
Supporting Semantics-Based Transaction Processing
in Mobile Database Applications*

Gary D. Walborn and Panos K. Chrysanthis
Department of Computer Science

University of Pittsburgh
Pittsburgh, PA 15260

Abstract
Advances in computer and telecommunication tech-

nologies have made mobile computing a reality. How-
ever, greater mobility implies a more tenuous network
connection and a higher rate of disconnection. In or-
der t o tolerate disconnections as well as to reduce the
delays and cost of wireless communication, it is neces-
sary to support autonomous mobile operations on data
shared b y stationary hosts. This would allow the part
of a computation executing on a mobile host t o con-
tinue executing while the mobile host is not connected
to the network.

In this paper, we examine whether object semantics
can be exploited t o facilitate autonomous and discon-
nected operation in mobile database applications. We
define the class of fragmentable objects which may be
split among a number of sites, operated upon indepen-
dently at each site, and then recombined in a seman-
tically consistent fashion. A number of objects with
such characieristics are presented and an implemen-
tation of fragmentable stacks is shown and discussed.

1 Introduction
The growth of wide area networking and the emer-

gence of portable and mobile computer systems has
changed the way we must look at concurrent access
to shared data. Wide area and wireless networking
suggests that there will be even more competition for
shared data since it provides users with the ability to
access information and services through wireless con-
nections that can be retained even while the user is
moving. Further, mobile users will have to share their
data with others. In this new mobile database environ-
ment, the task of achieving the required performance
and ensuring the consistency of shared data becomes
more difficult than in traditional database systems be-
cause of the inherent limitations of the wireless com-
munication channels and restrictions introduced by
mobility and portability. In such an environment, in-
creased autonomy of mobile users can mean increased
performance, increased functionality, and simplified
recovery in the presence of failures.

*This material is based upon work supported by the National
Science Foundation under the grant IRI-9210588.

Author's Email: {gwalborn,panos}@cs.pitt.edu

.. -.

mh: Mobile Host

MSS: Mobility-Support Station

Figure 1: Mobile Network

In a mobile computing environment, the network
is made up of stataonary and mobale hosts [16, 151.
Unlike stationary hosts, mobile hosts change location
and network connections while computations are be-
ing processed. While in motion, mobile hosts retain
thieir network connection through the support of spe-
cialized stationary hosts with wireless telecommuni-
cattion ability, called mobalaty-support stataons (Figure
1). Each mobility-support station is responsible for
a 1 of the mobile hosts within a given geographical or
logical area, known as a cell. At any given instant, a
mobile host may directly communicate only with the
mobility-support station responsible for the area in
which the mobile host moves. Further, a mobile host
has to compete with the other mobile hosts in a cell for
the wireless connections which are both of low band-
width and expensive in terms of power consumption
and monetary cost.

Within this mobile computing environment, shared
data are expected to be stored and controlled by a
number of database servers executing on stationary
hosts. Mobile hosts are assumed to have limited stor-
age capacity for cached data. Mobile hosts cache and
store shared data on a hard disk or a flash memory
which survive power failures. To ensure the consis-
tency of the shared data in the presence of concurrency
and failures, users on both mobile and stationary hosts
update and retrieve the data using transactions.

31
1060-9857/95 $04.00 0 1995 IEEE

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:59:42 UTC from IEEE Xplore. Restrictions apply.

mailto:gwalborn,panos}@cs.pitt.edu

It is possible, even probable, that a mobile host will
become disconnected from the network due to (acci-
dentally or intentionally) broken communication con-
nections. For example, in Figure 1, MH1 becomes
accidentally disconnected upon entering a region out
of the reach of any mobility-support station. On the
other hand, planned disconnection occurs when com-
munication on the mobile host is turned off to save
energy or reduce communication expense. Such dis-
connections, however, do not imply failure of the dis-
connected mobile host. On the contrary, the part of
a computation executing on a mobile host may con-
tinue executing while the mobile host is moving and
not connected to the network.

For temporary disconnection to be tolerated with
no disruption of transaction processing, suspending
(blocking) transactions executed on either stationary
or mobile hosts needs to be minimized. Proper sup-
port, for m o b i l e t r a n s a c f i o n s , i.e., transactions invoked
on a mobile host, must provide for local autonomy
to allow transactions to be processed and commit-
ted on the mobile host despite temporary disconnec-
tion. At the time of reconnection, the effects of mobile
transactions committed during a disconnection would
be incorporated into the database while guarantee-
ing data and transaction correctness. Therefore, in-
stead of considering and handling disconnections as
failures that would require transactions on discon-
nected mobile hosts to be aborted, in this paper we
handle disconnections as a c o n c u r r e n c y and cache co-
h e r e n c y problem by considering mobile transactions
as long-executing transactions operating on dynami-
cally replicated objects on the mobile host. This is
appropriate, since mobile transactions are expected to
be long-lived because of long communication delays
over wireless channels whether or not disconnection
occurs. In fact, temporary disconnections cannot be
distinguished from long network delays.

The most permissive concurrency control schemes
are those which exploit the semantics of the objects
and the operations defined on them, the structure of
the database, the structural and behavioral properties
of the activities in the database, and the correctness
requirements of the applications [8, 261. We refer to
these techniques as seman t i c s -based t r a n s a c t i o n pro-
cessing techniques. Many of these techniques, which
have been proposed to support long lived transactions
in distributed database and multidatabase systems,
will allow for greater autonomy and simplified recov-
ery after failures, but techniques which require caching
large portions of the database or which maintain mul-
tiple copies of many data items may have excessive
storage and communication costs for a mobile host.
In this paper, we introduce two new semantic con-
cepts, namely f r a g m e n t a b i l i t y and reorderabi l i ty that
can be used to facilitate semantics-based transaction
processing in mobile database applications.

Fragmentability defines a new class of objects which
better suit mobile and disconnected operation by al-
lowing a portion of these (potentially large) objects to
be cached and operated upon independently. Specifi-
cally, fragmentable objects may be split into disjoint
fragments which can be distributed among a number

of sites, operated upon independently at each site, and
then recombined in a semantically consistent fashion.
Stacks, sets, and queues are examples of objects which
fall into this category. Reorderable objects are frag-
mentable objects that exhibit more flexibility in merg-
ing their fragments by allowing the fragments of an
object to be rearranged.

The rest of this paper is structured as follows:
In Section 2 we examine the various semantics-
based transaction processing techniques in the context
of mobile database applications, emphasizing those
which exploit object and operation semantics to sup-
port autonomous and disconnected transaction pro-
cessing. In Section 3 , we introduce the concepts of
reorderabi l i ty and of f r a g m e n t a b l e data items (whose
elements constitute the unit of caching and reconcili-
ation of updates) and examine several such items. In
Section 4 , an implementation of f r a g m e n t a b l e s t a c k s is
shown and discussed. Section 5 discusses the future
direction of this work and suggests areas for extended
investigation and implementation.

2 Exploiting Object Semantics
Almost all types of transaction processing systems

employ some semantic knowledge to provide increased
availability of data, to achieve a high degree of con-
currency, and to simplify recovery in the presence of
failures. Broadly speaking, the concurrency semantics
of an object depend on the following object character-
istics [IO]:

s e m a n t i c s of t h e opera t ions - which is related to
the effects of an operation on the state of an ob-
ject,

opera t ion i n p u t / o u t p u t va lues ~ which refers to
both the direction of information flow to and
from an object and the interpretation of the in-
put/output values,

organizataon of t h e object - which refers to the
abstract organization of an object (as opposed to
its physical implementation), and

object u sage - which refers to how an object is
used and what is done with information extracted
from the object.

The first three object characteristics have primarily
been used to define various forms of c o m m u t a t i v i t y
which determine semantically whether two operations
can be allowed to execute concurrently without com-
promising serial izabi l i ty , the traditional database cor-
rectness criterion [9]. The last characteristic, object
usage, has been exploited to define application-specific
correctness criteria which transcend commutativity
and serializability to allow even more operations to
execute concurrently and asynchronously.

Although these semantics-based transaction pro-
cessing techniques have the potential to improve per-
formance, it is not clear that these same techniques
can be used to support mobile transaction process-
ing. Therefore, it is necessary to evaluate these ex-
isting semantics-based techniques by the measure of

32

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:59:42 UTC from IEEE Xplore. Restrictions apply.

how they apply to the mobile transaction processing
environment and, in particular, how well they support
disconnected operation. Below we examine how these
techniques are commonly applied and briefly discuss
their advantages and disadvantages in a mobile envi-
ronment. To simplify the discussion we classify them
into two groups: app l i ca t ion i n d e p e n d e n t s e m a n t i c s -
based techniques and app l i ca t ion d e p e n d e n t s e m a n t i c s -
based techniques.
2.1 Application Independent Semantics

Because the semantics of most operations are, by
their very definition, well understood, this object char-
acteristic is the first to be used and the one most often
exploited. The most commonly used semantic prop-
erty of operations is c o m m u t a t i v i t y .

If two operations commute, then their effects on
the state of an object and their return values are the
same irrespective of their execution order. Operations
which commute can be arbitrarily ordered in a concur-
rent execution to effect serializability. Commutativity
can be used to enhance recovery as well as concur-
rency. If a protocol allows only commuting operations
to execute concurrently, it prevents cascading aborts,
localizing recovery to transaction boundaries.

Some operations commute in all object states (e.g.,
two increments). We can, however, identify opera-
tions that commute only in specific object states. This
property of operations is called state-based c o m m u t a -
t i v i t y . For example, two operations which push iden-
tical values onto a stack may execute in any order and
the resultant stack will be the same. That is, push
operations with identical input values commute, while
push operations with differing input values, do not.
Output values can also be used to determine if two op-
erations are state commuting. For example, two push
operations that return “stack-overflow” when failing
to push a value, commute.

The output values in conjunction with the inputs
of the operations have been used for new definitions
of conflicting operations (i.e., operations that cannot
execute concurrently) which are weaker than commu-
tativity and yet ensure serializability. Although these
definitions, such as ser ia l d e p e n d e n c y [14] and recouer-
abi l i ty [4], permit a higher degree of concurrency than
commutativity and can be used within a traditional
replicated database environment, they are associated
with more complex recovery and involve more complex
transaction management than commutativity.

Clearly, commutativity can be used to enhance the
concurrent access to, and simplify recovery of, shared
data within a mobile host. For objects stored in the
database server, if all operations of an object com-
mute with each other in all states, then this object
could be cached and manipulated at a mobile host
asynchronously, without any coordination with the
database server. The mobile host is only required to
periodically propagate to the server the updates of the
mobile transactions committed locally. Such objects
can be exploited to facilitate the autonomous opera-
tion of mobile hosts during disconnections.

However, in reality very few operations of an ob-
ject commute and cached objects require communi-

cation to coordinate the execution of conflicting op-
erations in order to guarantee the consistency of the
cached copies. In traditional caching schemes, every
time a cached copy is updated, it is propagated to the
database server which, in turn, invalidates or updates
all other copies. Such communicatjon is prohibitively
expensive for mobile hosts which communicate over
low bandwidth wireless channels and have limited bat-
tery life. Further, because wireless data communi-
cattion employs broadcast technologies, frequent com-
munication by each mobile host could result in wire-
le,ss network congestion and decreased throughput. A
number of cache coherence schemes have been studied
(i:n the context of mobility and disconnections) that
exploit the broadcast characteristics of wireless com-
munication to reduce the communication cost without
exploiting any object semantics [7].

Commutativity of operations can be exploited in
caxhing methods that employ a cclncurrency control
protocol to ensure cache coherence. For example, in an
optimistic concurrency control based scheme, cached
objects on mobile hosts can be updated without any
coordination (an attractive feature for disconnected
operation) but the updates need to be propagated and
vatlidated at the database server in order for the invok-
ing transaction to be committed [l;‘]. Unless conflicts
between concurrent updates are rare, this scheme will
lead to more abortions of mobile transactions (which
are expected to be long-lived due to disconnections
and long network delays) when compared to transac-
tions executing on stationary hosts. In this case, both
commutativity and serial dependency can be exploited
to validate more mobile transactions. In a pessimistic
scheme in which cached objects cain be locked exclu-
s i ve l y , mobile transactions can be committed locally.
However, pessimistic schemes might lead to unneces-
sary transaction blocking since a mobile host cannot
release any cached objects while it, is disconnected.

Existing caching methods attempt to cache entire
objects or, in some cases, complete files. Transmis-
sion of these potentially large objects over low band-
width communication channels can result in severe
wireless network congestion and high communication
cost. Furthermore, the limited cache size of a mo-
bile host means that only a small number of (large)
objects can be cached on a mobile host at any given
time. Thus, it is important that the granularity of
caching is as fine as possible so that a working subset
of the database, sufficient to sustain a practical level
of transaction processing during disconnections, can
be: cached. Here the semantics of the object organiza-
tion can be helpful in fragmenting large objects into
smaller components that can be cached independently
while maintaining consistency. The escrow transac-
tional method [22, 21, 29, 191 is a perfect application
of this principle.

The escrow transactional method is designed specif-
ically to improve concurrent access to aggregate i t e m s
by exploiting object structure, state-based commuta-
tivity, and integrity constraints. Specifically, the es-
crow method exploits the fact that aggregate items
arme numeric values which represent a quantity of in-
teirchangeable items, such as units of blood or dollars

33

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:59:42 UTC from IEEE Xplore. Restrictions apply.

in an account. Since all of the items are interchange-
able, the quantity can be divided among a number of
mobile hosts based on their data requirements [20, 311.
Data consistency is ensured by limiting the operations
on the cached quantity to increments and decrements
that commute provided that certain boundary condi-
tions derived from integrity constraints (e.g., a nega-
tive physical inventory) are not violated. Thus, by as-
suming that the worst case of pending operations will
not violate boundary conditions, the database server
can incorporate the effects of committed mobile trans-
actions in an arbitrary order that preserves serializ-
ability.

Whereas escrow methods ensure serializability of
global executions, the demarcation protocol [5], which
was also designed to support autonomous updates on
aggregate items, ensures only that local executions are
serializable. The demarcation protocol does not rely
on the commutativity of operations but it does ex-
ploit the object organization and integrity constraints.
Specifically, it preserves data consistency by enforcing
explicit consistency constraints on the cached quanti-
ties which establish safety limits during updates. As
we will. see in the next section, aggregate items are
good examples of fragmentable objects.
2.2 Application Dependent Semantics

Methods which exploit object usage enhance per-
formance and functionality of transactions by relax-
ing the notion of a serializability in favor of weaker,
but equally acceptable, application-specific criteria.
As opposed to serializability, these methods typically
view da ta cons i s t ency and t r a n s a c t i o n correctness in-
dependently [26].

Data consistency captures correctness from the per-
spective of objects in the database. Data consistency
requirements range from s t r i c t cons i s t ency (as de-
fined by serializability) to even tua l cons i s t ency [l, 281.
Eventual consistency denotes a temporal or spatial di-
vergence from strict consistency the extend of which
can be expressed in terms of degrees of i n c o n s i s t e n c y .
For example, a degree may require consistency “at
a specific real-time,” “within some time” or “after a
certain amount of change to some data,” or enforc-
ing consistency “after a certain value of the data is
reached,” etc. Divergence control protocols such as
those for quasi-copies [l] and for epsilon-serializability
[25] allow for the applications to specify their currency
requirementss and the inconsistency with which they
can cope. These protocols can also facilitate the tun-
ing of cache management on mobile hosts according to
the available bandwidth and monetary cost of wireless
communication [6].

Transaction correctness requirements capture cor-
rectness from the perspective of the structure and be-
havior of transactions [la, 131. That is, these methods
allow applications to specify (1) the degree of i so la t ion
of different transactions in terms of acceptable trans-
action interleavings, delegation of operations and early
or partial commitment of the operations of transac-
tions, and (2) the degree of t r a n s a c t i o n a u t o n o m y in
terms of transaction interdependencies such as commit
and abort dependencies.

Clearly, these relaxed correctness criteria require
more from the transaction developers than serial-
izability which works under the simple assumption
that correctly written individual transactions preserve
database consistency. In particular, a transaction may
have to be aware of the functionality of other trans-
actions and the potential interactions among transac-
tions. This makes transaction development, as well
as management, more difficult. Furthermore, transac-
tion and database recovery also becomes more com-
plex. Traditional recovery techniques are typically
not sufficient to restore the database to a consistent
state after a failure and additional compensating steps
are required to semantically undo the effects of previ-
ousiy executed and committed operations. However,
these relaxed correctness criteria are useful for mobile
transaction processing because they can significantly
increase the autonomy of mobile hosts.

Application-specific criteria have been mainly pro-
posed in database environments with characteristics
similar to those of mobile database applications. As
discussed above, ensuring serializability and maintain-
ing strict consistency among data stored on both mo-
bile and stationary hosts is very constraining as well
a s expensive [a, 15, 301. For this reason, current ap-
proaches that aim to support transactions which per-
form updates on cached objects at the mobile hosts
advocate application-specific criteria. For example, an
open-nested t ransac taon model has been proposed in
[ll] for modeling mobile transactions as a set of sub-
transactions. The model allows for disconnected op-
eration by supporting unilateral commitment of sub-
transactions and compensating transactions. Further,
it can be customized based on the application by vary-
ing the degree of isolation and autonomy of the sub-
transactions of a mobile transaction.

In order to support mobile transactions that can
accommodate spatial inconsistencies, dynamic object
clustering has been proposed based on objects’ degree
of inconsistency and two types of read and write op-
er at ions: weak- read, weak- w r i t e , s tr ic t -read and s t r ic t -
w r i t e [23, 241. Strict-read and strict-write operations
have the same semantics as the read and write opera-
tions invoked by traditional ACID transactions [9]. A
weak-read returns the value of a locally cached object
written by a strict-write or a weak-write. A weak-
write operation updates a locally cached object which
might become permanent on cluster merging if the
weak-write does not conflict with any strict-read or
strict-write operation.

A common characteristic of the different divergence
control methods, escrow methods, and the demarca-
tion protocol, is that all deal with read/write ob-
jects or objects with numeric values. In the case of
read/write objects and traditional caching schemes,
the entire object is cached, which could, potentially,
entail intolerable overhead in a mobile environment.
Also, to make effective use of these methods, we need
to apply them to as many data types as possible. In
our approach to mobile transaction processing, we pro-
pose the utilization of object organization and appli-
cation semantics to break objects into smaller pieces
to be cached independently and manipulated asyn-

34

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:59:42 UTC from IEEE Xplore. Restrictions apply.

chronously. The balance of this paper will outline our
ideas and progress toward this end.

3 Fragmentable Objects
Consistency of data is a primary issue in all systems

in which data are dispersed over multiple sites and in
which both updates and retrievals are supported at all
sites. As is evident from the previous section, the char-
acteristics of the mobile environment, in particular the
inherent restrictions of the wireless medium and of the
mobile hosts (Figure a) , make semantics-based trans-
action processing the only viable way to ensure data
consistency in mobile database applications. To better
support disconnected operations and, whenever pos-
sible, strict data consistency, the approach presented
here utilizes all types of object semantic information to
provide finer granularity of caching and concurrency
control and to allow for asynchronous manipulation
of the cached objects and unilateral commitment of
transactions on the mobile host.

The basic idea is to split large and complex objects
into smaller fragments of the same type as the large
object by exploiting the object organization. With the
appropriate split, a mobile host can cache an object
p a r t i t i o n (consisting of one or more object fragments)
of just the right size, minimizing the storage require-
ments on a mobile host. The second idea is to make
these fragments the unit of reconciliation of updates,
that is, the unit of consistency. The objective is to sup-
port fragmentation of all objects in the database by
exploiting commutativity of operation based on con-
sistency constraints and object usage. To allow more
flexibility (as well as to deal with situations in which
fragmentation under strict consistency requirements is
not possible) applications can explicitly define the con-
sistency constraints to be enforced. In the rest of this
paper we will primarily focus on the fragmentation of
objects which ensure strict consistency.

A “master copy” of each object resides on a station-
ary database server (or, in the case of a distributed
system, a t a number of database servers). Mobile
hosts specify the granularity of an object to be cached
and usage constraints by using the split operation. A
merge operation is provided to allow transactions to
release and incorporate cached fragments back into
the master copy. Object fragments can be logical or
physical divisions of the data object. Physical frag-
ments need to be physically re-assembled into a single
object while logical fragments are combined with some
logical or arithmetic operation. Split and merge op-
erations are type specific and as such the algorithms
for splitting and merging object fragments could be
encapsulated in the objects themselves. We refer to
objects extended with these two operations (i.e.7 split
and merge) as f ragmen tab le objects.

When a mobile host requires access to an object,
the mobile host sends a cache request to the database
server by invoking the split operation with two param-
eters: selectaon c r i t e r ia , and cons i s t ency cond i t ions .
The selection criteria specify the object to be cached
and the required size of the object partition. When
the object partition is cached on a mobile host, it is

MobiYe Hosts Vllireless Medium

loiw bandwidth small s ze

high bandwidth variability small screen

energy demanding limited batery life

monetarily expensive

physical broadcasting in a cell

limited storage -- both
volatile and non-volatile

frequent disconnections --
unpredictable and predictable

susceptible to failures

Figure 2: Wireless Network Characteristics

logically removed from the master copy of the object
and is only accessible by the transactions on the mo-
bile host. However, the remaining part of the master
copy is not affected and it is accessible a t the server.

The consistency conditions specify constraints on
the fragment which need to be satisfied to maintain
the consistency of the entire object. These condi-
titons might include (a) allowable operations and con-
straints on their input values and (b) conditions on the
state of the object. Some operations on fragmentable
hems may be disallowed or restricted to guarantee
that the fragments may be properly merged. For ex-
amples, operations on fragmented aggregate items are
restricted to increment and decrement. Sometimes the
constraints associated with an object fragment will be
directly related to a constraint that was associated
with the entire object, e.g., negalive physical inven-
tory. In other cases, the constraint may be necessary
to assure that the fragments in the partition can be
merged while preserving the changes brought about
by transactions committed against t,he fragments. For
example, requiring that the values to be added in a
set must fall within a specific range. Finally, the con-
straints may be related to the degree of consistency
that is required by an application. An example of a
condition on the state of an object is the ability to
test for an “empty s t a c k (which would necessitate
including the fragment at the “bottom” of the stack).

In order to support unilateral commitment of trans-
action executing on a mobile hosi,, we must retain
th,e effects of transaction operations on each fragment
when the fragments are merged. Often the order of
recombination will be dictated by t:he structure of the
original object or the operations performed on each
fr%gment. There are objects, however, whose frag-
ments may be merged in a number of ways without
destroying the data consistency of the object. In par-
ticular, there are objects in which the ordering of the
fragments is an artifact of the sequence of operations
performed against the object. When the fragments of
an object can be rearranged to reflect an alternative
sequence of operations on the object, we say that the
object is reorderable.

3.1 Examples of Fragmentable Objects
Aggregate Items: As mentioned previously, aggre-
gate items are an excellent examp le of fragmentable
items. Aggregate items are logically fragmented. For

35

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:59:42 UTC from IEEE Xplore. Restrictions apply.

this reason, the storage required for each fragment is
identical. The selection associated with the split com-
mand is the entire object and the constraint conditions
associated with each fragment state the minimum and
maximum value that the aggregate fragment may as-
sume. Aggregate items are merged logically by adding
or subtracting fragment values.

Operations on such aggregate items usually include
(but are not limited to increasing, decreasing, or

not commute with either increments or decrements
and the exact value of the entire object cannot be
determined at the mobile host, only the first two op-
erations (increase and decrease) are allowed to process
against a fragment. However, these operations com-
mute provided that the constraints on the minimum
and maximum value of the object are not violated.
By assuring that the worst case of a number of pend-
ing operations will not violate boundary conditions,
serializability is ensured while enhancing performance
and allowing for disconnected operation.

Sets: Sets are collections of independent items (mem-
bers) in which the relative ordering of members is
unimportant. Sets can be split into a number of sub-
sets and these subsets may be combined in an arbi-
trary order to reconstitute the original set. Subsets
represent physical fragments of sets and the storage
required is directly related to the number of elements
in the fragment.

When strict consistency is required, each mobile
host needs to specify a range of elements as part of

ion criteria. All set fragments must be dis-
hen strict consistency is required, the con-

straint conditions will specify that testing for mem-
bership and insertion of items may only occur for el-
ements within the range specified in the constraint
conditions. A group of set fragments may be recom-
bined into a single set by performing a unzon of the
fragments. It should be noted that a tables is a type
of set and fragmentation of tables with strict consis-
tency IS equivalent to horizontal fragmentation in a
relational database system.

If weak consistency is sufficient, the set fragments
may overlap and insertion of members may result in
duplication across different fragments. These differ-
ences can be resolved by dropping duplicates from
the set when the fragments are merged. If testing of
membership is prohibited, the insertion of a duplicate
member does not violate consistency constraints. If
testing for membership must be allowed, consistency
must be relaxed to permit such insertions.
Stacks: Stacks are lists of data that are accessed in
a LIFO (last-in, first-out) fashion by means of push
and pop operations. Push places a data item on the
top of the stack. A pop removes the next available
item from the top of the stack and returns the data
item to the caller. The nature of these two operations
implies that changes are made only to one end of the
stack. All data items in the stack except the top can-
not be accessed and are, essentially, “hidden” from all
transactions.

When stacks are accessed by database transactions,

querying the current va 1 ue. Because querying does

36

each transaction may independently push and pop
data items. In any serial execution all of the items
pushed by a particular transaction will be adjacent in
a stack. Strict consistency is maintained as long as this
constraint is satisfied. Weak consistency constraints
would allow for some interleaving to occur among ob-
jects from cooperating transactions.

A stack fragment is the basic unit of consistency
and is defined to be any portion of the stack which
contains interdependent data. All data items items
pushed by a single transaction are interdependent. If
a data item is popped by a transaction, any interde-
pendent items on the top of the stack become interde-
pendent with the data items of the transaction which
performed the pop. Interdependent data items must
be contained in a single fragment.

Stacks are physically fragmented objects. Each re-
questing mobile host caches one or more stack frag-
ments. When the stack fragments are returned to the
master copy, the stack fragments are physically rein-
serted into the master stack. Stacks are also reorder-
able, fragments may be rearranged to provide larger
contiguous segments to satisfy a cache request. As an
example, consider a stack S with initial contents S I ,
and four transactions, T I , T2, T3, and T4. Assume
that TI and T2 each push three items on S and com-
mit. The stack now looks like this:

Which is equivalent to the serial execution TI -+
T2. Further, assume that the stack is fragmented into
three parts,

and the first two components are given to mobile hosts,
MH1 and M H 2 , respectively. If T’ on MH1 performs
a two pops and commits, and T4 on MH2 performs
two pops, a push, and commits, we are left with the
following fragments:

(on MH1)

-1 (on M H z)

*m
Now, we can merge these fragments into a single stack
that corresponds to a serializable history. A simple
concatenation yields:

1 AT^ AT^ AT^ 51 U
which is the same as a serial execution TI -+ T4 -+

T2 --f T3 against the initial stack S I . To each of the
transactions, T3 and T 4 , this is a perfectly acceptable
sequence of events (and, of course, TI and T 2 commit-
ted before the fragmentation had even
equally correct history can be formed
the two fragments in this fashion:

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:59:42 UTC from IEEE Xplore. Restrictions apply.

1 I]
which corresponds to the serial execution T2 -+ T3 -+

TI -+ T4 against the initial stack SI . In each of these
equally acceptable histories, TI must precede T4 and
T2 m u s t precede T3 because T4 reads from TI and T3
reads from T2.

A more detailed description of fragmentable stack
implementation is included in Section 4.
Queues: Queues are lists of data that are accessed
in a FIFO (first-in, first-out) fashion. Enqueue and
dequeue are the two basic queue operations. Enqueue
places a data item in the rear of a queue. Dequeue
removes the next available item from the front of the
queue and returns the data item to the caller. The
nature of these two operations implies that changes
are made only to the two ends of the queue. All data
items in the queue except the first and last are not
accessible.

Queues are also physically fragmented objects. As
with stacks, a queue fragment is any portion of the
queue which contains interdependent data. All data
items items enqueued by a single transaction are inter-
dependent. Interdependent data items must be con-
tained in a single fragment. Queue fragments in which
the original items have been completely consumed can
be merged back in a fashion similar to stacks while
maintaining strict consistency. However, the behav-
ior of a fragmented queue more closely approximates
that of “weak queues” as proposed by [27] if items of
the original fragment are merged back into the master
queue.

3.2 Formal Definitions
Below we will formally define f r a g m e n t a b l e objects

and reorderable objects. An object ob is described by a
pair (0, C) where 0 is the s t a t e of the object and C is
a (possibly empty set of cons i s t ency cond i t ions on the

specified in C. A history H(ob) of an object represents
the concurrent execution of a set of transactions indi-
cating the (partial) order of operation invocations on
the object. H(ob) = p l o p2 o ... o p , , indicates both
the order of execution of the operations, (p i precedes
p i + l) , as well as the functional composition of oper-
ations. Thus, a state 0 of an object produced by a
sequence of operations equals the state produced by
applying the history H(.b) corresponding to the se-
quence of operations on the object’s initial state. Fur-
ther, H(ob) is consistent with the operation invocation
of individual transactions.

DEFINITION 3.1: An object is ob = (0 , C) is
f ragmen tab le iff it can be split into fragments
(01, Cl), (02,C2) ...(On, C,) each of which sup-
ports the same operations as ob (i.e., fragments
have the same type as ob) such that:
(1) Transactions can be processed asynchronously
against individual fragments (Oa, Ci), each trans-
action against a single fragment of an object, pro-
ducing a history hi that satisfies the constraints
Ci and results in new fragment state O:, and

object. Any legal h istory of ob satisfies the constraints

(2) The resultant fragments (Oi, Cl), (Oh, C2)
...(O ~ , C ,) can be merged back into the origi-
nal object ob = (O’,C) where 0’ corresponds
to a legal history that is tht: concatenation of
0 0 hi 0 h2 0 ... o h,.

That is, a fragment corresponds to a subhistory of the
origin<al object that can be expanded in a consistent
manner as long as its associated consistency conditions
are not violated. A fragment can be obtained by pro-
jecting on the history of the object with respect to the
selection conditions. The definition of a legal history
depends on the semantics of the abject and the con-
swtency requirements of the application. In the case
of strict consistency, a legal history is a serializable
hist0r.y.

DEFINITION 3.2: An object ob I= (0, C) is reorder-
able iff ob is fragmentable and the resultant frag-
ments (Oil Cl), (Ok, Cz) ...(OA, C,) can be merged
back into the original object ob = (O’,C) where
0’ corresponds to a legal history that is not neces-
sa,rily a concatenation of 0 o hl o h2 o ... oh,. That
is, the fragments can be merged back in more than
one way where each corresponds to a different le-
gal history.

Iinfornially, reorderable objects allow the re-arranging
of the fragments during merging. Reordering an ob-
ject is equivalent to reordering the operations on the
object (and the resultant history), thus increasing the
number of allowable interleavings of operations. In
tlhis light, reorderability can be seen as an instance of
serial dependency [141.

4: Implementation of F’ragmentable
Stacks

Although splitting an object into suitable fragments
and merging them back in a consistent manner is type
dependent, in this section we will sliow a fragmentable
stack implementation in order to indicate the overhead
and thie complexity required to manage and cache frag-
nienta.ble objects. This stack implementation main-
ttains strict consistency as defined by serializability on
an unbounded stack.

Maintaining Fragment Boundaries

To insure serializability, some constraints must be
iinposed on suitable fragmentation of the stack. In
particular, the stack may only be firagmented between
elemeints pushed by unrelated transactions. The basic
strategy for fragmenting a single stack (or each of a
number of independent stacks) is:

For each fragment, Fk, of stack, s, if 3 data item
Di in Fk written by committed transaction T,,
then V data items D,, such that D, was written
by transaction T,, D, must belong to fragment
Fk. Furthermore, if transact,ion T, reads data
from transaction T,, all remaining data items
D,, such that D, was written by transaction Tm

37

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:59:42 UTC from IEEE Xplore. Restrictions apply.

must belong to the fragment. Simply put, inter-
dependent items must be contained in a single
stack fragment. host.

fragmentation markers, these tags are not part of a
fragment per se and hence are not cached at a mobile

Push and Pop on Fragments

On a mobile host, transactions may pop items from
and push items on the stack partition as if the stack
partition were the entire stack. Recall, however, that
an empty stack partition is n o t equivalent to an empty
stack. If a transaction attempts to pop from an empty
stack partition, the condition is signaled. If the stack

If data dependencies exist between a number of
queues and/or stacks, this rule may be expanded to
include each interdependent object. Interdependent
objects may be collapsed into a single large object us-
ing criteria similar to those for forming atomic sets
in predicate-wise serializability testing. In general, a
fragment must contain all data which is interdepen-
de;t.

Special markers are used to signal the division be-
tween fragments. Each marker represents the begin-
ning of stack fragment. To guarantee that the frag-
menting strategy stated for interdependent data in
stacks is observed, markers are inserted at appropriate
points and removed using two simple rules:

a. If a transaction, in the course of reading an entry
from the stack, encounters a marker, it reads and
discards the marker.

b. If a transaction has read a marker from the stack, or
if a transaction has pushed an item onto the stack,
the transaction pushes a marker on the stack fol-
lowing its committed data.

These rules are observed at the database server
and at each mobile host which has a portion of the
fragmentable stack. Since a single marker is required
for each stack fragment and the number of fragments
cached by a mobile host should be small, the storage
overhead for the mobile host is minimal. The maxi-
mum required space is consumed if each fragment con-
tains a single data item and the overhead for this case
is a constant factor of the number of data items in the
stack.

Caching of Pragments

For simplicity, we will assume that a master copy
of the stack will be maintained by a single database
server. An allocation request from the mobile host
specifies a stack, the number of data items it desires to
cache, and a flag. The flag is used to indicate whether
the mobile needs to test for an “empty stack” condi-
tion. Only the host holding the “bottom” stack frag-
ment can detect an “empty stack”. If this fragment is
requested and has already been allocated to another
host, the allocation fails.

To allow operation while disconnected, the mobile
will request more stack items than needed by any one
transaction. The database server will attempt to split
thp stack to accommodate the mobile host. A stack
partataon is a group of one or more stack fragments
from the master stack. The database server should
return a stack partition containing enough data items
to fulfill the mobile host’s request.

In order to keep track the current disposition of
each stack fragment, the master stack is augmented
with data tags. Fragments cached at a mobile host
are tagged as belonging to the mobile host and logi-
cally removed from the master stack. In contrast to

partition contains the “bottom” fragment, then the
pop operation detects an empty stack condition. Oth-
erwise, the transaction which attempted the pop may
block while the stack partition is expanded (by caching
more stack fragments) or it may be aborted, whichever
is more appropriate.

Conventional concurrency control and recovery
techniques may be used to provide controlled access
to the stack partition and to ensure serializability [9].
Assuming two-phase locking, uncommitted data is not
made available to mobile transactions other than the
transaction that pushed them and items pushed by
a single transaction are contiguous in the stack parti-
tion. When a transaction on the mobile host commits,
its pushed items are followed by a marker.

As transactions are processed, their effects are
logged on the mobile host where the transaction ex-
ecutes to facilitate recovery from failed or aborted
transactions. Mobile host logs are checkpointed pe-
riodically on an appropriate mobility-support station

Merging of Fragments
When a mobile host reconnects or the stack parti-

tion is no longer needed at the mobile host, any stack
fragments remaining in the stack partition must be
reconciled with master stack on the database server.
The stack partition along with the log for commit-
ted transactions are checkpointed on the appropriate
mobility-support station, transferred to the database
server and deleted from the mobile host. Once the
transfer to the database server completes, the check-
point may be deleted.

Items consumed by committed transactions on the
mobile host are deleted from the master stack by re-
moving the stack fragments tagged with the mobile
host id. Since stacks are reorderable, if the remain-
ing stack partition does not contain the “bottom ele-
ment,” it is placed in the location of one of the deleted
stack fragments. Otherwise, it replaces the fragment
with the “bottom element” in the master stack. Fi-
nally, the fragment tags are adjusted to reflect each
fragment state.
Example

To recap and illustrate the need for markers, let us
consider an example of a stack that is used by a set of
mobile transactions to evaluate arithmetic expressions
in a cooperative fashion.

Assume that each expression comes from a single
transaction. Each expression may be partially evalu-
ated by a transaction which pops stack entries until it

p 8 , 31.

38

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:59:42 UTC from IEEE Xplore. Restrictions apply.

finds an operator, performs the operation, pushes the
result, and repeats. (The ”=” operator prints the re-
sult and pushes nothing.) We will use “M” to denote
a marker. Initially, the stack contains two expressions
pushed and committed by transactions Tz and TI in
that order.

T i
M 5 2 + 8 * 6 - =

T 3 T 2
M 2 5 0 * 4 / 5 - =

I M 5 2 + 8 * 6 - = I M 1 4 7 / 5 0 * 4 / 5 - = 11

Furthermore, assume that a mobile hosts MH1 re-
quests a stack fragment of size 5 and a mobile host
MH2 a fragment of size 3. According to the stack
fragment boundary rule, the only possible split of the
stack is:

II ‘2 M H 2 1 M 1 4 7 / 5 0 * 4 / 5 - = 1
Now consider that a transaction, T3, reads the first

three items from the stack (fragment) at MH2 (i.e.,
“14” “7” “/”), evaluates the sub-expression, places the
result on the stack and commits.

- - I

I M 5 2 + 8 * 6 - = I M 2 5 0 * 4 / 5 - = 1
Because no marker exists between the items from

transactions T 3 and T2, any fragment containing
items from one must contain items from both and
the fragmentation criteria that guarantee serializabil-
ity are satisfied. The dependency results because T 3
reads from T 2 and, therefore, T 3 cannot possibly pre-
cede T2. The resultant stack is reorderable and frag-
mentable without further restriction. Use of the mark-
ers maintains correct fragment boundaries and pre-
vents this incorrect partitioning or reordering in a time
and space efficient manner.

5 Conclusions
In this paper we have examined different types of

semant,ic information with respect to their applicabil-
ity in the context of mobile transaction processing.
This examination led us to the realization that se-
mantic information that requires access to the entire
object is not suitable for mobile traiisactions irrespec-
tive of their potential power to allow for higher degrees
of concurrency. For this reason, we have focused on
those semantic notions that allow for concurrent ex-
ecutions on independent fragments of an object that
can be cached locally in a mobile host and toward this
end we have introduced the notioris of fragmentable
and reorderable objects.

The importance of escrow methods for distributed
(and, particularly, mobile) computing has long been
recognized. In a very real way, we ha,ve made afirst at-
tempt io apply these escrow methods to non-aggregate
items. By encompassing a large class: of escrowable ob-
jects, we can support a greater variety of applications
on mobile platforms that require strict data consis-
tency. At the same time, we can provide equal support
for applications that can tolerate different degrees of
inconsistencies by allowing fragments to diverge in a
controlled manner.

In tlhe future, we intend to continue our investi-
gation on fragmentable and reorderable objects and
on methods to maintain data consistency in mobile
database environments in general. Finally, we want to
to apply our ideas in practice by developing protocols
to fragment and merge objects and1 to test implemen-
tations of these fragmentable objects in a simulated
mobile environment in search of more efficient mech-
anisms.
Acknowledgements: We would1 like to thank S.
Weissmian and R. Conticello for their helpful sugges-
tions.

References
[3] Alonso R., D. Barbara, and €1. Garcia-Molina.

Da,ta Caching Issues in an Infi3rmation Retrieval
Systems. ACM Transactzons on Database Sys-
tel-ns, 15(3):359-384, Sept. 1990.

[2] Alonso R., and H . Korth. Database Issues in
Nomadic Computing. Proc. of ACM SIGMOD
Conf., pp. 388-392, May 1993.

[3] Archarya A. and B. Badrinath. Checkpointing
distributed applications on mobile computers.
Pnoc. of Int’l Conf. on Parallcd and Dzstrzbuled
Informataon systems, pp. 73-80, 1994.

[4] Badrinath B. R. and K. Ramamritham. Seman-
tics based Concurrency Control: Beyond Com-
mutativity. AGM Transactzons on Database Sys-
tems, 17(1):163-199, Mar. 1992.

[5] Barbara D. and H. Garcia-Molina. The Demarca-
tion Protocol: A Technique for Maintaining Con-
straints in Distributed Database Systems. Proc.
of the Int ’I Conf. on Extendanlg Data Base Tech-
nol‘ogy, Mar. 1992.

39

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:59:42 UTC from IEEE Xplore. Restrictions apply.

[6] Barbara D. and H. Garcia-Molina. Replicated
Data Management in Mobile Environments: Any-
thing New Under the Sun? Proc. of the IFIP
Conf. on Applications in Parallel and Distributed
Computing, Apr. 1994.

[7] Barbara D. and T. Imieliriski. Sleepers and
Workaholics: Caching Strategies in Mobile Envi-
ronment. Proc. of the ACM SIGMOD Conf., pp.
1-12, May 1994.

[8] Barghouti, N . and G. Kaiser. Concurrency Con-
trol in Advanced Database Applications. ACM
Computing Surveys, 23(3):269-317, 1991.

[9] Bernstein P. A., V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database
Systems. Addison-Wesley, Reading, MA, 1987.

[IO] Chrysanthis P. K., S. Raghuram, and K. Ramam-
ritham. Extracting Concurrency from Objects: A
Methodology. Proc. of the ACM SIGMOD Conf.,
p p ~ 108-117, May 1991.

[11] Chrysanthis P. K. Transaction Processing in a
Mobile Computing Environment. Proc. of IEEE
Workshop on Advances in Parallel and Dis-
tributed Systems, pp. 77-82, Oct. 1993.

[la] Chrysanthis P. K., and K. Ramamritham. Syn-
thesis of Extended Transaction Models Using
ACTA. ACM Transactions on Database Systems,
19(3):450-491, Sept. 1994.

[13] Elmagarmid A. K., editor. Database Transaction
Models for Advanced Applications. Morgan Kauf-
mann, 1992.

[14] Herlihy M. Apologizing Versus Asking Per-
mission: Optimistic Concurrency Control for
Abstract Data Types. ACM Transactions on
Dafabase Systems, 15(1):96-124, Mar. 1990.

6151 Imielinski T and B. Badrinath, Mobile Wire-
less Computing: Challenges in Data Manage-
ment. Communication of ACM, 37(10):18-28,
Oct. 1994.

[16] Ioannidis J., D. Duchamp and G. Q. Maguire. Ip-
Based protocols for mobile internetworking. Proc.
o f ACM Symposium on Communication, Archi-
tectures and Protocols, pp. 235-245, 1991.

[17] Kisler 9. and M. Satyanarayanan. Disconnected
operation in the Coda file system. ACM Tran-
sanctions on Computer Systems, 10(1), 1992.

[18] Krishnan P., N. Vaidya and D. Pradham. Recov-
ery in Distributed Mobile Environments. In Proc.
o f IEEE Workshop on Advances in Parallel and
Distributed Systems, pp. 83-88, 1993.

[19] Krishnakumar N. and A. Bernstein. High
Throughput Escrow Algorithms for Replicated
Databases. Proc. of the 18th Conf. on Very Large
Databases, p p ~ 175-186, Aug. 1992.

[20] Krishnakumar N. and R. Jain. Protocols for
maintaining inventory databases and user service
profiles in mobile sales applications. Proc. of the
Mobidata Workshop, Nov. 1994.

[21] Kumar A. and M. Stonebraker. Semantics-based
Transaction Management Techniques for Repli-
cated Data. Proc. of the ACM SIGMOD Conf.,
May 1988.

[22] O’Neil P. E. The Escrow Transactional
Method. ACM Transactions on Database Sys-
tems, 11(4):405-430, Dec. 1986.

[23] Pitoura E. and B. Bhargava. Building Informa-
tion Systems for Mobile Environments. Proc. of
the 3rd Int’l Conf. on Information and Knowledge
Management, pp. 371-378, 1994.

[24] Pitoura E. and B. Bhargava. Maintaining Con-
sistency of Data in Mobile Distributed Environ-
ments. Proc. of the 15th Int ’1 Conf. on Distributed
Computing Systems, June 1995.

[25] Pu C. and A. Leff. Replica Control in Distributed
Systems: An Asynchronous Approach. Proc.
of the ACM SIGMOD Conf., pp. 377-386, May
1991.

[26] Ramamritham K. and P. K. Chrysanthis. A Tax-
onomy of Correctness Criteria in Database Ap-
plications. (To appear) Journal of Very Large
Databases, 4(1), Jan. 1996.

[27] Schwarz P. M , and A. Z. Spector. Synchronizing
Shared Abstract Data Types. ACM Transactions
on Computer Systems, 2(3):223-250, Aug. 1984.

Management
of Interdependent Data: Specifying Dependency
and Consistency Requirements. Proc. of the
Workshop on Management of Replicated Data,

[29] Soparkar N. and A. Silberschatz. Data-value Par-
titioning and Virtual Messages. Proc. of the 9th
ACM Symposium on Principles of Database Sys-
tems, pages 357-367, 1990.

[30] Tait D. C. and D. Duchamp. Service Interface
and Replica Management Algorithm for Mobile
File System Clients. Proc. of the 1st Int’l Conf.
on Parallel and Distributed Information Systems,
pp. 190-197, 1991.

[31] Walborn G . and P. K. Chrysanthis. “Using the
Escrow Transactional Method to Manage Repli-
cated Data in Disconnected Mobile Operations”
CS Technical Report 94-32, University of Pitts-
burgh, June 1994.

Implementation of
Resilient, Atomic Data TvDes. ACM Transac-

[28] Sheth A. and M. Rusinkiewicz.

pp. 133-136, NOV. 1990.

[32] Weihl W. and B. Liskov.

tions on’ Programming Liniuages and Systems,
7(1):244-269, Apr. 1985.

40

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:59:42 UTC from IEEE Xplore. Restrictions apply.

