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Abstract. In this paper, we present both the theoretical framework and a prototype of a query processing facility
that supports the exploration and query of databases from a mobile computer through the manipulation of icons.
Icons are particularly suitable for mobile computing since they can be manipulated without typing. The facility
requires no special knowledge of the location or the content of the remote database nor understanding of the details
of the database schema. Its iconic query language involves no path specification in composing a query. The query
facility provides metaquery tools that assist in the formulation of complete queries in an incremental manner on
the mobile computer and without involving access to the actual data in the remote database. By not requiring
constant access and caching of the actual data, it is able to effectively cope with the inherent limitations in memory
and battery life on the mobile computer, disconnections and restricted communication bandwidth, and the high
monetary cost of wireless communication.
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1. Introduction

Advances in computer and wireless communication technologies have not only affected the
way that we compute but, more significantly, they are changing the way we live and do
business. For example, mobile users of a hospital paramedic unit arriving at an accident
site need to easily access the medical history of the victims, regardless of the location and
form of the information. They also need the capability of quickly locating and contacting
medical personnel nearest to the accident site. That is, mobile users by means of hand-held
computers equipped with a wireless interface, should be able (1) to compose a database
query with minimum or no knowledge of how the database is structured and where it is
located, and (2) to compose the query with a few key selections and minimum typing [3].

Motivated by these requirements, we present in this paper a query processing facility
suitable for mobile database applications. The query processing facility, called Query
By Icons (QBI), considers the inherent limitations in memory and battery power on the
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mobile computer, disconnections of the mobile computer for substantial periods, restricted
communication bandwidth, and high monetary cost of wireless communication [4, 15].
The salient features of QBI are the following:

o An iconic visual language interface, which allows a user to compose a database query by
manipulating icons using a pointing device like a light-pen on a hand-held pen-computer.
Both structural information and constraints are visualized whereas the implicit ambiguity
of iconic representation is resolved by automatically generated natural language.

o A semantic data model that captures locally within the mobile computer most of the
aspects of the database structures while presenting the user with a set of simple repre-
sentation structures. ‘That is, a user is not required to have any special knowledge of
the content of the underlying database nor the details of the database schema. A user
perceives the whole database from any single focal object, as classes of objects expressed
as generalized attributes of the focal object. Generalized attributes encapsulate and hide
from the user the details of specifying a query.

e Intensional or metaquery tools that assist in the formulation of a complete query during
disconnections. A query is formulated in an incremental manner without accessing actual
data in the remote database to materialize intermediate steps. Data are accessed and
transmitted back to the mobile computer only when a complete query is materialized.

While an iconic interface allows fast interactions (faster than typing) even when the user
is moving, query formulation using intensional data offsets the expense and limitations of
frequent wireless communication that is inherent to extensional browsing systems, e.g., [27,
29]. Metadata can be cached on the disk on the mobile computer since its definition changes
rarely and its size is small compared to the actual database. Frequent communication results
in slower response time due to the limited bandwidth of wireless links, as well as constant
depletion of the computer’s battery. Therefore, users can plan in advance to be disconnected
from the network in order to save energy and reduce communication costs while actively
exploring the database via intensional information on the mobile computer. In addition,
users can continue with the formulation of their queries on the mobile computer even when
the computer is accidentally disconnected.

In a mobile database environment, we envision QBI being used on both mobile and
stationary hosts to query and explore a large distributed database managed by a number
of servers on stationary hosts. In the next section, the conceptional model of QBI that
defines the mobile user’s perception of a database is discussed. Section 3 describes the
components of a QBI prototype and illustrates its functionality through its use to query a
medical database. QBI’s theoretical framework is presented in Section 4 whereas the notion
of generalized attributes which is central to QBI and its suitability as a query processing
facility for mobile users is formally discussed in Section 5. Section 6 describes and evaluates
three algorithms for generating generalized attributes on a mobile computer. The paper
concludes with a discussion on related work in Section 7 and future work in Section 8.

2. QBI’s conceptual data model

In QBI, the concepts of class of objects and attribute of a class exclusively form the external
representation of the database structure due to their natural simplicity. Users are presented
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Figure 1. Examples of generalized attributes.

with a database abstraction called complete objects [25], i.e., completely encapsulated ob-
jects, similar to the universal relation abstraction in relational databases [23]. Specifically,
a user perceives the underlying database as a set of classes, each having several properties
called generalized attributes (GA). In the same way that an attribute in the ER model [10]
represents an elementary property of an entity, a GA expresses a generic property of a
class.

Further, GAs encapsulate both implicit and explicit relationships among the objects within
each focal object. That is, other object classes are viewed as GAs of the focal object. Thus,
in QBI, each focal object provides a view of the whole underlying database from its own
viewpoint. Let us illustrate the concept of GAs through an example. Assume the underlying
database schema depicted in figure 1 using the Binary Graph Model [9, 25], which also
forms QBI’s theoretical framework (see Section 4). Here the rectangles denote object
classes and ovals convey the interaction among classes.

A QBI user observes that the underlying database contains the same object classes shown
in figure 1, namely, person, car, city, and hospital, but views the entire structure of
the database by means of the GAs of any of these object classes. Of the three GAs of the class
person shown in figure 1, consider attribute GA3 whose value is a subset of the object class
hospital. By observing GA3, the user perceives that a hospital is located ina city
and is an attribute of person. A generalized attribute with similar meaning exists from
the viewpoint of hospital. That is, from the view of a hospital object class, this GA
is a subset of persons corresponding to, "A11 the people living in the same
city where the hospital is located". Also, the same information, could be
obtained by observing the GAs of city.

3. QBI prototype

In this section, we will describe our QBI prototype and how it can be used to query a Medical
Database that includes radiological data from a mobile computer.
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Figure 2. The architecture of QBL

The QBI prototype is written in C for the MS-Windows environment using the toolkit
XVT, and is currently running on NCR System 3125 Pen-top computers with PenDOS and
MS-Windows for Pen Computing. The size of the QBI prototype itself is only 0.5 MBytes
whereas it stores less than 100 KBytes of intensional information about the radiological
medical database. :

The overall architecture of the QBI prototype is diagrammed in figure 2 and consists of
four modules: The Presentation Manager which is responsible for all interactions with the
user; the Query Manager which supports the specification of queries; the GA Evaluator
which computes the generalized attributes; and the Database Access Manager which is
responsible for any remote access to the actual data in the database on a stationary host, as
well as managing the sporadic updates to the metadata and statistics about the underlying
database. GAs are computed on demand because, given an object class, there is potentially
an infinite number of GAs associated with an object class and only a small fraction of them
is useful in the construction of a particular query.

The execution of the presentation manager as well as of the query manager and the GA
evaluator, is supported by two databases, namely, the Intensional Database (IDB) and the
Statistical Database (SDB). The IDB contains all the metadata and the visual data for the
iconic representation. Whereas the SDB contains statistical information on the instances
in the database used for the evaluation of the GAs.

3.1. QBI’s iconic visual language interface

The presentation manager structures the interactions with a user around three windows,
each dedicated to a specific aspect in the specifications of a query. The three windows
composing the QBI interface are referred to as the Workspace Window, the Query Window
and the Browser Window.

3.1.1. Workspace Window. When the QBI application starts, the user is asked to select
the database to be considered for querying, in our example a radiological database. In
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Figure 3. The QBI interface.

response, the Workspace window appears and displays a set of icons corresponding to both
primitive classes that are actually stored in the database and derived classes representing
stored queries (see figure 3).

Every icon has an image conveying a metaphorical meaning for the class. Below the im-
age is a label that allows for easy identification. A full natural language sentence description
is also provided that can be read by pointing at the icon. This description is automatically
generated based on the method described in [8] and is essential for disambiguating the
meaning between various icons. Even the shape of the icon conveys information. When
forming a query, icons representing compatible object classes that are allowed to be com-
bined in a selection condition of a query are associated with a specific geometric outline,
similar to a jigsaw puzzle piece. The shape of an icon can appear flat, such as the patient
icon, or as a stack of shapes, such as the hospi tal icon found at the bottom of the Browser
Window in figure 3. This stacked representation tells the user how many instances of the
object class can be referred to with this one icon. The hospital icon appears stacked
since it represents a group of hospitals.

3.1.2. Query Space Window. Pointing at an icon in the Workspace corresponds to sele-
cting its object class for a query via the activation of the Query Space. If the class icon for
person is picked from the Workspace, the Query Space shown at the bottom left of figure
3 will become visible to the user. There are several parts to this window that allow a user
to compose a query based on the select-project paradigm:
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Conditions Space: This space on the left side of the query window allows the user to build
both GAs constituting the atoms of a selection condition and the condition itself. Atoms
can be combined together, according to a positional convention, to form the boolean
expression representing the selection condition.

Show Space: Icons can also be arranged in the section on the right called the Show Space
which is used for specifying the projection. These icons represent the information the
user chooses to view in the output result. An initial GA set is displayed (by default)
in the Show Space when a class icon is picked and corresponds to the attributes that
would appear in an equivalent Entity Relationship representation of the database. For
example, the initial GAs of the class person are: Name of the person, Sex of
the personand Birthdate of person.

Description Space: This space contains a natural language description of the class being
defined. The description is automatically generated and dynamically updated whenever
the selection conditions change.

3.1.3. The Browser Window and metaquerying. The Browser Window is the interface of
the GA generator that allows a user to explore a database by controlling the generation of
GAs. From the query space window activated by selecting the icon person, a user can see
additional GAs not included in the initial GA set displayed by pressing the button labeled
more attributes.Withagivenobjectclass, its GAs generationis controlled by a seman-
tic distance or weight that characterizes, from the viewpoint of an object class, how meaning-
ful a particular GA is for the object class. The additional set of GAs is sorted by their semantic
distance so that the most meaningful GAs are shown first. Thus, by observing the top of the
list of GAs the user can have an immediate perception of the most meaningful attributes of
person. The Browser window of figure 3 shows the additional GA City where person
X lives. Additional GAs such as this one can then be dragged from the Browser window
into the Conditions and Show spaces within the Query window when forming a query.

To empower the user with the ability to control his/her view of the database environment,
aset of metaquery tools are provided within the Browser. These metaquery operators permit
the specification of filter conditions on the GA set. Hence, a user interested in very distant
properties of the class person can easily explore these properties, by restricting the search
of the desired GAs within a smaller GA set. For example, one useful metaquery operator is
used when a user desires GAs which are associated with a specific object class. If the user is
interested in all the GAs that talk about city, the icon for city from the Workspace window
can be moved into the Talk about space of the Browser (see figure 3). In particular itis possi-
ble to express the following metaquery conditions: (1) single, printable, or key selects only
single valued, printable GAs, or key GAs used to identify an instance of a class, respectively,
(2) type selects all the GAs that represent a subset of a particular object class and, (3) ralk
about, don’t talk about selects GAs that are associated or not associated with a specified
class. All the metaquery conditions are combined in a conjunctive expression by default.

3.2.  Query examples

Let usrevisit the hospital paramedic unit example mentioned in the introduction. As a patient
is rushed to the most appropriate hospital, a specialist living within close proximity of the
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hospital is notified. For this type of information, we-need to determine the set of doctors living
in the same city in which they work. The result of this query is a subset of the class doctor
that can be saved as a derived class. In orderto build the derived class it is necessary to specify
the selection condition Cond: The city where the doctor works is equal to the city where the
doctor lives. Cond can be specified by connecting the two GAs: City where doctor
% lives and City where doctor x works with the connective Is equal to.

The first GA is immediately found by scrolling the list in the Browser window. This
GA is dragged by the user from the Browser window into the condition space of the Query
window. As far as the second GA is concerned, the user needs to perform a metaquery
on the GA set of doctor by dragging the icon city into the Type space of the Browser
window. The first GA shown in the list represents the “best” connection between doctor
and city and it coincides with the GA the user was looking for, that is: City where a
hospital is located. Such a hospital is the hospital where doctor x works.

The second GA is then dragged into the condition space and the two GAs are “attached”
together; since they have the same type (that of city), their shapes allow this operation to
be performed. Once the two GAs have been attached together, a dialogue box containing
a set of valid connectives appears. By choosing the equality connective the user ends the
selection part of her/his query. In the description space a sentence explaining the selection
query is automatically added (figure 4). For the projection, the user does not have to pick the
name, sex and birthdate of the doctor because they are part of the initial GA set of doctor
and must be already in the Show space. In order to know in which city the hospital and

g e
@ P AR the dockar rach that. City where
Potegh person X kves is equal to city

iﬂ:ﬂi
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Figure 4. A query.
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doctor are located, the user simply drags the appropriate, i.e., city, icon from the Browser
into the Show space.

The result of a query constitutes a derived class of the picked class and as such it can be
stored in the intensional database. In the above example, after the user chooses a label, say
Lucky Drs, for the newly created derived class, the new class is assigned an icon which
becomes part of the icon set contained in the workspace window and can be used as if it
were a primitive one. The image of this icon will be that of a doctor since this GA is a
subset of the object class doctor. To materialize this query, all the user has to do is drag
this new icon to a special system icon called the “printer”. This operation corresponds to
forwarding the corresponding query to the remote database, requesting for its execution,
and fetching the query result for display.

As seen with this example, QBI is very useful in a mobile computing environment as
queries require very little typing. Also, only a small screen is required since queries do notre-
quire any form of path specification. The underlying, formal schema is hidden and feedback
in the form of natural language and shapes is very helpful for users with a limited knowledge
of database languages. In addition, intensional data and metaquery tools are provided to
users to allow them to formulate queries even when the computer is disconnected. In the fol-
lowing section, we will formally define the semantic data model used by QBI, as well as the
concepts of generalized attributes and semantic distance. In further sections, we will show
how the internal algorithms for GA generation were improved for a mobile environment.

4. QBDI’s theoretical framework

Internally, QBI uses the Binary Graph Model (BGM) [9, 25], a semantic data model,
for capturing most of the aspects of the structure of the remote database. The major
constructs of this model are: the class of objects, the binary relationship among classes,
the ISA relationship between a class and its superclass, and cardinality constraints for the
participation of class instances into the relationships. A BGM schema can be expressed as
a labeled graph called typed-graph.

Definition 4.1 (Typed graph). A typed-graph g(N, E) is a labeled multigraph. The set
N of nodes consists of class nodes N¢ representing classes of objects and role nodes Ny
representing relationships between two classes. Class nodes can be either printable or
nonprintable depending on whether they represent domains of values or abstract classes.
An edge in E can only link a class node to a role node and is associated with a unique label
L. Each role node has a degree equal to two.

A class node is said to be adjacent to a role node if there is an edge connecting the two
nodes. Each role node will have exactly two adjacent class nodes. When the adjacent class
nodes are coincident we say that the role node is reflexive. In this case, labels on edges are
useful for disambiguating the two edges.

A BGM database is defined as a triple (g, ¢, m), where g is a typed-graph, c is a set of
constraints, and m is an interpretation. The schema of a database is represented by g and ¢
whereas an instance of a database (extension) are represented by the notion of interpretation.
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Definition 4.2 (Interpretation). Let g be a typed-graph. An interpretation for g is a
function m mapping each class node n, € N¢ to a set m(n.) of objects and each role
node n, € Ng to a set m(n,) of pairs (Ibly(n,): x;, Ibla(n,): x2), where Ibl;, Ibl, are
functions returning the labels of the two edges connected to n, (Ibl, Ibly: Ng — L) and
{x1, x2) € m(n.) X m(n,) where ny and n, are the adjacent class node of n,.

That is, an interpretation specifies the valid combinations of values from the underlying
classes. The set of constraints on the database referred to in this paper are the minimum
(ATLEAST) and maximum (ATMOST) cardinality constraints, and the subclass-superclass
relationship constraint (ISA).

Definition 4.3 (Constraints). Thesetccontains: (1) ATLEAST(k, n.1, n,) specifies that an
instance of class node n.; can participate in at least & interpretations involving the adjacent
role node n,; (2) ATMOST(k, n.;, n,) specifies that an instance of class node n. can
participate in at most £ interpretations involving the adjacent role node n,; (3) ISA(n;, n.)
specifies that the class n; is a subset of the class n, (i.e., m(nz) € m(n.)). The role nodes
connected to n. are considered as also being connected to ng, i.e., nz inherits the edges of .

Currently, we assume single inheritance, hence each class node has to belong to one
and only one class hierarchy. In order to facilitate type checking of query expressions, we
define the notion of type of a class as a class hierarchy. That is, the class nodes belonging
to a class hierarchy have the same type. Note that if . and n., have different types, their
interpretations are disjoint.

Figure 5 shows an example of a typed graph which is a fragment of the medical database
used in the previous section. The rectangular boxes represent class nodes (the printable ones
are grayed) while the ovals represent role nodes. No label on an edge is shown since there
are no reflexive role nodes that need to be disambiguated. The annotations {rm, n) on edges
represent (ATLEAST, ATMOST) cardinality constraints. ISA constraints are denoted by a
thick arrow from a subclass node to its superclass.

person

Figure 5. A typed graph.
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5. Generalized attributes

As mentioned above, the concept of GA in QBI represents the way in which a user perceives
the relationships among objects. Internally, a GA is strictly related to the concept of path in
a typed-graph capturing the database schema, where a path is a sequence of adjacent class
and role nodes always starting and ending with a class node.

Definition 5.1 (Path). Let G be atyped-graph. A step s on G is the triple {(class;(s), role(s),
classy(s)) where class, (s) = n.y, classa(s) = n., € N¢ are adjacent to role(s) = n, € Np.
A path p on § is the sequence s1, 53, . . ., sk of steps on G such that, fori = 1,2, ..., k—1,
classy(s;) = classi(siy1). The first and the last class node of a path p, i.e., class;(s1(p))
and classs(Siengih(p) (p)), Will be denoted with first(p) and last(p) respectively.

Given two class nodes n, ( picked class node) and n;, a path p starting in . and ending in
n; defines a GA of n.. as a function mapping each instance x of n, onto a set of instances of n;.

Definition 5.2 (Generalized attribute). Let G be a typed-graph, n, a class node of G and p
a path on G such that first(p) = n.; the GA of the class node n, associated to p is a function
yp: m(first(p)) — g (m(last(p))) mapping every object xg € m(n.) to a subset of objects
of the last class node of p, m(last(p)).

A GA can be either single valued or muitivalued depending on the cardinality constraints
of the role nodes involved in the path. Since a GA is a function yp returning a set of objects
belonging to m(last(p)) we will say that yp has a type that is the type of last(p).

A path in a typed-graph can be cyclic. Cyclic paths are allowed since they can represent
useful properties, e.g., People living in the same city where the person
lives. As a consequence the set of possible GAs associated with a class node is infi-
nite. Since not all paths are equally meaningful, and in order to cope with infinitely long
(cyclic) paths, QBI defines a semantic distance function on paths which returns a value for
each path representing the meaningfulness of the corresponding GA. A finite set of GAs of
an object is constructed by considering only those GAs that are “meaningful enough” for
the specification of a query. A similar notion to that of semantic distance function in QBI is
the notion of semantic length in the generation of complete queries from incomplete path
expressions [17].

Definition 5.3 (Semantics distance function). Let ¥p be a GA of a class node n.. The
function Semd: T"(n.) — % maps y,, to a real value Semd(y,) that represents how much
¥p is semantically distant from n..

The semantic distance is expressed in terms of various aspects of the structure of the GA
such as the length of the path, the number of cycles, inclusion/exclusion of specific paths,
cardinality constraints as well as statistical information on the underlying database. The
statistical information can be used to compute the entropy of a GA which is the measure
of uncertainty in the information theory [13]. The entropy clearly captures the fact that
a user considers a GA only if the GA conveys some information. By taking entropy into
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consideration, a large number of less meaningful GAs, such as “all the persons that have a
name equal to the model name of a car”, can be discarded.

Given a semantic distance function Semd and a threshold value v € R, the finite GA set
of n., with respect to Semd, will be determined by:

l:ISemd(”c) = {yp € I'(n.) | Semd(y,) < t}

provided that Semd is monotonically increasing.

The following function was implemented in the QBI prototype to compute the semantic
distance of a new GA y,, resulting from adding a new step to an existing GA y,,. Let the
new step being added to y, be e = (u, v, w) (i.e., p’ = p Ue).

Semdy,s = (c; * length(p")) + (c2 * num_cycles(p’)
+ (c3 * max_cardinality(p) * atmost_cardinality(e) — 1) + NPW x ¢4
+ & * (¢s/avg_cardinality (p") — ¢s) + NPU * ¢

where NPW, NPU and & are binary flags with 0 or 1 value, and ¢, ¢2, ¢3, ¢4, ¢5 and ¢¢ are
positive real constants used as semantic penalties for properties that may exist in a new
GA path. As a GA’s path becomes longer (length(p’) or cyclic (num_cycles(p")), or its
cardinality dramatically increases (max_cardinality(p) * atmost_cardinality(e)), so does the
semantic distance associated with this GA. The length is defined to be the number of role
nodes connectors used by the path and does not include any class-superclass connectors
(ie., “is a” connectors).

A path that ends with a class node w which is not printable, represents a relationship
between n. and another abstract object class. This object class will contain simple attributes
that have not been discovered. However, because there is no information for the user that
is directly obtainable from this path, the path is penalized by assigning NPW to 1. Other-
wise NPW is O.

In the QBI prototype, the current weight increase c¢ for going through printable nodes
is 300 and is equivalent to the penalty ¢, associated with a class node being a member of
a cycle. The other penalty constants are ¢; =200, ¢3 =0.02, ¢4, =20 and ¢s=100. All
penalty constants have be adjusted for better performance after a series of experiments
while making sure that the Semd remains monotonically increasing.

6. Mobile GA generation

In a mobile environment, QBI’s method of query formulation and use of intensional data
limits the cost of frequent wireless communication with respect to the materialization of
complete queries. Visualization of the database as well as cost effective query formulation
is done primarily through the manipulation of generalized attributes. As stated above, a
GA y, is simply a path p in a typed-graph G. Every time a step is added to an existing
GA path, a new GA is formed and its associated (real number) semantic distance value
(sd-value) is computed by the function Semdy,. The generation of GAs is an instance
of a path computation [2, 16], and is clearly the most computationally expensive part of
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QBL. The cost of the semantic distance function depends on its complexity which, in turn,
is a measure of its accuracy to express the meaningfulness of a GA. However, this cost is
independent of the environment in which QBI is executing. On the other hand, the value for
the threshold that terminates the generation of GAs can be tuned to consider the capabilities
of the system. In the case of the mobile computer, the threshold 7 is defined as a function
of the available memiory, the energy level and the response time:

7 = Cy(free_memory) 4+ Cy(energy_level) + Cs(cpu_speed)
+ Cy(resp_requirements)

where C; are user defined parameters. Given that the first two parameters, free_memory
and energy_level, vary over time, the threshold v dynamically changes as well.

The initial GA evaluator in our QBI prototype traverses the typed-graph in a depth-
first search (DFS) manner. Although this is also the approach traditionally used in path
computations [2, 16], it has turned out to be unsuitable for mobile operations. First, since
it does not generate GAs sorted based on their sd-value, an additional sorting phase is
required for the presentation. More importantly, the DFS strategy is not compatible with a
dynamically defined threshold. DES allows for the possibility of adynamically set threshold
to terminate the execution of the GA evaluator before the generation of GAs associated with
alow sd-value and after spending a significant amount of time in generating GAs with higher
sd-values. For these reasons, we have explored two other alternatives, the best-first search
(BEST) and breadth-first search (BFS) based GA evaluators.

The BEST algorithm explores the given graph G by maintaining an order among the GAs
found based on the semantic distances associated with the GAs. At each iteration, BEST
always considers the GA with the minimal semantic value. The BEST-based algorithm
uses: (1) a sorted List to maintain an order among the GAs produced, (2) (n.), the starting
class node chosen by the user, (3) a path p associated with every GA y,, and a total seman-
tic distance Semd(y,,), and (4) the function weight (, w), which computes the distance
between two class nodes 1 and w, where G is the given typed-graph and for each step ¢ €
G, e = (u, v, w). Below are shown the basic steps for the algorithm.

BEST (w = n¢, yp, T, T'(1,))
Do
For each step e = (u, v, w) where u = w
Mark every class node in p of y, as newly visited in order to detect cycles.
Calculate Semd(y,/) = Semd(y,) + weight(u, w)
If (Semd(y)) < t Then
p'=pUe
Sorted_Insert(List, vy, p’, Semd(y,))

End For

If the List is not empty
vp = First_Of List(List)
@ = last(p) (the p associated with our new y;,)
Pn) =T(n)Uy,y
While the List is not empty
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The BFS algorithm, the second alternative GA evaluator, explores the given typed-graph
G in a level-by-level fashion. Only when all the class nodes at a given level are explored
does the algorithm move on to the next level. All of the items used by BEST are also used
by BES, except that maintaining an order among the GA paths that are to be expanded is
now done by a Queue instead of a List.

In accordance to the basic BES algorithm, the Queue was sorted every time all the class
nodes at a level x were explored. Although, sorting would be performed more often, a very
small number of GAs would be sorted each time, and BEST’s incremental sort with many
comparisons would be avoided. However, it has turned out that this is not enough, since
there are no order guarantees among the weights of GAs ending at different levels along
different paths. Because of the binary flags NPW, NPU, and £ whose values are dependent
on the type of the class node, all paths produced by p that end at level x are not guaranteed
to have smaller sd-values than all paths found at level x 4+ 1. Hence, BFS requires an explicit
sorting phase as DFS.

6.1. Advantages and disadvantages of DFS, BFS, and BEST

With BEST and BFS, the main advantage over DFS is efficiency in finding meaningful
GAs. BEST generates GAs in the order of their meaningfulness to the user based on their
semantic distance from the focal object class n.. With BFS, GAs with the shortest paths are
generated first, and it is highly likely that these paths are very semantically meaningful from
the viewpoint of #. due to the monotonically increasing property of Semd along a path. The
ordering performed by BEST and BFS is useful in a mobile environment since the semantic
distance threshold 7 could be set by a function that describes the limitations of the mobile
unit. With BEST, only the most meaningful GAs with respect to these limitations would
be generated, and it does not require a separate explicit sorting phase.

However, unlike DFS, both BEST and BFS maintain complex data structures in the
form of a sorted List or Queue. In the worst case, each element added to the List must
be compared to ali the other elements before finding its correct location. If the graph is
very dense, with each node w having a large degree, the number of comparisons will
be very high. An additional indexing structure could be used to combat the cost of in-
sertion. This approach, however, would require more space. One advantage BFS has in
this regard is that it does not need to perform an expensive incremental sorting on each
insertion of a new GA the way BEST does.

In addition, adding a step e = (u, v, w) to an existing path p may cause the ending class
node w to become a member of a cycle. Detection of this in DES only requires a marker
associated with the node w. If the class node w is already a part of the path p before
the addition of e, then the node will be marked. Hence, another factor that increases the
execution time of BEST and BFS when compared to DFS, is the method needed for cycle
detection. In order to detect if the node w is part of a cycle, all the class nodes of the path
p currently being expanded must be marked. This prevents the detection of a false cycle
whenever two separate routes from the focal point object #. are being expanded concur-
rently and both reach the same node. However, the cost for this is one traversal of the path
p every time a step is added. Since each of these algorithms have comparable advantages
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and disadvantages, further investigation is necessary in order to determine which one is the
most useful with respect to a mobile computing environment.

6.2. Evaluating the GA generation methods

To the user, the two most important criteria are response-time and quality of GAs i.e., the
semantic distances of the GAs produced. These are two important criteria in determining
how well each of the algorithms proposed for the GA evaluator perform. However, within
a mobile environment, the GA evaluator should operate without depleting a large amount
of the mobile unit’s resources. The method proposed above for controlling the amount of
resources used by the GA evaluator is the notion of a dynamically changing threshold t.
How effectively a changing threshold performs with respect to finding meaningful attributes
and response-time must be evaluated.

Two tests were done in order to evaluate the three GA Generation Methods discussed
in the previous sections. The first test compares the three algorithms with regards to the
quality of attributes found by each. The second test evaluates the three implementations
under a dynamically changing threshold. These experiments were done using an Intel
486DX, 66 MHz PC with 16 MBytes RAM.

Test 1: Meaningful attribute test (MAT)

Task: Each algorithm was given the task of finding a given number (X) of GAs for the
doctor object class in the radiological database of the QBI prototype.

Parameters: The semantic weight threshold remained a constant 1800. At this value, the
system produced a sorted attribute list (SAL) of 947 GAs. For each successive test run,
the number of GAs required (X) was increased by 100.

Each algorithm was timed from the moment it was invoked until it was able to produce a
sorted list of the required number (X) of attributes. In addition, to measure the quality of
the attributes produced by the algorithm, a comparison was made to see how many of the
attributes produced by the algorithm matched the first X attributes found in SAL. Figure 6
is a graph of these test runs.

Test 2: Dynamic threshold test (DTT)

Task: Each algorithm was required to find all the GAs below a given semantic distance
" threshold 7 for the doctor object class in the radiological database of the QBI proto-
type.
Parameters: The semantic distance threshold T was changed for each successive test run.
It was incremented by a value of 100 for each run.

Each algorithm was timed from the moment it was invoked until it was able to produce a
sorted list of attributes below the given semantic distance threshold. Figure 7 is a graph that
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shows how many seconds it took each algorithm to find all the GAs below a given thresh-
old 7. For each threshold 7, a certain number of attributes in the typed-graph G will have
distances below 7. In order to compare the results of MAT with this test, another graph
shown in figure 8 was created. In this graph, the amount of time required by each algo-
rithm is mapped to the number of attributes within G that are below the corresponding
threshold.

6.2.1. Implications of MAT and DTT. Suppose that in a mobile application users would
be able to obtain all the information they wanted if the Browser Window always displayed
the first 450 most meaningful attributes for the doctor object class. Figure 6 shows that
BFS finds the top 450 most meaningful attributes by generating a total of 600 attributes
from the typed-graph G. From figure 7, it is apparent that BES finds these 600 attributes
within 0.72 seconds." Also, from figure 8, finding 600 attributes within 0.72 seconds using
BFS corresponds to a threshold of T = 1600. Of course, these figures could have been
calculated using any of the three implementations. Below is a table that corresponds to the
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answers for DFS, BFS, and BEST for the Browser Window to show 400, 600, and 800 of
the most meaningful attributes to the user.

Number

attributes v DFS sec. v BFS sec. 7 BEST sec.
400 ~1620 .7 ~1500 .6 ~1390 .42
600 ~1640 .8 ~1630 ~2.8 1590 ~.85
800 ~1725 ~1.0 ~1680 ~1.0 ~1660 ~1.3

MAT and especially figure 6, show that BEST finds GAs in order of increasing semantic
distance while DFS performs the worst at generating meaningful GAs. This result was ex-
pected since BEST does not require an additional explicit sorting phase. BFS’s performance
was between DFS and BEST. The algorithm does require an explicit sorting phase, but be-
cause it generates the GAs by levels, its performance in terms of generating meaningful
GAs was better than DFS.

In figure 7, we observe that as the threshold changes, so does the amount of time each
algorithm requires to do its work. This happens because as the threshold increases, more
of the typed-graph is explored. All three algorithms take approximately the same amount
of time until the semantic weight threshold reaches 1400. Soon after this point, DFS
begins to take the least amount of time and BEST the most. This phenomenon can be
explained by noticing that as the exploration of the graph moves further away from the
focal point object class 7., more attributes are generated that have the same properties and,
therefore, approximately the same semantic distance. These large, similar groups of GAs
are far enough away from n. to have approximately the same semantic meaning from the
viewpoint of .. Since BEST must maintain a sorted list, every time a large group of closely
weighted GAs are produced, they must be placed in their proper position in the list. This
requires a large number of traversals and accounts for the decrease in BEST’s performance
as the threshold 7 increases.

6.2.2. An integrated mobile GA evaluator. Within a mobile environment, the mobile
computer could set the semantic distance threshold by a function depending on how much
memory, processing, battery power, and delay the host and user can afford. Therefore,
the mobile computer would be trying to reserve its resources and not waste time or energy
finding GAs that are of little value to the user. BEST can generate the most meaningful GAs
with respect to these limitations. Although the BEST algorithm is more compatible with a
mobile environment, its response-time suffers as the threshold is dynamically increased.
Although our original intention was to replace the currently used DFS algorithm in QBI
with either the BEST or BFS algorithms, our experimentation clearly showed that one al-
gorithm does not meet all the needs of a mobile GA evaluator. Therefore, we propose to
combine these techniques into one integrated mobile GA evaluator. Since each algorithm
only requires a few kilobytes, this proposed integrated evaluator will not require a dramatic
increase in the amount of code kept on the mobile computer. BEST will be the default
algorithm of the mobile GA evaluator, since it does produce a sorted list of GAs. In a mo-
bile environment, as long as a low semantic threshold 7 is computed, the BEST algorithm
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will be used. However, as the limitations of the mobile host are relaxed, the GA evaluator
will switch to a BES that can facilitate a broader, sweeping search of the graph with a
better response-time. Finally, whenever there are few restrictions on the mobile host (e.g.,
when the mobile host is stationary and attached to docking mobility-support station), or the
user wants to examine a large number of GAs, a switch to a “focus” DFS algorithm would
facilitate the exploration of the database using more resources. Therefore, GA evaluator
thresholds can be set in much the same way that the ER threshold was set for the query win-
dow (see Subsection 3.12). As 7 changes dynamically and captures the status of the mobile
host, the search technique used by the GA evaluator will also change to accommodate these
limitations. We are currently investigating this integrated mobile GA evaluator.

7. Related work

Most of the work related to our approach has been done in the areas of database graphical
user interfaces, and data modeling.

In the area of graphical user interfaces a large amount of research has been produced
with the purpose of facilitating user interaction while still maintaining the highly expressive
power of the query language [7, 20]. Most of the proposed systems adopt form, tabular, or
diagram based visual paradigms. Early examples of these types of visual query languages
that use a relational external data model are QBE [35] and G+ [11]. In QBE, the query is
made by filling in templates of relations. Users do not need to remember attribute names or
variable names. Queries are specified by typing example tuples expressing the information
that is being requested. G+ makes use of a diagrammatic paradigm by using a graph whose
edges correspond to the tuples in a relation.

Semantic data models go even further than the relational model in terms of providing
the user with a more abstract logical view of the data. Of these, the ER model [10] is
often used as the external data model in existing visual query systems. GORDAS [12],
QBD* [5], GRAQULA [28, 33], and GQL/ER [34] are examples of graphical visual query
systems that provide the user with an ER diagram of the schema. Queries in these systems
are formulated by drawing nodes and edges to be matched in the schema diagram. That is,
queries are specified as subgraphs of the ER schema diagram with certain nodes and edges
replicated as necessary. Selection conditions and projections are specified as annotations
of the nodes and edges. For example, in GORDAS and QBD*, once a user selects the
entities and relationships of interest, a simplified hierarchical diagram of the schema is
provided in order to aid in the formulation of queries. In general, the difference between
these systems is their varying support in the specification of aggregation, quantification,
and recursion. Further, GQL/ER combines features of the universal relational model and
the ER model without the support of aggregation or quantification. PICASSO [19], on the
other hand, provides an external universal relation data model that interfaces a universal
relational database system. In PICASSO, maximal objects are represented as hyperedges
in a hypergraph which contains textual attribute labels. Queries are formulated via mouse
clicks which reveal pop-up menus that allow for the selection of aggregate and set operators
as well as comparison operators used in predicate formulation. Adding a hyperedge with
the mouse creates a tuple variable and, therefore, no character-type tuple variables are
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necessary. Another visual query system which as QBI is based on a richer semantic model
than the ER model and universal relational model is Ski [21]. In Ski, by means of a set
of semantics operators, users can dynamically construct portions of the database schema
and peruse the schema for related information, having complete access to an underlying
semantic data language. Similar to QBI, this perusal is not performed navigationally but
semantically. As opposed to QBI, Ski is diagram based and supports navigation through
the paths of the underlying database schema.

Compared to diagrammatic visual languages, the ease and effectiveness of QBI with
respect to unsophisticated users was established through an empirical evaluation of QBI
and QBD* [24, 6]. In this study users were classified into unskilled users with little, if any,
training in databases, and skilled ones. The two performance measures used were the time
in seconds to complete a query and accuracy of the query. Each group of users after a short
training session of equal times in using QBI and QBD* were given six queries of different
levels of complexity in natural language. Users were given these queries in different orders
in order to minimize the learning effect. In general, unskilled users did better with QBI
whereas skilled ones felt more comfortable using QBD*, particularly in expressing queries
characterized by a high semantic distance value involving paths of length 4, or more, and with
no cycles. The reason was that skilled users perceived the whole path not as a single complex
function, i.e., GA, but as a sequence of steps that can be manually built and controlled. On
the other hand, there was a significant difference in accuracy and performance for queries
with low semantic distance value or queries involving cycles. In the presence of cycles,
QBD* users get much more confused because they see multiple copies of the same form,
each corresponding to a different occurrence of the same concept (entity or relationship). On
the contrary, in QBI a path corresponds to a GA and every GA is visually represented as a
different icon on the screen. Therefore, when a query expression contains cycles, the user
still perceives a clear distinction among different occurrences of the same concept.

‘When compared to the work done involving icon based visual paradigms, it is evident
that a greater amount of work has been performed using form and diagrammatic paradigms.
However, the small screen space of the typical notebook or palmtop computer and the limited
possibility of using a keyboard, make the iconic approach particularly suitable for the users
of a mobile system. In general, the main difference between QBI and the other iconic
interfaces proposed in the literature [14, 29, 30} is in the way icons are defined and used for
expressing concepts. In particular, other systems do not usually assign uniform semantics
to icons. Also, as opposed to QBI, these systems adopt the extensional browsing approach
(that is, browsing of instances in the remote database) as the principal querying strategy
[27, 29] hence making them unsuitable for mobile environments that are characterized by
low communication bandwidth over expensive wireless communication links.

All visual query interfaces discussed above have been proposed in the context of work-
stations with large screens, graphics capabilities and pointing devices. The need for an
alternative visual query paradigm for mobile, pen-based computers that takes into consid-
eration the requirements of mobile users, such as exploration of a large database schema,
and the limitations of mobile computers, such as small screen and no keyboard, was first
identified in [3]. As opposed to QBI, the proposed alternative is form-based whereas the
external data model is a multi-level semantic data model which uses the universal relation
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approach at different levels to coalesce related information and eliminate low-level infor-
mation not relevant to the user. As stated earlier, the concept of GAs in QBI serves a similar
purpose, coalescing related information of an object from the perspective of the user and
representing it on the screen with an icon.

Recognizing that query languages which require fully specified paths are too restrictive, a
number of authors have proposed various solutions. In [18], path expressions are examined
and form the basis of the XSQL system. XSQL allows the specification of path variables
by means of which incomplete path expressions can be specified. In [17], path expressions
are considered to be abbreviated queries within a user interface to a database system. Given
an ambiguous path expression which could result in multiple possible paths, the task is to
find those completions most likely intended by the user.

The idea of the Universal Relation Model [22, 23, 31] is that access paths are embedded
in attribute names and for every set of attributes X there is a unique basic relation that
the user has in mind. This relation is computed through the Window Function on the set
of attribute names X. Within a Window Function a decision problem concerning which is
the most meaningful attribute is tackled. The choice of assigning a meaning to an attribute
name is based on the analysis of the schema of the underlying database and various kinds
of dependencies. With this approach, the same attribute name can have different meanings
if used in different contexts; as a consequence, even if the user is not required to know the
internal schema of the database, she/he must be aware of the domain of interest.

The idea of presenting to the user a simplified structure of the database by evaluating the
semantics of the attributes, is common to both QBI and the Universal Relation approach.
However, the querying strategy, is slightly different. Instead of assigning a meaning to
an attribute after the query has been specified, QBI uses the semantic distance function to
present to the user all the meaningful attributes before the query is composed. Moreover,
the use of a semantic model and statistical information on the database extension allows the
definition of a richer notion of meaningfulness of an attribute.

8. Conclusions

In this paper, we have described an icon-based query processing facility called QBI, suitable
for mobile users. That is, QBI satisfies all three of the criteria identified in the introduction
for an effective mobile query processing facility:

(1) QBI allows the construction of a database query with no special knowledge of how the
database is structured and where it is located. Its iconic visual query language does
not involve path specification in composing a query. Thus, it is equally useful to both
unsophisticated and expert mobile users.

(2) Users primarily interact with the system with a pointing device, such asapen or amouse,
and compose a query by arranging icons. Thus, it overcomes any size limitations of a
mobile computer while new requirements are not imposed.

(3) QBT’s algorithms, particularly the metaquery tools and GA evaluator, are designed to
effectively operate under limited memory and disk capacity, limited battery power, and
restricted wireless communication bandwidth.
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As mentioned above, we are looking into integrated path computations under resource
constraints suitable for mobile query processing. Further, we are interested in extending
aspects of this work in order to minimize the amount of retrieved and transmitted data over
wireless links.
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