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Abstract 
Eliminating interference between concurrently execut- 

ing activities through mutual exclusion i s  one o j  the most 
fundamental problems in computer systems. The problem 
of mutual exclusion in a distributed system is especially in- 
eeresting owing to the lack of global knowledge in thepres- 
ence of variable communication delays. In this paper, a 
new token-based distributed mutual exclusion algorithm is 
proposed. The algorithm incurs approximately three mes- 
sages at high loads, irrespective of the number of nodes 
N in the system. At low loads, it requires approximately 
N messages. The paper also addresses failure recovery 
issues, such as token loss. 

1 Introduction 
It is not uncommon multiple activities to require access 

to a single shared resource in a system. In order to avoid 
interference among these activities, access to the shared 
resource needs to be controlled. In operating; systems, 
access to a section of code called the critical section (CS) 
is typically controlled using mutual exclusion Algorithms. 
The problem of mutual exclusion in a distributedl system is 
especially interesting owing to the lack of global knowledge 
in the presence of variable communication delays. There 
has been a significant amount of research on the distributed 
mutual exclusion problem [1,3-13,161, and a very good 
taxonomy of these algorithms is available in [14]. 

The performance of most distributed mutual exclusion 
algorithms has been traditionally evaluated by the number 
of messages generated per critical section invoca1,ion. Also, 
a useful mutual exclusion algorithm is characterized as fair 
to all nodes in the distributed system, being stanration-free 
and deadlock-free [2,141. 

In this paper, a new distributed mutual excluision algo- 
rithm is proposed. The algorithm is token-based and has the 
flavor of a “reverse” Suzuki-Kasami [16] algorithm. How- 
ever, the number of messages incurred is much Lower than 
in other algorithms. In fact, at high loads, the algorithm on 
the average incurs less than 3 messages per critical section 
invocation, performing better than Raymond’s tree-based 
algorithm [9], which is known to have thebestperformance, 
requiring approximately 4 messages at high loads. 

In the next section, the basic algorithm is described and 
its execution is depicted through an example. Further, the 
correctness of the algorithm and its relation with other exist- 
ing mutual exclusion algorithms is discussed. ]Inl Section 3, 
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the performance analysis of this algorithm is presented, 
and then validated by simulation. In Section 4, the issue 
of starvation is idiscussed and a starvation-free variant of 
the proposed algorithm is described. Also, some additional 
important performance issues are presented, such as fair- 
ness with respect to scheduliirig of critical regions and load 
balancing in Section 5 .  A scilution to the problem of token 
recovery in the presence of node and communication fail- 
ures is presentedl in Section 6, Finally, Section 7 concludes 
the paper with a summary. 

2 The New Algorithm 
2.1 Description of the Basic Algorithm 

The new rnuauali exclusion algorithm, proposed here is 
token-based, and supports all1 the basic assumlptions about 
token-based mutual exclusiain algorithms: Tlhere is only 
one PRIVILEGE message (or token) in the system at any 
given moment in time. The: token is gassed from node to 
node, and ondy the token-hlolder is permitted to enter its 
critical section. No assumptions are made with respect to 
the network topology and the communication medium. 

In this new algorithm, the token contains ani ordered list 
or queue (refend to as the (>-list) of all the nodes that have 
been scheduled to execute their critical section. The token 
is passed from node to node in the order specified by the 
Q-list. The node which executes the critical section is the 
current node at the head of ithe Q-list. 

The Q-list IS created by a node currently designated as 
the arbiter of the system. Initially, a specific node (say, 
node 1) is assigned1 to be Ithe arbiter by the system. As 
will become clear very soon, the responsibiliity of the ar- 
biter node is shared by all thle nodes in the system. Every 
node in the system keeps track of the arbiter by setting 
a parameter callled ARBITER. An arbiter node executes 
the following two phases: Request Collection Phase and 
Request Forwarding Phase, 

During the request collection phase, as the name sug- 
gests, the arbiter node collects all the requests from the 
nodes that are seeking acces,s to their critical ,sections, and 
creates the oirdered Q-list. At the end of the request collec- 
tion phase, when the arbiter gets the token in its possession, 
the token is lipdated with the newly constructed Q-list and 
transmitted to the node that is at the head of Q-list, along 
with the contents of Q-list. Further, the arbiter node de- 
clares the node of the last rquest in the Q-list as the new 
arbiter, by sendling a broadcast message to all the nodes in 
the system. 

A node, on receipt of the message electing it as the 
new arbiter, enters lhe request collection phase. The token, 
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which is passed from node to node according to the Q-list, 
finally reaches the new arbiter node. Thus, there are the 
following three kinds of messages used in this algorithm. 

e PRIVILEGE message, which is of the form PRTVI- 
LEGE(Q), where Q is an ordered list of nodes which 
will be granted access to the CS one after another. The 
last node in Q is dways the next arbiter node. 

e REQUEST message is of the form REQUESTU), 
when node j is requesting access to the CS. 

e NEW-ARBITER message is of the form NEW- 
ARBITERG), when node j is the new arbiter. The 
Q-list is sent as part of the NEW-ARBITER message. 

Nodes requesting access to the critical section send their 
requests to the arbiter. It is possible however, that a node 
sends its request eo the previous arbiter before a message 
informing it of the current arbiter arrives. In this case, the 
request message needs to be forwarded to the current arbiter. 
Thus, an arbiter enters the request forwarding phase after 
the request collection phase in order to forward requests 
that did not arrive during the request collection phase, but 
were transmitted before the identity of the current arbiter 
was received at the requesting nodes. Any requests arriv- 
ing after the end of the forwarding phase, are dropped. The 
durations of the collection and forwarding phases are pa- 
rameters that can be tuned for the best performance. This 
issue is discussed further in sections 3 and 4. The algo- 
rithm is summarized in Figure 1. An illustrative example 
follows. 
2.2 Example 

Consider a distributed system with 5 nodes, numbered 1 
through 5 respectively and assume that the message trans- 
mission time, request collection and forwarding durations, 
and the execution time per critical section, are each equal 
to 1 unit of time. 

Initially, node 1 is assigned to be the arbiter and enters 
the request collection phase immediately, whereas nodes 2, 
4 and 5 require to be in their critical sections, and send 
their requests to node I. Let us assume further that the 
request from node 2, REQUEST(2), and from node 5 ,  RE- 
QUEST(5) arrive at node 1 within the request collection 
phase one after the other (see Figure 2). At the end of the 
request collection phase, node 1 assigns the node at the tail 
position of the Q-list - Tail(Q), viz., node 5 as the current 
arbiter, and broadcasts a NEW-ARBITER(5) message to 
all the nodes in the system. At the same time, the PRIV- 
I[LEGE(Q) is transmitted to node 2 - Head(Q), where Q 
is the ordered list:{2,5}. After this, node 1 enters the re- 
quest forwarding phase. REQUEST(4) arrives during the 
request forwarding phase, and node 1 forwards it to the 
current arbiter (node 5).  

On receipt of the NEW-ARBITER(5) message, node 5 
starts collecting requests from other nodes to access their 
critical sections. On receiving the PRIVJLEGE(Q) mes- 
sage, node 2 enters its critical section. After executing its 
criticali section, node 2 removes itself from the head posi- 
tion of Q, and sends the PRIVILEGE(Q) message to the 
node currently at the Head(Q), viz., node 5. 

When node 5 subsequently receives the token, it exe- 
cutes its critical section, while still collecting requests in 
the background. After executing its critical section, node 5 

function all-nodes(void); 
C ARBITER = 1; 
repeat C 

uait for NEW-ARBITER(node-id) ; 
ARBITER = node-id: 
if (ARBITER = self-node-id) { 

arbiter-node; 
3 

3 
> 
C send REQUEST(se1f-node-id) to ARBITER; 

function all-requesting-nodes(void) ; 

wait for PRIVILEGE(9) ; 
Haveprivilege = true; 
Execute CS; 
Q = Remove (Q ,HEAD(Q)) ; 
send PRIVILEGE(Q) to HEAD(Q) ; 
Haveprivilege = False; 

3 

C t = O ;  
function request-collection(void); 

while (t <= REQUEST-COLLECTION-TIHE) { 
Add incoming REQUEST(node-id) to Q; 
t = t + l ;  

1 
3 

C t = O ;  
function request-forwarding(void); 

while (t <= REQUEST-FORWARDING-TIME) { 
Send incoming REQUEST(node-id) to 

ARB ITER : 
t = t + l ;  

3 
1 

function arbiter-node(void) ; 
C q = empty; 
vhile (not Haveprivilege) { 

Add incoming REQUEST(node-id) to q 
1 
if (HEAD(Q) = self-node-id){ 

Execute CS while still monitoring 
incoming requests: 

1 
9 = q; 
request-collection; 
if (4 is not empty) C 

send PRIVILEGEQ) to HEAD(Q) ; 
broadcast NEW-ARBITER(Tail(Q) 1 ; 
request-forwarding; 

3 
else C 

} 
request-collection; 

3 

Figure 1: Mutual Exclusion Algorithm 
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removes itself from the head position, and enters its re- 
quest collection phase, during which a request from node 3 
(REQUEST(3)) arrives. At theend of therequest collection 
phase, Q is the ordered list: {4,3}. Node 5 declarer; node 3 as 
the current arbiter by broadcasting the NEW-ARBITER(3) 
message, and the entire process is repeated. 

2.3 Proof of Correctness 
The proof of correctness of the proposed distributed 

mutual exclusion algorithm is similar to the proofs for most 
token-based mutual exclusion algorithms. An informal 
outline of the proof follows. 

Assuming that the token is not lost, or replicaited by the 
network, there is only one token in the system. The main 
point is that at any given time, only one node possesses the 
token, and hence is in its critical section, and only the same 
node can pass the token when it exits the critical section. 
In the proposed algorithm, the token is passed to the node 
at the head position of the ordered list of requesting nodes. 
Since the head position can be occupied by only one node 
at any given time, (and only the current head can send 
the token to the new Head(Q)) the token is never sent to 
more than one node, ensuring that no two nodes can be in 
the critical section simultaneously. In Section 5 ,  we will 
discuss how the token is correctly recovered after a failure 
by the arbiter. 
2.4 Related Work 

The work most closely related to ours is reported in [7, 
83. While there are similarities in the basic idea underly- 
ing our algorithm and theirs, we have described a different 
realization of this independently discovered idea and have 
presented a different analysis and considered the: failure re- 
covery aspects of the proposed mutual exclusion algorithm. 

As already indicated above, a number of distributed mu- 
tual exclusion algorithms have been proposed and classified 
into token-based and non-token-based [14]. The algorithm 
with the best performance is non-token based arid was pro- 
posed by Raymond [9]. Of the token-based techniques, our 
algorithm is similar to the Suzuki-Kasami algorithm [16]. 
However, it is more efficient than even the tree-based algo- 
rithm proposed by Raymond, as shown in the next section. 

Note that unlike the Suzuki-Kasami algorithm [16], 
where the request messages are sent to all the nodes, in our 
algorithm, the request message is sent to only one node. 
The reason for this is that all the nodes in the system can 
keep track of the identity of the arbiter node from the NEW- 
ARBITER messages. New arbiters are selected only at the 
end of a request collection phase, and hence broadcasting 
this information to all the nodes is done only at the end of 
a request collection phase, and not after every execution 
of the critical section. The main savings in the. number of 
messages comes from these features. The nodes receiv- 
ing the token remove their entry in the ordered list Q, and 
forward the token to the node at the head of the: new list. 

It has been implicitly assumed that the requests are or- 
dered according to their arrival times at the queue. A fairer 
method may be to use sequence numbers, in which case, 
exactly as in the Suzuki-Kasami algorithm, the REQUEST 
messages will take the form FEQUEST(j,n), when node 
j is requesting its (n  + l)th critical section. The token 
will take the form PRIVILEGE(Q,L), where L. is an array 
containing the sequence number of the last request granted 

for each node. The NEW-ARBITER messages will remain 
the same,. 

3 Perfimmancie Analysis 
In this sec tion, the performance of the proposed algo- 

rithm is andyzd. Only the theoretical bounds on the num- 
ber of messages are presented here. The distributed system 
is assumed to have 1V nodes. The average number of mes- 
sages (%) and awerage serviiee time per criticall section (x) 
for two t:xtreime loading situations (very low and very high 
loads) is theoretically calculated. Later in this section, sim- 
ulation results for a specific ,system are presented in order to 
study the performance at inteirmediate loads. The following 
simplifying assumptions are made. 
0 The request forwarding plhase is ignored. 

The message delay between any two nodes is a constant 

The executiisn time per critical section is a constant Texec 
o The request collection time for all arbiters is a constant 

3.1 Light load 
Under situations of extremely light loading. there will be 

at most one out of N nodes requesting access to the critical 
section at any given time. Further, it is assumed that each 
of the N nodes is e@ally likely to be the current arbiter. 
Under such conditions, the: number of messalges incurred 
by each invocation of the critical section is 0 if the current 
arbiter is the requesting node itself. If the cunrent arbiter is 
not the requesting node, then the total number of messages 
incurred are 1 REQUEST nressage, (N- 1) NEW-ARBITER 
messages, arid 1 token. It should be noted that in this case, 
the NEW-AIWITER message need not be seint to the new 
arbiter, since the taken containing only its own request is 
proof that it is the new arbliter. Hence the average number 
of messages incurred z, under low load situations is: 

Tmsg 

Treq. 

(1) 
- 1 ( N 2  -- 1)  M = (1 - -)(1 + N -- 1 + 1)  = -- N N 

From the: above, it f01l.ows that in a large distributed 
system (big N)', the average number of messages incurred 
per criticid section invocation tends to N. 

Anothier important performance metric h the average 
service time for each critical section x. This parameter 
is similar to thie response time, as defined in [14], except 
that iricliides the execution time for the critical section 
as well. From the arguments made above, at low loads, the 
average dehy to execute the critical section after arriving 
at the head(Q) is IS given below. 

1 

1 
N 

-- X I= 

:= 

(I -- z) Trnsg (1 + 1) + Treq -t Texec 

(1 -- -) 2 Tmsg + Treq + Texec (3 1 
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3.2 Heavy load 
Under situations of heavy loading, all nodes will have 

at least one pending request to enter the critical section. 
Hence, at any given time, there will be N requests in Q. 
With N requests in the Q, the PRIVILEGE(Q) message will 
have to be sent (N-1) times, and there will be (N-I) NEW- 
ARBITER messages generated for every N executions of 
the critical section. Hence the average number of messages 
incurred under heavy load situations is: 

(4) 
- 1 N + ( N - 1 ) -  2 M = (1 - -)+ - 3 - -  

N N N 

From the above, it follows that when the number of 
nodes is large, the average number of messages generated 
per critical section is approximately 3 messages. 

- 
M 3 3 ,  f o r N B 1  

The average service time to execute a critical section 
after arriving at the head of Q position at a node, under 
heavy load is given by the following. 

- 1 N 
X = (1 - w) Tmsg +Treq + (y + 1) (Tmsg +Texec) ( 6 )  

3.3 Simulation Results 
In the above analysis, the request forwarding process 

has not been taken into account. Hence a simulation of 
this algorithm was performed to evaluate the effect of the 
request forwarding process on performance. The simula- 
tion was event-driven with multiple runs. Each simulation 
run processed a total of a million requests for the critical 
section from 10 nodes. Three parameters were calculated, 
viz., the average number of messages generated per invo- 
cation of the critical section, the percentage of forwarded 
messages, and the average delay per critical section. Each 
parameter was calculated for a range of loads. For the sake 
of simplicity, each of the nodes generated requests using a 
Poisson probability distribution with the same arrival rate 
X requestslsecond. Further, all the algorithm parameters, 
such as the request collection and request forwarding dura- 
tions are the same at all the nodes. The execution time per 
critical section at each node is a constant. 

In Figures 3 and 4, the average number of messages 
generated is plotted against the arrivd rate of requests for 
critical section. 95% confidence intervals were computed 
and plotted for each parameter. The confidence intervals 
are too small to be noticed on the graphs in most cases. 
The message transmission time, request forwarding time 
and critical section execution time is set to the value of 
0.1 units. lWo cases are studied with the request collec- 
tion phase duration set to 0.1 units (continuous curve) and 
0.2 units (dotted curve) respectively. As expected, it is 
observed that with a longer request collection phase, the 
average number of messages incurred is lower, but the av- 
erage delay per critical section is higher. In Figure 5, the 
fraction of forwarded messages is shown for the two cases. 
At very high loads, the fraction of forwarded messages 
becomes negligible. Again, as expected, the fraction of 
forwarded messages is lower when the request collection 

phase is longer, enabling most requests to arrive during the 
collection phase. 

From Figure 3, at high loads, the average number of 
messages incurred reduces to approximately 3 messages, 
which is better than Raymond’s tree algorithm [9] which 
incurs 4 messages at high loads. In Figure 6, our algorithm 
is compared to the Ricart-Agrawala [IO] and the dynamic 
mutual exclusion algorithm presented in [131. Thus we 
compare our scheme to two important classes of mutual 
exclusion algorithms, viz., static and dynamic. A compar- 
ison with Raymond’s algorithm [9] is not made in order 
to keep the comparison platform reasonably general and 
not topology-dependent, As is to be expected, the scheme 
proposed here performs better than the Ricart-Agrawala al- 
gorithm at all loads. Except at very low loads, it does better 
than the dynamic algorithm as well. 

4 The Starvation Issue 
In the coniext of mutual exclusion algorithms, “a- 

tion is said to occur if one or more nodes do not receive 
permission to enter the critical section for excessively long 
periods of time, and sometimes never at all. In the proposed 
algorithm, starvation may occur only if request messages 
continuously get forwarded, without the request being reg- 
istered at the arbiter, or if request messages are continuously 
dropped because of their arrival at the arbiter after the re- 
quest collection and forwarding phases are over. Although 
only a maximum of 4% of messages were forwarded, in 
the simulation, this is an important problem. Hence this 
problem is termed as the indefinite forwarding problem in 
the context of this paper. 

It should be apparent that the probability of indefinite 
forwarding is much higher at low loads than at high loads. 
This is because at higher loads, there are a large number of 
requesting nodes, causing the token to arrive at the current 
arbiter only after all the requesting nodes have completed 
executing their critical section. This gives ample time for 
tRe forwarded message to arrive at the current arbiter be- 
fore its request collection phase is over. The worst possible 
scenario occurs, when only a single request message from 
node i is received at the current arbiter I during the request 
collection phase. Node i is assigned to be the current ar- 
biter. Further, a new request from node j arrives at the end 
of the request forwarding phase of 1, and is immediately 
forwarded to i. For the request from node j to not be for- 
warded again, the following equation must be satisfied. It 
is assumed here that the request forwarding phase duration 
is set to the time it takes to broadcast the NEW-ARBITER 
message to all nodes in the distributed system plus the time 
for a request message to arrive at the arbiter. 

Thus, indefinite forwarding can be avoided by assigning 
appropriate values to the request collection and forwarding 
durations. However, this would work only if execution 
times, and message transmission times are deterministic. 
In reality, execution times depend on the current processor 
load. Message transmission times depend on the current 
network and processor loads. Hence, an alternate simple 
method of avoiding indefinite forwarding and hence star- 
vation is outlined below. 
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ARBITER= Q=( ) 1 <c2 (5) 

Request Collection 
phase 

0 <: It c 1 

ARBITER = 1 
Q=( 2.5) 
Request Forwarding 
phase 
NEW-ARBITER = 5 

X C t C 3  

phase 

d : z 5  

Request Forwarding 

k-W-ARBITER = 3 

Figure 2: Illustrative Exmplle 

Figure 3: Average number of messages generated 
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Arrival Rate at a Site 

Figure 5 :  Fraction of messages forwarded 

4.1 Description of the Starvation-Free Algorithm 
The basic scheme described in Section 2 remains the 

same, except for the following important addition. One 
node is assigned to be a monitor node, whose identity is 
known to all other nodes. Request messages that have been 
forwarded more number of times than a given threshold 
T ,  are dropped by an arbiter even if they arrive within the 
request forwarding phase. A requesting node resubmits the 
request to the monitor after failing to see its request in the 
Q-list in T consecutive NEW-ARBITER messages, which 
is an indication that its request has been dropped. 

The problem of starvation is eliminated by passing the 
token to the monitor node periodically with a specific pe-  
riod. The monitor does not forward any request messages, 
but stores them until the token arrives and the requests can 
be appended to the Q-list. Thus, the monitor maintains a 
set of requests that could potentially have become victims 
of the indefinite forwarding phenomenon. When an arbiter 
determines that the token must be sent to the monitor node, 
it sends the token without broadcasting a NEW-ARBITER 
message, which is now broadcast by the monitor node. 
When the monitor node receives the token, it acts as an ar- 
biter in that it augments the Q-list in the token with the set 
of requests it has received, broadcasts a NEW-ARBITER 
message, forwards the token and discards its set of requests. 

The period to include the monitor node should depend 
on the current load on the system. The reason being that 
at low loads, the probability of forwarding is high and 
hence the period should be short, whereas at high loads, 
the probability of forwarding is low, and hence the period 
can be long. We propose an adaptive period based on the 
average Q-list size. Specifically, each node keeps track 
of the size of the Q-list by observing the NEW-ARBITER 
messages and computes the average size of theQ-list within 
a moving window. Further, the NEW-ARBITER messages 
are augmented with a counter which is incremented every 
time a NEW-ARBITER message is sent out. An arbiter 
decides to send the token to the monitor node when its 
NEW-ARBITER message counter equals the ceiling of its 
computed average size of the Q-list. The counter is then set 
to zero by the monitor node when it broadcasts the NEW- 

x Ricart-Agrawala 

o Ouralgonthm 
Singhat 

0 1  0 2  0 3  0 4  0 5  
Arrival Rate at a Site 

Figure 6: Comparison with other algorithms 

ARBITER message. Thus at high loads, the queue size will 
be high, causing the period to be long, mmd vice versa. 

The above modifications will cause the average number 
of messages to increase by incurring 1 extra message (one 
token message to the monitor) in every period. Assuming 
that at extremely low loads, in every period only P CS is 
executed, the average number of messages incurred will be 
1 more message than in the basic algorithm. At high loads, 
since several CS executions will be done in every period, 
the average number of messages per CS will not be affected 
significantly by this modification. 

5 Other Performance Issues 
5.1 Fairness 

algorithm, there have been two main criteria. 
In evaluating fairness properties of a mutual exclusion 

0 In the absence of prioritized access, the mutual exclu- 
sion algorithm must not favor one node over another. 

0 The work involved in executing the mutual access 
algorithm must be fairly divided among the nodes. 

The proposed mutual exclusion algorithm is fair in both 
the above aspects, as argued below, Since the requests 
for access to the critical section are processed on a first- 
come-first-served (FCFS) basis, every node is guaranteed 
to access the critical section in a fair manner. In order to 
satisfy a more strict notion of fair access, a scheme similar 
to Suzuki-Kasami’s algorithm may be implemented. In the 
Suzuki-Kasami algorithm, access to the critical section is 
granted based on the number of times a node has entered its 
critical section previously. The node that has accessed the 
critical section the least number of rimes is given priority. 
A similar scheme may be implemented in this algorithm 
by simply passing a sequence number (the number of times 
that node is requesting access to the critical section), as 
discussed in Section 2.4. 

The proposed algorithm is fair with respect to the load 
balancing criteria as well. In fact, it is fair in a stricter sense 
than most other algorithms that have been proposed earlier. 
Most mutual exclusion algorithms assign some work load 
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on all nodes, irrespective of whether a particular node is 
creating any load (requesting access to the critical section) 
or not. For instance, the Ricart-Agarwala algorithm [lo] 
causes request messages from a node to be sent to all other 
nodes in the system, which then have to reply to tlherequest- 
ing node. In the Maekawa algorithm [ 6 ] ,  the workload is 
divided equitably only when every node has the same re- 
quest rate, A fairer criterion to balance the load would 
be to divide the workload only among the nodes that are 
generating the load. In the proposed algorithm., at a given 
time, a single node is given the responsibility of executing 
the mutual exclusion algorithm, and different nodes take 
turns to act as the arbiter. However, only the nodes that 
request for the critical section are likely to be assigned the 
responsibility of being an arbiter in the future. The higher 
the number of requests generated by a node, the higher is 
the probability of being designated to be the arbiter. 

The extension to the basic algorithm to eliminate star- 
vation requires one node to be the monitor node, thereby 
loading one node more than the others. However, the role 
of the monitor node can also be shared by all the nodes 
by rotating (in a round-robin fashion) the functions of the 
monitor node. In that case, the NEW-ARBITEiR message 
broadcast by the monitor will include the identity of the 
new monitor node. 
5.2 Prioritized Access 

Starvation becomes an especially important problem 
when access to the critical section is prioritized. For 
instance, nodes are assigned priorities. In such circum- 
stances, it is possible that nodes with low priorities may be 
preempted constantly by higher priority nodes, and hence 
starve. Usually, priorities are assigned dynamically, for in- 
stance, the least recently used (LRU) criteria is a dynamic 
priority assignment scheme. However, in the case of a 
static priority system, starvation is a major problem. 

In the proposed algorithm, in the absence of node prior- 
ities, starvation can never occur since all nodes are granted 
permission in the FCFS order. In the following discus- 
sion, it is attempted to show that even in the presence of 
a static assignment of priorities, the starvation problem is 
not encountered. In the proposed algorithm, the arbiter 
node collects the requests to enter critical section from all 
the nodes in the system. In the presence of priorities, the 
arbiter will order the requests in the order of the node pri- 
orities. Since the lower priority nodes will end up towards 
the end of this ordered list, there will be a higher proba- 
bility that one of the lower priority nodes will be elected 
to be the next arbiter, and will indeed get a chance to exe- 
cute their critical section. Thus, the starvation problem is 
non-existent. However, two points should be noted. 

0 The proposed algorithm implements only an incre- 
mental priority-based system. That is, priorities are 
implemented every time a new arbiter is selected, and 
not in between the arbiter selection process. Thus, it 
is possible that some higher priority requests that ar- 
rive after the request collection phase and before the 
current arbiter has executed its critical section, will be 
serviced after some lower priority requests. 

The algorithm is unfair with respect to lciad balancing 
Eo the lower priority nodes, since it is these nodes that 
have a high probability of being selected as an arbiter. 

6 Recovery from Failures 
The proposed imutual exclusion algorithm is non- 

blocking to node failures as long as the node currently 
in possession of the token does not fail. The failure of 
nodes that are not scheduled to receive the token does nor 
impede the successful execution of the mutual exclusion 
algorithm Further, the miiitual exclusion algorithm can 
proceed at all times if the node that currently has the token 
(executing its ciriticd section), the current arbiter node (col- 
lecting requests) and the prlevious arbiter node (forwarding 
requests) are operational, even if all the other nodes have 
failed. Thus, this algorithm has the potenti,$ of running 
with just three operational nodes, and is thus, highly re- 
silient to node failures. Below, we consider tlhe possibility 
that the message containing a request or the tloken x e  lost. 

0 Los1 Request: If areqiuest message is lost, therequest- 
ing node can detect it relatively easily biy monitoring 
the NEW-ARBITER message that is broadcast each 
time a new arbiter is selected. As mentioned before, 
the NE,W-ARBITER message contains the Q-list as 
welll. Thus, if a requesting node does not find its re- 
quest in the NEW-ARBITER message, it can detect 
the 10s:; of its request, andretransmit the request. Thus 
the NEW-ARBITER messages act as an implicit ac- 
knowledgment that a request has been received and 
scheduled. Further, appropriate timeouts may also be 
used to rr:barismit a request, in case thle token is not 
received within the timeout period. 
Mote that a lost request due to communication errors, 
a delayed request dule to queuing delays in the com- 
munication nletwork, and a dropped packet due to the 
anival of the request after the forwarding phase, will 
hive the same effect, viz., the request will not be in 
the Q-list broadcast in the NEW-ARBITER messages. 
With the increasing quality of emerging communica- 
tion networks, loss or delay of requests, will be mini- 
mized. Thus resubmitting the request to the monitor 
rwle after noticing thie absence of its request in T con- 
secutive NEW-ARBITER messages may suffice. 

0 Lost Token: 'The lost token problem is more problem- 
atic and requires the: following detailed solution. A 
token may be lost either because the node currently 
holding the token fails or because the PRIVILEGE 
message was droppid. The failure of previous ar- 
biter is also considered since the previous arbiter may 
fail after bra~adcasting the NEW-ARBITER message 
and bicfclre sending out the token. The proposed so- 
lution is timeout-based and in this sense is similar to 
Ithe, tirnecwt-based sallutions proposed 5or other token- 
based systems, including token ring networks [15]. 
After coinhning that its request has been received and 
scheduled from the NEW-ARBITER message, every 
requesting node (including the current arbiter) selects 
an appropriate timeout to receive the token. When a 
node times out, it sends a WARNING message to the 
current arbiler. When the arbiter receives a WARN- 
ING message or times out, it starts a avo-phase token 
iniilakida'tion protocol. 

- Bhlase 1 . The arbiter sends an ENQUIRY mes- 
sage lo all the nodes on the Q-list (including the 
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previous arbiter). When nodes receive the EN- 
QUIRY message, they respond with one of the 
following messages. Further, if they possess the 
token, they suspend their CS execution, and do 
not forward the token to the next node. 

* I had the token, and Rave executed my CS. 
* I have the token. 
* 1 am waiting for the token. 

- Phase 2: Ifa single node responds with a "I have 
the token" message, then the arbiter responds 
with RESUMJ2 messages, which causes regular 
operations eo proceed. 
After either all nodes have responded or the ar- 
biter times out, if no node has the token, then the 
arbiter sends out INVALIDATE messages to all 
the nodes that are waiting for the token and adds 
them on the front of its Q-list. Also, nodes tRae 
do not respond are assumed to have failed, and 
are not included on the Q-list. 

e Failed Arbiter node: To prevent the system to be 
blocked by the failure of the arbiter, the following 
method is proposed. The current arbiter is monitored 
by the previous arbiter. If the previous arbiter does 
not receive a NEW-ARBITER message within a time- 
out period, it probes the current arbiter. If the probe 
is unanswered, the previous arbiter sends a NEW- 
ARBITER message proclaiming itself the current ar- 
biter. If the requesting nodes do not find their out- 
standing requests in the Q-list, they can retransmit 
their request to the current arbiter. The failure of the 
monitor node may also be handled as above. 

'7 Summary and Conclusions 
In this paper, a token passing distributed mutual exclu- 

sion algorithm is proposed, and analyzed. The algorithm 
performs well with respect to the number of messages in- 
curred. Under heavy load, the number of messages incurred 
is approximately three. There are two parameters: the re- 
quest collection phase and the request forwarding phase du- 
rations that may be adjusted to obtain the best performance. 
Further, a starvation-free variant of the basic algorithm has 
been proposed. The failure recovery problem has also been 
discussed, owing to its importance in token based systems. 

The distributed mutual exclusion algorithm proposed in 
this paper is not strictly distributed as defined by Ricart and 
Agarwala in [lo], in that not every node participates in the 
decision to grant permission to access the critical section. 
This is the case for Raymond's tree-based distributed mu- 
tual exclusion algorithm [9] as well as the one proposed 
by Maekawa [6]. The Suzuki-Kasami algorithm [16] is 
not strictly distributed either since, only the node holding 
the token decides the next node to receive the token and 
hence access the critical section. Thus, the process of de- 
ciding the next token-holder is not distributed, but the task 
of decision-making is distributed to each node in turn. The 
proposed algorithm Jso is distributed in a similar manner. 
Finally, the algorithm is fair with respect to load balanc- 
ing and scheduling of criticd section, while it can support 
partial prioritized access. Future work involves a more de- 
tailed study of the performance in the face of failures, as 
well as comparisons with a larger number of algorithms. 
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