In Proceedings of the 9th Intl. Conf. on Parallel and Distributed Computing Systems (PDCS), pp. 684-689, 1996.

A Fast and Robust Failure Recovery Scheme for Shared-Nothing
Gigabit-Networked Databases

S. Banerjee

Information Science & Telecomm. dept.

University of Pittsburgh
Pittsburgh, PA 15260

bstract
Major technologlcaﬁa VaII.IanS have enabled the de-

velopment of very high speed networks with data rates
of the order of gigabits per second. In the future,
wide area gigabit networks will interconnect database
servers around the globe creating extremely powerful
distributed information systems. In a high speed net-
work, the size of the message is less of a concern than the
number of sequential phases of message passing. In a
previous paper, we have developed a lock-based concur-
rency control protocol for gigabit-networked databases
(GNDB). In this paper, we expand on a log-based recov-
ery protocol that provides efficient recovery in a GNDB
with the above mentioned concurrency control scheme.

1 Introduction

Several exciting advances are being made in the gen-
eral area of high speed distributed computing. For in-
stance, the rate at which information can be transmit-
ted [12] and the rate at which information can be pro-
cessed 1s increasing. Also, user desktops are being en-
hanced to the point that servers and clients may be
indistinguishable in the future, with regards to comput-
ing power and functionality. All of these changes are
expected to create very powerful distributed informa-
tion systems. However, it begs the question whether
any changes are requlred In existing protocols to ob-
tain the anticipated performance increase, and whether
existing protocols scale with the size of the new dis-
tributed systems. In this paper, a special case of dis-
tributed systems, that of distributed database systems
is discussed in the above context. We refer to these as
gigabit-networked databases (GNDB).

Traditional data access and data sharing techniques
are not expected to scale to gigabit network rates [6,
11, 10, 14, 2]. Thus if any advantages of a high speed
network are to be realized, new schemes are required,
that can efficiently utilize the huge bandwidths avail-
able. Towards this end, assuming a client-server dis-
tributed database system in a shared-nothing environ-
ment, in [1], we proposed a lock-based concurrency con-
trol protocol, which is a variant of the strict two-phase
locking [4], but specially tailored for a gigabit wide area
environment. This concurrency control scheme reduces
the number of rounds of message passing by grouping
the lock grants, client-end caching and data migration.
However, these are the exact circumstances that make
the recovery operation difficult. In this paper, we ex-
pand on the skeletal framework of the log-based recovery
protocol that was proposed by us in [1]. Distributed

P. K. Chrysanthis
Computer Science dept.

University of Pittsburgh
Pittsburgh, PA 15260

concurrency control and recovery algorithms typically
require sites to engage in conversations (sequential mes-
sage transfers). The concurrency control and recovery
protocols proposed exploit the characteristics of a giga-
bit network to enhance the performance of the database
system, particularly that the size of the message 1s less
of a concern than the number of sequential phases of
message passing in high speed networks.

In the next section, we provide background infor-
mation on high speed networks, and for the sake of
completeness, the high speed network specific two-phase
locking protocol. The new recovery scheme is presented
in section 3, and section 4 concludes the paper.

2 Background

We assume a client-server distributed system [3, 15].
Traditionally, the servers have been responsible for
maintaining the correctness of the database, and re-
constructing the database to a consistent state in case
of failures. With the advent of high speed networks,
cheaper stable memory and processor power, it 1s ex-
pected that data will be moved between the servers and
the clients and both servers and clients will be partic-
ipating in maintaining their consistency. This means
that clients and servers must handle in a coordinated
manner the effects of failures and concurrency which
are the two basic sources of data inconsistencies. Al-
though the schemes described in this paper are appli-
cable when each client processes multiple transactions
concurrently, for the sake of simplicity, we assume that
each client processes only one transaction at any given
time. This section describes the relevant characteristics
of high speed wide area networks (WANs), the client-
server distributed database system model, and the con-
currency control scheme proposed for a gigabit wide
area environment.

2.1 Gigabit Network Characteristics

We first discuss the characteristics of the high speed
WANSs and the traditional low speed networks and un-
derstand their differences. High speed WANs differ
significantly from the traditional low speed networks.
There are two basic components of the delay involved
in moving data between two computers: the transmas-
ston time, 1.e., the time to transfer all the data bits, and
the propagation latency, i.e., the time the first bit takes
to arrive. Further, intermediate network components
in the path of the data introduce extra delays as well.
For instance, when the network is congested, the queue-
ing delays at intermediate switches may be significantly



high. We define the sum of the delays introduced by the
intermediate network components and the propagation
delay as the network latency. As the data rate in wide
area networks continues to increase due to technologi-
cal breakthroughs, the data transmission delay will de-
crease almost linearly. However, the signal propagation
delay which is a function of the length of the communi-
cation link and a physical constant, the speed of light,
will remain almost constant, and relative to the data
transmission delay, will actually seem to increase. At
gigabit rates, the propagation latency is the dominant
component of the overall delay [6].

The above basic characteristic of high speed networks
(referred to as a high bandwidth-delay product) has sig-
nificant implications on distributed applications. More-
over, since bits cannot travel faster than the speed of
light, and the distance between communicating comput-
ers cannot be reduced, the only way to combat propa-
gation latency is to hide it in innovative protocols. This
is not to say that the performance of a traditional dis-
tributed distributed algorithm will be worse in a high
speed environment than in a low speed environment.
However, the marginal performance improvement will
decrease as the data rate continues to increase. Beyond
a certain data rate, there will be no further improve-
ment, no matter what the increase in the data rate is,
and unless newer database protocols are developed that
are distance-independent, scalable performance will not
be achieved. This observation has motivated the de-
velopment of a concurrency control protocol [1], and
the corresponding recovery algorithm (presented here),
which are the first ones in the family of algorithms which
we refer to as APLODDS for Algorithms for Propaga-
tion Latency Optimization in Distributed Database Sys-
tems.

2.1.1 Failure Model

The future high speed networking environment will pro-
vide quality of service (QoS) guarantees, including high
network reliability. Thus, the probability of network
partitioning and link failures will be relatively low, and
node failures will be the primary consideration. For the
purpose of this paper, we do not deal with permanent
node failures. Only transient failures are considered
(i.e., each node is expected to recover.). Every node may
be dynamically classified into two broad types: reliable
and unreltable. The only difference between a reliable
and an unreliable node is that if a reliable node fails, re-
covery from the failure will happen within minutes (due
to the presence of a back-up processor, or other fast
recovery mechanisms), while an unreliable node may
take up to several hours to recover from a failure. In
such a situation, two extreme cases of recovery may be
considered, depending on the type of node executing
the transaction. The server maintains information on
the reliability of each node. If there 1s no information
available on a particular node, the server may adopt a
pessimistic approach and assume that the node i1s un-
reliable. The server is always assumed to be a reliable
node.

2.2 Concurrency Control in GNDB

A new concurrency control scheme has been devel-
oped in [1], that clearly illustrates the effects of the

new assumptions. To simplify the discussion, we con-
sider here a distributed database with a single tradi-
tional database (DB) server and multiple clients with
local processing capabilities. When a client needs a data
item, it sends a request to the DB server which responds
with the requested data item. Let us assume that each
client executes one transaction at a time. In the pres-
ence of concurrent requests from different clients, the
DB server ensures data consistency by following the well
known strict two-phase locking concurrency control pro-
tocol (2PL) [4]. A transaction can access a data item
only if no other transaction has a lock on it. In phase 1,
a transaction requests data items which are shipped to
it after the server acquires a lock on them. In phase 2,
all the locks are released when the transaction is com-
mitted and all modified data items are returned to the
server.

Assuming that a transaction needs to access n data
items, the first phase of the 2PL protocol as described
above will involve n requests from the client to the server
and n replies from the server to the client, exchanged
In minimum 2 messages 1if all requests are 'sent at the
same time or maximum 27 messages. The second phase
of 2PL will involve a single message. That is, for each
transaction, in the best case, strict 2PL involves three
rounds, 1.e., sequential phases of message passing corre-
sponding to lock request, lock grant and lock release.

One of the motivationsin a high speed environment is
to minimize both the number of messages as well as the
rounds. The following scheme proposes to reduce the
number of phases of message passing by grouping the
lock (data) granting and release. The DB server col-
lects the lock requests for each data item for a specified
interval. At the end of this interval (referred to as the
collection window from now on), the lock is granted to
the first transaction, and the data item is sent to the re-
spective client along with the ordered list (also referred
to as the forward list) of the clients that have pending
lock requests for that data item, that arrived within the
window. Within each window, the forward list may be
created according to one of several rules (See [1] for de-
tails) to improve performance further. While the data
items have been sent out to a group of clients, the server
continues to collect requests.

When a transaction commits, the client sends the
new version of the data items to the clients next on the
respective forward lists. A copy of the forward list is also
sent with each data item. If the transaction aborts, the
client forwards the unchanged data to the next client.
Finally, when the last client on the forward list termi-
nates, it sends the new version of the data to the server
with the outcome of each transaction executed on the
clients on the forward list.

In this scheme, the lock release message of the pre-
vious client is combined with the lock grant message
of the next client, thereby eliminating one sequential
message in the protocol. For example, assume n clients
and a single data item. The 2PL scheme will require
3n messages and 3n rounds as opposed to the proposed
scheme which will require 2n + 1 messages and 2n + 1
rounds. Clearly, the messages in the proposed scheme
have a larger size than that in the 2PL scheme, but in a
gigabit environment, the size of a message is not a big
consideration. Note that this group granting and re-
lease of locks is not possible when the DB server alone
is responsible for processing the data.



While not explicitly discussed here, the concurrency
control scheme in [1] can handle the case of shared access
as well. A detailed simulation study of the performance
of this concurrency control scheme is underway. How-
ever, a few comments are in order here. While no data
access patterns have been assumed, note that the more
a certain data item is requested such as hot data items,
more is the performance gain, since the grouping effect is
more emphasized when the forward list is longer. Also,
to keep the paper more focused, several enhancements
to the basic scheme have not been discussed.

3 Failure Recovery in GNDB

Although the recovery scheme described here is in the
context of the concurrency control protocol described in
the previous section, 1t can be applied in systems that
support data migration or data shipping in a shared-
nothing environment. The recovery scheme described
in [8] supported data shipping in a shared-disk environ-
ment. Note that the recovery scheme in shared-nothing
systems that support data migration is quite difficult,
as supported by previous work in [13, 2]. The scheme
described here not only achieves the objective of failure
resiliency, but is also efficient in the number of mes-
sage passing rounds, as warranted in a high speed net-
work environment. We do not currently discuss granu-
larity issues, and assume that a data item is the unit of
concurrency control and recovery as well as the unit of
migration. Thus our scheme avoids data dependencies
induced by data migration and supports isolated faul-
ure atomicity [9] ensuring that transactions executing
on operational nodes are not affected by crashed nodes.
The physical size of a data item may range from the
record level to several pages long.

Most database systems maintain some sort of recov-
ery information which can be used to recover the data in
case of failures. The type of recovery information main-
tained depends on whether the system has in-place up-
dating or out-of-place updating [5]. When updates are
performed in-place, the value of a data item is directly
changed by a transaction updating that data item, thus
losing the previous values of the data item. Under
such a scenario, information about the operations of
each transaction are maintained in a separate repository
called the database log. In case of a failure, it is possi-
ble to either REDO (if the transaction is committed) or
UNDO (if the transaction is aborted) any operation of
a transaction, as the case may be. On the other hand,
when updates are performed out-of-place, that is, the
old data is left intact, and the updated information is
copied to another memory location. The new copy is
called the shadow copy. The old value of the data item
is retained for recovery (UNDO) operations. Shadowing
and logging may be used together as well. In-place up-
dating, and hence log-based recovery is more common
than out-of-place updating or the shadowing approach.
A log-based recovery scheme for a GNDB is proposed
next.

Recovery is very difficult in a situation where data
items may migrate from site to site [13]. The new re-
covery scheme proposed here is designed to work in con-
junction with a concurrency control scheme involving
data migration (like in [1]). In most client-server con-
figurations with multiple servers, the servers are respon-
sible for the recovery operation, and achieve this with

a commit procedure (typically, the two-phase-commit
(2PC) scheme.). However, in a gigabit environment,
one of the motivations is to reduce the message passing
rounds. The 2PC mechanism requires 3 rounds of mes-
sage passing per transaction between a coordinator site
(typically, the site that initiates the transaction) and
several participant sites (the sites that participate in the
processing of the transaction). The 3 rounds consist of
the prepare-to-commit messages from the coordinator to
the participants, a decision message (abort or commit)
from the participants to the coordinator and then the
commit or abort messages from the coordinator to the
participants. Even if one participant server replies with
an abort message, the transaction is aborted. On the
other hand, to commit a transaction, all participants
have to agree to commit.

In the concurrency control mechanism in [1], data
items migrate from client to client in each window,
and each transaction can complete execution when all
the data items required are available at that client, a
very simple and fast commit procedure can be adopted,
l.e., every transaction in a window can commit locally.
While the server is responsible for the recovery of the
database, the clients record each modification to a data
item in a log on stable storage and pass around the cor-
responding log records along with the data item. The
client discards a log entry when the log entry is stored
on the server’s log. This would reduce the number of
rounds of message passing incurred in the commit pro-
cedure to zero. While this is extremely desirable in a
gigabit environment, some other crucial problems arise.
Before getting into the details of the recovery process
itself, 1t is not hard to see that while a data item is
granted to a group of clients, a server cannot recover
the data item when a client fails until the failed client
recovers. Thus, in a failure-prone environment a more
efficient recovery scheme is required. If the site that fails
is reliable, obviously, the penalties are not as severe as
when an unreliable site fails.

A more cautious recovery scheme would require that
the server be informed about the outcome of each trans-
action and its associated log records as soon as possi-
ble. This can be achieved by requiring each client to
send to the server the new version of the modified data
at the same time when the new version is forwarded
to the client next on the forward list. Note that the
server needs only to be informed for the modified data.
Although, the new resilient scheme requires maximum
3n messages, same as the 2PL scheme, it requires only
2n+ 1 rounds, as opposed to 3n of the 2PL scheme. An
even more efficient recovery scheme might be possible
at the cost of more messages with the advantage of less
rounds. In the following, we develop such a recovery
scheme that adapts to the level of reliability of a site
and reduces the overall cost of recovery in a GNDB.

3.1 An Adaptive Recovery Scheme

We first discuss the recovery operation for reliable
sites, and then follow up with the more interesting
case of unreliable sites. Depending on the access sets
of transactions in a collection window, a transaction
precedence graph may be created. The transaction
precedence graph is a directed graph which determines
the order in which each data item will move from one
client site to another. Each transaction that immedi-
ately precedes a transaction in a precedence graph for



Figure 1: Example depicting multiple predecessors and
successors of a transaction

a data item, is termed a predecessor transaction, and a
transaction that immediately follows is termed a suc-
cessor transaction'. The last site in each precedence
graph is always the server, so the last client(s) can re-
turn the data item to the server, which then serves the
next window. Obviously, a transaction may have mul-
tiple successors and predecessors and the set of succes-
sors/predecessors must be determined from the prece-
dence graphs of all data items accessed by the trans-
action. The set of all successors (predecessors) for a
transaction is termed as a successor (predecessor) set.
For example, consider the case of a transaction at a
client C that requires exclusive access to four data items
W, X, Y and Z. In Figure 1, a case is depicted where
site C has three predecessors P, P, and Ps, and four
successors S1, Sa, Sz and S;. The arrows indicate the
direction of data transfer. For data item W, site C is
a successor to site Py, and site S7 succeeds site C for
the same data item. Thus, site C is an immediate suc-
cessor of site P;, and the successor of the successor of
site P 1s site Sy. Several cases need to be considered
in the development of the recovery protocol depending
on the whether the site processing the transaction, its
predecessors and successors are reliable or unreliable.
The following possibilities exist: (1) The site processing
the transaction may be reliable or unreliable, (2) The
predecessors may be reliable or unreliable, and (3) The
successors may be reliable or unreliable.

Recovery Operations for the Servers

Each server in the system 1s assumed to be reliable,
implying that after a crash, it will recover relatively
soon. However, for a server to resume normal operation
after a crash, it needs the following two vital pieces of
information: (1) Information about transactions that
had committed before the crash, and whose effects have
not yet been made permanent in the database, and (2)
Information on the contents of the forward lists for each
data item.

Since clients commit their transactions locally, and
then inform the servers, there are no UNDO operations
at the server. During the recovery process after a crash,
a server will reconstruct the database into a state con-
sistent with all the committed transactions known to

1We refer to the site at which a predecessor transaction is
processed as a predecessor site, and similarly the site at which a
successor transaction is executed is termed a successor site.

the server using REDO operations. Thus, on receiving
a commit message from a client, the server needs to log
the commit operations in stable storage before acknowl-
edging the commit message to the client. Further, af-
ter each collection window duration, before a data item
is sent out to the first client on the forward list, the
forward list as well as the data item are force written
to stable storage. This ensures that after a crash, the
server will obtain the above two pieces of information,
and resume normal operation.

Recovery Operations for the Clients

The recovery operations for clients depends on the

reliability of the successors of the transaction. To maxi-
mize the availability of data items, the following commit
procedures may be adopted for transactions at reliable
and unreliable sites. All clients are assumed to support
stable storage facilities. Further, the servers now send
extra information with the forward lists, about the re-
liability of each client site on each forward list.
A. Reliable Sites: Reliable sites are expected to
be able to recover from failures relatively quickly, and
hence the commit procedure is less complex. Reliable
sites are assumed to support stable storage, combined
with an efficient write-ahead-logging (WAL) scheme,
e.g., Aries [7]. When a reliable site receives a data item,
the site force-writes the data item along with its for-
ward list to the stable storage, and then sends an ac-
knowledgment message to its predecessor. Once the site
receives all the data items required by its transaction,
it finishes executing the transaction, making appropri-
ate log entries using the efficient write-ahead-logging
(WAL) scheme. Then, it can commit locally and send
the data items and the log entries to the appropriate
successors on the forward list. The data items and log
records are preserved until all the sites that receive the
data and log acknowledge the receipt of the data and
the log records. After that, the cache at the site can be
discarded (garbage collection).

If the successor site for a data item is unreliable, a
copy of the data item and the log records is sent to
the successor of the unreliable site as well for that data
item. If the successor of an unreliable successor happens
to be unreliable, then a copy of the data item and the
log records is sent to the server as well. The reason
for this will become clear when the recovery process
for an unreliable site is discussed. If a reliable client
fails in the middle of executing a transaction, during the
recovery process, UNDO (if the transaction is aborted)
or REDO (if the transaction is committed) operations
as the case may be, are executed to bring the cached
data items to their consistent state. While the site is in
the failed state, the data items cached at that site will be
unavailable. Using the above scheme, transactions can
be committed very quickly without any extra rounds of
communication with the servers or other clients.

B. Unreliable Sites: The recovery mechanism used
for unreliable sites is more complicated, and involves
communication with other sites. In the event of a site
failure, the objective here is to avoid blocking the oper-
ation of all the other transactions that require the data
items after the transaction at the unreliable site. Note
that each successor site may require only a subset of the
data items held by the transaction at the failed site. If
the site processing a transaction fails, there needs to be
a method of bypassing the failed site, so that the succes-
sor sites can continue operation, either with the after-



images of modified data items, or the before-images of
unmodified data. The main problem stems from the
need to ensure that every successor site of a transaction
comes to the same decision regarding the transaction,
viz., the transaction is committed or aborted. Next, we
propose an atomic commit protocol that allows the set
of successors to reach a consistent decision, and gain
access to the correct data.

As mentioned before, when the successor of a site
(reliable or unreliable) for a data item is unreliable, the
data, the logs and the forward lists are sent to the suc-
cessor of the successor as well. Thus, each successor of
an unreliable site obtains the before-images of the data
items required by it, as well as learns the identity of their
unreliable predecessors. The successors of an unreliable
site monitor 1t periodically to see if the site has failed. If
the unreliable site fails, then its successors consult each
other and vote to abort or commit the transaction at
the unreliable site. If the transaction is voted to have
aborted, then the before images of the data are used
by the successors. Else, the after images are used in
any subsequent transactions. The voting procedure is
described later.

When the transaction at the unreliable site receives
all the data items required (along with the respective
forward lists and logs), it constructs a list of all its suc-
cessors from the forward lists. If a site is concurrently
processing n transactions, it will be part of n successor
site sets. Here it is assumed that n» = 1. This list is
then sent to all the members of the successor set. The
members of the successor set store the identities of the
successor set in to stable storage before sending an ac-
knowledgment. When the transaction at the unreliable
site is ready to commit, it writes a “Ready to commit”
entry into the stable log, then sends the after-images of
all the data items and the logs to the set of its succes-
sors. If all its successors happen to be unreliable, then
a copy of the data and the logs is also sent to the server.
Under this circumstance, the server is considered to be
part of the successor set, and this information is given
to all the successors. Again, as in the reliable site case,
if the successor for any data item happens to be unreli-
able, that data item and associated log entries are sent
to the successor of the successor. Once the after-images
are broadcast to the set of successors, the transaction
will wait for at least one acknowledgment, and will re-
peatedly try to elicit a response from the successor sites
(and the server, if all its successors are unreliable.) in
case it does not receive the acknowledgment within a
specified time-out period. The acknowledgment serves
as only a guarantee that at least one of the successor
sites (or the server, if applicable) has the after-images.
The transaction is committed (a “Commit” log entry is
made) only after it receives the first acknowledgment.
The first acknowledgment will typically arrive from the
physically closest, and/or the most lightly loaded site
at that time. When all the acknowledgments have been
received, the site may discard all information on the
transaction just executed (garbage collection).

If the unreliable client site fails before or after sending
the after-images, the successor sites that do not receive
the after-images within a specific time-out, initiate a
voting process to abort the transaction. The votes are
requested from the other members of the successor set.
Even if one member of the successor set has received the
after-images, it sends the after-images to all the suc-

cessors, which can then proceed with their respective
transactions. The voting scheme called the two-phase
abort (2PA) is described in detail below.

The 2PA Voting Mechanism

In the first step of the voting phase, the vote ini-
tiator (which may be one or more successor sites that
time out after not receiving the after images) sends a
vote-request to abort the transaction at the unreliable
site to all the successors (and the server if applicable)
of the failed site. Even if one successor site has received
the after-images, it will send a negative vote along with
the after-images to all the successors (and the server, if
applicable). Thus the successors can proceed with the
execution of their respective transactions. If none of the
successors (or the server) have the after-images, the pre-
decessor transaction may be assumed to have aborted,
and the before-images of the data. All successors have
to vote yes to abort for a transaction to be aborted, and
hence the name 2PA.

When the failed site recovers, and sends the after-
images to the successors (and the server if applicable),
abort messages will be returned to the recovered site
if the successors have voted to abort the transaction.
The site will then have to abort the transaction. If the
transaction was voted to be committed, then the suc-
cessors will send acknowledgments and the transaction
will be committed. Thus, even under the very improb-
able circumstance that all the messages containing the
after-images are lost, the successors to a transaction will
be able to proceed on the assumption that the prede-
cessor transaction was aborted. It should be noted that
the new scheme is being proposed for a high speed en-
vironment with QoS guarantees, and hence it is indeed
extremely unlikely that all the messages will be lost. In
fact, with emerging high speed networking technology, it
will be possible for applications to demand a particular
grade of service. Thus, for recovery mechanisms, it will
be possible to specify to the network that no message
loss will be tolerated. Note that with the scheme out-
lined above, clients will be able to perform partial roll-
backs without involving the server, since all data items
required by the client are cached at the client before it
can commit. The complete recovery algorithm includ-
ing the voting protocol for unreliable sites is specified
in Figure 2, with a detailed example.

Example: Consider the system in Figure 1 and the
following representative cases. For simplicity’s sake, as-
sume that all 4 data items are managed by a single
server.

Case 1: Client sites C, P — P3 and S — Sy are reliable.

Since all the predecessors of C are reliable, each of
them commits locally, and then transmits the 4 data
items to C. Since C is reliable, copies of the data are
forwarded only to C, and not to its successors. C copies
the data items and the forward lists to stable storage
before acknowledging each predecessor. The transac-
tion at C is executed with appropriate WAL operations
to stable storage. If C fails at any time, the 4 data items
will be unavailable. On recovery, C will do the appro-
priate REDO/UNDO operations to reconstruct its local
cache to a consistent state. Once the transaction is com-
pleted, C will transmit the 4 data items, the respective
logs and forward lists to the appropriate successors (W
to S1, Z to S3, X to Sz, and Y to S4). Since all the
successors are reliable, the data will not be forwarded
to any other sites. The successors will cache the data in




stable storage and then send acknowledgment messages
to C. Once C has received all four acknowledgments,
it will execute garbage collection and remove the logs
pertaining to the transaction from its stable cache.
Case 2: Client sites C, S7 and 54 are unreliable.

In this case, when the three predecessors of client site
C commit their transactions, they send the 4 data items
along with the logs and the forward lists to C. However,
since C is unreliable, all the successor sites of C, for each
data item, are sent the data, logs and forward lists as
well. For instance, successor S receives the data item
W along with its associated information, successor Sa
receives data item Z, and so on. On receipt of the 4
data items, C constructs the list of its successors from
the 4 forward lists, and sends each of them a copy of the
other 3 data items, logs and forward lists as well as the
identities of the other successors. The successors cache
this information in stable storage before acknowledging
C. At this point in time, each successor has a copy of
all the information that C has. Since there is at least
one reliable site in the successor set, the server is not
involved. C continues to execute its transaction, and
making appropriate log entries using WAL.

When the transaction is ready to be committed, C
sends a copy of the after images of each of the 4 data
items to all its successors. C is allowed to commit the
transaction only after it gets at least one acknowledg-

ment (typically from the site that is the closest and/or

the most lightly loaded) from a successor?.

If C fails at any time, the successors monitoring C
will time out, and using the successor list sent before,
will solicit a vote-to-abort from the other successors.
Even if one successor has received the after-images, and
votes to commit, the other successors will use the after-
images to continue the transaction. However, to abort
the transaction, all successors will have to vote to abort
(and hence the name 2PA). When C recovers, resumes
operation, and tries to commit its transaction, it will
receive an acknowledgment from a successor only if the
voting process resulted in a commit decision. Else, the
successors will return negative acknowledgments, and
C will have to abort its transaction. If C fails before
providing the list of successors to all the successors, the
successors will have to consult the server for this infor-
mation.

Case 3: Clients C, P, — P3, 51 — S4 are unreliable.

This case 1s exactly the same as case 2, except that
since all the successors are unreliable, the server will
be included in the successors list. Thus in the very
remote possibility that all successors have failed, the
server can intervene so that subsequent transactions are

not blocked.

4 Conclusions

In this paper, a recovery procedure in the family of
algorithms termed as APPLODS (Algorithms for Prop-
agation Latency Optimization in Distributed Database

?Note that if the acknowledgment comes from an unreliable
successor, and this successor fails after acknowledging C, during
the voting process, it will not be able to answer and hence subse-
quent transactions will be blocked. We can overcome this problem
by requiring an acknowledgment from a reliable successor before
allowing C to commit. However, this may require a larger net-
work latency. This decision will need to be made using the actual
reliability parameters of the system.

o If the successor is unreliable, send committed data, logs
and forward lists to the next two successors on each forward
list.

e Once all the data items are received by an unreliable site, it
constructs its successor set from the forward lists, and sends
this information to all the members of the successor set.

o If waiting for a release from the immediate predecessor (af-
ter having received a message from the pre-predecessor site),
after a timeout, the predecessor site (pred-1D) is declared to

be failed,

e Initiate the 2PA voting procedure with the successors
of pred-ID. If all successors of pred-ID are unreliable,
include the server in the voting process.

The 2PA Voting scheme

— Phase 1: Vote initiator sends to all successors of
pred-ID a request-to-abort message, along with
the previous uncommitted data, and the list of all
predecessors and successors of pred-1D.

* If a successor has received committed data
(and acknowledged) from pred-1D, it broad-
casts the data (and the corresponding for-
ward lists) to all the successors of pred-1D.

* Otherwise, it sends its yes vote-to-abort to
the successors of pred-1D.

— Phase 2: All successors of pred-ID decide to abort
the message after getting all yes-votes from the
successors of pred-1D.

e On receiving a vote-to-abort message,

e if a successor has received after-images of a data item
from pred-1D,

— 1t will broadcast the released data to all the suc-
cessors of pred-1D.

e clse, it will vote yes-to-abort pred-ID.

e When a successor receives a message from either the server
or one of the successors with the committed data from pred-
ID, it resumes normal operation with the new data.

e When a predecessor of pred-1D receives the abort messages
from all the successors and the server, it removes pred-1D
from the relevant forward lists.

e If the predecessor of pred-ID has already forwarded the
data to pred-1D, it ignores the abort messages.

e If any successor or the server receives the committed data
from pred-ID after a vote-to-abort has been passed, it sends
an abort message to pred-I1D.

o After pred-1D recovers, it tries to elicit acknowledgments
from at least one of the successors or the server. If it receives
an abort message in response, it aborts its transaction.

Figure 2: Unreliable Site Recovery Protocol



Systems) that are suited to the gigabit WAN environ-
ment has been proposed. Previously, a concurrency con-
trol scheme suited for the high speed environment was
proposed by the authors. However, in order to reduce
the effects of network latencies, this scheme required
data migration, where the recovery process is typically
very difficult. The major contribution of this paper
is the development of a practical recovery process in
conjunction with the previously proposed data sharing
scheme. This adaptive recovery scheme distinguishes
between reliable and unreliable sites and proposes a dif-
ferent recovery procedure in each case. With reliable
sites, the recovery process is simple, and does not incur
any extra rounds of message passing that what is re-
quired for the concurrency control protocol. The prob-
lem with unreliable sites is that if they fail while exe-
cuting a transaction, any transactions that require the
same data items will be blocked. The recovery proce-
dure proposed for unreliable sites circumvents this prob-
lem, by a voting mechanism by the successors of the
unreliable site. This new voting scheme called the two-
phase abort (2PA) is a byproduct of this research. Work
is currently in progress to develop a simulation model
of the concurrency control and recovery schemes in the
APPLODS family of algorithms to demonstrate the ex-
pected improvement in performance. One of the crucial
problems that remains to be solved 1s the accurate es-
timation of the time-out periods before a predecessor is
declared failed by the successors. The simulation model
will provide insight in to this estimation problem. We
also plan on extending the proposed schemes to other
configurations of client-servers.

References

[1] S. Banerjee and P. K. Chrysanthis. Data Sharing and
Recovery in Gigabit-Networked Databases. In Proc. of
the Fourth Intl. Conf. on Computer Comm. and Net-
works: 1C3N-95 pages 204-211, 1995.

[2] S. Banerjee, V. O. K. Li, and C. Wang. Distributed
Database Systems in High-Speed Wide-Area Networks.
IEEE Journal on Selected Areas in Comm., 11(4):617—
630, 1993.

[3] M. Carey, M. Franklin, M. Livny, and E. Shekita.
Data Caching Tradeoffs in Client-Server DBMS Archi-
tectures. In Proc. of the ACM SIGMOD Conf., pages
357-366, 1991.

[4] K. P. Eswaran, J. Gray, R. Lorie, and I. Traiger.
The Notion of Consistency and Predicate Locks in a
Database System. Comm. of the ACM, 19(11):624-633,
1976.

[5] J. N. Gray and A. Reuter. Transaction Processing:
Concepts and Techniques. Morgan Kaufmann, 1993.

[6] L. Kleinrock. The Latency/Bandwidth Tradeoff in Gi-
gabit Networks. IEEE Comm. Magazine, 30(4):36-40,
1992.

[7] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and
P. Schwarz. ARIES: A Transaction Recovery Method
Supporting Fine-Granularity Locking and Partial Roll-
backs Using Write-Ahead Logging. ACM Transactions
on Database Systems, 17(1):94-162, 1992.

(8]

[10]

(11]

(12]

[13]

[14]

[15]

C. Mohan and I. Narang. Recovery and Coherency-
Control Protocols for Fast Intersystem Page Transfer
and Fine-Granularity Locking in a Shared Disks Trans-
action Environment. In Proc. of the 17th VLDB Conf.,
1991.

L. Molesky and K. Ramamritham. Recovery Protocols
for Shared Memory Database Systems. In Proc. of the
ACM SIGMOD Conf., pages 11-22, 1995.

C. Partridge. Gigabit Networking. Professional Com-
puting. Addison-Wesley, 1993.

C. Partridge. Protocols for High Speed Networks: Some
questions and a few answers. Computer Networks and
ISDN Systems, 25:1019-1028, 1993.

R. Ramaswami. Multiwavelength Lightwave Networks
IFEE Comm. Maga-

for Computer Communication.
zine, 31(2):78-88, 1993.

M. Stonebraker, P. M. Aoki, R. Devine, W. Litwin,
and M. Olson. Mariposa: A New Architecture for Dis-
tributed Data. In Proc. of the Tenth Intl. Conf. on Data
Engineering, pages 54—65, 1994.

J. D. Touch and D. J. Farber. The Effect of Latency on
Protocols. In Proc. of the ACM SIGCOMM, 1994.

Y. Wang and L. Rowe. Cache Consistency and Concur-
rency Control in a Client/server DBMS Architecture.
In Proc. of the ACM SIGMOD Conf., pages 367-376,
1991.



