
DEALING WITH INCOMPATIBLE PRESUMPTIONS OF
COMMIT PROTOCOLS IN MULTIDATABASE SYSTEMS

Yousef J. AI -Houmai ly

Dept . o f E lec t r i ca l E n g i n e e r i n g

U n i v e r s i t y o f P i t t sburgh

P i t t sburgh , PA 15261

y j a s t l + @ p i t t . e d u

P a n t s K. Chrysanthis

Dept . o f C o m p u t e r S c i e n c e

U n i v e r s i t y o f P i t t sburgh

P i t t sburgh , PA 15260

p a n o s @ c s . p i t t . e d u

Keywords: Atomic Commit Protocols, Two-Phase Commit,
Distributed Transaction Processing, Multidatabase Systems.

A B S T R A C T

A multidatabase system (MDBS) is a software system that
is built on top of multiple pre-existing and heterogeneous
database systems to facilitate their interoperation. This paper
discusses the issue of compatibility among atomic commit
protocols (ACPs) in a MDBS environment. Specifically, it
shows that supporting a visible prepare to commit state is
not enough for a successful integration of ACPs in an op-
erational fashion because the outcome of some transactions
might have to be remembered forever. Therefore, we define
an operational correctness criterion that allows terminated
transactions to be forgotten and propose Presumed Any, a
Two-Phase Commit protocol variant that successfully inte-
grates Presumed Nothing, Presumed Abort and Presumed
Commit in a MDBS. We also show how the behavior of a
local database system that employs presumed abort can be
made to look as if it employs presumed commit and vice
versa, allowing the MDBS to dynamically adapt to the most
appropriate two-phase commit variant at any given time.

I N T R O D U C T I O N

A multidatabase system (MDBS) is a software system that
facilitates interoperability across multiple pre-existing and
heterogeneous database systems (Figure 1). A MDBS allows
each database system to continue to operate in an independent
fashion and (ideally) does not require any changes to existing
databases, applications, and the local database management
systems (LDBMSs).

Two types of transactions execute in a MDBS:

• local transactions that access data located at only a
single database under the control of the LDBMS and
whose existence the MDBS is not aware of.

This material is based upon work partially supported by the National
Science Foundation under grants 1RI-9210588 and IRI-95020091.

"Permission to make digital/hard copy of all or part of this material without
fee is granted provided that copies are not made or distributed for profit or
commercial advantage, the ACM copyright/server notice, the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery, Inc.(ACM). To
copy otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee."
© 1996 ACM 0-89791-820-7 96 0002 3.50 ~8~

• global transactions that access data located at multiple
databases under the control of the global transaction
manager (GTM) of the MDBS.

A global transaction is decomposed by the GTM into several
subtransactions, each of which executes as a local transaction
at some site. An agent which resides above each LDBMS,
is responsible for the different aspects of the execution of
subtransactions at its site and in particular, of the termination
protocol needed to commit the subtransactions [1].

Local
Transactions

[~BNN i

Global Transactions

Local T~actlo. ~_~

LDBM$

Site (2)

Local
Tra~act lotm

LDBMS 1

~ t s (n)

Figure 1: The MDBS model.

Termination protocols in MDBSs that ensure the atomicity
of global transactions can be classified based on whether or
not they assume a visible prepare to commit state. That
is, whether each LDBMS externalizes its commit protocol
by making it public to the outside world through its inter-
face. Atomic commit protocols (ACPs) that do not assume
externalized prepare to commit state are typically designed
to emulate the two-phase commit (2PC) protocol [5, 6, 10].
In emulated 2PC protocols, the agents act as the participants
in the execution of 2PC whereas the prepare to commit
state is emulated through restrictions on either the data
access pattern or the initiation of global and local transac-
tions [2, 7, 12, 14, 3]. On the other hand, ACPs that assume
externalized prepare to commit state are usually designed to
resolve the incompatibilities between the ACPs used by the
different LDBMSs [13].

The incompatibility of ACPs means that the semantics of
the coordination messages and the actions that are taken
by a LDBMS that employs one ACP might be completely
different than their counterparts in another ACP. Interoperat-

http://crossmark.crossref.org/dialog/?doi=10.1145%2F331119.331172&domain=pdf&date_stamp=1996-02-18

ing different ACPs is not a trivial task as it was previously
believed [1, 13], i.e., that once a LDBMS supports a visible
prepare to commit state,.it Can be integrated in a MDBS
regardless of the ACP variants that are employed by the
other LDBMSs [11, 4].

In this paper, we examine the compatibility of the basic
2PC and its two most common variants, namely presumed
abort (PrA) and presumed commit (PrC) [9], and propose
a new 2PC protocol, called presumed any (PrAny) that
effectively integrates these three 2PC protocols and allows
them to interoperate in a MDBS environment despite their
conflicting presumptions about the outcome of transactions.
Then, we show how an agent can alter the behavior of a
LDBMS that employs PrA to look as if it uses PrC and
vice versa, allowing the MDBS to dynamically adapt the
most appropriate 2PC variant in a particular situation, hence
achieving the best performance during normal transaction
processing.

T W O - P H A S E C O M M I T V A R I A N T S

The basic two-phase commit protocol (2PC) consists of a
voting phase during which the coordinator of a distributed
transaction requests all the sites participating in the trans-
action's execution to prepare to commit, and of a decision
phase during which the coordinator either decides to commit
the transaction if all the participants are prepared to commit
(voted Yes), or to abort if any participant has decided to
abort (voted No). If a participant has voted Yes, it can
neither commit nor abort the transaction until it receives the
final decision. When a participant receives the final decision,
it complies and acknowledges the decision. The coordinator
completes the protocol and discards any information in its
protocol table in main memory regarding the transaction
when it receives acknowledgments from all the participants.

The resilience of 2PC to system and communication failures
is achieved by recording the progress of the protocol in
the logs of the coordinator and the participants. The
coordinator is required to force-write a d e c i s i o n record
prior to sending out the final decision. Since a force-write
ensures that a log record is written into a stable storage that
sustains system failures, the final decision is not lost in the
case of a coordinator failure. Similarly, each participant
force-writes a p r e p a r e d record before sending its vote and
a d e c i s i on record before acknowledging a final decision.
When the coordinator completes the protocol, it writes a non-
forced e n d record indicating that the log records pertaining
to the transaction can be garbage collected when necessary.

The basic 2PC protocol is also referred to as the presumed
nothing 2PC (PrN) because it t ro t s all transactions uni-
formly, whether they are to be committed or aborted, requir-
ing information to be explicitly exchanged and logged at all
times. However, in case of a coordinator's failure, there
is a hidden presumption in PrN by which the coordinator
considers all active transactions at the time • of the failure as
aborted ones. This presumption allows a coordinator not to
force-write any log records prior to the decision phase. If
a participant inquires the coordinator about an active trans-
action after the coordinator has failed and recovered, the
coordinator, not remembering the transaction, will direct the
participant to abort it (by presumption).

The presumed abort 2PC protocol (PrA) [8, 9] operates in
a manner similar to PrN for the commit case but makes

the abort presumption more explicit. When a coordinator
decides to abort a transaction, it does not force-write the
abort decision in its log. Instead, the coordinator sends
an abort message to all the participants and discards all
information about the transaction from its protocol table.
Thus, the coordinator of an aborted transaction does not have
to write any log records or wait for acknowledgments. Since
the participants do not have to acknowledge abort decisions,
they are also not required to force-write such decisions. In
case of a coordinator failure, if a participant inquires about
a transaction that has been aborted, the coordinator will not
remember the transaction and will direct the participant to
abort it (by presumption).

As opposed to PrA, the presumed commit 2PC protocol
(PrC) [9] is designed to reduce the cost of committing trans-
actions. Instead of recording commit decisions in the stable
log and interpreting missing information about transactions
as abort decisions (which is the case in PrA), in PrC, coordina-
tors record abort decisions and interpret missing information
about transactions as commit decisions. However, in PrC,
a coordinator has to force write an initiation record for
each transaction before sending prepare to commit messages
to the participants. This record contains the identities of
the participants and ensures that missing information about a
transaction will not be mis-interpreted as a commit case after
a coordinator failure.

To commit a transaction, the coordinator force writes a
c o m m i t record to logically eliminate the i n i t i a t i o n
record of the transaction and then sends out the commit
decision. The coordinator also discards all information
pertaining to the transaction from its protocol table. When
a participant receives the decision, it writes a non-forced
commit record and commits the transaction without having
to acknowledge the decision. I f a participant fails before the
c o m m i t record is in its stable log, the participant will inquire
the coordinator about its final decision during its recovery.
The coordinator, not remembering the transaction, will direct
the participant to commit it (by presumption). Similarly, if
the coordinator of a committed transaction fails before it
submits its decision to the participants, the coordinator, after
its recovery, will direct any participant that inquires about
the transaction to commit the transaction if it does not have
any recollection about the transaction.

To abort a transaction, on the other hand, the coordinator
does not have to write the abort decision in its log. Instead,
the coordinator, sends out the abort decision and waits for the
acknowledgments. When a participant receives the decision,
it force writes an a b o r t record and then acknowledges it.
Once the coordinator receives acknowledgments from all
the participants, it discards all information pertaining to the
transaction from its protocol table and writes a non-forced
end record.

C O M P A T I B I L I T Y O F 2 P C V A R I A N T S

Let us examine in this section the compatibility of PrN, PrA
and PrC discussed above. '

Consider the case where a transaction has executed at two
participants. Further, assume that the coordinator and one
of the participants employ PrC while the other participant
employs PrA. The voting phase is the same in both variants.
The only difference between the two variants, as far as the
coordination messages are concerned, occurs in the decision

187

phase. In the event that the coordinator of the transaction
makes a commit final decision, the PrA participant will
acknowledge the commit which is not recognized by the
coordinator and is ignored. With respect to the logging
activities at the coordinator, it will be able to forget about
the transaction and discard all information pertaining to the
transaction from its protocol table once it makes the commit
final decision and can garbage collect the transaction's log
records when necessary. Since the coordinator employs PrC,
it will always be able to respond to the inquiries of the
participants in case of a failure with a commit final decision
(using the PrC presumption).

Now, consider another transaction that has finished its ex-
ecutibn at the same two participants and the coordinator
has decided to abort the transaction. In this case, the co-
ordinator can never garbage collect the records pertaining
to the transaction from its stable log nor can it discard the
information from its protocol table. This is because the PrA
participant never acknowledges an abort decision. If, on the
other hand, the coordinator attempts to forget the outcome
of the transaction once it receives the acknowledgment from
the PrC participant, the atomicity of the transaction might be
violated. If the PrA participant fails after it receives the final
outcome but before writing it into the stable log, the partici-
pant will inquire about the outcome of the transaction as part
of its recovery. If the coordinator has already received the ac-
knowledgment from the PrC participant and forgotten about
the transaction, the coordinator will wrongly respond with
a commit final decision (using the PrC presumption) which
clearly violates the atomicity of the transaction. Therefore,
the coordinator has to remember the abort decision forever
in order to prohibit the occurrence of such a situation.

A similar situation occurs if the coordinator employs PrN
or PrA. In the case that the coordinator employs PrN and
some participants employ PrC while the others employ PrA,
the coordinator needs to remember the outcome of both
committed as well as aborted transactions forever. This is
because commit decisions will not be acknowledged by PrC
participants while abort decisions will not be acknowledged
by PrA participants. If the coordinator employs PrA, the
coordinator has to remember aU committed transactions
forever because PrC participants never acknowledge commit
decisions.

The above scenarios show that it is possible from a consis-
tency point of view to integrate PrN, PrA and PrC in a MDBS
by ignoring any unnecessary messages. However, this result
is impractical because the coordinator has to remember the
committed or aborted transactions forever. Thus, guarantee-
ing the consistency of final decisions regarding the outcome
of transactions is not enough for an operationally correct
integration of ACPs.

Definition 1: The integration of different ACPs is
operationally correct if and only if

1. The coordinator and all the participants reach con-
sistent decisions regarding the outcome of transac-
tions and regardless of failures.

2. The coordinator can, eventually, discard all the
information pertaining to terminated transactions
from its protocol table and garbage collect its log.

3. All participants can, eventually, forget about trans-
actions and garbage collect their logs.

P R E S U M E D A N Y (P r A n y)

To maintain operational correctness in a MDBS, a coor-
dinator should be able to, eventually, reach a safe state in
which it can forget about the outcome of transactions without
violating the consistency of its decisions.

Definition 2: The coordinator is in a safe state if
and only if it can reply to the inquiry messages of
the participants about the status of a transaction based
on a single presumption which is consistent with the
transaction's final outcome.

That is, the safety criterion implies that some information
including the outcome of transactions has to be remembered
as long as more than one presumption is possible. In PrAny,
a coordinator knows the protocols used by the different
LDBMSs and uses this knowledge to decide when to discard
the information about a transaction.

According to the behavior of PrN, PrA and PrC, the coor-
dinator expects those participants that employ PrN and PrA
to acknowledge commit final decisions but not those partic-
ipants that employ PrC (Figure 2(a)). The coordinator can
forget about the outcome of a committed transaction once
the PrN and PrA participants acknowledge the commit deci-
sion knowing that only a participant that employs PrC might
inquire about the decision in the future. If a PrC participant
inquires about a (commit) final decision after the coordinator
has forgotten the transaction, the coordinator, knowing that
the participant uses PrC, will direct the participant to commit
the transaction (by the presumption of PrC).

Similarly, if a coordinator makes an abort final decision, it
expects only those participants that employ PrN and PrC
to acknowledge the decision but not those employing PrA
(Figure 2(b)). Hence, the coordinator can forget about the
outcome of an aborted transaction once the PrN and PrC par-
ticipants acknowledge the abort decision. If a PrA participant
inquires about an (abort) final decision after the coordinator
has forgotten the transaction, the coordinator, knowing that
the participant uses PrA, will direct the participant to abort
the transaction (by the presumption of PrA).

In PrAny, a coordinator records the 2PC protocol employed
by each participant in a table called participants' commit
protocol (PCP). The PCP is kept on stable storage and
updated when a new site joins or leaves the MDBS. Only
a portion of the PCP, called active participant protocols
(APP) table, is maintained in main memory, containing the
identities (IDs) of the participants with active transactions.
APP can be structured as a hash table on the ID numbers of
the participants.

A coordinator refers to its APP to decide which protocol to
use with the participants in the execution of a transaction.
The coordinator selects PrN if all the participants use PrN.
Similarly, it selects PrA if all the participants use PrA whereas
it decides to use PrC if all the participants use PrC. By using
PrN, PrA or PrC with all the participants, the coordinator
will always be in a safe state if it does not remember the final
outcome of a transaction.

In the event that some of the participants employ PrA while
the others employ PrN or PrC, the coordinator selects PrAny.
From the coordinator's perspective, PrAny consists of the
same two phases, i.e., the voting phase and the decision
phase, as in PrN, PrA and PrC. The only distinction between

188

Siat~ PrN or PrA
Participant

Act/re

Foree-writ~
Prepaid

........... _L.,~ R_~_os_ a_.
P~ptred

Comm~um 8 Forc~-wrir~
Commat Ix

........... R ~ o ~ _ _
Comautted

Coordinator

Fo~ze-wri~
Irtitiatiott log
R~:ord

I

Fore~-wrke
Commit log

I Re~ord

Write End
[Log R~ord

PrC Participant Start

Active

" ~ ~g~:j~fi

~o_~.

Wri~ Commit Commatted
Log Rec olxl

Active

Foree-wfil~
, Pre _pg~d. ~ R_~_o~d_ _ _ _
Prepared

Aborted Writv Abort
Log Record

Foree~.,~fit#

. l

Wti~ End
Log Record

PrN or PrC S~ t l
Par tkipant

Active
P~pm~

Fow.e-wfi~e

L_~%~_~
Prepared

A b ~

Abort Log
Record

(a) Commi t case (b) Abort cJse

Figure 2: The presumed any protocol.

PrAny and the other variants is in the logging activities at
the coordinator's site and the timing at which the coordinator
can safely forget about the outcome of transactions.

In PrAny, the coordinator starts the voting phase by force
writing an i n i t i a t i o n record which includes the identi-
ties of the participants as it is the case in the PrC variant.
Then, it sends to each participant a prepare to commit re-
quest. Once the coordinator receives the votes from all the
participants, it force writes a commi t record if the decision
is commit. If the decision is abort, no decision record is
written into the log. Then, the coordinator sends its final
decision to all the participants. On a commit final decision,
the coordinator writes a non-forced e n d record once all the
PrN and PrA participants acknowledge the decision. On
an abort final decision, on the other hand, the coordinator
writes an end record once all the PrN and PrC participants
acknowledge the decision. After the coordinator writes e n d
record in its log, it discards all information pertaining to the
transaction from its protocol table and can garbage collect
thg log records regarding the transaction.

Recovery in PrAny

As in all other commit protocols, communication and site
failures are detected by timeouts. The recovery procedure in
case of communication and participants' failures are handled
in a manner similar to the way they are handled in PrN, PrA
and PrC protocols. The only difference between PrAny and
the other 2PC variants is in the way a coordinator recovers
after a site failure. To reduce the cost of recovery, in all
protocols, the coordinator is required to record the protocol
of each participant along with its ID (in the i n i t i a t i o n
record for PrC and PrAny, and in the d e c i s i o n record for
PrA and PrN). That is, without accessing the PCP on stable
storage, the recovery procedure can determine the commit
protocol used for each transaction from the information in its
stable log.

After a failure, at the beginning of its recovery process, the
coordinator re-builds its protocol table by analyzing its stable
log. For each transaction that has a d e c i s i o n log record
without an i n i t i a t i o n record, it means that PrN or PrA
has been used for its commitment. For each such transaction
without an e n d record, the coordinator adds the transaction

in its protocol table and re-initiates the decision phase with
the recorded decision in the log. In the case of PrA, the
decision is always commit since PrA requires only commit
decisions to be recorded in the log. In the case of PrN, the
decision could be either commit or abort.

For each transaction that has an i n i t i a t i o n record, it
means that PrC or PrAny has been used for its commitment.
For each such transaction that PrC has been used for its
commitment and has no commi t or e n d log record, the
coordinator adds the transaction in its protocol table and
re-initiates the decision phase with an abort decision in
accordance to PrC.

Finally, for each transaction that PrAny has been used for its
commitment and has only an i n i t i a t i o n record, or has
i n i t i a t i o n and commi t records but no e n d record, the
coordinator adds the transaction in its protocol table. In the
former case, since either no decision was made or abort was
decided before the failure, the coordinator submits an abort
decision to the PrN and PrC participants. It does not include
the PrA participants in accordance to PrA I . In the latter case,
since a commit decision record is found, the coordinator
submits a commit decision to the PrN and PrA participants
but, in accordance to PrC, not to PrC participants.

As during normal processing, after sending out a decision,
the coordinator waits for acknowledgments from PrN and
PrC participants in the case of an abort decision and from
PrN and PrA participants in the case of a commit decision.
When a participant receives a final decision, it enforces and
acknowledges the decision if it has not already enforced the
decision. Otherwise, the participant simply acknowledges
the decision 2. When all the expected acknowledgments
arrive, the coordinator writes an e n d log record and forgets
about the transaction.

If a participant inquires about the outcome of a transaction

1A coordinator in PrA never re-submits an abort decision to the partici-
pants after its failure because it will not have any recollection about aborted
transactions, tt is the responsibility of the participants to inquire about
the outcome of such transactions. Similarly, a coordinator in PrC never
re-submits commit decisions to the participants after its failure.

2A participant without any memory regarding a transaction is assumed
to have already received and enforced the decision and discarded all
information pertaining to the transaction.

189

Coordinator
Force-wri~
Inithuion Log R__~_o_~_

Foree-wrius
Comamt Log R~_o.~.

Agent

"-F~,7~ :,A-6"

Wxit¢ E1ad Log
Record

PrA LDBMS

Force -wlite P~pa."e d
Log Record

Yes .

C~mxt

Fel:ee-~i~ Commit
~ r , _ .__~A .R_~ a_ /

Coordiaator
Fotee-wrim
htit~ Log I7.ax:~d l~"¢Pqt"~: [Prc]

Write End Log
Rccot'd

Agent

A b ~ L ~
R ~ ' d

PrA LDBMS

Fo~..e -,m-ire P ~ ~a'~d.
Log R.e¢~d

2>

Wri~ Abort
Log P, ecotd

(a) Commi t case (b) Abor t case

Figure 3: Transaction commit on PrA LDBMS using PrC.

after the coordinator has failed and recovered, not remem-
bering the transaction, the coordinator replies with a commit
message if the participant employs PrC or an abort message
if the participant employs PrA.

S W I T C H I N G B E T W E E N P r A a n d P r C

the selection and the progress of the commit protocol rather
than passive ones as they were assumed in the previous sec-
tion. An agent is required to record the used protocol after
a switch in a p r e p a r e d log record to achieve operational
correctness. That is, the information on switched participants
is kept either on the coordinator or the agents as long as it is
needed to ensure that the coordinator is in a safe state.

During normal processing, PrA exhibits better performance
than PrC if a transaction is most probably going to be
aborted while PrC exhibits better performance than PrA if
the transaction is most probably going to be committed.
Usually, the behavior of transactions and systems changes
over the time depending on several factors including the
system load and the degree of conflicts between transactions.
To be adaptive to the changes in a MDBS environment, it is
necessary to be able to switch from one commit protocol to
another, hence, at any given time, using the most appropriate
2PC protocol. The issue of using either PrA or PrC on a
per transaction basis has been previously addressed in the
context of traditional distributed database systems [9].

The cost of communication between a coordinator and the
participants as well as of forcing the logs in a MDBS might
vary from one site to another. Thus, rather than changing the
used commit protocol on a per transaction basis, it would be
more efficient to change the used protocol on aper participant
and a per coordinator basis (GTM is a logical entity that can
be distributed among different sites in a MDBS). That is, in
a per participant basis, a coordinator might prefer to use one
protocol with a participant during a certain period of time
and to switch to another protocol during other periods of
time. In a per coordinator basis, a participant might choose
to use one protocol with some coordinators during certain
periods of time while using the other protocol with the other
coordinators.

PrAny facilitates all the above three options, allowing the
coordinators and agents to cooperate in selecting the most
efficient commit strategy at any given time. In these opti-
mizations, the agents act as the participants in the case that
the selected commit protocol is different than the one of their
corresponding LDBMSs, while at the same time, they act as
coordinators for their corresponding LDBMSs. Otherwise,
they act as gateways for message passing between the GTM
and the LDBMSs. That is, the agents are considered as
active components with logging capabilities participating in

A. S w i t c h i n g o n a P e r T r a n s a c t i o n B a s i s

Based on the behavior of transactions and the participants, a
coordinator might instruct an agent to use PrC even though
the underlying LDBMS uses PrA or visa versa. This is in
order to reduce the number of coordination messages at the
expense of an extra forced log write which is desirable if
communication is more expensive than the write of the log
on disk.

Figure 3 shows how a coordinator and an agent cooperate to
commit a subtransaction executing on a PrA LDBMS using
PrC. In this optimization, the coordinator force w~'ites an
i n i t i a t i o n record which includes the identities of all
participating agents and of those that are to be switched from
PrA to PrC. Then, the coordinator sends to all the agents a
prepare to commit message which is augmented with a used
protocol field. When an agent receives a prepare to commit
that directs it to switch, the agent forwards the message
to the underlying LDBMS and force writes a p r e p a r e d
log record indicating that PrC is used for the transaction.
When the underlying LDBMS sends its vote to the agent,
the agent forwards the vote to the coordinator, only after the
p r e p a r e d record the agent has written is in the stable log.
Thus, when a coordinator receives a vote, it knows that the
agent has the required information for recovery in case of
failure, and may forget about the transaction after making a
decision.

According to PrC, on a commit decision (Figure 3(a)),
the coordinator force writes a c o m m i t record, submits its
decision to all the agents, and forgets about the transaction.
When the agent receives the commit final decision, it passes
the decision to the LDBMS. Since the LDBMS uses PrA,
the agent expects an acknowledgment from the LDBMS.
Once the LDBMS acknowledges the decision, the agent
writes an e n d record and forgets about the transaction as
well, knowing that the LDBMS will not inquire about the

190

Coordinator

Foree-wht=
Commit Log

. . . . ~=o_rd... _

Wn~ End Log
Record

p,,~-'p~ tP,AI

Y
Commit

Ag, nt

Foree-wli~
Prep,t~a Log

Fotee-wri~
Commat Log
Record

PrC LDBMS

Fat~-wfite P'tet~.~d
Log R~txd

......................

Writ~ Corot
Log Record

Coordinator

Y

Abort

All.at

Fc,me-wrile
Pl~t~u~. d LoS
~Recor~I

Write End
Record

PrC LDBMS

Fo ~e -w~i~e Prepl~'e d
LOg Rec~,t

Y e t l .

Abort

Log R~ord

/

(a) Commi t case (b) Abort c a s e

Figure 4: Transaction commit on PrC LDBMS using PrA.

transaction in the future.

On an abort final decision (Figure 3(b)), the coordinator
sends abort to the agents without logging the decision. When
an agent receives an abort decision, it forwards it to the
LDBMS, force writes an abort record, and then sends an
acknowledgment to the coordinator. Once the coordinator
receives the acknowledgments from all the agents, it writes
an e n d record and forgets about the transaction.

On an abort final decision (Figure 4(b)), on the other hand,
the coordinator submits its decision to all the agents and
forgets about the transaction without having to write any log
records. Once an agent receives the abort decision, it passes
the decision to the LDBMS and waits for its acknowledgment
according to PrC used by the LDBMS. When the LDBMS
acknowledges the abort decision, the agent writes an end
record and forgets about the transaction.

Figure 4 shows how a coordinator cooperates with an agent to
commit a subtransaction executing on a PrC LDBMS using
PrA. The coordinator begins by sending out a p r e p a r e
t o corrtmit message to all participating agents, specifying
PrA as the protocol to be used. When an agent receives
theprepare to commitmessage, it force writes a p r e p a r e d
record indicating that PrA protocol is used for the transaction.
Since the agent is acting as a PrC coordinator for the LDBMS,
the prepared record is also used as an initiation that
needs to be force written at the beginning of PrC to ensure
atomicity. Once the p r e p a r e d record is in the stable log,
the agent forwards the message to the LDBMS 3. When the
agent receives the vote of the LDBMS, it passes the vote to
the coordinator.

Based on PrA, on a commit final decision (Figure 4(a)), the
coordinator force writes a commi t record which includes
the identities of the participants and then submits its decision
to the agents. When an agent receives the commit decision,
it passes the decision to the LDBMS and force writes a
commi t record. Since the agent is using PrA with the
coordinator, it finally acknowledges the decision when the
commi t record is in the stable log. Once the coordinator
receives the acknowledgment messages, it writes an e n d
record and forgets about the transaction.

3Notice that sending the prepare to commitmessage to the LDBMS and
force writing the p r e p a r e d record cannot be overlapped, as in the case
of switching a PrA LDBMS to use PrC, for the commit presumption to
hold. This is because the coordinator does not force write an i n i t i a t i o n
record according to PrA, and ff a failure occurs after the LDBMS has
prepared the transaction and before the agent has forced the p r e p a r e d
record, the recovery procedure, by not finding any information about the
transaction on either the coordinator or the agent, might wrongly decide to
commit the transaction based on the PrC presumption.

Recovery of a Coordinator

After a failure, as in all 2PC protocols, during its recov cry, the
coordinator identifies all the transactions whose commitment
was interruptedby the failure, adds them in its protocol table
and re-initiates their decision phase.

For each transaction associated with an i n i t i a t i o n
record, indicating the use of PrC, but without either a
commi t or e n d record, the coordinator sends out to all
the participant agents an abort decision and waits for their
acknowledgments in accordance to PrC. It also specifies in
the abort message that PrC is to be used. When the coor-
dinator receives all the acknowledgments, it writes an e n d
record and forgets about the transaction,

When an agent of PrC LDBMS that was not supposed
to have switched, receives the abort decision, it forwards
the decision to the LDBMS which has either received and
enforced the abort decision prior to the coordinator failure
or not. In the former case, the LDBMS, not remembering
the transaction, simply acknowledges the abort decision.
In the latter case, the LDBMS first enforces the decision
and then acknowledges it. In either case, when the agent
receives the acknowledgment from the LDBMS, it forwards
the acknowledgment to the coordinator.

When an agent of a PrA LDBMS that was supposed to
have switched receives the abort message, it replies with
an acknowledgment message, if it does not remember the
transaction, i.e., the agent has finished the protocol prior to
the failure. If the agent remembers the transaction, i.e., it
has not received the final decision prior to the coordinator's
failure and has to finish the protocol, it forwards the abort

191

decision to the LDBMS, force writes an abort record and
acknowledges the coordinator.

For each transaction that is associated with a c o m m i t record
but without either an i n i t i a t i o n or an e n d record, the
coordinator knows that PrA has been used with the trans-
action and sends a commit decision to all the participant
agents, specifying that PrA is the used protocol. When an
agent of a PrA LDBMS receives the commit message, it
passes the message to the LDBMS. As above, the LDBMS
either replies to the agent with an acknowledgment, if it
has already received the decision prior to the coordinator's
failure, or enforces the decision and then sends an acknowl-
edgment to the agent. In either case, the agent forwards the
acknowledgments to the coordinator.

When an agent of a PrC LDBMS that was supposed to have
switched, receives the commit decision, it either replies with
an acknowledgment, if it has no recollection about the trans-
action, or forwards the message to the LDBMS, force writes
a c o m m i t record and then acknowledges the coordinator.
When the coordinator receives the acknowledgment from all
the agents, it writes an e n d record and safely forgets about
the transaction.

Recovery of a Participant

After a failure, the agent and the LDBMS at a site recover
simultaneously. The agent which acts as a coordinator for
the LDBMS, re-builds its protocol table by considering only
those transactions associated with a p r e p a r e d record but
without any other record in its stable log. The commitment
of these transactions has not been completed before the
failure. Furthermore, the existence of the p r e p a r e d record
indicates that the agent has switched protocols, using with
the coordinator a protocol that differs from the one used by its
LDBMS. Once the agent re-builds its protocol table, it starts
accepting the inquiries of the LDBMS and final decisions
from the coordinators.

When an agent receives a final decision from the coordinator
for a transaction not in its protocol table, it forwards the
decision to the LDBMS. If the transaction is in its protocol
table, the agent forwards the decision to the LDBMS only
if the decision is abort and the LDBMS uses PrC or the
decision is commit and the LDBMS uses PrA. (Recall that,
after a failure, a coordinator in PrA does not resubmit abort
decisions to the participants and a coordinator in PrC does
not resubmit commit decisions.) In case that the agent does
not forward the decision to the LDBMS, it completes the
protocol with the coordinator by force writing the appropriate
decision record and then acknowledging the coordinator. In
either case, the agent forgets about the transaction once the
decision record is in the stable log.

During its recovery, the LDBMS will inquire about each
transaction with a p r e p a r e d record but without a corre-
sponding final d e c i s i o n record. When the agent receives
an inquiry message about a transaction from the LDBMS,
the agent checks its protocol table. If the transaction is not
in its protocol table, then it means that either (1) the agent
has used a different protocol with the coordinator than with
the LDBMS but finished the commitment of the transaction
prior the failure, or (2) there was no switch in protocols and
the agent was a passive component in the commitment of the
transaction. Since the agent is in doubt about its role in the

commitment of the transaction, it inquires the coordinator. If
the coordinator remembers the transaction, it sends the final
decision to the agent which in turn passes it to the LDBMS.

If the coordinator does not remember the transaction and
the agent has not switched protocols (i.e., coordinator has
completed the protocol with the LDBMS), it means that the
coordinator has received all the expected acknowledgements
from the agents and is in a safe state in which it can use
the presumption of the protocol used by the LDBMS. In the
case that the agent has switched protocols, then it is only
possible for a LDBMS to send an inquiry message and for the
coordinator and the agent not to remember the transaction, if
either (1) the decision is abort, the agent has switched to PrC,
and the LDBMS uses PrA, or (2) the decision is commit, the
agent has switched to PrA and the LDBMS uses PIC (see
Figures 3 and 4). Thus, in both cases, the coordinator refers
to its PCP to determine which variant is used by the LDBMS
and replies with an abort decision if the LDBMS employs
PrA or a commit decision if the LDBMS employs PrC.

If the transaction is in the protocol table of the agent, the
agent knows that it has switched protocols for this transaction
but it has not finished the protocol with LDBMS by the time
of the failure. Therefore, the agent inquires the coordinator
with a message that includes the used protocol as specified
in the p r e p a r e d record. If the coordinator remembers the
transaction, it responds with a final decision message and
the agent completes the used protocol (as described in the
previous section). On the other hand, if the coordinator does
not remember the transaction, it uses the presumption of
the protocol specified in the agent's inquiry message in its
reply rather than the presumption of the protocol used by the
LDBMS as it was the case above. The reason is that it is
only possible for a LDBMS to send an inquiry message and
for the coordinator not to remember the transaction while
the agent remembers it, if either (1) the decision is commit,
the agent has switched to PrC and the LDBMS uses PrA,
or (2) the decision is abort, the agent has switched to PrA
and the LDBMS uses PrC (see Figures 3 and 4) 4. Thus,
the coordinator replies with an abort decision if the agent
has switched to PrA or a commit decision if the agent has
switched to PrC.

B. S w i t c h i n g o n a Per P a r t i c i p a n t B a s i s

Switching on a per transaction basis trades-off a forced log
write at an agent with an acknowledgment message. Switch-
ing on a per participant basis, on the other hand, reduces the
number of forced log writes at the agents. Instead of force
writing a prepared record and an end/decision record for
each transaction in a sequence of transactions that are to be
processed using a protocol different than that of the LDBMS,
the agent, in switching on a per participant basis, force writes
a single s w i t c h log record for the entire sequence of trans-
actions. In the s w i t c h record, the agent records in addition
to the used protocol, the transaction identifier at the begin-
ning of the sequence. Thus, assuming that transactions have
unique, monotonically increasing identification numbers, a
sequence of transactions can be subsequently determined by
comparing the transaction IDs in two consecutive switch
records.

4In both of these cases, the agent remembers the transaction because it
has not received the expected acknowledgement from the LDBMS before
the failure.

192

Coordinator
Foree-wri~
I~ilittio~ LOg

. . . . R . ~ o ~

Force-write
Commit Log
Re.cord

Agent PrA LDBMS

Prepme [Swilgh]

"F;,~-~-
SwiCh Log :
Record " ~

Fof~-wri~ Preptred
y ~ ~ ' ~ L'°l~ Ree°rd

(a) C o m m i t case

Coordinator
For.e-write
Initi|ticm Log
Record

Write End LOg
Kececd

Pre]p~c[Swicb]

Y

AMB

Y

i
Agent

Foree-wri
Switch L~
Record

Abort

PrA LDBMS

Forve-wrtu: P'tep tx'e d
L o~Recofd

Write Abort
Log Ree~d

(b) Abort case

Figure 5: Switch an agent of a PrA LDBMS to support PrC.

In principle, this strategy is similar to the first one, namely,
switching per transaction basis. However, an important issue
in this strategy is when an agent can safely acknowledge a
final decision that is not acknowledged by the LDBMS and
without the force write of a decision log record at the agent.
Recall that if a decision on a transaction is acknowledged
prematurely by an agent (i.e., before it is logged at the
LDBMS), allowing the coordinator to forget the transaction,
after a failure, the coordinator might wrongly respond to
an inquiry based on the presumption of the protocol. We
prevent this from happening, i.e., acknowledging a decision
only when it is safe, by treating a LDBMS as a cascaded
coordinator and utilizing the sequential behavior of log.
Specifically, each LDBMS is forced to act as coordinator
with its agent as its leaf participant. Thus, any decision
send to the LDBMS is forwarded back to the agent after the
LDBMS force writes the appropriate decision record.

In this strategy, each coordinator maintains a look-up table
in main memory, called agents' protocol table (APT) in
which it records which agents have switched to a different
protocol than the one used by their LDBMSs. Similarly, in
order to be able to know the protocol to be used with each
coordinator, each agent maintains a list, called coordinators'
commit protocol (CCP). The behavior of the coordinator is
similar to that of switching per transaction basis strategy
(Figure 5). The only difference is that it has to update APT
when it directs an agent to switch protocols with the prepare
to commit message.

When the agent receives a prepare to commit message with
a switch directive, the agent updates its CCP, force writes
a s w i t c h record which also includes the CCP and then
forwards the prepare to commit message to the LDBMS.
If no switching is specified, the agent simply forwards the
prepare to commit message to the LDBMS. Subsequently,
the agent forwards the vote received from the LDBMS to the
coordinator.

In the case that the agent uses PrC with the coordinator and
PrA with the LDBMS, when the agent receives a commit
decision (Figure 5(a)), it forwards the decision to the LDBMS

and ignores the decision and acknowledgment messages
received from the LDBMS. Also, the agent does not have
to acknowledge the final decision in accordance to the PrC
protocol used with the coordinator.

On the other hand, the agent has to acknowledge abort final
decisions (Figure 5(b)). The agent determines whether an
abort message has been received by the LDBMS, if the mes-
sage is forwarded back to the agent by the LDBMS acting
as cascaded coordinator. Furthermore, assuming sequential
logs, an abort decision record pertaining to the transaction
is guaranteed to be in the stable log of the LDBMS, if the
agent subsequent to the received of the forwarded abort de-
cision, sends to the LDBMS a commit decision of another
transactions and receives an acknowledgement for the com-
mit decision from the LDBMS. Thus, an agent can safely
acknowledge an abort decision received from a coordina-
tor, once the agent (as a leaf participant) receives an abort
message from the LDBMS and a latter transaction has com-
mitted and acknowledges by the LDBMS, and knows that
the LDBMS will not send any inquiry message after a failure
in the future.

In the case that the agent uses I rA with the coordinator and
PrC with the LDBMS, on a commit final decision (Figure
6(a)), when the agent receives the decision, it passes the
decision to the LDBMS. Since the LDBMS is employing
PrC, it will not acknowledge commit final decisions, a sit-
uation similar to the one discussed above where LDBMSs
employing I rA will no t acknowledge abort decisions. We
use the same technique and observation as above to resolve
this situation. That is, the LDBMS is treated as a cascaded
coordinator with the agent as a leaf participant and utiliz-
ing the sequential nature of logs. In this way, an agent
acknowledges a commit decision once it receives a commit
message from the LDBMS and a subsequent transaction is
aborted and acknowledged by the LDBMS. On an abort final
decision (Figure 6(b)), on the other hand, when the agent
receives the decision, it passes the decision to the LDBMS
and ignores any acknowledgements of an abort decision from
the LDBMS.

193

Coordinalor I Prelate[Switch]

Force-writ:
Commit Log
Record Comrmt

~ k

Write End Log
Record

ASel~t

ole~-wril
~'~ich Lo
Reeefd '

. ~ t

T

PrC LDBMS

.
Fotr~-wnw ~ d
Log P,~:ord

.
Wiite C~:ttmlt
LOg Record

Coordinator AS*at PrC LDBMS

F~'~e-wri~
Swik:h LOg
Record

Fo:cc-w~i~ l~-'p arc d
LOg Record

Log Record

(a) C o m m i t c a s e (b) Abort case

Figure 6: Switch an agent of a PrC LDBMS to support PrA.

When an agent is directed by a coordinator to switch back
to the protocol used by the LDBMS, the agent updates its
CCP and force writes it in a s w i t c h record. Then, the
agent resumes its passive behavior during the commitment
of a transaction. Even though the s w i t c h records are
forced rarely and should not consume a large amount of
stable storage, the agents should be able to garbage collect
them. Therefore, an agent writes a non-forced e n d - s w i t c h
record for each transaction sequence when the agent has
switched to the protocol used by the LDBMS and each final
decision pertaining to a transaction in the sequence has been
either acknowledged by the LDBMS or its decision record is
guaranteed to be in the stable log of the LDBMS.

Recovery in the Switch on a Per Participant Basis

The recovery of the coordinator after a failure is the same
as in the switch on a per participant basis strategy discussed
above. In addition, in this strategy, the recovery has to
restore the consistency of the APT. This is achieved by
initializing APT to PCP and directing all the agents to use
the same commit protocol as their LDBMS. When an agent
receives such a directive, it updates its CCP, force writes a
swS_t ch log record and sends an acknowledgement back to
the coordinator.

As in the case of the coordinator, the recovery of a participant
after a failure is along the same lines as the recovery of the
participant in the switch on a per transaction basis strategy.
The only difference is that, in this strategy, an agent rebuilds
its protocol table and determines the protocol used with each
transaction from the information in the s w i t c h log records
that have not a corresponding end-switch record.

C. Switching on a Per Coordinator Basis

being aborted while the coordinator is using PrC with the
agent (or vice versa). Once a coordinator receives such a
suggestion, it directs the agent to switch to the suggested
protocol as part of the next preparect-to-cornrnit message
sent to the agent.

C O N C L U S I O N

In this paper, we showed that it is possible to integrate
incompatible atomic commit protocols in a multidatabase
system from a functional point of view as long as these
protocols support a visible prepare to commit state. How-
ever, this result is not enough for a successful integration
because the outcome of some transactions might have to be
remembered forever. Therefore, we defined an operational
correctness criterion for integration that allows transactions
to be forgotten.

Based on the proposed operational correctness criterion,
we developed a multidatabase two-phase commit (2PC)
protocol, called Presumed Any (PrAny), that integrates the
presumed nothing, presumed abort and presumed commit
2PC variants despite their conflicting presumptions about the
outcome of transactions and without violating the autonomy
of the local database systems.

Furthermore, based on the same principle, we have proposed
three strategies that allow a multidatabase system to dynami-
cally adapt to the most appropriate two-phase commit variant
at any given time. This is achieved by structuring the agents
to act as participants in the case that the selected commit
protocol is different than the one of their corresponding
LDBMSs, while at the same time, they act as coordinators
for their corresponding LDBMSs. Depending on the strat-
egy, agents may switch protocols on a per transaction, per
participant and on per coordinator basis.

This strategy works as the previous one except that an agent,
in this strategy, initiates the protocol switch. Specifically, an
agent suggests to a coordinator to use the most appropriate
protocol once the agent determines that the transactions
submitted by the coordinator have a higher probability of

References

[1] Breitbart, Y., H. Garcia-Molina and A. Silberschatz.
Overview of Multidatabase Transaction Management.
VLDB journal, 1(2): 181-239, 1992.

194

[2] Breitbart, Y., A. Silberschatz and G, Thompson. Re-
liable Transaction Management in a Multidatabase
System. Proc. of ACM SIGMOND International Con-
ference on Management of Data, pp. 215-224, 1990.

[3] Chrysanthis, P. K. and K. Ramamritham. Autonomy
Requirements in Heterogeneous Distributed Database
Systems. Proc. of the Conference on the Advances on
Data Management, pp. 283-302, 1994.

[4] Gligor, V. D. and G. L. Lunckenaugh. Interconnecting
Heterogeneous Database Management Systems. IEEE
Computer. 17(1): 33--43, 1984.

[5] Gray, J. Notes on Data Base Operating Systems. In
Bayer R., R.M. Graham, and G. Seegmuller (Eds.),
Operating Systems: An Advanced Course, Lecture
Notes in Computer Science, Vol. 60, pp. 393-481,
Springer-Verlag, 1978.

[6] Lampson, B.W. Atomic Transactions. In Distributed
Systems: Architecture and Implementation - An Ad-
vanced Course, B.W. Lampson (Ed.), Lecture Notes in
Computer Science, Vol. 105, pp. 246-265, Springer-
Verlag, 1981.

[7] Levy, E., H. Korth and A. Silberschatz. An Optimistic
Commit Protocol for Distributed Transaction Man-
agement. Proc. of the ACM SIGMOD International
Conference on Management of Data, pp. 88-97,1991.

[8] Mohan, C. and B. Lindsay. Efficient Commit Proto-
cols for the Tree of Processes Model of Distributed
Transactions. Proc. of the 2nd ACM Symposium on
Principles of Distributed Computing, 1983.

[9] Mohan, C., B. Lindsay and R. Obermarck. Trans-
action Management in the R ~ Distributed Data Base
Management System. ACM Transactions on Database
Systems, 11(4):378-396, 1986.

[10] Samaras, G., K. Britton, A. Citron and C. Mohan.
Two-Phase Commit Optimizations and Tradeoffs in
the Commercial Environment. Proc. of the 9th Interna-
tional Conference on Data Engineering, pp. 520-529,
1993.

[11] Skeen, D. Non-blocking Commit Protocols. Proc. of
• ACM SIGMOD Conference on the Management of
Data, pp. 133-142, 1982.

[12] Soparkar, N., H. Korth and A. Silberschatz. Failure-
Resilient Transaction Management in Multidatabases,
IEEE Computer, 24(12):28-36,1991.

[13] Tal, A. and R. Alonso. Integration of Commit Pro-
tocols in Heterogeneous Databases. Technical Report
TR-375-92, Princeton University, 1992.

[14] Veijalainen, J. and A. Wolski. Prepare and Com-
mit Certification for Decentralized Transaction Man-
agement in Rigorous Heterogeneous Multidatabases,
Proc. of the 8th International Conference on Data
Engineering, pp. 470-479, 1992.

195

