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Abstract 

This paper presents a methodology for automating the evaluation of complex hierarchical designs using black-box testing 
techniques. Based on an exploration model for design, this methodology generates evaluation tests using a novel semantic 
graph data model which captures the relationships between the related design and requirements data. Using these 
relationships, equivalent tests are generated and systematically applied to simulations of the pieces of a modular design and 
its requirements. These simulations yield two sets of comparable results, enabling evaluation of partial designs of a complex 
system early in their design process. 
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1. Introduction 

The quality of the design for a complex hierarchi- 

cal system is largely determined by how well it 
meets the needs and desires for which it was created. 
These needs, whether implicitly or explicitly stated 
in a requirements model, form the basis upon which 
the completed system will be judged. The modeled 
requirements embody these expectations, and the 
quality of the design suffers when either the require- 
ments differ from the design expectations (poor anal- 
ysis) or the design does not meet its requirements 
(poor implementation). Worse, design quality is dif- 
ficult to assure if the relationships between the re- 
quirements and the design are not available to enable 
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comparison. Without a record of these relationships 

(traditionally referred to as traceability[9], aspects of 
the design that do not meet the stated requirements 
are difficult to identify. 

Further, the lack of traceability information cur- 
tails the effectiveness of design quality evaluation. 
Conventional design wisdom dictates that quality 
design is achieved most effectively by evaluating the 
design early in the design process so that repercus- 
sions of changes can be limited [4,23,25]. However, 
without information that relates any independent por- 
tion of the design to the requirements for which it 

was created, early testing cannot take place. Portions 
of the design, even if completed early cannot be 
tested against the requirements directly. Therefore, 
this testing usually waits until a sufficiently large 
portion of the design, which presumably meets some 
obvious requirements, is completed. 
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Hence we have two goals for enhancing design 
quality: 

( 1) to develop a database that includes structures for 
the maintenance of requirements, design, and 

particularly the traceability information, and 
(2) to use these structures to evaluate the quality of 

the design. 

In order to meet the first goal, we develop a 
unified semantic graph representation of require- 
ments and design data, where the links explicitly 
represent relations among the requirements and de- 
sign data. The ability to model the relational links 
between requirements and design data defines a 

framework for developing further computer-aided 
support for concurrent development. 

We meet our second goal by developing a 
methodology that employs this representation to ef- 
fect automated functional evaluation testing of inde- 
pendent design modules. Successfully automating 
functional evaluation testing depends on three issues: 
the modularity of the design, links between design 
and requirements data, and requirements-based (cor- 
rect) results for comparison. Modular designs are 
necessary to enable the use of black-box testing 

techniques. The links between the design and the 
requirements enables the correct values from the 
requirements to be automatically associated with the 
design variables under test. Correct requirements- 
based results can either be selected (i.e., literal-value 

requirements such as timing constraints, etc.) or 
generated (i.e., simulateable requirements). 

In this paper, we present our general methodology 
for modular hierarchical systems that is based on the 
above two goals. Throughout this paper we will 
illustrate the various facets of our approach by apply- 
ing it to the design of the Floating-Point Arithmetic 
and Logic Unit (FP ALU) for a DLX 32-bit RISC 

MicroprocessofilO]. This is a modular design based 
on the requirements for FP functionality as contained 
in the ANSI/IEEE Standard for Binary Floating- 
Point Arithmetic [2], and those which can be derived 
from standard understandings of computer arithmetic 

[161. 
The rest of the paper is organized as follows. 

Section 2 presents background to this work in the 
area of design process modeling, particularly the 
Design As Exploration information process model. 

Section 3 briefly presents related research in design 
and requirements representation and introduces our 
graph model which serves to unify these representa- 
tions. Section 4 describes a method for automated 
functional evaluation. Section 5 illustrates the details 
of how we generate functionality tests for the FP 

roundoff design. Section 6 summarizes and con- 
cludes the paper. 

2. Background 

The general workflow of the design process can 
be broadly modeled by: requirements formulation + 

synthesis + analysis + evaluation. When one in- 
cludes various forms of process feedback, this is a 

reasonable process model of what designers typically 
do. This workflow model (with many variations) is 
common to most cognitive and management models 
of the design process. Our observation is that this 
model (implicitly or explicitly) underlies almost all 
current software and requirements engineering envi- 
ronments, CAD frameworks, and automated design 
systems. 

While cognitive and management models cer- 
tainly have their uses, our focus is on the organiza- 
tion, structure and use of the design information, and 
not on how a particular set of designers (design 
agents) manage or order their activities for producing 
that information. A related view of the design pro- 

cess is to model design as a search process. While 
search-based models can do an effective job of cap- 

turing how design problems are solved, they do not 
address the interactions between developing what the 
design problem is, and finding the solution to that 
problem. Our work is geared towards a design pro- 

cess model, such as the Design As Exploration (DAE) 
model [22], that addresses the information interaction 
between the development of and solution to the 

design problem. 
The Design As Exploration model, shown in Fig. 

1, is an attempt to model the nature and character- 
istics of the process required to solve design prob- 
lems from a knowledge perspective. This model was 
intended to serve as a mechanism for developing and 
expressing how knowledge is organized and how it 
is used and generated during the process of creating 
a design. Our main focus in adopting this model is 
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on the need to integrate the information used in 
design. 

In the DAE model, the design process begins with 
an identified set of needs or desires that are trans- 
formed into an initial requirements description (I?;). 
Design exploration takes place when changes to one 

or more of the current requirements (I?,.), problem 
( P,>, or design (II,> descriptions are made. The 
current descriptions are then mapped to the final 
descriptions R, and D/. The history of how the PC, 

R,, and DC descriptions develop is maintained in the 
design history, H,., and the three final descriptions 
comprise the Design Description Document (DDD). 

The exploration cycle is continued until P, forms a 
well-defined problem statement which embodies all 
the criteria in R,. and the solution to PC specified by 
DC satisfies R,.. At some point, the design, embodied 
in the DDD actually realizes/satisfies the needs or 
desires for which the system was created. 

The outputs of the exploration process CR/, D,, 

H,.) have two general uses: either they are applied to 
the upper learning loop to extend the knowledge of 
the problem domain ( Kdn,) and/or the knowledge of 
how to design in the domain (K,,,); or they are 

l)l, 
Background Knowledge 

applied to the lower analysis loop and are analyzed 
for precision, ambiguity, completeness, correctness, 
etc. Results also may be used to create a physical 
prototype which can serve the same purpose (outer 
loop). The model does not dictate how the design 
knowledge is created or stored, but rather what kind 
of knowledge is generated. For example, the analysis 

loop may include evaluation of mathematical mod- 
els, generation and use of simulation results, or other 
evaluation forms or any combination of these tech- 
niques. 

For our purposes, the DAE model defines two 
fundamental forms of design data: the architectural 

design (AD) data used to construct a finished device 
(0, and Or> and requirements definition (RD) data 
which represent the requirements model (Ri, R,. and 
Rr> for the design problem. We utilize the DAE 
model because it clearly provides for the support of, 

and the interaction between the requirements defini- 
tion and the architectural design. The DAE model is 
also useful because it explicitly supports evaluation 
of the architectural design with respect to the re- 
quirements definition. We enhance the DAE model 
by providing a richer, unified design data model 
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including links between and among the RD and AD 
data entities. These enhancements permit the practi- 

cal development of software to help automate a path 
through the evaluation loop and thus demonstrate the 
usefulness of the model. 

Recently, a more formal model of the electronic 
design process has been proposed in [13] which 
provides a model of sub-problem interaction for the 
solution of particular design problems. This work 
parallels the DAE work in that it views the design 
process as having two fundamental information com- 
ponents, knowledge and data, and provides for the 
separation and linking of design object desired be- 
havior (RD data) and realization (AD data). How- 
ever, this work takes a cognitive approach that views 

design as a search process, and thus does not address 
the issues involved with simultaneously developing 
the requirements for and the solution to the design 
problem being solved. 

tained in the same database [ 151. Our unified database 

has been developed using ODE [5], and its 0 + + 
language, which is a persistent superset of C + + . 

3. I. Design representation 

3. A unified representation for requirements and 
design 

Since design representation work tends to be do- 
main-specific, the AD data representation work for 
computer hardware has mostly been in the area of 
VLSI CAD databases. Recent research has focused 
on the efficient representation and retrieval of design 
information. A useful example is the Version Data 
Model [ 141, which explicitly considers equivalence, 
configuration and version relationships as represen- 
tational dimensions of design information (see panel 

(a) of Fig. 2). Configuration relationships support the 
design hierarchy, equivalence relationships describe 
how one design description is similar to another 
design description for the same design object, and 
version relationships describe how one variant of a 
design entity is related to another variant of the same 
entity. 

Following the DAE model, our data model takes 
the view that the critical aspects of data representa- 
tion are the relationships among and between re- 
quirements (RD) and design (AD) data. We use a 

semantic graph to represent these relationships. We 
use links in a graph to represent a relationship and 
maintain the necessary information about the rela- 
tionship, a feature we rely on heavily for test genera- 
tion. This is a un$ed approach to design representa- 
tion, because all of the information and the relation- 
ships between different abstraction levels are main- 

An example of a portion of the DLX FP ALU 
design captured in our unified data model is shown 
in Fig. This figure shows the configuration links that 
trace the hierarchy of the VHDL (VHSIC Hardware 
Description Language) [l I] entities for the ALU, as 
well as several version links from the Add-to-in- 
jhite-precision entity, with the non-current versions 
linked to the current version. While the versions of 
this entity are all shown linked to the current entity, 
they could also be arranged in a tree-like fashion. 
Fig. 3 also contains three equivalent representations 
for the FP + (floating-point division) entity: one in 
each VHDL, Magic [20], and Spice [19]. Each of 
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Fig. 2. (a) Version Data model (AD)\ hspace{5mm)(b) Requirements Data model (RD). 
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Architectural Design 
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Fig. 3. Different views of the DLX floating-point ALU design. 

these entities are connected by equivalence links, 
indicating that the representations for the entity are 
functionally equivallent. For the FP + AD entity, we 
show a Spice netlist derived from a Magic layout 
which in turn has been derived from the VHDL 
architecture/entity pair. Our prototype system sup- 
ports VHDL design entities. 

3.2. Requirements representation 

Most requirements representation work has fo- 
cused on the development of requirements frame- 
works, e.g., [6]. Comparing the design data model 
and these frameworks, we identify a similar set of 
relationships that e:xists for requirements data, as 
shown in Fig. 2b. Requirements entities include the 
three types of relationships that design entities have: 
configuration (is-part-of), equiualence (same-as> and 
version (derived-from). In addition, our requirements 
model supports viewpoint (related-to) relationships, 
which are used to d.istinguish different stakeholder’s 

views on the requirements of the system being devel- 

oped. This data model allows requirements informa- 
tion to be stored using different description types, 
such as entity-relationship [6] or line-item [l], and 
allows representations for the connections among the 
RD entities. 

Fig. 4 shows an example of RD in our unified 
data model, representing some line-item require- 
ments and their equivalent simulateable representa- 
tions. Shown are fragments of the requirements for 
floating-point number formats required for the FP 
ALU employed in the DLX. The ANSI/IEEE FP 
Standard, the required FP number Formats, as well 

as the particular Sets of Values, are depicted at the 
top right-hand comer of the figure. Each of the 
number formats take on particular Sets of Values; for 
which Precision, Max and Min Exponent values, 
etc., are defined. 

Also shown are the Basic Formats requirements 
which are comprised of configuration links to field 
definitions and a set of equivalence links to formal 
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Requirements Definition 
Entities 

/-- 
._____------- .-~. ~---._.____ 

‘\ ANSI/EIX FP Standard 
_.-_’ /J 

L” ,___. .-.- --__ 

DATA.LlNPACKED_SP_SIGNIFICAND_LENGTH. 
LOCLLIlv:GLOBAL. 

TYPF:INlEFEA. 

INITIAL VALUE:24 
____---- 

- ------- 
----__-A ___.. __ .._ .__-_ ._.. -. 

DATA.UNPACKED_EXPDNENT_A. 
LOCALITY: LOCAL. 

DATA: SP_EXPONENT_OFFSET. 
LOCAtITY:GLOBAL. ___._ -_.-_-_.-..-_ ._.--- 

‘,YPE:INTEGER. FILE:UNPACKED_SP_SIGNlFlCAND_A. 
LOCALITY:LOCAL. 

CONTAINS: 
OATA: UNPACKED_RIl_VALUE 

DAIA: UNPACKED_SP_SIGNIFICANO_BIl_POSlllON. 

OAOERED BY: 
DATA: UNPACKED_SP_SIGNlFICAND_fii7_l’OSlllON 

Fig. 4. Example of a requirements hierarchy showing configuration and equivalence relations. 

requirements constructs. The equivalence relations 
link simulateable specification statements to particu- 
lar requirements, e.g., DATA: SP_EXPONENT_ 

OFFSET, is associated with the Exponent Bias = 127 
requirement. Fig. 4 depicts one viewpoint, but no 

version relations. 
We are particularly interested in simulateable 

requirements in order to be effective in generating 
functional evaluation tests. Different simulateable re- 
quirement modeling languages have been proposed 
[24], and the simulateable requirements modeling 
language we have integrated into our system is the 
Requirements Specification Language (RSL) [ I]. 
RSL’s availability, its ability to support in-line re- 
quirements and its simulation semantics make it a 
useful example of the type of requirements modeling 
languages that our unified data model can support. 

RSL has its limitations in that it belongs to a class 
of system-specification languages whose improper 
use can lead to low flexibility in the design, as the 
inherent over-specification obstructs change [ 171. 
However, RSL has reasonable simulation semantics 
which we employ to demonstrate the value of being 
able to incrementally test the implementation of a 
developing design against the requirements model. 

3.3. Linking the requirements and the design 

A key aspect to being able to use any simulate- 
able requirements model effectively is the ability to 
focus the simulation on the appropriate part of the 
requirements model. Here the relational links within 
and between the RD and AD data classes serve a key 
role by providing the means for identifying the sub- 
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set of requirements applicable to the design module Technical Dependency [AD + AD]: dependence of 
under consideration. When properly constructed, one design object on another to perform/meet its 
these relational links are termed traceability links requirements. This link relates to the design entities’ 
because they provide a thread of origin from the combined ability to do the right thing - and typically 
implementation to the requirements [9], and serve as encompasses the interface/connections internal to 
a validation that the design does indeed do what it the design. These links also include the configuration 
was intended to do. relations among the design entities. 

We identify and support four categories of trace- 
ability links, and identify their roles in tracing through 
the RD and AD data. Two of these categories repre- 
sent intra-dependencies, that is, dependencies within 
the RD and AD data classes. Similarly, two cate- 
gories represent infer-dependencies, that is, the de- 
pendencies between the design data classes. For 
example, [RD + AD] denotes the link types that 
indicate how some AD data is dependent upon some 

RD data. 

Contextual Dependency [RD + RDI: purpose of re- 
quirement object is tied to other requirements ob- 
jects, and includes the configuration relations among 
RD data. Can include requirements that are derived 
(or implicitly stated) in the environment, such as 

where optative descriptions imply (or rely upon) 
asser5ve descriptions within the requirements model 
[12]. - 

Implicative Dependency [AD -+ RDI: assertion of a 
design entity implies other requirements/constraints 
on the design. A typical example would be where 
design decisions affect/influence the requirements 
definitions. Similar to contextual dependencies, these 

Rational Dependency [RD -+ AD]: purpose of design 
object is tied to a particular (non-null) set of require- 
ments; normally called forward traceability links [2 I]. 

Requirements Definition 
Entities 

Post-normalization 

_--------- ---- -___--2 

Architectural Desig.a 
Entities 

Fig. 5. Linked requirements and design entities. 
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form one class of links normally called reverse trace- 
ability links [21]. 

Fig. 5 illustrates these four types of links. Several 
rational dependencies are shown, e.g., the link from 
the FP + _Completion RD entity to the FP + AD 
entity. This link identifies how, for the FP + (Float- 

ing-Point addition) design to succeed, it must address 
the FP + _Completion requirement. Technical de- 
pendencies are shown linking the SP_Format 

(Single-Precision Format) and DP_Format 

(Double-Precision Format) AD entities to the Un- 

pack AD entity, indicating that the operation of 
Unpack depends upon the implementation details of 
the two format entities. Contextual dependencies are 
shown linking the Arithmetic RD entity to the Sup- 

ported-operations and FP + -Speed RD entities. 
This contextual link captures the notion that details 
of the arithmetic requirements are addressed by the 
Supported_Operations and FP + -Speed RJI enti- 
ties. Finally, an implicative dependency is shown 

linking the DP_Format AD entity and the 
Support_SP_and_DP_only RD entity. This is an 
implicative dependency because the DP_Format is 

a design decision, and is not explicitly required for 
the DLX. While rooted in the requirements definition 
for the DLX, the DP_Format influences the require- 
ments that relate to the support required for all FP 
number formats. 

To summarize, our semantic graph model is 
unique in that it identifies the classes of relationships 
that need to be maintained within and between the 
requirements and design data. In each part of the 
model, we use links to both represent a relationship 
and maintain the necessary information about the 

relationship. One key benefit of the model is high- 
lighted in the next section, where we illustrate the 
ability to automatically generate black-box func- 
tional evaluation tests. 

4. Automated functional evaluation 

Functional evaluation testing answers the ques- 
tion, ‘does a particular part of the design function 

correctly?’ We approximate ‘correct’ behavior by 
simulating the requirements associated with the de- 
sign entity in question. Since we focus on evaluating 

a piece of the design with respect to an identified set 
of requirements and not with its internal workings, 
black-box testing techniques are most appropriate. 

We implement black-box functional evaluation 
testing by employing boundary-value analysis and 
equivalence partitioning techniques [ 181. While this 
is not the only test-case design strategy available (or 
even necessarily the most effective [3]), it shows 
promise of being able to uncover many errors at a 
reasonable cost, where cost is the number of test runs 
per error discovered. In general, this type of black- 

box testing involves the generation of a black-box 
testset, the application of this testset to generate both 
‘correct’ (requirements simulation) and implemented 
(design simulation) results, and finally a comparison 
of these two sets of results. Our focus is on automat- 
ing one such black-box test-generation technique for 
requirements-based tests. 

This form of test-generation presupposes the exis- 
tence of a simulateable requirements representation, 
a simulateable design representation and input classes 
that map equivalently to both the requirements and 

Related HSL Statements 

Fig. 6. Black-box testset generation for FP ALU roundoff. 
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the design simulations. In our case, the testset gener- 
ation and application process is divided into six 

steps. 
The first step is to generate a simulateable re- 

quirements specification (SRS) for the design entity 

under consideration. As the design is not necessarily 
directly traceable to the simulateable requirements, 
Fig. 6 shows the three substeps involved: tracing to 
the set of related requirements (la), tracing to the 
subset of simulateable (RSL) requirements (lb), and 

constructing the SRS (1~). 
The second step is to create an I/O specification 

based on the names that will be used in each of the 

requirements and design simulations (2). We use the 
semantic link information for insuring that the I/O 
specification includes the AD names (or fields) that 
relate to the RD names that will be used in the 
testset. This is a key factor for ensuring that the test 
results generated from each simulation are directly 
comparable. 

Effective black-box testing depends on tailoring 
the testset to the dIesign entity under consideration. 
We use information from the (design) I/O specifica- 
tion and the SRS to generate a testset (3) tailored to 
the design entity. This involves identifying the input 
classes from the SRS and I/O specification and 

selecting appropriate boundary values for each input 
class, thus the class names map from the SRS (RD), 
and parallel the design (AD) names. Input classes 
consist of input ranges, determined by the data type 
used in the design. 

Simple heuristics based on the RD types are 

applied to the input ranges of each class to determine 

what values to test for. E.g., for bit strings the min, 
min + 1, mid, max - 1 and max values are tried; for 
enumeration types, all enumeration values are used. 
These combinations are then checked for redundan- 
cies in order to keep the generated testset from 
growing unnecessarily large. Other heuristics could 
be applied as well. 

Fig. 7 depicts the application of the generated, 
design-specific testset for performance evaluation. 

The fourth step in the process is to apply the testset 
to the SRS to generate the ‘correct’ results (4). 
Similarly, the fifth step is to apply the testset to a 
simulation of the implemented design to generate the 
implementation results (5). Since we provide for a 
data mode1 that supports many forms of design and 
requirement representations, applying a testset to a 
particular representation involves selecting/gener- 
ating a simulator for the representation and mapping 
the testset values to the inputs to the simulation. For 
example, RSL requires a custom simulator for each 
SRS, whereas VHDL might have two types of simu- 
lators (behavioral and structural) depending on the 
design. 

The last step of the process is to compare the 
simulation results to the correct results (6). The 
presentation and comparison of the test results is 
important, as all discrepancies need to be high- 
lighted, and the individual tests made available to the 
designer. We do not address the interface issues, as 
our emphasis is on generating the information rather 
than presentation. 

Fig. 7. Roundoff testset application for performance evaluation. 
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Our functional evaluation methodology is effec- 
tive if either the requirements linked to the design 

trace to a set of simulateable requirements or to 
explicit functional values (e.g., measurable con- 
straints like time, value ranges) where the latter is a 
topic of future work. In our prototype implementa- 
tion [8], we linked the design variables directly to 

their (respective) simulateable requirements. How- 
ever, in the general case design variables could be 
linked to any requirement, and graph-tracing algo- 
rithms could be employed to trace from any require- 
ment to its derivative simulateable requirements. 

This methodology focuses on the evaluation of 
partial designs to enable the use of requirements- 
based testing early in the design process. However, 
what constitutes a partial design is a process-mana- 
gement issue. A partial design need only have a 
clearly defined module interface, but may in fact 
consist of several (already tested) partial designs. 
The potential exists for exponential growth in the 
size of the testset due to growth in the interface to 

the (now larger) partial design. However, if the 
designers use proper modularity in defining their 
partial designs, then much of this problem is allevi- 

ated, and the testsets for the larger partial design will 
serve as a form of integration testing, and validate 
the sum of the parts. 

Similarly, when automated functional testing 

should occur is also a process-specific (management) 
issue. Our work shows that automated functional 
evaluation testing of a partial design is possible, 
given simulateable requirements, a modular design, 
and links between design and requirements data. 

5. Roundoff example 

In this section, we illustrate the evaluation of an 
isolated part of a design using our methodology. 
Returning to our example of a floating point arith- 
metic and logic unit (FP ALU), consider the imple- 
mentation of roundoff, a small yet important aspect 
of the design of the FP ALU in the DLX. The design 
of our FP Adder was broken down into six stages, of 
which the roundoff was only one. The other five are: 
unpack, pre-normalization, add-to-infinite-precision, 
post-normalization, and post-result (as shown in Fig. 
3). Our goal is to evaluate the roundoff portion of the 
design, independent of the rest of the design. For 

clarity, we present a brief description of FP adder 
operation. 

The two FP numbers at the top of Fig. 8 are 
shown represented in the IEEE single-precision for- 
mat Before Unpacking. In the Pre-Normalization 

Add: 
1.11100001111000011110000x2 

0 

-4 
1.11100001111000011111000x2 

Before Unpacking: 

A: 0 01111111 11100001111000011110000 

B: o 01111011 lllooooll11oooo11111ooo 

Pre-Normalization: 

A: 0 00000000 1.111o$b01111000011110000 OJ 01 

JJ: o oooooooo o.ooolllloooolllloooo~~ll 1 0 

VT” ---v--- 
Sign Exponent Fraction Round Sticky 

Add-to-infinite-precision: 

0 00000000 1.11111111111111111111111 1 0 

Roundoff: 
0 00000001 1.00000000000000000000000 

Post Normalization: 
0 10000000 1.00000000000000000000000 

Result Posted: 
0 10000000 00000000000000000000000 

Fig. 8. FP Addition with Round-to-nearest-even. 
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stage, they are converted to have a signed exponent, 
and the smaller of the two numbers is shifted to have 
the same exponent as the larger. When added, these 
two pre-normalized numbers create an Add-to-in- 

finite-precision sub-result that will cause the Round- 
off stage to increment the exponent. In Post Normal- 

ization, the value is checked, and the corrected expo- 
nent is converted from signed to offset convention. 
Here we assume the: default Round-To Nearest Even 
mode. Finally, the leading bit of the mantissa is 
trimmed, and the Result Posted. 

Our focus is on the design of the roundoff stage 
for single-precision values in all four mandated 
roundoff modes (round-to-nearest-even, round-to- 
positive-infinity, sound-to-negative-infinity, and 
round-to-zero). Because we want to evaluate the 
roundoff design early in the design process, we want 
to test it independently of the rest of the design. To 
this end, we follow the testset generation procedure 
(Fig. 6) to generate a roundoff SRS and I/O specifi- 
cation from the linkcd RD data, and use this informa- 
tion to generate a testset - yielding six input classes. 

The input class names for the roundoff testset 
come from the linked requirements entities: mode, 

sign, exponent, round, fraction, and sticky. The 

data types used to define the ranges for the black-box 
input classes come from the corresponding I/O 
specification variables: Mode(l downto O), SPost- 
Norm, EPostNorm(7 downto O), MPostNorm(O), 

MPostNorm(23 downto 1) and StickyPN respec- 
tively. Before testset reduction, these six input classes 
would each have five potential values: Min, Min + 1, 

Mid, Max - 1, and Max. For example, the VHDL 
designer represented the post-normalized exponent 
field ( EPostNorm) ;IS an eight-bit value, which would 
be mapped to the five values: 00000000, 00000001, 
01111111, 11111110,and 11111111. 

Without testset reduction, this technique would 
yield 56 = 15625 test cases. However, by using the 
RD type information accessible via the traceability 
link, we can determine that mode is a control vari- 
able and is associated with the four required FP 
rounding modes, sign is a single bit having exactly 
two values, exponent is a string of bits which can 
take on the five specified test values, round has 
exactly two values, fraction takes on five values, 
and sticky has exactly two values. This yields a 
testset containing 4 X 2 X 5 X 2 X 5 X 2 = 800 cases. 

Table 1 

Reduced input test classes and values for FP roundoff 

Class name Values Count Notes 

[design name] 

Mode 

[Mode] 

Sign 

[SPost- 

Norm] 

OO,Ol, 10,11 

0, 1 

4 Enumerate 

controls 

2 Reduces 

Min/Max 

Exponent ~,OOOOOOO1, Min, Min + 1 
[EPost- 02222222, 5 Mid 

Norm] 111111110.11111111 Max- 1, Max 

Round 0, 1 2 

[MPost- 

Norm(O)1 

Fraction 

[MPost- 

Norm 

(23..1)] 

Sticky 

[Sticky- 

PN] 

11111111111111111111111, Max 
11111111111111111111110, Max- 1 

01111111111111111111111, 5 Mid 

OOoooooooooooooooOOOOOl, Minf 1 
ooooOoooooOooocoooooGQo, Min 

0, 1 2 

These input classes and their corresponding val- 

ues and ranges are shown in Table 1 which summa- 
rizes the reduced testset for round. The values de- 
picted were used to generate a set of equivalent SRS 
and design simulation inputs, which in turn were 
used to calculate the roundoff requirements simula- 
tion (correct) and design simulation results. 

Fig. 9 presents parts of the test results for the 
VHDL design entity round. Specifically, the figure 
depicts several test cases (identified by the unique 

min/max test value combinations) for the required 
rounding mode RTNE (Round To Nearest Even). 
The design simulation output variable is round, and 
the correct results are shown in the correct round = 
. . . output line. 

The summary results for test cases 19 and 20 of 
Fig. 9 show discrepancies between the correct results 
(correct round = * . . 1 and the implemented results 
(round = +. + 1. As it turns out, these two errors 
were caused by an incorrect exponent increment case 
in the original behavioral design for roundofS. This 
extraneous code was determined to be the cause of 
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Test mode sign expn frac round sticky 
,==========t===t=====-I===========CELI===================== 
i Case 18 RTNE 
1 correct round = 

min min max min max 
00000000011111111111111111111111 
00000000011111111111111111111111 
3600.0ns 

I Case 19 RTNE 
I correct round = 

I round = 
I time = 40000 = 

min min max. max min 
00000000100000000000000000000000 
00001100100000000000000000000000 
3800.0ns 

min min max max max 
00000000100000000000000000000000 
00001100100000000000000000000000 
4000.0ns 

Fig. 9. Summary black-box test results for FP ALU roundoff 

showing two detected errors. 

the four other errors detected by the 800-case testset 
(test cases 59, 60, 159, and 160, not shown here). 

Once the extraneous code was removed, subse- 
quent use of the testset discovered no more errors. 
Here the discovery of the initial error, its correction, 
and subsequent regression testing was successful in 
establishing confidence in the roundoff design inde- 

pendent of the completion of the rest of the ALU 
design. By enabling the discovery of discrepancies 

early in the design process, this example demon- 
strates (on a small scale) how our requirements-based 
evaluation methodology can be effective in improv- 
ing the quality of a design. 

6. Summary and conclusions 

In this paper, we have presented an information 
process model for the design of complex hierarchical 
systems supported by a unified semantic graph repre- 
sentation that links requirements and design data. 
Based on this data model, we presented a methodol- 
ogy for automating functional evaluation testing of 
complex hierarchical systems in an incremental and 
modular fashion using black-box testing techniques. 
We also presented the details of an example showing 
the generation of black-box functional tests for the 
roundoff of a floating-point adder. 

The semantic graph data model presented success- 
fully supports requirements, design and traceability 
information. Since the semantic graph was imple- 
mented in a object-oriented database it can support 
large designs with numerous relations. Further, the 
use of an OODB representation of the semantic 
model enabled the automation of a functional evalua- 

tion methodology for partial designs of complex 
hierarchical systems. The functional evaluation 
methodology presented is both useful in identifying 
design errors and is practical to implement. The 
methodology is also scalable, that is it uses hierarchy 
to keep the size of the tests manageable. The 
methodology is dependent on having both the evolv- 

ing requirements and design data in the database. 
While providing the means to capture this informa- 
tion in the database is itself non-trivial, we have 
shown the benefits of this effort in effecting quality 
results in an dynamic design process environment. 
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