in disjoint partitions at different sites. This data distribution
is transparent 1o a distributed transaction that accesses data
by submitting database operations to its coordinator. With-
out loss of generality, we assume that the coordinator of a
transaction is the transaction manager at the site where the
transaction has been initiated. While still adhering to the tra-
ditional ACID (i.e., Atomicity, Consistency, Isolation and
Durability) properties of transactions [9], a distributed trans-
action is decomposed into a set of subtransactions, each of
which executes at a single participant site. When a transac-
tion finishes its execution and submits its commit request, its
coordinator initiates an atomic commit protocol, such as the
two-phase commit protocol.

The basic two-phase commit protocol (2PC) (8, 10], as
the name implies, consists of two phases, namely a voting
phase and a decision phase (Figure 1). During the voting
phase, the coordinator of a distributed transaction requests
all the participating sites to prepare to commit whereas, dur-
ing the decision phase, the coordinator either decides to
commit the transaction if all the participants are prepared
to commit (voted Yes), or to abort if any participant has de-
cided to abort (voted No). If a participant has voted Yes, it
can neither commit nor abort the transaction until it receives
the final decision. When a participantreceives the final deci-
sion, it complies and acknowledges the decision. The coor-
dinator discards any informationin its protocol table in main
memory regarding the transaction when it receives acknowl-
edgments from all the participants and forgets the transac-
tion.

The resilience of 2PC to system and communication fail-
ures is achieved by recording the progress of the protocol in
the logs of the coordinator and the participants. The coor-
dinator force-writes a decision record prior to sending out

256

Coordinator Participant

Prepare 5 &
\ t a
1 8
Force Write n e

Yes Prepared Record g
Abo D P

Tt e
— s

i
a8
Write non-forced § e

Abort Record s

n

Figure 2. The presumed abort protocol.

the final decision. Since a force-write ensures that a log
record is written into a stable storage that survives system
failures, the final decision is not lost if the coordinator fails.
Similarly, each participant force-writes a prepared record
before sending its Yes vote and a decision record before
acknowledging the final decision!. When the coordinator
completes the protocol, it writes a non-forced end record,
indicating that the log records pertaining to the transaction
can be garbage collected when necessary.

The basic 2PC is also referred to as the presumed noth-
ing 2PC protocol (PrN) [11] because it treats all transactions
uniformly, whether they are to be committed or aborted, re-
quiring information to be explicitly exchanged and logged
at all times. However, in the case of a coordinator’s failure,
there is a hidden presumption in PrN by which the coordina-
tor considers all active transactions at the time of the failure
as aborted ones. The presumed abort protocol (PrA) makes
this abort presumption explicit [12, 11].

Specifically, in PrA, when a coordinator decides to abort
a transaction, it does not force-write the abort decision in its
log as in PN (Figure 2). It just sends abort messages to all
the participants that have voted Yesand discards all informa-
tion about the transaction from its protocol table. That is, the
coordinator of an aborted transaction does not have to write
any log records or wait for acknowledgments. Since the par-
ticipants do not have to acknowledge abort decisions, they
are also not required to force-write such decisions. After a
coordinator or a participant failure, if the participant inquires
about a transaction that has been aborted, the coordinator,
not remembering the transaction, will direct the participant
to abort it (by presumption).

As opposed to PrA, the presumed commit protocol (PrC)
is designed to reduce the cost of committing transactions
[12, 11]. Instead of interpreting missing information about

!Writing the decision at the participants and acknowledging it in a lazy
fashion [9] is an optimization that is not considered here.

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:48:23 UTC from |IEEE Xplore. Restrictions apply.

Coordinator Participant
Force Write v p
Initiation Record| Prepare o h
\ t a
. i s
Force Write n e
Prepared Record g
‘Yes/
Force Write
Commit Record Commit 13 ﬁ
c a
. i s
Write non-forced 8 e
ommit Record i
°
n

Coordinator Participant
Force Write v p
Initiation Record| Prepare o h
. i s
Force Write n e
Prepared Record g
‘Y%
D P
Abort e h
¢ a
\ i s
Force Write 8 e
Abort Record i
Ack °
/ n
Write non-forced
End Record

(a) Commit Case.

(b) Abort Case.

Figure 3. The presumed commit protocol.

transactions as abort decisions, in PrC, coordinators inter-
pret missing information about transactions as commit de-
cisions. However, in PrC, a coordinator has to force write
an initiation (which is also called collecting in [12]) record
for each transaction before sending prepare to commit mes-
sages to the participants. This record ensures that missing
information about a transaction will not be misinterpreted as
a commit after a coordinator failure.

To commit a transaction (Figure 3 (a)), the coordinator
force writes a commit record to logically eliminate the ini-
tiation record of the transaction and then sends out the com-
mit decision. The coordinator also discards all information
pertaining to the transaction from its protocol table. When a
participant receives the decision, it writes a non-forced com-
mit record and commits the transaction without having to
acknowledge the decision. After a coordinator or a partic-
ipant failure, if the participant inquires about a transaction
that has been committed, the coordinator, not remembering
the transaction, will direct the participant to commit it (by
presumption).

To abort a transaction (Figure 3 (b)), on the other hand,
the coordinator does not write the abort decision in its log.
Instead, the coordinator, sends out the abort decision and
waits for the acknowledgments before discarding all infor-
mation pertaining to the transaction. When a participant re-
ceives the decision, it force writes an abort record and then
acknowledges the decision, as in PrN.

2.1. Multi-Level PrA and PrC

The multi-level transaction execution (MLTE) model, the
one specified by the standards and adopted by commer-
cial database systems, is similar to the tree of processes
model [12]. In this model, a participant is a process that is
able to decompose a subtransaction further. Thus, a partici-

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:48:23 UTC from |IEEE Xplore. Restrictions apply.

257

pant can initiate other participant processes at its site or dif-
ferent sites. Hence, the processes pertaining to a transaction
can be represented by a multi-level execution tre¢ where the
coordinator process resides at the root of the tree. In this
model, the interactions between the coordinator of the trans-
action and any process have to go through all the intermedi-
ate processes that have caused the creation of a process.

In the MLTE model, the behavior of the root coordinator
and each leaf participant in the transaction execution tree, in
both 2PC variants, remains the same as in two-level transac-
tions. The only difference is the behavior of cascaded coor-
dinators (i.e., non-root and non-leaf participants) which be-
have as leaf participants with respect to their direct ances-
tors and root coordinators with respect to their direct descen-
dants. Specifically, when a cascaded coordinator receives a
prepare to commit message, in multi-level PrA, it forwards
the message to its descendent participants and waits for their
votes, as shown in Figure 4. If all descendants have voted
Yes, the cascaded coordinator force writes a prepared log
record and then sends a Yes vote to its coordinator. If any
descendant has voted No, the cascaded coordinator sends an
abort decision to its descendants and a No vote to its coordi-
nator. When a cascaded coordinator receives an abort deci-
sion (Figure 4 (a)), it writes a non-forced abort record, for-
wards the decision to its direct descendants and forgets the
transaction. On the other hand, when a cascaded coordina-
tor receives a commit decision (Figure 4 (b)), it forwards the
decision to its direct descendants and force writes a commit
record. Afterwards, the cascaded coordinator sends an ac-
knowledgment to its coordinator. Once the direct descen-
dants of the cascaded coordinator acknowledge the decision,
it writes a non-forced end record and forgets the transaction.

PrC can be extended in the MLTE model in a manner sim-
ilar to PrA. However, as shown in Figure 5, each cascaded
coordinator in multi-level PrC has to force write an initia-

Site; Site; Site; Sitey Site; Site; Site; Siteg
Leal Participant| [Coordlnator | Cascaded Leaf Participant Leaf Participant { Coordinator | Cascaded Leaf Participant
Coordinator Coordinator
Prepare Prepare Prepare Prepare
Force Write Force Write
Prepared Record Prepare Prepared Record Prepare
Force Write Force Write
Yes |Prepared Record Yeg | Prepared Record
Force Write Force Write
Yes Yes |Prepared Record Yes Yes | Prepered Record
Borce Wrile
Commit Record
Abont Abort Abort Comruit Commit Commit
‘Write non-forced Write non-forced Write non-forced Foree Write Force Write Force Write
Abort Record Abort Record Abort Record Commit Record Ack Ack | Commit Record Ack | Commit Record
‘Write non-forced Write non-forced
End Record End Record
(a) Abort case. (b) Commit case.
Figure 4. The multi-level presumed abort protocol.
Site; Site; Site; Sitey Site; Site; Site; Siteg
Leaf Participant| | Coordinator | Cc“:.'“: Leaf Participant Leaf Participant | Coordinator | Cascaded Leaf Participant
Force Write oordinator Force Write Coordinator
Prepare Initiavion Record Prepare Prepare Initigtion Record Prepare
Force Write Force Write Force Write Force Write
Prepared Record Initiation Record Prepare Prepared Record Initiation Record Preparc
Force Write Porce Write
Yes | Prepared Record Yos | Prepsred Record
Force Wrile Force Write
Yes Yes | Prepared Record Yes Yes |Prepared Record
Force Write
Abort Abort Abort Comumit | Commit Record § Commi Commit
Force Write Force Write Force Write Write non-forced ‘Write non-forced ‘Write non-forced
Abort Record Ack Ack] Abort Record Ack | Abort Record Comgmit Record Commit Record Commit Record
Write non-forced! Write non-forced|
End Record End Record

(a) Abort case.

(b) Commit case.

Figure 5. The muilti-level presumed commit protocol.

tion record before propagating the prepare to commit mes-
sage to its descendent participants. If the final decision is to
abort the transaction (Figure 5 (a)), a cascaded coordinator
propagates the decision to its descendants, force writes an
abort record and, then, acknowledges its ancestor. Once the
acknowledgments arrive from the descendants, a cascaded
coordinator writes a non-forced end record and forgets the
transaction. If the final decision is a commit decision (Fig-
ure 5 (b)), a prepared to commit cascaded coordinator prop-
agates the decision to its direct descendants, writes a non-
forced commit record and, then, forgets the transaction.

2.2, Read-Only Transactions

In the traditional read-only optimization [12], when a par-
ticipant that has exccuted only read operations on behalf of
a transaction receives a prepare to commit message from the
transaction’s coordinator, it either replics with a No or Read-
Only vote instead of a Yes and immediately releases all the
resources held by the transaction without writing any log
records.

From a coordinator’s perspective, the Read-Only vote

258

means that the transaction has read consistent data. Further-
more, the read-only participant does not need to be involved
in the second phase of the protocol because it does not mat-
ter whether the transaction is finally committed or aborted to
ensure its atomicity at the participant.

If a transaction is read-only (i.e., all the operations it has
submitted to all the participants are read operations), the co-
ordinator, in both PrA and PrC, treats the transaction as an
aborted one, This is because it is cheaper to abort than to
commit a read-only transaction with respect to logging. Re-
call that a coordinator does not write any log records in PrA

whercas abort records are written in a non-forced manner in
PrC.

3. The Argument in Favor of PrA

In this section, we illustrate why efficiency arguments
usually go in favor of PrA by evaluating the cost associated
with commit processing in PrA and showing that it is, in
general, less than in PrC. In our evaluation, we also consider
read-only transactions.

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:48:23 UTC from |IEEE Xplore. Restrictions apply.

Commit Decision Abort Decision
Variants Coordinator Participant Coordinator Participant
m[n]p[min]qmn]lp|[mi|n]gq
2PC 21112121212 2 1112121212
PrA 21112212712 ofoj2(2}11}]1
PrC 21212211 21712 2]2]2

Table 1. The costs for update transactions.

3.1. Evaluating PrA and PrC

Let us first consider commitment in the two-level trans-
action execution model. Table 1 summarizes the cost asso-
ciated with update transactions for the commit as well as the
abort case assuming a Yes vote from each participant: m is
the total number of log records, n is the number of forced
log writes, p 1 the number of messages received from the
coordinator and ¢ is the number of messages sent back to the
coordinator.

During normal processing, the cost to commit a transac-
tion executing at N participants in PrA is 2N + 1 forced log
writes and 4N coordination messages whereas, in PrC, the
cost is N + 2 forced log writes and 3N coordination mes-
sages. On the other hand, the cost to abort a transaction in
PrA is N forced log writes and 3N coordination messages
whereas, in PrC, the cost is 2V + 1 forced log writes and 4 N
coordination messages. Thus, it is cheaper to use PrA in a
system where transactions are most probably going to abort
while it is cheaper to use PrC if transactions have higher
probability of being committed. In a system where transac-
tions have the same probability of being aborted as of being
committed, it is cheaper to use PrA. This is because the costs
of the two variants are not symmetric. Whereas the cost to
commit a transaction in PrA is the same as to abort a trans-
action in PrC, the cost to abort a transaction in PrA is less
than to commit a transaction in PrC. To abort a transaction in
PrA, the coordinator does not write any log records whereas,
to commit a transaction in PrC, the coordinator has to force
write two log records. For a similar reason, it is cheaper to
terminate a read-only transaction using PrA rather than PrC.

Recall that a coordinator, in both PrA and PrC, aborts a
read-only transaction since it is cheaper than committing it.
As shown in Table 2, both PrA and PrC require the same
number of coordination messages to terminate a read-only
transaction. However, with respect to the logging activities,
a coordinator in PrA does not write any log records whereas
in PrC, a coordinator has to write two log records, one of
which is forced. Not knowing whether a transaction is go-
ing to be read-only, a coordinator in PrC has to force write
an initiation record. To forget the read-only transaction, the
coordinator also writes a non-forced end log record when it
receives the Read-Only votes of the participants.

For a partially read-only transaction (i.c., only some of
the participants in its execution have executed only read op-
erations), a coordinator in both PrA and PrC behaves as in

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:48:23 UTC from IEEE Xplore. Restrictions apply.

Coordinator Participant
Variants [m [n Jp {m[n]gq
PrA 0jO0]1]O0O 0]t
PC 21T 17 o0J0]T

Table 2. Cost of read-only transactions using the
traditional read-only optimization.

the case of an update transaction discussed above, consider-
ing only update participants in the second phase of the pro-
tocol. However, a transaction that has performed only read
operations at a participant site in PrC will hold the resources
at that site longer than in PrA. This is because a read-only
participant in PrC has to suffer from the cost of the initiation
record at the coordinator’s site before it receives the prepare
to commit message which allows it to release the resources
held by the transaction.

3.2. Evaluating Multi-Level PrA and PrC

In the MLTE model, multi-level PrA and multi-level PrC
retain the relative advantages of PrA and PrC. They also re-
tain the relative message complexity of PrA and PrC. How-
ever, due to the extra forced initiation log records at the cas-
caded coordinators, the difference between the cost of abort-
ing a transaction in multi-level PrC and multi-level PrA is
greater than the difference between PrC and PrA, whereas
the difference between the cost of committing a transaction
in multi-level PrC and multi-level PrA is less than the differ-
ence between PrC and PrA. Let us illustrate this by consid-
ering a transaction with N participants of which C are cas-
caded coordinators and L are leaf participants.

Mutlti-level PrA involves L + C (or N) forced log writes
to abort a transaction whereas multi-level PrC involves 2L +
3C + 1 (or 2N + C -+ 1). That is, multi-level PrC incurs
N + C + 1 more forced log writes than multi-level PrA
while PrC incurs only N +1 more forced log writes than PrA
to abort a transaction. To commit a transaction, multi-level
PrCinvolves L + 2C + 2 (or N + C + 2) forced log writes
whereas multi-level PrA incurs 2L + 2C 4+ 1 (or 2N + 1).
That is, multi-level PrA requires N — C' — 1 more forced log
writes than multi-level PrC while PrA incurs N' — 1 more
forced log writes than PrC.

In addition to reducing the relative performance advan-
tage of multi-level PrC over muiti-level PrA in commit-
ting transactions, the fact that these extra forced initiation
records are written sequentially during the voting phase
gives rise to another undesirable effect. A coordinator in
multi-level PrC experiences more delays to reach a final de-
cision than in multi-level PrA. Consequently, participants in
multi-level PrC receive a final decision later than in multi-
level PrA, thereby, participants hold the resources longer in
multi-level PrC than in multi-level PrA. This means that in
the case of transactions with deep trees (e.g., long executing

transactions which potentially access many data items), the
tradeoff between reducing conflicts over data items in multi-
level PrA and reducing extra forced commit records at ev-
ery participant (cascaded coordinator or leaf participant) in
multi-level PrC goes in favor of multi-level PrA.

The force writing of initiation log records sequentially
has the same negative effect on read-only transactions as
for update ones. This is because a read-only participant in
multi-level PrC has to suffer as well from the delays associ-
ated with the forced initiation records in all its ancestors in
the transaction tree before it can vote Read-Only and release
any resources.

3.3. Summarizing the Argument

From the above discussion, it becomes clear that the PrC
variants are the best choice for committing transactions only
in systems in which the majority of the transactions are up-
date transactions and are finally committed. However, in
general, and in systems in which the majority of the trans-
actions are read-only in particular, the PrA variants are the
choice. This is because the costs of aborting a transaction in
PrA variants are less than the costs of committing a trans-
action in PrC variants. This asymmetry in their costs is
due to initiation log records forced in PrC variants for both
update and read-only transactions. Since read-only trans-
actions are the dominant type of transactions in any gen-
eral database system, PrA variants have become the current
choice of atomic commit protocols.

4. An Argument in Favor of PrC

The argument, thus far, has been in favor of PrA because
of the major drawback of PrC which requires forcing ini-
tiation records for both read-only and update transactions.
Thus, if there is a way to eliminate or reduce the cost asso-
ciated with the initiation records, the argument would go in
favor of PrC, especially given the fact that high speed net-
works and computing systems are becoming highly reliable
and distributed transactions will most probably commit af-
ter all their operations have been successfully executed and
acknowledged. The same intention has been behind the de-
sign of the new presumed commit protocol for the two-level
transaction execution model [11].

In this section, we present two new PrC variants that ef-
fectively eliminate all the intermediate initiation records
from cascaded coordinators in the MLTE model. The first
PrC variant is called the rooted PrC protocol where only
the root coordinator force writes an initiation record. The
second PrC variant is called the re-siructured PrC proto-
col which is based on the idea of flattening the transaction
trees [15]. After we have presented the new PrC variants,
we present our unsolicited update-vote optimization [4] and

260

apply it to both PrA and PrC (including the two proposed
PrC variants) and show that the cost associated with read-
only transactions becomes the same in both PrA and PrC,
with PrC performing better than PrA for update and partially
read-only transactions.

4.1. The Rooted PrC Protocol (RPrC)

As opposed to multi-level PrC, RPrC does not realize the
two-level presumption of PrC on every adjacent level be-
cause it structures cascaded coordinators as leaf participants
with respect to logging. That is, cascaded coordinators do
not force write initiation records and, consequently, do not
presume commitment in the case that they do not remember
transactions.

4.1.1, Description of the Protocol

In RPrC, the root coordinator needs to know all the par-
ticipants at all levels in a transaction’s execution tree. Sim-
ilarly, each participant needs to know all its ancestors in the
transaction’s execution tree. The former allows the root co-
ordinator to determine when it can safely forget a transaction
while the latter allows a prepared to commit participant at
any level in a transaction’s execution tree to find out the fi-
nal correct outcome of the transaction, ¢ven if intermediate
cascaded coordinators have no recollection about the trans-
action due to a failure.

In order for the root coordinator to know the identities of
all participantsin RPrC, each participant includes its identity
in the acknowledgment of the first operation. When a cas-
caded coordinator receives an acknowledgment of a first op-
eration from a participant, it also includes its identity in the
acknowledgment message. In this way, the identities of all
participants and the chain of their ancestors are propagated
to the root coordinator. This technique is similar to the one
used with PrA to support heuristic decisions [13, 16]. When
the transaction submits its commit request, the coordinator,
force writes an initiation record that includes the identities
of all participants in the transaction execution tree. Then, it
sends out prepare to commit messages to its direct descen-
dants.

The root coordinator sends its identity as part of the pre-
pare to commit message (Figure 6). When a cascaded coor-
dinator receives the prepare to commit message, it appends
its own identity before propagating the message to its direct
descendants. When a leaf participant receives a prepare to
commit message, it copies the identities of its ancestors in
the prepared log record before sending its Yes vote. When
a cascaded coordinator receives Yes votes from all its direct
descendants, the cascaded coordinator also records the iden-
tities of its ancestors as well as its descendants in its pre-
pared log record before sending its collective Yes vote to
its direct ancestor.

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:48:23 UTC from |IEEE Xplore. Restrictions apply.

Site; Site; Site; Site,
ioi { Cascaded i)
Leaf Participant] I Ooordl'mllor I Coordinstor Leaf Participant
Force Write
Prepare Initiation Record Prepare
Force Write
Prepared Record Propars
Force Write
Yes | Prepared Record
Force Write
Yes Yes | Prepared Record
Abort Abort Abort
Force Write Force Write Force Write
Abort Record Ack Ack | AbertRecord Ack | Abort Record
Write non-forced| Write non-forced!
End Record End Record

Site; Site; Site y Site,,
| Coordinator | Cascaded
Force Write Coordinator

Prepare Initiation Record Proparc

Leaf Participant Leaf Participant

Force Write

Prepared Record Prepare
Forc: Write
Yes | Prepared Record
Force Write
Yes Yes | Propared Record
Force Write
Commit | Commit Recard | commis Commit
‘Write non-forced Write non-forced| ‘Write non-forced
Commit Record Commit Record Commit Record

(a) Abort case.

(b) Commit case,

Figure 6. The rooted presumed commit protocol.

If any direct descendant has voted No, the cascaded co-
ordinator force writes an abort log record, sends a No vote
to its direct ancestor and an abort message to each direct de-
scendant that has voted Yes and waits for their acknowledg-
ments. Once all the abort acknowledgments arrive, the cas-
caded coordinator writes a non-forced end record and for-
gets the transaction.

If the root coordinator receives a No vote, it propagates
an abort decision to all direct descendants that have voted
Yes and waits for their acknowledgments (Figure 6 (a)),
knowing that all the descendants of a direct descendant that
has voted No have already aborted the transaction. When
the coordinator receives the acknowledgments of its abort
decision, it writes a non-forced end record and forgets the
transaction. When a cascaded coordinator receives the abort
message, it behaves as in multi-level PrC. That is, it prop-
agates the message to its direct descendants and writes a
forced abort record. Then, it acknowledges its direct ances-
tor. Once the cascaded coordinator has received acknowl-
edgments from all its direct descendants, it writes a non-
forced end record and forgets the transaction. When a leaf
participant receives the abort message, it first force writes an
abort record and, then, acknowledges its direct ancestor.

As in multi-level PrC, when the root coordinator receives
Yes votes from all its direct descendants, it force writes a
commit record, propagates its decision to its direct descen-
dants and forgets the transaction. When a cascaded coor-
dinator receives a commit message (Figure 6 (b)), it prop-
agates the message to its direct descendants, writes a non-
force commit record and forgets the transaction. When a
leaf participant receives the message, it commits the trans-
action and writes a non-forced commit record.

4.1.2, Failures Considered
Asin all other atomic commit protocols, site and commu-

nication failures are detected by timeouts. If the root coor-
dinator times out while awaiting the vote of one of its direct

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:48:23 UTC from IEEE Xplore. Restrictions apply.

descendants, the root coordinator makes an abort final deci-
sion, sends abort messages to all its direct descendants and
wait for their acknowledgments to complete the protocol.

Similarly, if a cascaded coordinator times out while
awaiting the vote of one of its direct descendants, it makes an
abort decision. In this case, the cascaded coordinator force
writes an abort log record, sends a No vote to its direct an-
cestor and abort messages to all its direct descendants and
waits for their abort acknowledgments.

In the event of a leaf participant site failure, during its
recovery process, the participant inquires its direct ancestor
about the outcome of each prepared to commit transaction.
In its inquiry message, the participant includes the identities
of its ancestors recorded in the prepared log record. In this
way, unlike the case of PrC, if the direct ancestor of the pre-
pared participant does not remember the transaction, it uses
the list of ancestors included in the inquiry message to in-
quire its own direct ancestor about the transaction’s outcome
rather than replying with a commit message by presumption.
Eventually, either one of the cascaded coordinators in the
path of ancestors will remember the transaction and provide
areply, or the inquiry message will finally reach the root co-
ordinator. The root coordinator will respond with the appro-
priate decision if it remembers the outcome of the transac-
tion or will respond with a commit decision by presumption.
Once the participant receives the reply message, it enforces
the decision and acknowledges it only if it is an abort deci-
sion.,

In the event that the root coordinator fails, during its re-
covery process, the root coordinator records in its protocol
table each transaction with an initiation record without a
corresponding commit or end record. These transactions
have not finished their commit processing by the time of the
failure and need 1o be aborted. Thus, for each of these trans-
actions, the coordinator sends an abort message to its direct
descendants, as recorded in the initiation record, along with
their lists of descendants in the transaction execution tree.

The recipient of the abort message can be either a cascaded
coordinator or a leaf participant. In the case of a cascaded
coordinator, if it is in a prepared to commit state, the cas-
caded coordinator behaves as in the case of normal process-
ing discussed above. Otherwise, it responds with a blind
acknowledgment, indicating that it has already aborted the
transaction. Similarly, if the abort message is received by a
leaf participant, the participant behaves as in the case of nor-
mal processing if it is in a prepared to commit state or replies
with a blind acknowledgment.

In the case of a cascaded coordinator failure, during its
recovery process, the cascaded coordinator adds to its proto-
col table each undecided transaction (i.e., a transaction that
has a prepared record without a corresponding final deci-
sion record) and each aborted transaction that has not been
fully acknowledged (i.e., a transaction that has an abort log
record without a corresponding end record) by its direct de-
scendants prior to the failure. For each undecided transac-
tion, the cascaded coordinator inquires its direct ancestor
about the outcome of the transaction. As in the case of a leaf
participant failure, the inquiry message contains the iden-
tities of all ancestors as recorded in the prepared record.
Once the cascaded coordinator receives the final decision,
it completes the protocol as in the normal processing case
discussed above. For each aborted but not fully acknowl-
edged transaction, the cascaded coordinator re-sends abort
messages to its direct descendants and waits for all their ac-
knowledgments before writing a non-forced end log record.

4.2. The Re-Structured PrC Protocol (ReSPrC)

In this section, we present ReSPrC which involves the re-
structuring of a multi-level transaction execution tree, and
in particular, combining PrC with the flattening technique to
generate a two-level transaction commit tree.

The re-structuring of a transaction tree has been previ-
ously used to enhance the reliability of commit processing
by reducing the blocking effects of atomic commit protocols
in case of failures [14]. Also, the flattening of a distributed
transaction’s tree has been suggested to reduce the cost of
commit processing that is due to the serialization of mes-
sages in a transaction’s tree [15]. That is, instead of send-
ing the coordination messages during commit processing in
a sequential fashion from one process at one level to another
at the next level in a transaction tree, the flattening tech-
nique allows the coordinator of the transaction to send mes-
sages directly to the participant processes without having to
go through intermediate processes. This technique signifi-
cantly reduces the cost of commit processing especially in
deep trees [15].

In ReSPrC, when the root coordinator receives a commit
request from a transaction, it sends prepare to commit mes-
sages directly to all participants. To be able to communicate

262

directly with all the participants, the root coordinator needs
to know the identities of all participants. In ReSPrC, this is
achieved in a manner similar to the one used in the RPrC,
That is, each participant propagates its identity in the ac-
knowledgment of the first operation it executes. Also, each
participant needs to know the identity of the root coordina-
tor to be able to communicate with root coordinator directly
during the course of commit processing. This is achieved by
having the direct ancestor of a participant to propagate the
identity of the root coordinator in the first operation it for-
wards to the participant for execution. In this way, ReSPrC
dynamically generates a two-level transaction commit tree
for each transaction irrespective of the depth of the transac-
tion’s execution tree.

Thus, in addition to achieving our initial goal, that is re-
ducing the number of initiation records in multi-level PrC,
with ReSPrC we have enhanced the performance of com-
mit processing in PrC in two ways. Firstly, the forced log
records in ReSPrC are performed in parallel rather than se-
quentially (e.g., the prepared log records). Secondly, we
have reduced the total number of log writes. That is, a cas-
caded coordinator in ReSPrC neither force writes an initia-
tion record nor writes an end record for an aborted transac-
tion.

Furthermore, the use of the flattening technique provides
a significant performance enhancement in the presence of
loopbacks [13]. A loopback occurs when a process, for ex-
ample P; at site Site; creates another process Py at Sites,
which in turn creates P back at Site;. Assuming P; is a
coordinator, by using ReSPrC, rather than communicating
with P; though P; located at a different site, the coordina-
tor communicates directly and locally with P; without the
cost of having to exchange messages with P via an exter-
nal communication medium.

Although both ReSPrC and RPrC eliminate the initia-
tion records of multi-level PrC from cascaded coordinators,
ReSPrC is clearly more efficient than RPrC since ReSPrC
allows for maximum parallelism during commit processing
whereas RPrC suffers from the serialization of messages and
forced log writes. However, ReSPrC cannot always be used.
ReSPrC cannot be used in an environment where a partici-
pant is prohibited to directly communicate with the root co-
ordinator or vice versa for security reasons. In general, Re-
SPrC also cannot be used when the communication topol-
ogy does not support direct interaction between a root coor-
dinator and the leaf participants. Similarly, the use of Re-
SPrC is limited when the establishment of new direct com-
munication channels (i.e., sessions) between the coordinator
and the participants are expensive and should be avoided as
much as possible. A situation that exists in some commer-
cial systems {9]. On the other hand, RPrC does not suffer
from the applicability limitations of ReSPrC even for secu-
rity reasons. Although RPrC requires the propagation of the

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:48:23 UTC from |IEEE Xplore. Restrictions apply.

participants’ identities through the branches of the trees, by
applying some basic encryption techniques to the identities
of the participants, RPrC provides sufficient security to pro-
hibit a participant from being able to identify the other par-
ticipants. For example, if a key-based encryption technique
is to be used, each cascaded coordinator in a transaction tree
would use a different key to encipher the identity of its di-
rect ancestor before propagating it to its direct descendants.
Similarly, a cascaded coordinator enciphers the identities of
its direct descendants, using the same key, before propagat-
ing them to its direct ancestor.

The flattening technique can also be applied to multi-
level PrA resulting in re-structured PrA (ReSPrA). When
ReSPrC and ReSPrA are applicable, the tradeoff between
them is reduced to the tradeoff between PrC and PrA as dis-
cussed in Subsection 3.1. Similarly, the relative advantage
of RPrC and multi-level PrA is reduced to the relative ad-
vantage of PrC and PrA. For instance, to illustrate the latter,
consider again NV participants of which C are cascaded coor-
dinator and L are leaf participants (N = L+ C). To commit
atransaction in RPrC requires L+ C'+2 (or N +2) forced log
writes whereas, to abort a transaction requires 2L + 2C + 1
(or 2N + 1) forced log writes, which is the same as in PrC.
Thus, the decisive factor in selecting one over the other is
the cost associated with read-only transactions which, as we
show in the next section, can be efficiently handled using the
unsolicited update-vote optimization.

4.3. The Unsolicited Update-Vote Optimization

Recall that in the traditional read-only optimization (sec-
tion 2.2), a coordinator determines read-only participants by
explicitly polling their votes. To determine which partic-
ipants are read-only without having to explicitly poll their
votes, we have proposed the unsolicited update-vote opti-
mization (UUV) [4]. In UUYV, a coordinator looks at the par-
ticipants from another perspective. That is, which partici-
pants are update participants.

In UUV, when a transaction starts executing, its coordi-
nator marks the transaction as a read-only one in its pro-
tocol table. Each time the transaction needs access to data
at a new participant, the coordinator adds the identity of
the participant to its protocol table and marks the partici-
pant as read-only before sending the request to the partic-
ipant. When a participant executes the first update opera-
tion (which is recognized by the generation of undo/redo log
record(s)) on behalf of the transaction, the participant sends
an unsolicited update-vote to the coordinator. This is a flag
that is set as part of the operation’s acknowledgment to the
coordinator. Hence, UUV piggybacks control information
in the acknowledgment messages of the operations in order
to determine update participants.

When the coordinator receives an unsolicited update-

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:48:23 UTC from |IEEE Xplore. Restrictions apply.

263

vote from a participant, it changes the status of the partic-
ipant from read-only to update and resets the status of the
transaction.

In the case that each participant site employs a pessimistic
[5] concurrency control protocol that also avoids cascading
abort [5], such as strict two-phase locking [7], the most com-
mercially used protocol, a transaction is guaranteed to be se-
rializable and recoverable after all its operations have been
executed and acknowledged (see [5] for proof). Thus, the
coordinator of a transaction is guaranteed that the transac-
tion is serializable and recoverable at each read-only partic-
ipant after the execution of each read operation. However,
in the case that a participant employs an optimistic concur-
rency control protocol, this is not true and the participant has
to validate the transaction before acknowledging each read
operation as long as it has not already sent an unsolicited
update-vote as part of a previous operation’s acknowledg-
ment.

‘When a transaction finishes its execution and submits its
final commit request, the transaction’s coordinator checks its
protocol table to determine which participants have sent un-
solicited update-vote as part of their operations’ acknowl-
edgments. For each participant that has sent an unsolicited
update-vote, the coordinator knows that the participant is an
update participant and sends to the participant a prepare to
commit message. For each participant that has not sent an
an unsolicited update-vote, the coordinator excludes the par-
ticipant from voting by sending a read-only message indicat-
ing to the participant that the transaction has been terminated
and it can release all the resources held by the transaction.
When a read-only participant receives a read-only message,
it releases all the resources held by the transaction without
writing any log records.

4.3.1. UUV with PrC

By combining UUV with PrC, a coordinator does not
have to poll or wait for the votes of read-only participants.
Therefore, for read-only transactions, UUV not only saves
a message from each participant but it also ¢liminates the
waiting time for all the votes to arrive and, hence acknowl-
edges the transaction commitment earlier when compared
with the traditional read-only optimization. For a partially
read-only transaction, on the other hand, acknowledging the
transaction commitment might become faster than the stan-
dard read-only optimization. This is possible in the case
that some read-only participants are connected with the co-
ordinator via low speed communication links while their
update counterparts are connected with the coordinator via
high speed communication links. In this case, the read-only
participants become the bottleneck in the commit processing
using the traditional read-only optimization. For this reason,
a final decision pertaining to a partially read-only transac-

tion is reached faster with fewer coordination messages by
using UUV compared to the traditional read-only optimiza-
tion. Hence, by combining UUV with PrC (similarly with
ReSPrC) the cost associated with read-only transactions is
cheaper than in PrA combined with the traditional read-only
optimization.

The cost of PrA combined with UUV is the same as in
PrC combined with UUV. This is because, using UUV, both
PrA and PrC will incur the same coordination message com-
plexities without any logging activities. Specifically, using
the UUYV, a coordinator that uses PrC should not force an
initiation log record because it will know that the transac-
tion is read-only by the time the transaction submits its final
commit request. In this case, the coordinator discards any
information pertaining to the transaction, acknowledges the
commitment of the transaction and sends out a read-only fi-
nal decision to each participant.

For partially read-only transactions, in the two-level
transaction execution model, it is cheaper to use PrC with
UUV if these transactions are most probably going to com-
mit even though there is an extra forced log write at the co-
ordinator’s site (i.e., the initiation record). This is because
PrC allows for a reduction of one forced log write (i.c., the
commit decision record) and a message from each update
participant. In addition, a read-only participant does not suf-
fer from the cost associated with the forcing of the initia-
tion record as it would have been the case if the traditional
read-only optimization were used. Therefore, itis cheaper to
use PrC with UUV even if there is only a single site where
a transaction has submitted update operation(s) and will fi-
nally be committed.

4.3.2. UUV with Multi-Level PrC

For a read-only transaction, neither the root coordinator
nor any cascaded coordinator force writes initiation records
for the transaction by using UUV with the multi-level PrC.
Hence, the cost associated with commit processing of read-
only transactions becomes the same in both multi-level PrA
and multi-level PrC when they are combined with UUV
while multi-level PrC combined with UUV is cheaper than
multi-level PrA combined with the traditional read-only op-
timization.

For a partially read-only transaction, a cascaded coordi-
nator in multi-level PrC has to send an unsolicited update-
voteif any of its descendants has performed an update oper-
ation. Such a cascaded coordinator participates in the voting
phase and force writes an initiation record. However, a leaf
read-only participant does not suffer from the cost of forcing
the initiation record at its direct ancestor. This is because
the direct ancestor will send a read-only message to the par-
ticipant without having to wait for the forced record to be in
the stable log. Thus, none of the participants in a read-only

branch in a transaction’s execution tree will suffer from the
cost of any initiation records if the whole branch up to the
root coordinator is read-only.

By combining UUV with RPrC, the root coordinator of a
read-only transaction also does not force write an initiation
record. For a partially read-only transaction, since RPrC
eliminates intermediate initiation records, a read-only par-
ticipant will suffer from at most a single forced write (i.e.,
an initiation record at the root coordinator). Hence, the cost
of commit processing for a committing, partially read-only
transaction in RPrC is less than in multi-level PrA consider-
ing the saving in the total number of acknowledgment mes-
sages and the number of forced log writes at the participants.
The savings in the number of acknowledgment messages
and forced log writes are further magnified for update trans-
actions. For example, there are NV extra messages and N — 1
forced log writes in multi-level PrA compared with RPrC
for a committing transaction where NN is the number partici-
pants in the transaction tree excluding the root coordinator?.

5. Summary

The presumed abort protocol (PrA) and the presumed
commit protocol (PrC) are two competing two-phase com-
mit variants. The former reduces the cost associated with
aborting transactions while the latter reduces the cost asso-
ciated with committing transactions. This makes only one
variant appropriate at any given time depending on the be-
havior of transactions and the reliability of the distributed
environment. Given the traditional networking environment
and the behavior of transactions, the argument has been in
favor of PrA rather than PrC. This is due to the cost of the
forced initiation records associated with PrC even for read-
only transactions. However, given the reliability charac-
teristics of modern distributed environments and the high
probability of a transaction of being committed rather than
aborted after all its operations have been executed and ac-
knowledged, we argued in favor of PrC by proposing two
new PrC variants. Namely, rooted PrC (RPrC) and re-
structured PrC (ReSPrC).

Both RPrC and ReSPrC eliminate all intermediate initi-
ation records from cascaded coordinators in the multi-level
transaction execution model, which is the model adopted by
the current transaction processing standards and commercial
systems. Furthermore, regardless of the depth of a transac-
tion’s execution tree, there is at most a single forced initi-
ation record in both variants compared to multi-level PrC,
while the new PrC variants still maintain the low count in the
total number of messages and forced log writes for a com-
mitting transaction compared to muiti-level PrA.

?Notice that the root coordinator force writes two log records in RPrC
compared with one in multi-level PrA, hence we have N — 1 extra forced
log writes in multi-level PrA.

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:48:23 UTC from IEEE Xplore. Restrictions apply.

For read-only transactions, we applied our unsolicited
update-vote optimization and showed that the cost associ-
ated with this type of transactions in PrC and the newly pro-
posed variants is exactly the same as in PrA. This is also true
for read-only participants of partially read-only transactions
in both PrC and PrA as well as ReSPrC. For a partially read-
only transaction in RPrC, a read-only participant might suf-
fer from the cost of a single forced initiation record at the
root coordinator. In general, however, PrC variants involve
lower number of coordination messages and total forced log
writes compared with PrA variants when committing update
as well as partially read-only transactions.

In conclusion, this work nullifies the basis for the argu-
ment that exclusively favors PrA, i.e., the low cost asso-
ciated with read-only transactions and transactions in the
multi-level transaction execution model, and makes the case
that PrC should become part of future protocol standards.
In addition, ReSPrC and RPrC as well as the unsolicited
update-vote optimization provide sufficiently appealing ef-
ficiency characteristics that make them very attractive to be
adopted in commercial systems that use a two-phase commit
variant that also force writes initiation records such as the
one’s based on IBM SNA LU 6.2 architecture, the de facto
standard of the industry [9].

Acknowledgments

We would like to thank George Samaras and the anony-
mous referees for their helpful comments.

References

[1] Y. Al-Houmaily and P. Chrysanthis. Two-Phase Commit in
Gigabit-Networked Distributed Databases. Proc. of the 8th
Int'l Conf. on Parallel and Distributed Computing Systems,
pp. 554-560, Sept. 1995.

Y. Al-Houmaily and P. Chrysanthis. Dealing with In-
compatible Presumptions of Commit Protocols in Multi-
database Systems. Proc. of the 11h ACM Annual Sympo-
sium on Applied Computing, pp. 554-560, Feb. 1996.

Y. Al-Houmaily and P. Chrysanthis. The Implicit Yes-Vote
Commit Protocol with Delegation of Commitment. Proc. of
the 9th Int’'l Conf. on Parallel and Distributed Computing
Systems, pp. 804-810, Sept. 1996.

Y. Al-Houmaily, P. Chrysanthis and S. Levitan. Enhancing
the Performance of Presumed Commit Protocol. Proc. of
the 12h ACM Annual Symposium on Applied Computing,
Feb. 1997.

P. Bemstein, V. Hadzilacos and N. Goodman. Concur-
rency Control and Recovery in Database Systems. Adison-
Wesley, Reading, MA, 1987.

E. Braginski. The X/Open DTP Effort. Proc. of the 4th

Int'l Workshop on High Performance Transaction Systems,
Sept. 1991.

(21

3]

(4]

15

[6]

265

7]

(81

9

(10}

(11]

[12]

(13]

(14]

(15]

(16]

(17

[18]

(9]

K. Eswaran, J. Gray, R. Lorie and L. Traiger. The Notion
of Consistency and Predicate Locks in a Database System.
Communications of the ACM, 19(11):624-633, Nov. 1976.
J. Gray. Notes on Data Base Operating Systems. In Oper-
ating Systems: An Advanced Course, R. Bayer, R. Graham
and G. Seegmuller (Eds.), Lecture Notes in Computer Sci-
ence, VYol. 60, pp. 393-481, Springer-Verlag, 1978,

J. Gray and A. Reuter. Transaction Processing: Concepts
and Techniques. Morgan Kaufmann, 1993.

B. Lampson. Atomic Transactions. In Distributed Systems:
Architectureand Implementation - An AdvancedCourse,B.
Lampson (Ed.), Lecture Notes in Computer Science, VYol.
105, pp. 246-265, Springer-Verlag, 1981.

B. Lampson and D. Lomet. A New Presumed Commit Op-
timization for Two Phase Commit. Proc. of the 19th VLDB
Conference, pp. 630-640, Aug. 1993,

C. Mohan, B. Lindsay and R. Obermarck. Transaction
Management in the R* Distributed Data Base Manage-
ment System. ACM Transactions on Database Systems,
11(4):378-396, Dec. 1986.

C. Mohan, K. Britton, A. Citron and G. Samaras. Gen-
eralized Presumed Abort: Marrying Presumed Abort and
SNA’s LU 6.2 Commit Protocols. Proc. of the Sth Int'l
Workshop on High Performance Transaction Systems,
Sept. 1993.

K. Rothermel and S. Pappe. Open Commit Protocols
Tolerating Commission Failures. ACM Transactions on
Database Systems, 18(2):289-332, June 1993.

G. Samaras, K. Britton, A. Citron C. Mohan. Two-Phase
Commit Optimizations in a Commercial Distributed En-
vironment. Distributed and Parallel Databases, 3(4):325-
360, Oct. 1995.

G. Samaras and S. Nikolopoulos. Algorithmic Techniques
Incorporating Heuristic Decisions to Commit Protocols.
Proc. of the 21st Euromicro Conference, Sept. 1995.

D. Skeen. Non-blocking Commit Protocols. Proc. of the
ACM SIGMOD Int’'l Conference on the Management of
Data. pp. 133-142, May 1981.

J. Stamos and F. Cristian. Coordinator Log Transaction
Execution Protocol, Distributed and Parallel Databases,
1(4):383-408, 1993.

P. Spiro, A. Joshi and T. Rengarajan. Designing an Op-
timized Transaction Commit Protocol. Digital Technical
Journal, 3(1), Winter 1991.

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:48:23 UTC from |IEEE Xplore. Restrictions apply.

