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Abstract

This paper presents a methodology for automating the evaluation of complex hierarchical designs using black-box testing
techniques. Based on an exploration model for design, this methodology generates evaluation tests using a novel semantic
graph data model which captures the relationships between the related design and requirements data. Using these
relationships, equivalent tests are generated and systematically applied to simulations of the pieces of a modular design and
its requirements. These simulations yield two sets of comparable results, enabling evaluation of partial designs of a complex

system early in their design process.
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1. Introduction

The quality of the design for a complex hierarchi-
cal system is largely determined by how well it
meets the needs and desires for which it was created.
These needs, whether implicitly or explicitly stated
in a requirements model, form the basis upon which
the completed system will be judged. The modeled
requirements embody these expectations, and the
quality of the design suffers when either the require-
ments differ from the design expectations (poor anal-
ysis) or the design does not meet its requirements
(poor implementaticn). Worse, design quality is dif-
ficult to assure if the relationships between the re-
quirements and the design are not available to enable
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comparison. Without a record of these relationships
(traditionally referred to as traceability[9], aspects of
the design that do not meet the stated requirements
are difficult to identify.

Further, the lack of traceability information cur-
tails the effectiveness of design quality evaluation.
Conventional design wisdom dictates that quality
design is achieved most effectively by evaluating the
design early in the design process so that repercus-
sions of changes can be limited [4,23,25]. However,
without information that relates any independent por-
tion of the design to the requirements for which it
was created, early testing cannot take place. Portions
of the design, even if completed early cannot be
tested against the requirements directly. Therefore,
this testing usually waits until a sufficiently large
portion of the design, which presumably meets some
obvious requirements, is completed.
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Hence we have two goals for enhancing design
quality:

(1) to develop a database that includes structures for
the maintenance of requirements, design, and
particularly the traceability information, and

(2) to use these structures to evaluate the quality of
the design.

In order to meet the first goal, we develop a
unified semantic graph representation of require-
ments and design data, where the links explicitly
represent relations among the requirements and de-
sign data. The ability to model the relational links
between requirements and design data defines a
framework for developing further computer-aided
support for concurrent development.

We meet our second goal by developing a
methodology that employs this representation to ef-
fect automated functional evaluation testing of inde-
pendent design modules. Successfully automating
functional evaluation testing depends on three issues:
the modularity of the design, links between design
and requirements data, and requirements-based (cor-
rect) results for comparison. Modular designs are
necessary to enable the use of black-box testing
techniques. The links between the design and the
requirements enables the correct values from the
requirements to be automatically associated with the
design variables under test. Correct requirements-
based results can either be selected (i.e., literal-value
requirements such as timing constraints, etc.) or
generated (i.e., simulateable requirements).

In this paper, we present our general methodology
for modular hierarchical systems that is based on the
above two goals. Throughout this paper we will
illustrate the various facets of our approach by apply-
ing it to the design of the Floating-Point Arithmetic
and Logic Unit (FP ALU) for a DLX 32-bit RISC
Microprocessor 10]. This is a modular design based
on the requirements for FP functionality as contained
in the ANSI/IEEE Standard for Binary Floating-
Point Arithmetic [2], and those which can be derived
from standard understandings of computer arithmetic
[16].

The rest of the paper is organized as follows.
Section 2 presents background to this work in the
area of design process modeling, particularly the
Design As Exploration information process model.

Section 3 briefly presents related research in design
and requirements representation and introduces our
graph model which serves to unify these representa-
tions. Section 4 describes a method for automated
functional evaluation. Section 5 illustrates the details
of how we generate functionality tests for the FP
roundoff design. Section 6 summarizes and con-
cludes the paper.

2. Background

The general workflow of the design process can
be broadly modeled by: requirements formulation +
synthesis + analysis + evaluation. When one in-
cludes various forms of process feedback, this is a
reasonable process model of what designers typically
do. This workflow model (with many variations) is
common to most cognitive and management models
of the design process. Our observation is that this
model (implicitly or explicitly) underlies almost all
current software and requirements engineering envi-
ronments, CAD frameworks, and automated design
systems.

While cognitive and management models cer-
tainly have their uses, our focus is on the organiza-
tion, structure and use of the design information, and
not on how a particular set of designers (design
agents) manage or order their activities for producing
that information. A related view of the design pro-
cess is to model design as a search process. While
search-based models can do an effective job of cap-
turing how design problems are solved, they do not
address the interactions between developing what the
design problem is, and finding the solution to that
problem. Our work is geared towards a design pro-
cess model, such as the Design As Exploration (DAE)
model [22], that addresses the information interaction
between the development of and solution to the
design problem.

The Design As Exploration model, shown in Fig.
1, is an attempt to model the nature and character-
istics of the process required to solve design prob-
lems from a knowledge perspective. This model was
intended to serve as a mechanism for developing and
expressing how knowledge is organized and how it
is used and generated during the process of creating
a design. Our main focus in adopting this model is
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on the need to integrate the information used in
design.

In the DAE model, the design process begins with
an identified set of needs or desires that are trans-
formed into an initial requirements description (R).
Design exploration takes place when changes to one
or more of the current requirements (R,), problem
(P), or design (D,) descriptions are made. The
current descriptions are then mapped to the final
descriptions R, and D;. The history of how the P,
R_, and D, descriptions develop is maintained in the
design history, Hj, and the three final descriptions
comprise the Design Description Document (DDD).
The exploration cycle is continued until P, forms a
well-defined problem statement which embodies all
the criteria in R, and the solution to P, specified by
D, satisfies R,. At some point, the design, embodied
in the DDD actually realizes /satisfies the needs or
desires for which the system was created.

The outputs of the exploration process (Rf, D,
H,) have two general uses: either they are applied to
the upper learning loop to extend the knowledge of
the problem domain (X ,,) and /or the knowledge of
how to design in the domain (K ,,); or they are
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applied to the lower analysis loop and are analyzed
for precision, ambiguity, completeness, correctness,
etc. Results also may be used to create a physical
prototype which can serve the same purpose (outer
loop). The model does not dictate how the design
knowledge is created or stored, but rather what kind
of knowledge is generated. For example, the analysis
loop may include evaluation of mathematical mod-
els, generation and use of simulation results, or other
evaluation forms or any combination of these tech-
niques.

For our purposes, the DAE model defines two
fundamental forms of design data: the architectural
design (AD) data used to construct a finished device
(D, and D;) and requirements definition (RD) data
which represent the requirements model (R;, R, and
R,) for the design problem. We utilize the DAE
model because it clearly provides for the support of,
and the interaction between the requirements defini-
tion and the architectural design. The DAE model is
also useful because it explicitly supports evaluation
of the architectural design with respect to the re-
quirements definition. We enhance the DAE model
by providing a richer, unified design data model
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including links between and among the RD and AD
data entities. These enhancements permit the practi-
cal development of software to help automate a path
through the evaluation ioop and thus demonstrate the
usefulness of the model.

Recently, a more formal model of the electronic
design process has been proposed in [13] which
provides a model of sub-problem interaction for the
solution of particolar design problems. This work
parallels the DAE work in that it views the design
process as having two fundamental information com-
ponents, knowledge and data, and provides for the
separation and linking of design object desired be-
havior (RD data) and realization (AD data). How-
ever, this work takes a cognitive approach that views
design as a search process, and thus does not address
the issues involved with simultaneously developing
the requirements for and the solution to the design
problem being solved.

3. A unified representation for requirements and
design

Following the DAE model, our data model takes
the view that the critical aspects of data representa-
tion are the relationships among and between re-
quirements (RD) and design (AD) data. We use a
semantic graph to represent these relationships. We
use links in a graph to represent a relationship and
maintain the necessary information about the rela-
tionship, a feature we rely on heavily for test genera-
tion. This is a unified approach to design representa-
tion, because all of the information and the relation-
ships between different abstraction levels are main-
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tained in the same database {15]. Our unified database
has been developed using ODE [5], and its O + +
language, which is a persistent superset of C + +.

3.1. Design representation

Since design representation work tends to be do-
main-specific, the AD data representation work for
computer hardware has mostly been in the area of
VLSI CAD databases. Recent research has focused
on the efficient representation and retrieval of design
information. A useful example is the Version Data
Model [14], which explicitly considers eguivalence,
configuration and version relationships as represen-
tational dimensions of design information (see panel
(a) of Fig. 2). Configuration relationships support the
design hierarchy, equivalence relationships describe
how one design description is similar to another
design description for the same design object, and
version relationships describe how one variant of a
design entity is related to another variant of the same
entity.

An example of a portion of the DLX FP ALU
design captured in our unified data model is shown
in Fig. This figure shows the configuration links that
trace the hierarchy of the VHDL (VHSIC Hardware
Description Language) [11] entities for the ALU, as
well as several version links from the Add-to-in-
finite-precision entity, with the non-current versions
linked to the current version. While the versions of
this entity are all shown linked to the current entity,
they could also be arranged in a tree-like fashion.
Fig. 3 also contains three equivalent representations
for the FP + (floating-point division) entity: one in
each VHDL, Magic [20], and Spice [19]. Each of
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Fig. 2. (a) Version Data model (AD)\ hspace{Smm}(b) Requirements Data model (RD).
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Fig. 3. Different views of the DLX floating-point ALU design.

these entities are connected by equivalence links,
indicating that the representations for the entity are
functionally equivalent. For the FP + AD entity, we
show a Spice netlist derived from a Magic layout
which in turn has been derived from the VHDL
architecture /entity pair. Our prototype system sup-
ports VHDL design entities.

3.2. Requirements representation

Most requirements representation work has fo-
cused on the development of requirements frame-
works, e.g., [6]. Comparing the design data model
and these frameworks, we identify a similar set of
relationships that exists for requirements data, as
shown in Fig. 2b. Requirements entities include the
three types of relationships that design entities have:
configuration (is-part-of), equivalence (same-as) and
version (derived-from). In addition, our requirements
model supports viewpoint (related-to) relationships,
which are used to distinguish different stakeholder’s

views on the requirements of the system being devel-
oped. This data model allows requirements informa-
tion to be stored using different description types,
such as entity-relationship [6] or line-item [1], and
allows representations for the connections among the
RD entities.

Fig. 4 shows an example of RD in our unified
data model, representing some line-item require-
ments and their equivalent simulateable representa-
tions. Shown are fragments of the requirements for
floating-point number formats required for the FP
ALU employed in the DLX. The ANSI/IEEE FP
Standard, the required FP number Formats, as well
as the particular Sezs of Values, are depicted at the
top right-hand comer of the figure. Each of the
number formats take on particular Sets of Values; for
which Precision, Max and Min Exponent values,
etc., are defined.

Also shown are the Basic Formats requirements
which are comprised of configuration links to field
definitions and a set of equivalence links to formal
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Fig. 4. Example of a requirements hierarchy showing configuration and equivalence relations.

requirements constructs. The equivalence relations
link simulateable specification statements to particu-
lar requirements, e.g., DATA: SP_EXPONENT_
OFFSET, is associated with the Exponent Bias = 127
requirement. Fig. 4 depicts one viewpoint, but no
version relations.

We are particularly interested in simulateable
requirements in order to be effective in generating
functional evaluation tests. Different simulateable re-
quirement modeling languages have been proposed
[24], and the simulateable requirements modeling
language we have integrated into our system is the
Requirements Specification Language (RSL) [1].
RSL’s availability, its ability to support in-line re-
quirements and its simulation semantics make it a
useful example of the type of requirements modeling
languages that our unified data model can support.

RSL has its limitations in that it belongs to a class
of system-specification languages whose improper
use can lead to low flexibility in the design, as the
inherent over-specification obstructs change [t71.
However, RSL has reasonable simulation semantics
which we employ to demonstrate the value of being
able to incrementally test the implementation of a
developing design against the requirements model.

3.3. Linking the requirements and the design

A key aspect to being able to use any simulate-
able requirements model effectively is the ability to
focus the simulation on the appropriate part of the
requirements model. Here the relational links within
and between the RD and AD data classes serve a key
role by providing the means for identifying the sub-
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set of requirements applicable to the design module
under consideration. When properly constructed,
these relational links are termed traceability links
because they provide a thread of origin from the
implementation to the requirements [9], and serve as
a validation that the design does indeed do what it
was intended to do.

We identify and support four categories of trace-
ability links, and identify their roles in tracing through
the RD and AD data. Two of these categories repre-
sent intra-dependencies, that is, dependencies within
the RD and AD data classes. Similarly, two cate-
gories represent inter-dependencies, that is, the de-
pendencies between the design data classes. For
example, [RD — AD] denotes the link types that
indicate how some AD data is dependent upon some
RD data.

Rational Dependency [RD — AD]: purpose of design
object is tied to a particular (non-null) set of require-
ments; normally called forward traceability links [21].
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Technical Dependency {AD — AD]: dependence of
one design object on another to perform/meet its
requirements. This link relates to the design entities’
combined ability to do the right thing — and typically
encompasses the interface/connections internal to
the design. These links also include the configuration
relations among the design entities.

Contextual Dependency [RD — RD]: purpose of re-
quirement object is tied to other requirements ob-
jects, and includes the configuration relations among
RD data. Can include requirements that are derived
(or implicitly stated) in the environment, such as
where optative descriptions imply (or rely upon)
assertive descriptions within the requirements model
[12].

Implicative Dependency [AD — RD]: assertion of a
design entity implies other requirements /constraints
on the design. A typical example would be where
design decisions affect/influence the requirements
definitions. Similar to contextual dependencies, these
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Fig. 5. Linked requirements and design entities.
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form one class of links normally called reverse trace-
ability links [21].

Fig. 5 illustrates these four types of links. Several
rational dependencies are shown, e.g., the link from
the FP + _Completion RD entity to the FP+ AD
entity. This link identifies how, for the FP + (Float-
ing-Point addition) design to succeed, it must address
the FP + _Completion requirement. Technical de-
pendencies are shown linking the SP_Format
(Single-Precision Format) and DP_Format
(Double-Precision Format) AD entities to the Un-
pack AD entity, indicating that the operation of
Unpack depends upon the implementation details of
the two format entities. Contextual dependencies are
shown linking the Arithmetic RD entity to the Sup-
ported-Operations and FP + _Speed RD entities.
This contextual link captures the notion that details
of the arithmetic requirements are addressed by the
Supported_Operations and FP + _Speed RD enti-
ties. Finally, an implicative dependency is shown
linking the DP_Format AD entity and the
Support_SP_and_DP_only RD entity. This is an
implicative dependency because the DP_Format is
a design decision, and is not explicitly required for
the DLX. While rooted in the requirements definition
for the DLX, the DP_Format influences the require-
ments that relate to the support required for all FP
number formats.

To summarize, our semantic graph model is
unique in that it identifies the classes of relationships
that need to be maintained within and between the
requirements and design data. In each part of the
model, we use links to both represent a relationship
and maintain the necessary information about the
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relationship. One key benefit of the model is high-
lighted in the next section, where we illustrate the
ability to automatically generate black-box func-
tional evaluation tests.

4. Automated functional evaluation

Functional evaluation testing answers the ques-
tion, ‘does a particular part of the design function
correctly?” We approximate ‘correct” behavior by
simulating the requirements associated with the de-
sign entity in question. Since we focus on evaluating
a piece of the design with respect to an identified set
of requirements and not with its internal workings,
black-box testing techniques are most appropriate.

We implement black-box functional evaluation
testing by employing boundary-value analysis and
equivalence partitioning techniques [18]. While this
is not the only test-case design strategy available (or
even necessarily the most effective [3]), it shows
promise of being able to uncover many errors at a
reasonable cost, where cost is the number of test runs
per error discovered. In general, this type of black-
box testing involves the generation of a black-box
testset, the application of this testset to generate both
‘correct’ (requirements simulation) and implemented
(design simulation) results, and finally a comparison
of these two sets of results. Our focus is on automat-
ing one such black-box test-generation technique for
requirements-based tests.

This form of test-generation presupposes the exis-
tence of a simulateable requirements representation,
a simulateable design representation and input classes
that map equivalently to both the requirements and
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©)
Roundoff
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Fig. 6. Black-box testset generation for FP ALU roundoff.
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the design simulations. In our case, the testset gener-
ation and application process is divided into six
steps.

The first step is to generate a simulateable re-
quirements specification (SRS) for the design entity
under consideration. As the design is not necessarily
directly traceable to the simulateable requirements,
Fig. 6 shows the three substeps involved: tracing to
the set of related requirements (la), tracing to the
subset of simulateable (RSL) requirements (1b), and
constructing the SRS (1¢).

The second step is to create an 1/0 specification
based on the names that will be used in each of the
requirements and design simulations (2). We use the
semantic link information for insuring that the I/0
specification includes the AD names (or fields) that
relate to the RD names that will be used in the
testset. This is a key factor for ensuring that the test
results generated from each simulation are directly
comparable.

Effective black-box testing depends on tailoring
the testset to the design entity under consideration.
We use information from the (design) I/0 specifica-
tion and the SRS to generate a testset (3) tailored to
the design entity. This involves identifying the input
classes from the SRS and [/O specification and
selecting appropriate boundary values for each input
class, thus the class names map from the SRS (RD),
and parallel the design (AD) names. Input classes
consist of input ranges, determined by the data type
used in the design.

Simple heuristics based on the RD types are

Simulateable
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Specification

Roundoff
Blackbox
Testset

Eédﬁiréments n
U 'Simulation:

Design..
‘Simulation

applied to the input ranges of each class to determine
what values to test for. E.g., for bit strings the min,
min + 1, mid, max — 1 and max values are tried; for
enumeration types, all enumeration values are used.
These combinations are then checked for redundan-
cies in order to keep the generated testset from
growing unnecessarily large. Other heuristics could
be applied as well.

Fig. 7 depicts the application of the generated,
design-specific testset for performance evaluation.
The fourth step in the process is to apply the testset
to the SRS to generate the ‘correct’ results (4).
Similarly, the fifth step is to apply the testset to a
simulation of the implemented design to generate the
implementation results (5). Since we provide for a
data model that supports many forms of design and
requirement representations, applying a testset to a
particular representation involves selecting/gener-
ating a simulator for the representation and mapping
the testset values to the inputs to the simulation. For
example, RSL requires a custom simulator for each
SRS, whereas VHDL might have two types of simu-
lators (behavioral and structural) depending on the
design.

The last step of the process is to compare the
simulation results to the correct results (6). The
presentation and comparison of the test results is
important, as all discrepancies need to be high-
lighted, and the individual tests made available to the
designer. We do not address the interface issues, as
our emphasis is on generating the information rather
than presentation.

‘Correct’
Results
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Implementaion
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Fig. 7. Roundoff testset application for performance evaluation.
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Our functional evaluation methodology is effec-
tive if either the requirements linked to the design
trace to a set of simulateable requirements or to
explicit functional values (e.g., measurable con-
straints like time, value ranges) where the latter is a
topic of future work. In our prototype implementa-
tion [8], we linked the design variables directly to
their (respective) simulateable requirements. How-
ever, in the general case design variables could be
linked to any requirement, and graph-tracing algo-
rithms could be employed to trace from any require-
ment to its derivative simulateable requirements.

This methodology focuses on the evaluation of
partial designs to enable the use of requirements-
based testing early in the design process. However,
what constitutes a partial design is a process-mana-
gement issue. A partial design need only have a
clearly defined module interface, but may in fact
consist of several (already tested) partial designs.
The potential exists for exponential growth in the
size of the testset(s) due to growth in the interface to
the (now larger) partial design. However, if the
designers use proper modularity in defining their
partial designs, then much of this problem is allevi-
ated, and the testsets for the larger partial design will
serve as a form of integration testing, and validate
the sum of the parts.

Add:

Similarly, when automated functional testing
should occur is also a process-specific (management)
issue. Our work shows that automated functional
evaluation testing of a partial design is possible,
given simulateable requirements, a modular design,
and links between design and requirements data.

5. Roundoff example

In this section, we illustrate the evaluation of an
isolated part of a design using our methodology.
Returning to our example of a floating point arith-
metic and logic unit (FP ALU), consider the imple-
mentation of roundoff, a small yet important aspect
of the design of the FP ALU in the DLX. The design
of our FP Adder was broken down into six stages, of
which the roundoff was only one. The other five are:
unpack, pre-normalization, add-to-infinite-precision,
post-normalization, and post-result (as shown in Fig.
3). Our goal is to evaluate the roundoff portion of the
design, independent of the rest of the design. For
clarity, we present a brief description of FP adder
operation.

The two FP numbers at the top of Fig. 8 are
shown represented in the IEEE single-precision for-
mat Before Unpacking. In the Pre-Normalization

1.11100001111000011110000 x 2 0

-4

1.11100001111000011111000 x 2

Before Unpacking:

A: 0 01111111 11100001111000011110000
B: 0 01111011 11100001111000011111000

Pre-Normalization: Lt;’7,‘7
A: 0 00000000 1.11104001111000011110000 © 0

B: 0 00000000 0.00011110000111100001111 1 0
Sign Exponent Fraction Round Sticky

Add-to-infinite-precision:

0 00000000 f.11118101180100801001¢11 1 0
Roundoff:

0 00000001 1.00000000000000000000000
Post Normalization:

0 10000000 1.00000000000000000000000
Result Posted:

0 10000000 00000000000000000000000
Fig. 8. FP Addition with Round-to-nearest-even.
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stage, they are converted to have a signed exponent,
and the smaller of the two numbers is shifted to have
the same exponent as the larger. When added, these
two pre-normalized numbers create an Add-fo-in-
finite-precision sub-result that will cause the Round-
off stage to increment the exponent. In Post Normal-
ization, the value is checked, and the corrected expo-
nent is converted from signed to offset convention.
Here we assume the default Round-To Nearest Even
mode. Finally, the leading bit of the mantissa is
trimmed, and the Result Posted.

Our focus is on the design of the roundoff stage
for single-precisioni values in all four mandated
roundoff modes (round-to-nearest-even, round-to-
positive-infinity, round-to-negative-infinity, and
round-to-zero). Because we want to evaluate the
roundoff design early in the design process, we want
to test it independently of the rest of the design. To
this end, we follow the testset generation procedure
(Fig. 6) to generate a roundoff SRS and 1/0 specifi-
cation from the linked RD data, and use this informa-
tion to generate a testset — yielding six input classes.

The input class names for the roundoff testset
come from the linked requirements entities: mode,
sign, exponent, round, fraction, and sticky. The
data types used to define the ranges for the black-box
input classes come from the corresponding 1/0
specification variables: Mode(l downto 0), SPost-
Norm, EPostNorm(7 downto 0), MPostNorm(0),
MPostNorm(23 downto 1) and StickyPN respec-
tively. Before testset reduction, these six input classes
would each have five potential values: Min, Min + 1,
Mid, Max — I, and Max. For example, the VHDL
designer represented the post-normalized exponent
field ( EPostNorm) as an eight-bit value, which would
be mapped to the five values: 00000000, 00000001,
01111111, 11111110, and 11111111.

Without testset reduction, this technique would
yield 5% = 15625 test cases. However, by using the
RD type information accessible via the traceability
link, we can determine that mode is a control vari-
able and is associated with the four required FP
rounding modes, sign is a single bit having exactly
two values, exponent is a string of bits which can
take on the five specified test values, round has
exactly two values, fraction takes on five values,
and sticky has exactly two values. This yields a
testset containing 4 X 2 X 5 X 2 X 5 X 2 = 800 cases.

Table 1
Reduced input test classes and values for FP roundoff

Class name  Values Count Notes

[design name]

Mode 00, 01, 10, 11 4 Enumerate

[Mode] controls

Sign 0,1 2 Reduces

[SPost- Min/Max

Norm}

Exponent 00000000, 00000001, Min, Min+ 1

[EPost- 02222222, 5 Mid

Norm)] 11111110, 11111111 Max- 1, Max

Round 0,1 2

[MPost-

Norm(0)]

Fraction 111111 EIt111titit, Max

[MPost- 11111111111111111111110, Max-1

Norm

23.1)] Oft11111111111111111111, 5 Mid
00000000000000000000001, Min+1
00000000000000000000000, Min

Sticky 0,1 2

[Sticky-

PN]

These input classes and their corresponding val-
ues and ranges are shown in Table 1 which summa-
rizes the reduced testset for round. The values de-
picted were used to generate a set of equivalent SRS
and design simulation inputs, which in turn were
used to calculate the roundoff requirements simula-
tion (correct) and design simulation results.

Fig. 9 presents parts of the test results for the
VHDL design entity round. Specifically, the figure
depicts several test cases (identified by the unique
min/max test value combinations) for the required
rounding mode RTNE (Round To Nearest Even).
The design simulation output variable is round, and
the correct results are shown in the correct round =

- output line.

The summary results for test cases 19 and 20 of
Fig. 9 show discrepancies between the correct results
(correct tound = - - - ) and the implemented results
(round= ---). As it turns out, these two errors
were caused by an incorrect exponent increment case
in the original behavioral design for roundoff. This
extraneous code was determined to be the cause of
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Test mode sign expn frac round sticky

Case 18 RTNE min min max min max
correct round = 00000000011111141114111441411111

round = 00000000011141111111111111111114
time = 36000 = 3600.0ns
Case 19 RTNE min min max max min

correct round = 00000000100000000000000000000000

round = 00001100100000000000000000000000
time = 38000 = 3800.0ns
Case 20 RTNE min min max max max

00000000100000000000000000000000
00001100100000000000000000000000
4000.0ns

correct round
round
time = 40000

Fig. 9. Summary black-box test results for FP ALU roundoff
showing two detected errors.

the four other errors detected by the 800-case testset
(test cases 59, 60, 159, and 160, not shown here).

Once the extraneous code was removed, subse-
quent use of the testset discovered no more errors.
Here the discovery of the initial error, its correction,
and subsequent regression testing was successful in
establishing confidence in the roundoff design inde-
pendent of the completion of the rest of the ALU
design. By enabling the discovery of discrepancies
early in the design process, this example demon-
strates (on a small scale) how our requirements-based
evaluation methodology can be effective in improv-
ing the quality of a design.

6. Summary and conclusions

In this paper, we have presented an information
process model for the design of complex hierarchical
systems supported by a unified semantic graph repre-
sentation that links requirements and design data.
Based on this data model, we presented a methodol-
ogy for automating functional evaluation testing of
complex hierarchical systems in an incremental and
modular fashion using black-box testing techniques.
We also presented the details of an example showing
the generation of black-box functional tests for the
roundoff of a floating-point adder.

The semantic graph data model presented success-
fully supports requirements, design and traceability
information. Since the semantic graph was imple-
mented in a object-oriented database it can support
large designs with numerous relations. Further, the
use of an OODB representation of the semantic
model enabled the automation of a functional evalua-

tion methodology for partial designs of complex
hierarchical systems. The functional evaluation
methodology presented is both useful in identifying
design errors and is practical to implement. The
methodology is also scalable, that is it uses hierarchy
to keep the size of the tests manageable. The
methodology is dependent on having both the evolv-
ing requirements and design data in the database.
While providing the means to capture this informa-
tion in the database is itself non-trivial, we have
shown the benefits of this effort in effecting quality
results in an dynamic design process environment.
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