A New Token Passing Distributed Mutual Exclusion Algorithm

Sujata Banerjee
Telecommunications Program
University of Pittsburgh
Pittsburgh, PA 15260

Abstract

Eliminating interference between concurrently execut-
ing activities through mutual exclusion is one of the most
Sfundamental problems in computer systems. The problem
of mutual exclusion in a distributed system is especially in-
teresting owing 1o the lack of global knowledge in the pres-
ence of variable communication delays. In this paper, a
new token-based distributed mutual exclusion algorithm is
proposed. The algorithm incurs approximately three mes-
sages at high loads, irrespective of the number of nodes
N in the system. At low loads, it requires approximately
N messages. The paper also addresses failure recovery
issues, such as token loss.

1 Introduction

It is not uncommon multiple activities to require access
to a single shared resource in a system. In order to avoid
interference among these activities, access to the shared
resource needs to be controlled. In operating systems,
access to a section of code called the critical section (CS)
is typically controlled using mutual exclusion algorithms.
The problem of mutual exclusion in a distributed system is
especially interesting owing to the lack of global knowledge
in the presence of variable communication delays. There
has been a significant amount of research on the distributed
mutual exclusion problem [1,3-13,16], and a very good
taxonomy of these algorithms is available in [14].

The performance of most distributed mutual exclusion
algorithms has been traditionally evaluated by the number
of messages generated per critical section invocation. Also,
a useful mutual exclusion algorithm is characterized as fair
to all nodes in the distributed system, being starvation-free
and deadlock-free [2,14].

In this paper, a new distributed mutual exclusion algo-
rithm is proposed. The algorithmis token-based and has the
flavor of a “reverse” Suzuki-Kasami [16] algorithm. How-
ever, the number of messages incurred is much lower than
in other algorithms. In fact, at high loads, the algorithm on
the average incurs less than 3 messages per critical section
invocation, performing better than Raymond’s tree-based
algorithm [9], which is known to have the best performance,
requiring approximately 4 messages at high loads.

In the next section, the basic algorithm is described and
its execution is depicted through an example. Further, the
correctness of the algorithm and its relation with other exist-
ing mutual exclusion algorithms is discussed. In Section 3,

*This research is supported in part by the National Science Foundation
under grant No. IRI-9210588.

1063-6927/96 $5.00 © 1996 IEEE
Proceedings of the 16th ICDCS

Panos K. Chrysanthis™
Computer Science Department
University of Pittsburgh
Pittsburgh, PA 15260

the performance analysis of this algorithm is presented,
and then validated by simulation. In Section 4, the issue
of starvation is discussed and a starvation-free variant of
the proposed algorithm is described. Also, some additional
important performance issues are presented, such as fair-
ness with respect to scheduling of critical regions and load
balancing in Section 5. A solution to the problem of token
recovery in the presence of node and communication fail-
ures is presented in Section 6. Finally, Section 7 concludes
the paper with a summary.

2 The New Algorithm
2.1 Description of the Basic Algorithm

The new mutual exclusion algorithm, proposed here is
token-based, and supports all the basic assumptions about
token-based mutual exclusion algorithms: There is only
one PRIVILEGE message (or roken) in the system at any
given moment in time. The token is passed from node to
node, and only the token-holder is permitted to enter its
critical section. No assumptions are made with respect to
the network topology and the communication medium,

In this new algorithm, the token contains an ordered list
or queue (referred to as the Q-list) of all the nodes that have
been scheduled to execute their critical section. The token
is passed from node to node in the order specified by the
Q-list. The node which executes the critical section is the
current node at the head of the Q-list.

The Q-list is created by a node currently designated as
the arbiter of the system. Initially, a specific node (say,
node 1) is assigned to be the arbiter by the system. As
will become clear very soorn, the responsibility of the ar-
biter node is shared by all the nodes in the system. Every
node in the system keeps track of the arbiter by setting
a parameter called ARBITER. An arbiter node executes
the following two phases: Request Collection Phase and
Request Forwarding Phase,

During the request collection phase, as the name sug-
gests, the arbiter node collects all the requests from the
nodes that are seeking access to their critical sections, and
creates the ordered Q-list. At the end of the request collec-
tion phase, when the arbiter gets the token in its possession,
the token is updated with the newly constructed Q-list and
transmitted to the node that is at the head of Q-list, along
with the contents of Q-list. Further, the arbiter node de-
clares the node of the last request in the Q-list as the new
arbiter, by sending a broadcast message to all the nodes in
the system.

A node, on receipt of the message electing it as the
new arbiter, enters the request collection phase. The token,

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:54:05 UTC from |IEEE Xplore. Restrictions apply.

which is passed from node to node according to the Q-list,
finally reaches the new arbiter node. Thus, there are the
following three kinds of messages used in this algorithm.

e PRIVILEGE message, which is of the form PRIVI-
LEGE(Q), where Q is an ordered list of nodes which
will be granted access to the CS one after another. The
last node in Q is always the next arbiter node.

¢ REQUEST message is of the form REQUEST(),
when node j is requesting access to the CS.

¢ NEW-ARBITER message is of the form NEW-
ARBITER(j), when node j is the new arbiter. The
Q-listis sent as part of the NEW-ARBITER message.

Nodes requesting access to the critical section send their
requests to the arbiter. It is possible however, that a node
sends its request to the previous arbiter before a message
informing it of the current arbiter arrives. In this case, the
request message needs to be forwarded to the current arbiter,
Thus, an arbiter enters the request forwarding phase after
the request collection phase in order to forward requests
that did not arrive during the request collection phase, but
were transmitted before the identity of the current arbiter
was received at the requesting nodes. Any requests arriv-
ing after the end of the forwarding phase, are dropped. The
durations of the collection and forwarding phases are pa-
rameters that can be tuned for the best performance. This
issue is discussed further in sections 3 and 4. The algo-
rithm is summarized in Figure 1. An illustrative example
follows.

2.2 Example

Consider a distributed system with 5 nodes, numbered 1
through 5 respectively and assume that the message trans-
mission time, request collection and forwarding durations,
and the execution time per critical section, are each equal
to 1 unit of time.

Initiaily, node 1 is assigned to be the arbiter and enters
the request collection phase immediately, whereas nodes 2,
4 and 5 require to be in their critical sections, and send
their requests to node 1. Let us assume further that the
request from node 2, REQUEST(2), and from node 5, RE-
QUEST(5) arrive at node 1 within the request collection
phase one after the other (see Figure 2). At the end of the
request collection phase, node 1 assigns the node at the tail
position of the Q-list — Tail(Q), viz., node 5 as the current
arbiter, and broadcasts a NEW-ARBITER(5) message to
all the nodes in the system. At the same time, the PRIV-
ILEGE(Q) is transmitted to node 2 — Head(Q), where Q
is the ordered list:{2,5}. After this, node 1 enters the re-
quest forwarding phase. REQUEST(4) arrives during the
request forwarding phase, and node 1 forwards it to the
current arbiter (node 3).

On receipt of the NEW-ARBITER(5) message, node 5
starts collecting requests from other nodes to access their
critical sections. On receiving the PRIVILEGE(Q) mes-
sage, node 2 enters its critical section. After executing its
critical section, node 2 removes itself from the head posi-
tion of Q, and sends the PRIVILEGE(Q) message to the
node currently at the Head(Q), viz., node 5.

When node 5 subsequently receives the token, it exe-
cutes its critical section, while still collecting requests in
the background. After executing its critical section, node 5

718

function all-nodes(void);

{ ARBITER = 1;

repeat {
vait for NEW-ARBITER(node-id);
ARBITER = node-id;
if (ARBITER = self-node-id) {

arbiter-node;

¥

}

}
function all-requesting-nodes(void);

{ send REQUEST(self-node-id) to ARBITER;
wait for PRIVILEGE(Q):
HavePrivilege = true;

Execute CS;
Q = Remove(Q,HEAD(Q));
send PRIVILEGE(Q) to HEAD(Q);

HavePrivilege = False;
}
function request-collection(void);
{t=0;

vhile (t <= REQUEST-COLLECTION-TIME) {
Add incoming REQUEST(node-id) to Q;
t=t+ 1;
}
}
function request-forwarding(void);
{t=0;
vhile (t <= REQUEST-FORWARDING-TIME) {
Send incoming REQUEST (node-id) to
ARBITER;
t=t+ 1;
}
}
function arbiter-node(void);
{ q = empty;
vhile (not HavePrivilege) {
Add incoming REQUEST(node-id) to q
}
if (HEAD(Q) = self-node-id){
Execute CS while still monitoring
incoming requests;
}
Q=gq;
request~collection;
if (Q is not empty) {
send PRIVILEGE(Q) to HEAD(Q);
broadcast NEW-ARBITER(Tail(Q));
request-forwarding;
}
else {
request-collection;
}
}

Figure 1: Mutual Exclusion Algorithm

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:54:05 UTC from |IEEE Xplore. Restrictions apply.

removes itself from the head position, and enters its re-
quest collection phase, during which a request from node 3
(REQUEST(3)) arrives. Attheend of the request collection
phase, Qis the ordered list: {4,3}. Node 5 declares node 3 as
the current arbiter by broadcasting the NEW-ARBITER(3)
message, and the entire process is repeated.

2.3 Proof of Correctness

The proof of correctness of the proposed distributed
mutual exclusion algorithm is similar to the proofs for most
token-based mutual exclusion algorithms. An informal
outline of the proof follows.

Assuming that the token is not lost, or replicated by the
network, there is only one token in the system. The main
point is that at any given time, only one node possesses the
token, and hence is in its critical section, and only the same
node can pass the token when it exits the critical section.
In the proposed algorithm, the token is passed to the node
at the head position of the ordered list of requesting nodes.
Since the head position can be occupied by only one node
at any given time, (and only the current head can send
the token to the new Head(Q)) the token is never sent to
more than one node, ensuring that no two nodes can be in
the critical section simultaneously. In Section 5, we will
discuss how the token is correctly recovered after a failure
by the arbiter.

2.4 Related Work
The work most closely related to ours is reported in [7,
8]. While there are similarities in the basic idea underly-
ing our algorithm and theirs, we have described a different
realization of this independently discovered idea and have
presented a different analysis and considered the failure re-
covery aspects of the proposed mutual exclusion algorithm.
As already indicated above, a number of distributed mu-
tual exclusion algorithms have been proposed and classified
into token-based and non-token-based [14]. The algorithm
with the best performance is non-token based and was pro-
posed by Raymond [9]. Of the token-based techniques, our
algorithm is similar to the Suzuki-Kasami algorithm [16].
However, it is more efficient than even the tree-based algo-
rithm proposed by Raymond, as shown in the next section.
Note that unlike the Suzuki-Kasami algorithm [16],
where the request messages are sent to all the nodes, in our
algorithm, the request message is sent to only one node,
The reason for this is that all the nodes in the system can
keep track of the identity of the arbiter node from the NEW-
ARBITER messages. New arbiters are selected only at the
end of a request collection phase, and hence broadcasting
this information to all the nodes is done only at the end of
a request collection phase, and not after every execution
of the critical section. The main savings in the number of
messages comes from these features. The nodes receiv-
ing the token remove their entry in the ordered list Q, and
forward the token to the node at the head of the new list.
It has been implicitly assumed that the requests are or-
dered according to their arrival times at the queue. A fairer
method may be to use sequence numbers, in which case,
exactly as in the Suzuki-Kasami algorithm, the REQUEST
messages will take the form REQUEST(j,n), when node

Jj is requesting its (n + l)th critical section. The token
will take the form PRIVILEGE(Q,L), where L is an array
containing the sequence number of the last request granted

719

for each node. The NEW-ARBITER messages will remain
the same.

3 Performance Analysis

In this section, the performance of the proposed algo-
rithm is analyzed. Only the theoretical bounds on the num-
ber of messages are presented here. The distributed system
is assumed to have N nodes. The average number of mes-
sages (M) and average service time per critical section (X)
for two extreme loading situations (very low and very high
loads) is theoretically calculated. Later in this section, sim-
ulation results for a specific system are presented in order to
study the performance at intermediate loads. The following
simplifying assumptions are made.

o The request forwarding phase is ignored.

o The message delay between any two nodes is a constant
Tms g -

o The execution time per critical section is a constant Texec -

¢ The request collection time for all arbiters is a constant

Treq.
3.1 Light load

Under situations of extremely light loading, there will be
at most one out of N nodes requesting access to the critical
section at any given time. Further, it is assumed that each
of the N nodes is equally likely to be the current arbiter.
Under such conditions, the number of messages incurred
by each invocation of the critical section is O if the current
arbiter is the requesting node itself. If the current arbiter is
not the requesting node, then the total number of messages
incurred are 1 REQUEST message, (N-1) NEW-ARBITER
messages, and 1 token. It should be noted that in this case,
the NEW-ARBITER message need not be sent to the new
arbiter, since the token containing only its own request is
proof that it is the new arbiter. Hence the average number

of messages incurred M, under low load situations is:

@2 -1

= M

— 1
M:(l-——N—)(1+N--1+1)=
From the above, it follows that in a large distributed

system (big N), the average number of messages incurred
per critical section invocation tends to N.

M — N, forN > 1)

Another important performance metric is the average
service time for each critical section X. This parameter
is similar to the response time, as defined in [14], except
that X includes the execution time for the critical section
as well. From the arguments made above, at low loads, the
average delay to execute the critical section after arriving
at the head(QQ) is as given below.

- 1
X = (1- -1\—/) Tmsg(1 4 1) + Treq + Texec

1
a- N) 2 Tmsg + Treq + Texec (3)

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:54:05 UTC from IEEE Xplore. Restrictions apply.

3.2 Heavyload

Under situations of heavy loading, all nodes will have
at least one pending request to enter the critical section.
Hence, at any given time, there will be N requests in Q.
With N requests in the Q, the PRIVILEGE(Q) message will
have to be sent (N-1) times, and there will be (N-1) NEW-
ARBITER messages generated for every N executions of
the critical section. Hence the average number of messages
incurred under heavy load situations is:

w=3_£

_ 1
M=Q0-Fl+—% N

“)

From the above, it follows that when the number of
nodes is large, the average number of messages generated
per critical section is approximately 3 messages.

M — 3, forN > 1 &)

The average service time to execute a critical section
after arriving at the head of Q position at a node, under
heavy load is given by the following.

— 1 N
X=01- N—)Tmsg + Treq + (—2— +1) (Tmsg + Texec) (6)

3.3 Simulation Results

In the above analysis, the request forwarding process
has not been taken into account. Hence a simulation of
this algorithm was performed to evaluate the effect of the
request forwarding process on performance. The simula-
tion was event-driven with multiple runs. Each simulation
run processed a total of a million requests for the critical
section from 10 nodes. Three parameters were calculated,
viz., the average number of messages generated per invo-
cation of the critical section, the percentage of forwarded
messages, and the average delay per critical section. Each
parameter was calculated for a range of loads. For the sake
of simplicity, each of the nodes generated requests using a
Poisson probability distribution with the same arrival rate
A requests/second. Further, all the algorithm parameters,
such as the request collection and request forwarding dura-
tions are the same at all the nodes. The execution time per
critical section at each node is a constant.

In Figures 3 and 4, the average number of messages
generated is plotted against the arrival rate of requests for
critical section. 95% confidence intervals were computed
and plotted for each parameter. The confidence intervals
are too small to be noticed on the graphs in most cases.
The message transmission time, request forwarding time
and critical section execution time is set to the value of
0.1 units. Two cases are studied with the request collec-
tion phase duration set to 0.1 units (continuous curve) and
0.2 units (dotted curve) respectively. As expected, it is
observed that with a longer request collection phase, the
average number of messages incurred is lower, but the av-
erage delay per critical section is higher. In Figure 5, the
fraction of forwarded messages is shown for the two cases.
At very high loads, the fraction of forwarded messages
becomes negligible. Again, as expected, the fraction of
forwarded messages is lower when the request collection

720

phase is longer, enabling most requests to arrive during the
collection phase.

From Figure 3, at high loads, the average number of
messages incurred reduces to approximately 3 messages,
which is better than Raymond’s tree algorithm [9] which
incurs 4 messages at high loads. In Figure 6, our algorithm
is compared to the Ricart-Agrawala [10] and the dynamic
mutual exclusion algorithm presented in [13]. Thus we
compare our scheme to two important classes of mutual
exclusion algorithms, viz., static and dynamic. A compar-
ison with Raymond’s algorithm [9] is not made in order
to keep the comparison plaiform reasonably general and
not topology-dependent. As is to be expected, the scheme
proposed here performs better than the Ricart-Agrawala al-
gorithm at all loads. Except at very low loads, it does better
than the dynamic algorithm as well.

4 The Starvation Issue

In the context of mutual exclusion algorithms, starva-
tion is said to occur if one or more nodes do not receive
permission to enter the critical section for excessively long
periods of time, and sometimes never at all. In the proposed
algorithm, starvation may occur only if request messages
continuously get forwarded, without the request being reg-
istered at the arbiter, or if request messages are continuously
dropped because of their arrival at the arbiter after the re-
quest collection and forwarding phases are over. Although
only a maximum of 4% of messages were forwarded, in
the simulation, this is an important problem. Hence this
problem is termed as the indefinite forwarding problem in
the context of this paper.

1t should be apparent that the probability of indefinite
forwarding is much higher at low loads than at high loads.
This is because at higher loads, there are a large number of
requesting nodes, causing the token to arrive at the current
arbiter only after all the requesting nodes have completed
executing their critical section, This gives ample time for
the forwarded message to arrive at the current arbiter be-
fore its request collection phase is over. The worst possible
scenario occurs, when only a single request message from
node 17 is received at the current arbiter [during the request
collection phase. Node ¢ is assigned to be the current ar-
biter. Further, a new request from node j arrives at the end
of the request forwarding phase of I, and is immediately
forwarded to i. For the request from node j to not be for-
warded again, the following equation must be satisfied. It
is assumed here that the request forwarding phase duration
is set to the time it takes to broadcast the NEW-ARBITER
message to all nodes in the distributed system plus the time
for a request message to arrive at the arbiter.

™

Thus, indefinite forwarding can be avoided by assigning
appropriate values to the request collection and forwarding
durations. However, this would work only if execution
times, and message transmission times are deterministic.
In reality, execution times depend on the current processor
load. Message transmission times depend on the current
network and processor loads. Hence, an alternate simple
method of avoiding indefinite forwarding and hence star-
vation is outlined below.

Tprivitege + Texec + Treq > Trwd + Trwd-req

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:54:05 UTC from IEEE Xplore. Restrictions apply.

REQUEST(2)

& ® 0<t<1
ARBITER =1
R;qum Collection
phase (¢
t=1
ARBITER =1
R;quest Forwarding
phase
NEW-ARBITER = §
REQUEST(3)
1<t<3
ARBITER = 1
Q={2,5 X et
Request Forwarding v wemee e
g‘hase
EW-ARBITER = §
® ® O
ivil " ARBITER = 5
privilege(Q) Q=(4,3))
Request Collection
phase
Q t=5
ARBH;E)R =5
— Reque’st Forwarding

phase
NEW-ARBITER =3

Figure 2: Nlustrative Example

Average Number of Messages per CS

Average Delay per CS

PSS - R i

h

o 0.1 0.2 0.3 0.4
Arrival Rate at a Site

Figure 3: Average number of messages generated

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:54:05 UTC from IEEE Xplore. Restrictions apply.

H 4 i i L "
015 0.2 0.25 0.3 0.38 0.4 0.45
Arrival Rate at a Site

Figure 4: Average delay per critical section

[} 0.05 0.1

721

0.5

Fraction of Forwarded Messages per CS
o o
P o
2 5 B
o N 13

o
o
=

e
=Y
S
]

i L

02

o

H
0.4

=)

0.1 03
Arrival Rate at a Site

Figure 5: Fraction of messages forwarded

4.1 Description of the Starvation-Free Algorithm

The basic scheme described in Section 2 remains the
same, except for the following important addition. One
node is assigned to be a monitor node, whose identity is
known to all other nodes. Request messages that have been
forwarded more number of times than a given threshold
T, are dropped by an arbiter even if they arrive within the
request forwarding phase. A requesting node resubmits the
request to the monitor after failing to see its request in the
Q-list in 7 consecutive NEW-ARBITER messages, which
is an indication that its request has been dropped.

The problem of starvation is eliminated by passing the
token to the monitor node periodically with a specific pe-
riod. The monitor does not forward any request messages,
but stores them until the token arrives and the requests can
be appended to the Q-list. Thus, the monitor maintains a
set of requests that could potentially have become victims
of the indefinite forwarding phenomenon. When an arbiter
determines that the token must be sent to the monitor node,
it sends the token without broadcasting a NEW-ARBITER
message, which is now broadcast by the monitor node.
When the monitor node receives the token, it acts as an ar-
biter in that it augments the Q-list in the token with the set
of requests it has received, broadcasts a NEW-ARBITER
message, forwards the token and discards its set of requests.

The period to include the monitor node should depend
on the current load on the system. The reason being that
at low loads, the probability of forwarding is high and
hence the period should be short, whereas at high loads,
the probability of forwarding is low, and hence the period
can be long. We propose an adaptive period based on the
average Q-list size. Specifically, each node keeps track
of the size of the Q-list by observing the NEW-ARBITER
messages and computes the average size of the Q-list within
amoving window. Further, the NEW-ARBITER messages
are augmented with a counter which is incremented every
time a NEW-ARBITER message is sent out. An arbiter
decides to send the token to the monitor node when its
NEW-ARBITER message counter equals the ceiling of its
computed average size of the Q-list. The counter is then set
to zero by the monitor node when it broadcasts the NEW-

722

i x:Rican-Agrawala
"'Sing'h'a‘l:’ v
o : Our algorithm

®
T

—
>
T

-
~

-3

Average Number of Messages per CS
> =

2k

o ; : ; < i

0 0.1 0.2 0.3 0.4 05
Arrival Rate at a Site

Figure 6: Comparison with other algorithms

ARBITER message. Thus at high Joads, the queue size will
be high, causing the period to be long, and vice versa.

The above modifications will cause the average number
of messages to increase by incurring 1 extra message (one
token message to the monitor) in every period. Assuming
that at extremely low loads, in every period only 1 CS is
executed, the average number of messages incurred will be
1 more message than in the basic algorithm. At high loads,
since several CS executions will be done in every period,
the average number of messages per CS will not be affected
significantly by this modification.

5 Other Performance Issues
5.1 Fairness

In evaluating fairness properties of a mutual exclusion
algorithm, there have been two main criteria.

o In the absence of prioritized access, the mutual exclu-
sion algorithm must not favor one node over another.

o The work involved in executing the mutual access
algorithm must be fairly divided among the nodes.

The proposed mutual exclusion algorithm is fair in both
the above aspects, as argued below. Since the requests
for access to the critical section are processed on a first-
come-first-served (FCES) basis, every node is guaranteed
to access the critical section in a fair manner. In order to
satisfy a more strict notion of fair access, a scheme similar
to Suzuki-Kasami’s algorithm may be implemented. In the
Suzuki-Kasami algorithm, access to the critical section is
granted based on the number of times a node has entered its
critical section previously. The node that has accessed the
critical section the least number of times is given priority.
A similar scheme may be implemented in this algorithm
by simply passing a sequence number (the number of times
that node is requesting access to the critical section), as
discussed in Section 2.4.

The proposed algorithm is fair with respect to the load
balancing criteria as well. In fact, itis fair in a stricter sense
than most other algorithms that have been proposed earlier.
Most mutual exclusion algorithms assign some work load

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:54:05 UTC from IEEE Xplore. Restrictions apply.

on all nodes, irrespective of whether a particular node is
creating any load (requesting access to the critical section)
or not. For instance, the Ricart-Agarwala algorithm [10]
causes request messages from a node to be sent to all other
nodes in the system, which then have to reply to the request-
ing node. In the Maekawa algorithm [6], the workload is
divided equitably only when every node has the same re-
quest rate. A fairer criterion to balance the load would
be to divide the workload only among the nodes that are
generating the load. In the proposed algorithm, at a given
time, a single node is given the responsibility of executing
the mutual exclusion algorithm, and different nodes take
turns to act as the arbiter. However, only the nodes that
request for the critical section are likely to be assigned the
responsibility of being an arbiter in the future. The higher
the number of requests generated by a node, the higher is
the probability of being designated to be the arbiter.

The extension to the basic algorithm to eliminate star-
vation requires one node to be the monitor node, thereby
loading one node more than the others. However, the role
of the monitor node can also be shared by all the nodes
by rotating (in a round-robin fashion) the functions of the
monitor node. In that case, the NEW-ARBITER message
broadcast by the monitor will include the identity of the
new monitor node.

5.2 Prioritized Access

Starvation becomes an especially important problem
when access to the critical section is prioritized. For
instance, nodes are assigned priorities. In such circum-
stances, it is possible that nodes with low priorities may be
preempted constantly by higher priority nodes, and hence
starve. Usually, priorities are assigned dynamically, for in-
stance, the least recently used (ILRU) criteria is a dynamic
priority assignment scheme. However, in the case of a
static priority system, starvation is a major problem,

In the proposed algorithm, in the absence of node prior-
ities, starvation can never occur since all nodes are granted
permission in the FCFS order. In the following discus-
sion, it is attempied to show that even in the presence of
a static assignment of priorities, the starvation problem is
not encountered. In the proposed algorithm, the arbiter
node collects the requests to enter critical section from all
the nodes in the system. In the presence of priorities, the
arbiter will order the requests in the order of the node pri-
orities. Since the lower priority nodes will end up towards
the end of this ordered list, there will be a higher proba-
bility that one of the lower priority nodes will be elected
to be the next arbiter, and will indeed get a chance to exe-
cute their critical section. Thus, the starvation problem is
non-existent. However, two points should be noted.

e The proposed algorithm implements only an incre-
mental priority-based system. That is, priorities are
implemented every time a new arbiter is selected, and
not in between the arbiter selection process. Thus, it
is possible that some higher priority requests that ar-
rive after the request collection phase and before the
current arbiter has executed its critical section, will be
serviced after some lower priority requests.

e The algorithm is unfair with respect to load balancing
10 the lower priority nodes, since it is these nodes that
have a high probability of being selected as an arbiter.

723

6 Recovery from Failures

The proposed mutual exclusion algorithm is non-
blocking to node failures as long as the node currently
in possession of the token does not fail. The failure of
nodes that are not scheduled to receive the token does not
impede the successful execution of the mutual exclusion
algorithm. Further, the mutual exclusion algorithm can
proceed at all times if the node that currently has the token
(executing its critical section), the current arbiter node (col-
lecting requests) and the previous arbiter node (forwarding
requests) are operational, even if all the other nodes have
failed. Thus, this algorithm has the potential of running
with just three operational nodes, and is thus, highly re-
silient to node failures. Below, we consider the possibility
that the message containing a request or the token are lost.

o LostRequest: If arequest message is lost, the request-
ing node can detect it relatively easily by monitoring
the NEW-ARBITER message that is broadcast each
time a new arbiter is selected. As mentioned before,
the NEW-ARBITER message contains the Q-list as
well. Thus, if a requesting node does not find its re-
quest in the NEW-ARBITER message, it can detect
the loss of its request, and retransmit the request. Thus
the NEW-ARBITER messages act as an implicit ac-
knowledgment that a request has been received and
scheduled. Further, appropriate timeouts may also be
used to retransmit a request, in case the token is not
received within the timeout period.

Note that a lost request due to communication errors,
a delayed request due to queuing delays in the com-
munication network, and a dropped packet due to the
arrival of the request after the forwarding phase, will
have the same effect, viz., the request will not be in
the Q-list broadcast in the NEW-ARBITER messages.
With the increasing quality of emerging communica-
tion networks, loss or delay of requests will be mini-
mized. Thus resubmitting the request to the monitor
node after noticing the absence of its request in 7 con-
secutive NEW-ARBITER messages may suffice.

o Lost Token: The lost token problem is more problem-
atic and requires the following detailed solution. A
token may be lost either because the node currently
holding the token fails or because the PRIVILEGE
message was dropped. The failure of previous ar-
biter is also considered since the previous arbiter may
fail after broadcasting the NEW-ARBITER message
and before sending out the token. The proposed so-
lution is timeout-based and in this sense is similar to
the timeout-based solutions proposed for other token-
based systems, including token ring networks [15].

After confirming that its request has been received and
scheduled from the NEW-ARBITER message, every
requesting node (including the current arbiter) selects
an appropriate timeout to receive the token. When a
node times out, it sends a WARNING message to the
current arbiter. When the arbiter receives a WARN-
ING message or times out, it starts a two-phase token
invalidation protocol.

— Phase 1: The arbiter sends an ENQUIRY mes-
sage 1o all the nodes on the Q-list (including the

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:54:05 UTC from IEEE Xplore. Restrictions apply.

previous arbiter). When nodes receive the EN-
QUIRY message, they respond with one of the
following messages. Further, if they possess the
token, they suspend their CS execution, and do
not forward the token to the next node.

x | had the token, and have executed my CS.
* I have the token.
* 1 am waiting for the token.

Phase 2: If a single node responds with a "I have
the token" message, then the arbiter responds
with RESUME messages, which causes regular
operations to proceed.

After either all nodes have responded or the ar-
biter times out, if no node has the token, then the
arbiter sends out INVALIDATE messages to all
the nodes that are waiting for the token and adds
them on the front of its Q-list. Also, nodes that
do not respond are assumed to have failed, and
are not included on the Q-list.

o Failed Arbiter node: To prevent the system to be
blocked by the failure of the arbiter, the following
method is proposed. The current arbiter is monjtored
by the previous arbiter. If the previous arbiter does
not receive a NEW-ARBITER message within a time-
out period, it probes the current arbiter. If the probe
is unanswered, the previous arbiter sends a NEW-
ARBITER message proclaiming itself the current ar-
biter. If the requesting nodes do not find their out-
standing requests in the Q-list, they can retransmit
their request to the current arbiter. The failure of the
monitor node may also be handled as above.

7 Summary and Conclusions

In this paper, a token passing distributed mutual exclu-
sion algorithm is proposed, and analyzed. The algorithm
performs well with respect to the number of messages in-
curred. Under heavy load, the number of messages incurred
is approximately three. There are two parameters: the re-
quest collection phase and the request forwarding phase du-
rations that may be adjusted to obtain the best performance.
Further, a starvation-free variant of the basic algorithm has
been proposed. The failure recovery problem has also been
discussed, owing to its importance in token based systems.

The distributed mutual exclusion algorithm proposed in

this paper is not strictly distributed as defined by Ricart and
Agarwala in [10], in that not every node participates in the
decision to grant permission to access the critical section.
This is the case for Raymond’s tree-based distributed mu-
tual exclusion algorithm [9] as well as the one proposed
by Maekawa [6]. The Suzuki-Kasami algorithm [16] is
not strictly distributed either since, only the node holding
the token decides the next node to receive the token and
hence access the critical section. Thus, the process of de-
ciding the next token-holder is not distributed, but the task
of decision-making is distributed to each node in turn. The
proposed algorithm also is distributed in a similar manner.
Finaily, the algorithm is fair with respect to load balanc-
ing and scheduling of critical section, while it can support
partial prioritized access. Future work involves a more de-
tailed study of the performance in the face of failures, as
well as comparisons with a larger number of algorithms.

724

Acknowledgments

We thank the anonymous reviewers for their comments,
that helped to improve this paper. We also thank Dr. Kia
Makki and Dr. Niki Pissinou for bringing related papers [7,
8] to our attention.

References

[1] D. Agrawal and A. E. Abbadi. An Efficient and Fault-
Tolerant Solution for Distributed Mutual Exclusion. ACM
Trans. on Computer Systems, 9(1):1-20, 1991.
A. Bemnstein and P. Lewis. Concurrency in Programming
and Database Systems. Jones and Bartlett, 1993.
P. Chaudhuri. Optimal Algorithm for Mutual Exclusion in
Mesh-Connected Computer Networks. Computer Commu-
nications, 14(10):627-632, 1991.
L. Lamport. The Mutual Exclusion Problem: Part-I- A The-
ory of Interprocess Communication. Journal of the ACM,
33(2):313-326, 1986.
L. Lamport. The Mutual Exclusion Problem: Part-II - State-
ment and Solutions. Journal of the ACM, 33(2):327-348,
1986.
M. Maekawa. A v/N Algorithm for Matual Exclusion in
Decentralized Systems. ACM Trans. on Computer Systems,
3(2):145-159, 1985.
K. Makki, P. Banta, K. Been, and R. Ogawa. Two Algo-
rithms for Mutual Exclusion in a Distributed System. In
Proceedings of the International Conference on Parallel
Processing, pages 460—466, 1991.
K. Makki, K. Been, and N. Pissinou. A Simulation Study of
Token-Based Mutual Exclusion Algorithms in Distributed
Systems. International Journal in Computer Simulation,
4(1), 1994.
K. Raymond. A Tree-Based Algorithm for Distributed Mu-
tual Exclusion. ACM Trans. on Computer Systems, 7(1):61—
77, 1989.
G. Ricart and A. K. Agrawala. An Optimal Algorithm for
Mutual Exclusion in Computer Networks. Communications
of the ACM, 24(1):9~17, 1981.
R. Satyanarayanan and C. R. Muthukrishnan. Message-
efficient Distributed Mutual Exclusion Incorporating the
’LeastRecently Used’ Fairness Criterion. /EE Proceedings-
E, 139(6):501-504, 1992.
R. Satyanarayanan and D. R. Muthukrishnan. A Note on
Raymond’s Tree Based Algorithm for Distributed Mutual
Exclusion. Information Processing Letters, 43(5):249-255,
1992.
M. Singhal. A Dynamic Information-Structure Mutual Ex-
clusion Algorithm for Distributed Systems. /EEE Trans. on
Parallel and Distributed Systems, 3(1):121~-125, 1992.
M. Singhal. A Taxonomy of Distributed Mutual Exclusion.
Journal of Parallel and Distributed Computing, 18(1):94~
101, 1993.
W. Stallings. Data and Computer Communications. Macmi-
lan, 1991.
1. Suzuki and T. Kasami. A Distributed Mutual Exclusion
Algorithm. ACM Trans. on Computer Systems, 3(4):344—
349, 1985.

{21

3

—

[4]

[5

7

18]

[9]

[10]

(111

(12]

[13]

[14]

(1s]

[16]

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:54:05 UTC from |IEEE Xplore. Restrictions apply.

