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Abstract 

We argue in favor of the presumed c o m m i t  protocol by 
proposing two new presumed commit variants that sign$- 
cantly reduce the cost of logging activities associated with 
the original presumed commit protocol. Furthermore, for  
read-only transactions, we apply our unsolicited update- 
vote optim’zationand show that the cost associated with this 
type of transactions is the same in both presumed commit 
and presumed abort protocols, thus, nullifying the basis for 
the argument that favors the presumed abort protocol. This 
is especially important for modern distributed environments 
which are characterized by high reliability and high proba- 
bility of transactions being committed rather than aborted. 

1. Introduction 

In order to ensure consistent termination of distributed 
transactions despite site and communication failures, all the 
sites participating in a transaction’s execution engage in 
an atomic commit protocol such as the two-phase commit 
protocol (2PC) [8, 101. Since 2PC consumes a substantial 
amount of a transaction’s execution time during normal pro- 
cessing [ 191 and is blocking in the case of both communica- 
tion and site failures [17], a number of 2PC variants have 
appeared in the literature, e.g., [l, 3,9, 11,15, 181, most no- 
tably, the presumed abort protocol (PrA) and the presumed 
commit protocol (PrC) [12,111. 

PrA has been designed to reduce the cost associated 
with aborting transactions while, its counterpart, PrC has 
been designed to reduce the cost associated with commit- 
ting transactions. To reduce the cost of commit processing 
further, a number of optimizations have also been proposed, 
of which the read-only optimization [121 is the most signif- 
icant, given that read-only transactions are the majority in 

any general database system. (See [ 151 for a survey of the 
most common two-phase commit optimizations.) 

Due to the cost of the logging activities associated with 
PrC even for read-only transactions, the argument usually 
goes in favor of PrA. However, modem communication net- 
works as well as computing systems are becoming more re- 
liable and distributed transactions tend to commit after all 
their operations have been successfully executed and ac- 
knowledged. Therefore, we were prompted to revisit the de- 
bate between PrA and PrC and to investigate techniques that 
enhance the performance of PIC. Our investigations led us to 
three techniques which are presented in this paper and which 
reduce, and under certain circumstances even eliminate, the 
logging activities from PrC. Whereas PrA has been the cur- 
rent choice of commercial systems and standards [6], the 
proposed three techniques when combined with PrC form 
an argument in its favor to become part of the standards. 
This argument is further strengthened by the fact that the in- 
compatibility between these two variants is not an issue any- 
more because PrA and PrC can be interoperatedl in a practi- 
cal manner [2]. 

The rest of this paper is structured as follows, In the 
next section, to establish the stage for our arguments, we 
briefly overview the basic 2PC, PrA and PrC in the con- 
text of two-level as well as multi-level transaction execution 
models. We also discuss the traditional read-only optimiza- 
tion. In Section 3, we review why the argument usually goes 
in favor of PrA rather than PrC. In Section 4, given that the 
multi-level transaction execution model is the one specified 
in the transaction processing standards and adopted by com- 
mercial database systems, we propose two new PrC variants 
for the multi-level transaction execution model that reduce 
the logging activities significantly when compared with the 
original PrC. Then, we show how we can eliminate the log- 
ging activities from read-only transactions in PC as; well as 
in the newly proposed PrC variants by applying our unso- 
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Figure 1. The basic two-phase commit protocol. 

2. Background 

In a distributeddatabase system, data are typically stored 
in disjoint partitions at different sites. This data distribution 
is transparent to a distributed transaction that accesses data 
by submitting database operations to its coordinator. With- 
out loss of generality, we assume that the coordinator of a 
transaction is the transaction manager at the site where the 
transaction has been initiated. While still adhering to the ua- 
ditional ACID (i.e., Atomicity, Consistency, Isolation and 
Durability) properties of transactions [91, a distributed trans- 
action is decomposed into a set of subtrunsuctions, each of 
which executes at a single participant site. When a transac- 
tion finishes its execution and submits its commit request, its 
coordinator initiates an atomic commit protocol, such as the 
two-phase commit protocol. 

The basic two-phase c o m m i t  protocol (2PC) [8, lo], as 
the name implies, consists of two phases, namely a voting 
phase and a decision phase (Figure 1). During the voting 
phase, the coordinator of a distributed transaction requests 
all the participating sites to prepare to commit whereas. dur- 
ing the decision phase, the coordinator either decides to 
commit the transaction if all the participants are prepared 
to commit (voted Yes), or to abort if any participant has de- 
cided to abort (voted No). If a participant has voted Yes, it 
can neither commit nor abort the transaction until it receives 
the final decision. When a participant receives the final deci- 
sion, it complies and acknowledges the decision. The coor- 
dinator discards any information in its protocol table in main 
memory regarding the transaction when it receives acknowl- 
edgments from all the participants and forgets the transac- 
tion. 

The resilience of 2PC to system and communication fail- 
ures is achieved by recording the progress of the protocol in 
the logs of the coordinator and the participants. The coor- 
dinator force-writes a decision record prior to sending out 
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Figure 2. The presumed abort protocol. 

the final decision. Since aforce-write ensures that a log 
record is written into a stable storage that survives system 
failures, the final decision is not lost if the coordinator fails. 
Similarly, each participant force-writes a prepared record 
before sending its Yes vote and a decision record before 
acknowledging the find  decision'^ When the coordinator 
completes the protocol, it writes a non-forced end record, 
indicating that the log records pertaining to the transaction 
can be garbage collected when necessary. 

The basic 2PC is also referred to as the presumed noth- 
ing 2PC protocol [ 111 because it treats all transactions 
uniformly, whether they are to be committed or aborted, re- 
quiring information to be explicitly exchanged and logged 
at all times. However, in the case of a coordinator's failure, 
there is a hidden presumption in PrN by which the coordina- 
tor considers all active transactions at the time of the failure 
as aborted ones. The presumed abort protocol (PrA) makes 
this abort presumption explicit [ 12, 113. 

Specifically, in RA, when a coordinator decides to abort 
a transaction, it does not force-write the abort decision in its 
log as in PrN (Figure 2). It just sends abort messages to all 
the participants that have voted Yesand discards all informa- 
tion about the transaction from its protocol table. That is, the 
coordinator of an aborted transaction does not have to write 
any log records or wait for acknowledgments. Since the par- 
ticipants do not have to acknowledge abort decisions, they 
are also not required to force-write such decisions. After a 
coordinator or a participant failure, if the participant inquires 
about a transaction that has been aborted, the coordinator, 
not remembering the transaction, will direct the participant 
to abort it (by presumption). 

As opposed to PrA, the presumed commit protocol (PrC) 
is designed to reduce the cost of committing transactions 
[12, 111. Instead of interpreting missing information about 

'Writing the decision at the participants and acknowledging it in a lazy 
fashion 191 1s an optlmizatlon that is not considered here. 
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(a) Commit Case. (b) Abort Case. 

Figure 3. The presumed commit protocol. 

transactions as abort decisions, in PrC, coordinators inter- 
pret missing information about transactions as commit de- 
cisions. However, in PrC, a coordinator has to force write 
an initiation (which is also called collecting in [ 121) record 
for each transaction before sending prepare to commit mes- 
sages to the participants. This record ensures that missing 
information about a transaction will not be misinterpreted as 
a commit after a coordinator failure. 

To commit a transaction (Figure 3 (a)), the coordinator 
force writes a commit record to logically eliminate the ini- 
tiation record of the transaction and then sends out the com- 
mit decision. The coordinator also discards all information 
pertaining to the transaction from its protocol table. When a 
participant receives the decision, it writes a non-forced com- 
mit record and commits the transaction without having to 
acknowledge the decision. After a coordinator or a partic- 
ipant failure, if the participant inquires about a transaction 
that has been committed, the coordinator, not remembering 
the transaction, will direct the participant to commit it (by 
presumption). 

To abort a transaction (Figure 3 (b)), on the other hand, 
the coordinator does not write the abort decision in its log. 
Instead, the coordinator, sends out the abort decision and 
waits for the acknowledgments before discarding all infor- 
mation pertaining to the transaction. When a participant re- 
ceives the decision, it force writes an abort record and then 
acknowledges the decision, as in PrN. 

2.1. Multi-Level PrA and PrC 

The multi-level transactionexecution (MLTE) model, the 
one specified by the standards and adopted by commer- 
cial database systems, is similar to the tree of processes 
model 1121. In this model, a participant is a process that is 
able to decompose a subtransaction further. Thus, a partici- 

pant can initiate other participant processes at its site or dif- 
ferent sites. Hence, the processes pertaining to a transaction 
can be represented by a multi-level execution tree where the 
coordinator process resides at the root of the tree. In this 
model, the interactions between the Coordinator of the trans- 
action and any process have to go through all the intermedi- 
ate processes that have caused the creation of a process. 

In the MLTE model, the behavior of the root coordinator 
and each leaf participant in the transaction execution tree, in 
both 2PC variants, remains the same as in two-level transac- 
tions. The only difference is the behavior of cascaded coor- 
dinators (i.e., non-root and non-leaf participants) which be- 
have as leaf participants with respect to their direct ances- 
tors and root coordinators with respect to their direct descen- 
dants. Specifically, when a cascaded coordinator receives a 
prepare to commit message, in multi-level PrA, it forwards 
the message to its descendent participants and waits for their 
votes, as shown in Figure 4. If all descendants lhave voted 
Yes, the cascaded coordinator force writes a prepared log 
record and then sends a Yes vote to its coordinator. If any 
descendant has voted No, the cascaded coordinator sends an 
abort decision to its descendants and a No vote to its coordi- 
nator. When a cascaded coordinator receives an abort deci- 
sion (Figure 4 (a)), it writes a non-forced abort record, for- 
wards the decision to its direct descendants and forgets the 
transaction. On the other hand, when a cascadedl coordina- 
tor receives a commit decision (Figure 4 (b)), it forwards the 
decision to its direct descendants and force writes a commit 
record. Afterwards, the cascaded coordinator sends an ac- 
knowledgment to its coordinator. Once the direct descen- 
dants of the cascaded coordinator acknowledge the decision, 
it writes a non-forced end record and forgets the transaction. 
PrC can be extended in the MLTE model in a manner sim- 

ilar to RA. However, as shown in Figure 5, each cascaded 
coordinator in multi-level PrC has to force write an initia- 
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tion record before propagating the prepare to commit mes- 
sage to its descendent participants. If the final decision is to 
abort the transaction (Figure 5 (a)), a cascaded coordinator 
propagates the decision to its descendants, force writes an 
abort record and, then, acknowledgesits ancestor. Once the 
acknowledgmenfs arrive from the descendants, a cascaded 
coordinator writes a non-forced end record and forgets the 
transaction. If the final decision is a commit decision (Fig- 
ure 5 (b)), a prepared to commit cascaded coordinator prop- 
agates the decision to its direct descendants, writes a non- 
forced commit record and, then, forgets the transaction. 

2.2. Read-only Transactions 

In the traditional read-only optimization [ 121, when a par- 
ticipant that has cxccuted only read operations on behalf of 
a transaction receives a prepare to commit message from the 
transaction’s coordinator, it eithcr replics with a No or Read- 
Only vote instead of a Yes and immediately releases all the 
resources held by the transaction without writing any log 
records. 

From a coordinator’s perspective, the Read-only vote 

Wnle non f o d  Wnle non f o m d  

(b) Commit case. 

presumed commit protocol. 

means that the transaction has read consistent data. Further- 
more, the read-only participant does not need to be involved 
in the second phase of the protocol because it does not mat- 
ter whether the transaction is finally committed or aborted to 
ensure its atomicity at the participant. 

If a transaction is read-only (i.e., all the operations it has 
submitted to all the participants are read operations), the co- 
ordinator, in both PrA and F K ,  treats the transaction as an 
aborted one. This is because it is cheaper to abort than to 
commit a read-only transaction with respect to logging. Re- 
call that a coordinator does not write any log records in PrA 
whereas abort records are written in a non-forced manner in 
prc. 

3. The Argument in Favor of PrA 

In this section, we illustrate why efficiency arguments 
usually go in favor of PrA by evaluating the cost associated 
with commit processing in PrA and showing that it is, in 
general, less than in Prc. In our evaluation, we also consider 
read-only transactions. 
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Table 1. The costs for update transactions. 

3.1. Evaluating PrA and PrC 

Abort Decision 

Let us first consider commitment in the two-level trans- 
action execution model. Table 1 summarizes the cost asso- 
ciated with update transactions for the commit as well as the 
abort case assuming a Yes vote from each participant: m is 
the total number of log records, n is the number of forced 
log writes, p is the number of messages received from the 
coordinator and q is the number of messages sent back to the 
coordinator. 

During normal processing, the cost to commit a transac- 
tion executing at N participants in R A  is 2 N  + 1 forced log 
writes and 4N coordination messages whereas, in PrC, the 
cost is N + 2 forced log writes and 3N coordination mes- 
sages. On the other hand, the cost to abort a transaction in 
R A  is N forced log writes and 3N coordination messages 
whereas, in PrC, the cost is 2N + 1 forced log writes and 4N 
coordination messages. Thus, it is cheaper to use PrA in a 
system where transactions are most probably going to abort 
while it is cheaper to use PrC if transactions have higher 
probability of being committed. In a system where transac- 
tions have the same probability of being aborted as of being 
committed, it is cheaper to use RA. This is because the costs 
of the two variants are not symmetric. Whereas the cost to 
commit a transaction in R A  is the same as to abort a trans- 
action in PrC, the cost to abort a transaction in R A  is less 
than to commit a transaction in PrC. To abort a transaction in 
RA, the coordinator does not write any log records whereas, 
to commit a transaction in PrC, the coordinator has to force 
write two log records. For a similar reason, it is cheaper to 
terminate a read-only transaction using R A  rather than PrC. 

Recall that a coordinator, in both R A  and PrC, aborts a 
read-only transaction since it is cheaper than committing it. 
As shown in Table 2, both R A  and PrC require the same 
number of coordination messages to terminate a read-only 
transaction. However, with respect to the logging activities, 
a coordinator in R A  does not write any log records whereas 
in PrC, a coordinator has to write two log records, one of 
which is forced. Not knowing whether a transaction is go- 
ing to be read-only, a coordinator in PrC has to force write 
an initiation record. To forget the read-only transaction, the 
coordinator also writes a non-forced end log record when it 
receives the Read-only votes of the participants. 

For a partially read-only transaction (i.e., only some of 
the participants in its execution have executed only read op- 
erations), a coordinator in both R A  and PrC behaves as in 

Variants 

Table 2. Cost of read-only transactions using the 
traditional read-only optimization. 

Coordinator I Particiuant II Coordinator I Particiuant 

the case of an update transaction discussed above, consider- 
ing only update participants in the second phase of the pro- 
tocol. However, a transaction that has performed only read 
operations at a participant site in PrC will hold the resources 
at that site longer than in RA. This is because iI read-only 
participant in PrC has to suffer from the cost of the initiation 
record at the coordinator’s site before it receives the prepare 
to commit message which allows it to release the resources 
held by the transaction. 

3.2. Evaluating Multi-Level PrA and PrC 

In the MLTE model, multi-level R A  and mulli-level PrC 
retain the relative advantages of R A  and PrC. They also re- 
tain the relative message complexity of R A  and P C  How- 
ever, due to the extra forced initiation log records at the cas- 
caded coordinators, the difference between the cost of abort- 
ing a transaction in multi-level PrC and multi-levell R A  is 
greater than the difference between PrC and R.A, whereas 
the difference between the cost of committing a transaction 
in multi-level PrC and multi-level PrA is less than the differ- 
ence between PrC and RA. Let us illustrate this by consid- 
ering a transaction with N participants of which C ;are cas- 
caded coordinators and L are leaf participants. 

Multi-level R A  involves L + C (or N )  forced log writes 
to abort a transaction whereas multi-1evelPrC involves 2 L s  
3C + 1 (or 2N + C + 1). That is, multi-level Prc: incurs 
N + C + 1 more forced log writes than multi-level R A  
while PrC incurs only N + 1 more forced log writes than R A  
to abort a transaction. To commit a transaction, multi-level 
PrC involves L + 2C + 2 (or N + C + 2) forced log writes 
whereas multi-level R A  incurs 2L + 2C + 1 (or 2N + 1). 
That is, multi-level R A  requires N - C - 1 more forced log 
writes than multi-level PrC while R A  incurs IV - 1 more 
forced log writes than PrC. 

In addition to reducing the relative performance advan- 
tage of multi-level PrC over multi-level R A  in commit- 
ting transactions, the fact that these extra forced initiation 
records are written sequentially during the voting phase 
gives rise to another undesirable effect. A coordinator in 
multi-level PrC experiences more delays to reach a final de- 
cision than in multi-level RA. Consequently, participants in 
multi-level PrC receive a final decision later than in multi- 
level RA, thereby, participants hold the resources longer in 
multi-level PrC than in multi-level RA. This means that in 
the case of transactions with deep trees (e.g., long executing 
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transactions which potentially access many data items), the 
tradeoff between reducing conflicts over data items in multi- 
level PrA and reducing extra forced commit records at ev- 
ery participant (cascaded coordinator or leaf participant) in 
multi-level PrC goes in favor of multi-level PrA. 

The force writing of initiation log records sequentially 
has the same negative effect on read-only transactions as 
for update ones. This is because a read-only participant in 
multi-level PrC has to suffer as well from the delays associ- 
ated with the forced initiation records in all its ancestors in 
the transaction tree before it can vote Read-only and release 
any resources. 

3.3. Summarizing the Argument 

From the above discussion, it becomes clear that the PrC 
variants are the best choice for committing transactions only 
in systems in which the majority of the transactions are up- 
date transactions and are finally committed. However, in 
general, and in systems in which the majority of the trans- 
actions are read-only in particular, the PrA variants are the 
choice. This is because the costs of aborting a transaction in 
R A  variants are less than the costs of committing a trans- 
action in PrC variants. This asymmetry in their costs is 
due to initiation log records forced in PrC variants for both 
update and read-only transactions. Since read-only trans- 
actions are the dominant type of transactions in any gen- 
eral database system, PrA variants have become the current 
choice of atomic commit protocols. 

4. An Argument in Favor of PrC 

The argument, thus far, has been in favor of PrA because 
of the major drawback of PrC which requires forcing ini- 
tiation records for both read-only and update transactions. 
Thus, if there is a way to eliminate or reduce the cost asso- 
ciated with the initiation records, the argument would go in 
favor of PrC, especially given the fact that high speed net- 
works and computing systems are becoming highly reliable 
and distributed transactions will most probably commit af- 
ter all their operations have been successfully executed and 
acknowledged. The same intention has been behind the de- 
sign of the new presumed commit protocol for the two-level 
transaction execution model [111. 

In this section, we present two new PrC variants that ef- 
fectively eliminate all the intermediate initiation records 
from cascaded coordinators in the MLTE model. The first 
Prc variant is called the rooted PrC protocol where only 
the root coordinator force writes an initiation record. The 
second PrC variant is called the re-structured PrC proto- 
col which is based on the idea of flattening the transaction 
trees [15]. After we have presented the new PrC variants, 
we present our unsolicited update-vote optimization [4] and 

apply it to both PrA and PrC (includmg the two proposed 
PrC variants) and show that the cost associated with read- 
only transactions becomes the same in both PrA and Prc, 
with Prc performing better than PrA for update and partially 
read-only transactions. 

4.1. The Rooted PrC Protocol (RPrC) 

As opposed to multi-level PrC, RPrC does not realize the 
two-level presumption of PrC on every adjacent level be- 
cause it structures cascaded coordinators as leaf participants 
with respect to logging. That is, cascaded coordinators do 
not force write initiation records and, consequently, do not 
presume commitment in the case that they do not remember 
transactions. 

4.1.1. Description of the Protocol 

In RPrC, the root coordinator needs to know all the par- 
ticipants at all levels in a transaction’s execution tree. Sim- 
ilarly, each participant needs to know all its ancestors in the 
transaction’s execution tree. The former allows the root co- 
ordinator to determine when it can safely forget a transaction 
while the latter allows a prepared to commit participant at 
any level in a transaction’s execution tree to find out the fi- 
nal correct outcome of the transaction, even if intermediate 
cascaded coordinators have no recollection about the trans- 
action due to a failure. 

In order for the root coordinator to know the identities of 
all participants in RPrC, each participant includes its identity 
in the acknowledgment of thefirst operation. When a cas- 
caded coordinator receives an acknowledgment of a first op- 
eration from a participant, it also includes its identity in the 
acknowledgment message. In this way, the identities of all 
participants and the chain of their ancestors are propagated 
to the root coordinator. This technique is similar to the one 
used with RA to support heuristic decisions [ 13,161. When 
the transaction submits its commit request, the coordinator, 
force writes an initiation record that includes the identities 
of all participants in the transaction execution tree. Then, it 
sends out prepare to commit messages to its direct descen- 
dants. 

The root coordinator sends its identity as part of the pre- 
pare to commit message (Figure 6). When a cascaded coor- 
dinator receives the prepare to commit message, it appends 
its own identity before propagating the message to its direct 
descendants. When a leaf participant receives a prepare to 
commit message, it copies the identities of its ancestors in 
the prepared log record before sending its Yes vote. When 
a cascaded coordinator receives Yes votes from all its direct 
descendants, the cascaded coordinator also records the iden- 
tities of its ancestors as well as its descendants in its pre- 
pared log record before sending its collective Yes vote to 
its direct ancestor. 
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(b) Commit case. 

If any direct descendant has voted No, the cascaded co- 
ordinator force writes an abort log record, sends a No vote 
to its direct ancestor and an abort message to each direct de- 
scendant that has voted Yes and waits for their acknowledg- 
ments. Once all the abort acknowledgments arrive, the cas- 
caded coordinator writes a non-forced end record and for- 
gets the transaction. 

If the root coordinator receives a No vote, it propagates 
an abort decision to all direct descendants that have voted 
Yes and waits for their acknowledgments (Figure 6 (a)), 
knowing that all the descendants of a direct descendant that 
has voted No have already aborted the transaction. When 
the coordinator receives the acknowledgments of its abort 
decision, it writes a non-forced end record and forgets the 
transaction. When a cascaded coordinator receives the abort 
message, it behaves as in multi-level Prc. That is, it prop- 
agates the message to its direct descendants and writes a 
forced abort record. Then, it acknowledges its direct ances- 
tor. Once the cascaded coordinator has received acknowl- 
edgments from all its direct descendants, it writes a non- 
forced end record and forgets the transaction. When a leaf 
participant receives the abort message, it first force writes an 
abort record and, then, acknowledges its direct ancestor. 

As in multi-level Prc, when the root coordinator receives 
Yes votes from all its direct descendants, it force writes a 
commit record, propagates its decision to its direct descen- 
dants and forgets the transaction. When a cascaded coor- 
dinator receives a commit message (Figure 6 (b)), it prop- 
agates the message to its direct descendants, writes a non- 
force commit record and forgets the transaction. When a 
leaf participant receives the message, it commits the trans- 
action and writes a non-forced commit record. 

4.1.2. Failures Considered 

As in all other atomic commit protocols, site and commu- 
nication failures are detected by timeouts. If the root coor- 
dinator times out while awaiting the vote of one of its direct 

descendants, the root coordinator makes an abort final deci- 
sion, sends abort messages to all its direct descendants and 
wait for their acknowledgments to complete the protocol. 

Similarly, if a cascaded coordinator times out while 
awaitingthevoteofoneofitsdirectdescendants, itmakes an 
abort decision. In this case, the cascaded coordiinator force 
writes an abort log record, sends a No vote to its direct an- 
cestor and abort messages to all its direct descendants and 
waits for their abort acknowledgments. 

In the event of a leaf participant site failure, during its 
recovery process, the participant inquires its direct ancestor 
about the outcome of each prepared to commit transaction. 
In its inquiry message, the participant includes the identities 
of its ancestors recorded in the prepared log record. In this 
way, unlike the case of Prc, if the direct ancestor of' the pre- 
pared participant does not remember the transaction, it uses 
the list of ancestors included in the inquiry message to in- 
quire its own direct ancestor about the transaction's outcome 
rather than replying with a commit message by presumption. 
Eventually, either one of the cascaded coordinators in the 
path of ancestors will remember the transaction and provide 
a reply, or the inquiry message will finally reach the root co- 
ordinator. The root coordinator will respond with the appro- 
priate decision if it remembers the outcome of the transac- 
tion or will respond with a commit decision by plresumption. 
Once the participant receives the reply message., it enforces 
the decision and acknowledges it only if it is an abort deci- 
sion. 

In the event that the root coordinator fails, diuring its re- 
covery process, the root coordinator records in its protocol 
table each transaction with an initiation record without a 
corresponding commit or end record. These transactions 
have not finished their commit processing by the time of the 
failure and need to be aborted. Thus, for each of these trans- 
actions, the coordinator sends an abort message to its direct 
descendants, as recorded in the initiation record, along with 
their lists of descendants in the transaction execution tree. 
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The recipient of the aborf message can be either a cascaded 
coordinator or a leaf participant. In the case of a cascaded 
coordinator, if it is in a prepared to commit state, the cas- 
caded coordinator behaves as in the case of normal process- 
ing discussed above. Otherwise, it responds with a blind 
acknowledgment, indicating that it has already aborted the 
transaction. Similarly, if the abort message is received by a 
leaf participant, the participant behaves as in the case of nor- 
mal processing if it is in a prepared to commit state or replies 
with a blind acknowledgment. 

In the case of a cascaded coordinator failure, during its 
recovery process, the cascaded coordinator adds to its proto- 
col table each undecided transaction (i.e., a transaction that 
has a prepared record without a corresponding final deci- 
sion record) and each aborted transaction that has not been 
fully acknowledged (i.e., a transaction that has an abort log 
record without a corresponding end record) by its direct de- 
scendants prior to the failure. For each undecided uansac- 
tion, the cascaded coordinator inquires its direct ancestor 
about the outcome of the transaction. As in the case of a leaf 
participant failure, the inquiry message contains the iden- 
tities of all ancestors as recorded in the prepared record. 
Once the cascaded coordinator receives the final decision, 
it completes the protocol as in the normal processing case 
discussed above. For each aborted but not fully acknowl- 
edged transaction, the cascaded coordinator re-sends abort 
messages to its direct descendants and waits for all their ac- 
knowledgments before writing a non-forced end log record, 

4.2. The Re-Structured PrC Protocol (ReSPrC) 

In this section, we present ReSPrC which involves the re- 
structuring of a multi-level transaction execution tree, and 
in particular, combining FYC with theflattening technique to 
generate a two-level transaction commit tree. 

The re-structuring of a transaction tree has been previ- 
ously used to enhance the reliability of commit processing 
by reducing the blocking effects of atomic commit protocols 
in case of failures [ 141. Also, theflaming of a distributed 
transaction’s tree has been suggested to reduce the cost of 
commit processing that is due to the serialization of mes- 
sages in a transaction’s tree [151. That is, instead of send- 
ing the coordinafion messages during commit processing in 
a sequential fashion from one process at one level to another 
at the next level in a transaction tree, the flattening tech- 
nique allows the coordinator of the transaction to send mes- 
sages directly to the participant processes without having to 
go through intermediate processes. This technique signifi- 
cantly reduces the cost of commit processing especially in 
deep trees [ 151. 

In ReSPrC, when the root coordinator receives a commit 
request from a transaction, it sends prepare f o  commit mes- 
sages directly to all participants. To be able to communicate 

directly with all the participants, the root coordinator needs 
to know the identities of all participants. In ReSPrC, this is 
achieved in a manner similar to the one used in the RPrC. 
That is, each participant propagates its identity in the ac- 
knowledgment of the first operation it executes. Also, each 
participant needs to know the identity of the root coordina- 
tor to be able to communicate with root coordinator directly 
during the course of commit processing. This is achieved by 
having the direct ancestor of a participant to propagate the 
identity of the root coordinator in the first operation it for- 
wards to the participant for execution. In this way, ReSPrC 
dynamically generates a two-level transaction commit tree 
for each transaction irrespective of the depth of the transac- 
tion’s execution tree. 

Thus, in addition to achieving our initial goal, that is re- 
ducing the number of initiation records in multi-level PrC, 
with ReSPrC we have enhanced the performance of com- 
mit processing in PrC in two ways. Firstly, the forced log 
records in ReSPrC are performed in parallel rather than se- 
quentially (e.g., the prepared log records). Secondly, we 
have reduced the total number of log writes. That is, a cas- 
caded coordinator in ReSPrC neither force writes an initia- 
tion record nor writes an end record for an aborted transac- 
tion. 

Furthermore, the use of the flattening technique provides 
a significant performance enhancement in the presence of 
loopbacks [13]. A loopback occurs when a process, for ex- 
ample PI at site Sitel creates another process P2 at Sitez, 
which in turn creates P3 back at Sitel. Assuming PI is a 
coordinator, by using ReSPrC, rather than communicating 
with P3 though Pz located at a different site, the coordina- 
tor communicates directly and locally with P3 without the 
cost of having to exchange messages with P3 via an exter- 
nal communication medium. 

Although both ReSPrC and RPrC eliminate the initia- 
tion records of multi-level Prc from cascaded coordinators, 
ReSPrC is clearly more efficient than RPrC since ReSPrC 
allows for maximum parallelism during commit processing 
whereas RPrC suffers from the serialization of messages and 
forced log writes. However, ReSPrC cannot always be used. 
ReSPrC cannot be used in an environment where a partici- 
pant is prohibited to directly communicate with the root co- 
ordinator or vice versa for security reasons. In general, Re- 
SPrC also cannot be used when the communication topol- 
ogy does not support direct interaction between a root coor- 
dinator and the leaf participants. Similarly, the use of Re- 
SPrC is limited when the establishment of new direct com- 
munication channels (i.e., sessions) between the coordinator 
and the participants are expensive and should be avoided as 
much as possible. A situation that exists in some commer- 
cial systems [9]. On the other hand, RFYC does not suffer 
from the applicability limitations of ReSPrC even for secu- 
rity reasons. Although RPrC requires the propagation of the 
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participants’ identities through the branches of the trees, by 
applying some basic encryption techniques to the identities 
of the participants, RPrC provides sufficient security to pro- 
hibit a participant from being able to identify the other par- 
ticipants. For example, if a key-based encryption technique 
is to be used, each cascaded coordinator in a transaction tree 
would use a different key to encipher the identity of its di- 
rect ancestor before propagating it to its direct descendants. 
Similarly, a cascaded coordinator enciphers the identities of 
its direct descendants, using the same key, before propagat- 
ing them to its direct ancestor. 

The flattening technique can also be applied to multi- 
level PrA resulting in re-structured PrA (ReSPrA). When 
ReSPrC and ReSPrA are applicable, the tradeoff between 
them is reduced to the tradeoff between PrC and PrA as dis- 
cussed in Subsection 3.1. Similarly, the relative advantage 
of RPrC and multi-level R A  is reduced to the relative ad- 
vantage of PrC and RA. For instance, to illustrate the latter, 
consider again N participants of which C are cascaded coor- 
dinator and L are leaf participants ( N  = L + C). To commit 
atransactioninRPrCrequires L+C+2 (or N+2) forcedlog 
writes whereas, to abort a transaction requires 2L + 2C + 1 
(or 2N + 1) forced log writes, which is the same as in PrC. 
Thus, the decisive factor in selecting one over the other is 
the cost associated with read-only transactions which, as we 
show in the next section, can be efficiently handled using the 
unsolicited update-vote optimization. 

4.3. The Unsolicited Update-Vote Optimization 

Recall that in the traditional read-only optimization (sec- 
tion 2.2), a coordinator determines read-only participants by 
explicitly polling their votes. To determine which partic- 
ipants are read-only without having to explicitly poll their 
votes, we have proposed the unsolicited update-vote opti- 
mization (VW) [4]. In UUV, a coordinator looks at the par- 
ticipants from another perspective. That is, which partici- 
pants are update participants. 

In UUV, when a transaction starts executing, its coordi- 
nator marks the transaction as a read-only one in its pro- 
tocol table. Each time the transaction needs access to data 
at a new participant, the coordinator adds the identity of 
the participant to its protocol table and marks the partici- 
pant as read-only before sending the request to the partic- 
ipant. When a participant executes thefirst update opera- 
tion (which is recognized by the generation of undofredo log 
record@)) on behalf of the transaction, the participant sends 
an unsolicited update-vote to the coordinator. This is a flag 
that is set as part of the operation’s acknowledgment to the 
coordinator. Hence, UUV piggybacks control information 
in the acknowledgment messages of the operations in order 
to determine update participants. 

When the coordinator receives an unsolicited updafe- 

vote from a participant, it changes the status of the partic- 
ipant from read-only to update and resets the status of the 
transaction. 

In the case that each participant site employs apessimktic 
[5] concurrency control protocol that also avoids cascading 
abort [5],  such as strict two-phase locking [7], thernost com- 
mercially used protocol, a transaction is guaranteed to be se- 
rializable and recoverable after all its operations have been 
executed and acknowledged (see [5] for proof). Thus, the 
coordinator of a transaction is guaranteed that the transac- 
tion is serializable and recoverable at each read-only partic- 
ipant after the execution of each read operation. However, 
in the case that a participant employs an optimistic concur- 
rency control protocol, this is not true and the participant has 
to validate the transaction before acknowledging each read 
operation as long as it has not already sent an unsolicited 
update-vote as part of a previous operation’s acknowledg- 
ment. 

When a transaction finishes its execution and submits its 
final commit request, the transaction’s coordinator checks its 
protocol table to determine which participants have sent un- 
solicited update-vote as part of their operations’ acknowl- 
edgments. For each participant that has sent an unsolicited 
update-vote, the coordinator knows that the participant is an 
update participant and sends to the participant a prepare to 
commit message. For each participant that has not sent an 
an unsolicited update-vote, the coordinator excludes the par- 
ticipant from voting by sending a read-onlymessage indicat- 
ing to the participant that the transaction has been terminated 
and it can release all the resources held by the transaction. 
When a read-only participant receives a read-only message, 
it releases all the resources held by the transaction without 
writing any log records. 

4.3.1. UUV with PrC 

By combining UUV with Prc, a coordinator does not 
have to poll or wait for the votes of read-only participants. 
Therefore, for read-only transactions, ULN not only saves 
a message from each participant but it also eliminates the 
waiting time for all the votes to arrive and, hence acknowl- 
edges the transaction commitment earlier when compared 
with the traditional read-only optimization. For a partially 
read-only transaction, on the other hand, acknowledging the 
transaction commitment might become faster than the stan- 
dard read-only optimization. This is possible in the case 
that some read-only participants are connected with the co- 
ordinator via low speed communication links while their 
update counterparts are connected with the coordinator via 
high speed communication links. In this case, the read-only 
participants become the bottleneck in the commit processing 
using the traditional read-only optimization. For this reason, 
a final decision pertaining to a partially read-only transac- 
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tion is reached faster with fewer coordination messages by 
using W V  compared to the traditional read-only optimiza- 
tion. Hence, by combining UUV with PrC (similarly with 
ReSPrC) the cost associated with read-only transactions is 
cheaper than in R A  combined with the traditional read-only 
optimization. 

The cost of R A  combined with W V  is the same as in 
PrC combined with W V .  This is because, using UUV, both 
PrA and PrC will incur the same coordination message com- 
plexities without any logging activities. Specifically, using 
the UUV, a coordinator that uses PrC should not force an 
initiation log record because it will know that the transac- 
tion is read-only by the time the transaction submits its final 
commit request. In this case, the coordinator discards any 
information pertaining to the transaction, acknowledges the 
commitment of the transaction and sends out a read-only fi- 
nal decision to each participant. 

For partially read-only transactions, in the two-level 
transaction execution model, it is cheaper to use PrC with 
UUV if these transactions are most probably going to com- 
mit even though there is an extra forced log write at the co- 
ordinator's site (i.e., the initiation record). This is because 

branch in a transaction's execution tree will suffer from the 
cost of any initiation records if the whole branch up to the 
root coordinator is read-only. 

By combining UUV with R W ,  the root coordinator of a 
read-only transaction also does not force write an initiation 
record. For a partially read-only transaction, since RPrC 
eliminates intermediate initiation records, a read-only par- 
ticipant will suffer from at most a single forced write (i.e., 
an initiation record at the root coordinator). Hence, the cost 
of commit processing for a committing, partially read-only 
transaction in RPrC is less than in multi-level R A  consider- 
ing the saving in the total number of acknowledgment mes- 
sages and the number of forced log writes at the participants. 
The savings in the number of acknowledgmenf messages 
and forced log writes are further magnified for update trans- 
actions. For example, there are N extra messages and N - 1 
forced log writes in multi-level R A  compared with RPrC 
for a committing transaction where N is the number partici- 
pants in the transaction tree excluding the root coordinator2. 

5. Summary 

The presumed abort protocol (PrA) and the presumed PrC allows for a reduction of one forced log write (i.e., the 

participant. In addition, aread-onlyparticipantdoes not suf- mit The reduces the cost associated with 
fer from the cost associated with the forcing of the initia- aborting transactions while latter reduces the cost asso- 
tion record as it would have been the case if the traditional ciatd with committing This m&es only one 
read-only optimization were used. Therefore, it is cheaper to vanianl appropriate at any given time depending on the be- 
use PrC with UUV even if there is only a single site where havior of transactions and the reliability of the distributed 

nally be committed. and the behavior of transactions, the argument has been in 

and a message 'Om each update commit protocol (w) are two competing two-phase corn- 

a has submitted update 'peration(s) and fi- environment. Given the traditionJ networking environment 

4.3.2. UUV with Multi-Level PrC 

For a read-only transaction, neither the root coordinator 
nor any cascaded coordinator force writes initiation records 
for the transaction by using UCTV with the multi-level PrC. 
Hence, the cost associated with commit processing of read- 
only transactions becomes the same in both multi-level R A  
and multi-level PrC when they are combined with W V  
while multi-level PrC combined with UUV is cheaper than 
multi-level R A  combined with the traditional read-only op- 
timization. 

For a partially read-only transaction, a cascaded coordi- 
nator in multi-level PrC has to send an unsolicited updafe- 
vote if any of its descendants has performed an update oper- 
ation. Such a cascaded coordinator participates in the voting 
phase and force writes an initiation record. However, a leaf 
read-only participant does not suffer from the cost of forcing 
the initiation record at its direct ancestor. This is because 
the direct ancestor will send a read-only message to the par- 
ticipant without having to wait for the forced record to be in 
the stable log. Thus, none of the participants in a read-only 

favor of R A  rather than PrC. This is due to the cost of the 
forced initiation records associated with PrC even for read- 
only transactions. However, given the reliability charac- 
teristics of modem distributed environments and the high 
probability of a transaction of being committed rather than 
aborted after all its operations have been executed and ac- 
knowledged, we argued in favor of PrC by proposing two 
new PrC variants. Namely, rooted PrC (RPrC) and re- 
structured PrC (ReSPrC). 

Both RPrC and ReSPrC eliminate all intermediate initi- 
ation records from cascaded coordinators in the multi-level 
transaction execution model, which is the model adopted by 
the current transaction processing standards and commercial 
systems. Furthermore, regardless of the depth of a transac- 
tion's execution tree, there is at most a single forced initi- 
ation record in both variants compared to multi-level PrC, 
while the new PrC variants still maintain the low count in the 
total number of messages and forced log writes for a com- 
mitting transaction compared to multi-level RA.  

2Notice that the root coordinator force writes two log records in RPrC 
compared with one in multi-level PrA, hence we have N - 1 extra forced 
log writes in multi-level PrA. 
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For read-only transactions, we applied our unsolicited 
update-vote optimization and showed that the cost associ- 
ated with this type of transactions in PrC and the newly pro- 
posed variants is exactly the same as in PrA. This is also true 
for read-only participants of partially read-only transactions 
in both PrC and R A  as well as ReSPrC. For a partially read- 
only transaction in RPrC, a read-only participant might suf- 
fer from the cost of a single forced initiation record at the 
root coordinator. In general, however, PrC variants involve 
lower number of coordination messages and total forced log 
writes compared with R A  variants when committing update 
as well as partially read-only transactions. 

In conclusion, this work nullifies the basis for the argu- 
ment that exclusively favors RA, i.e., the low cost asso- 
ciated with read-only transactions and transactions in the 
multi-level transaction execution model, and makes the case 
that PrC should become part of future protocol standards. 
In addition, ReSPrC and RPrC as well as the unsolicited 
update-vote optimization provide sufficiently appealing ef- 
ficiency characteristics that make them very attractive to be 
adopted in commercial systems that use a two-phase commit 
variant that also force writes initiation records such as the 
one's based on IBM SNA LU 6.2 architecture, the de facto 
standard of the industry [9]. 
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