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Abstract 
Advances in  computer and telecommunication tech- 

nologies have made mobile computing a reality. How- 
ever, greater mobility implies a more tenuous network 
connection and a higher rate of disconnection. In  or- 
der t o  tolerate disconnections as well as to reduce the 
delays and cost of wireless communication, it is neces- 
sary to support autonomous mobile operations on data 
shared b y  stationary hosts. This would allow the part 
of a computation executing on a mobile host t o  con- 
tinue executing while the mobile host is not connected 
to  the network. 

In this paper, we examine whether object semantics 
can be exploited t o  facilitate autonomous and discon- 
nected operation in  mobile database applications. We 
define the class of  fragmentable objects which may be 
split among a number of sites, operated upon indepen- 
dently at each site, and then recombined in a seman- 
tically consistent fashion. A number of objects with 
such characieristics are presented and an implemen- 
tation of fragmentable stacks is shown and discussed. 

1 Introduction 
The growth of wide area networking and the emer- 

gence of portable and mobile computer systems has 
changed the way we must look at concurrent access 
to shared data. Wide area and wireless networking 
suggests that there will be even more competition for 
shared data since it provides users with the ability to 
access information and services through wireless con- 
nections that can be retained even while the user is 
moving. Further, mobile users will have to share their 
data with others. In this new mobile database environ- 
ment, the task of achieving the required performance 
and ensuring the consistency of shared data becomes 
more difficult than in traditional database systems be- 
cause of the inherent limitations of the wireless com- 
munication channels and restrictions introduced by 
mobility and portability. In such an environment, in- 
creased autonomy of mobile users can mean increased 
performance, increased functionality, and simplified 
recovery in the presence of failures. 
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mh: Mobile Host 

MSS: Mobility-Support Station 

Figure 1: Mobile Network 

In a mobile computing environment, the network 
is made up of stataonary and mobale hosts [16, 151. 
Unlike stationary hosts, mobile hosts change location 
and network connections while computations are be- 
ing processed. While in motion, mobile hosts retain 
thieir network connection through the support of spe- 
cialized stationary hosts with wireless telecommuni- 
cattion ability, called mobalaty-support stataons (Figure 
1). Each mobility-support station is responsible for 
a 1 of the mobile hosts within a given geographical or 
logical area, known as a cell. At any given instant, a 
mobile host may directly communicate only with the 
mobility-support station responsible for the area in 
which the mobile host moves. Further, a mobile host 
has to  compete with the other mobile hosts in a cell for 
the wireless connections which are both of low band- 
width and expensive in terms of power consumption 
and monetary cost. 

Within this mobile computing environment, shared 
data are expected to  be stored and controlled by a 
number of database servers executing on stationary 
hosts. Mobile hosts are assumed to have limited stor- 
age capacity for cached data. Mobile hosts cache and 
store shared data on a hard disk or a flash memory 
which survive power failures. To ensure the consis- 
tency of the shared data in the presence of concurrency 
and failures, users on both mobile and stationary hosts 
update and retrieve the data using transactions. 
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It is possible, even probable, that a mobile host will 
become disconnected from the network due to (acci- 
dentally or intentionally) broken communication con- 
nections. For example, in Figure 1, MH1 becomes 
accidentally disconnected upon entering a region out 
of the reach of any mobility-support station. On the 
other hand, planned disconnection occurs when com- 
munication on the mobile host is turned off to save 
energy or reduce communication expense. Such dis- 
connections, however, do not imply failure of the dis- 
connected mobile host. On the contrary, the part of 
a computation executing on a mobile host may con- 
tinue executing while the mobile host is moving and 
not connected to the network. 

For temporary disconnection to be tolerated with 
no disruption of transaction processing, suspending 
(blocking) transactions executed on either stationary 
or mobile hosts needs to be minimized. Proper sup- 
port, for m o b i l e  t r a n s a c f i o n s ,  i.e., transactions invoked 
on a mobile host, must provide for local autonomy 
to allow transactions to  be processed and commit- 
ted on the mobile host despite temporary disconnec- 
tion. At the time of reconnection, the effects of mobile 
transactions committed during a disconnection would 
be incorporated into the database while guarantee- 
ing data and transaction correctness. Therefore, in- 
stead of considering and handling disconnections as 
failures that would require transactions on discon- 
nected mobile hosts to be aborted, in this paper we 
handle disconnections as a c o n c u r r e n c y  and cache  co- 
h e r e n c y  problem by considering mobile transactions 
as long-executing transactions operating on dynami- 
cally replicated objects on the mobile host. This is 
appropriate, since mobile transactions are expected to 
be long-lived because of long communication delays 
over wireless channels whether or not disconnection 
occurs. In fact, temporary disconnections cannot be 
distinguished from long network delays. 

The most permissive concurrency control schemes 
are those which exploit the semantics of the objects 
and the operations defined on them, the structure of 
the database, the structural and behavioral properties 
of the activities in the database, and the correctness 
requirements of the applications [8, 261. We refer to 
these techniques as seman t i c s -based  t r a n s a c t i o n  pro- 
cessing techniques. Many of these techniques, which 
have been proposed to support long lived transactions 
in distributed database and multidatabase systems, 
will allow for greater autonomy and simplified recov- 
ery after failures, but techniques which require caching 
large portions of the database or which maintain mul- 
tiple copies of many data items may have excessive 
storage and communication costs for a mobile host. 
In this paper, we introduce two new semantic con- 
cepts, namely f r a g m e n t a b i l i t y  and reorderabi l i ty  that 
can be used to  facilitate semantics-based transaction 
processing in mobile database applications. 

Fragmentability defines a new class of objects which 
better suit mobile and disconnected operation by al- 
lowing a portion of these (potentially large) objects to 
be cached and operated upon independently. Specifi- 
cally, fragmentable objects may be split into disjoint 
fragments which can be distributed among a number 

of sites, operated upon independently at each site, and 
then recombined in a semantically consistent fashion. 
Stacks, sets, and queues are examples of objects which 
fall into this category. Reorderable objects are frag- 
mentable objects that  exhibit more flexibility in merg- 
ing their fragments by allowing the fragments of an 
object to be rearranged. 

The rest of this paper is structured as follows: 
In Section 2 we examine the various semantics- 
based transaction processing techniques in the context 
of mobile database applications, emphasizing those 
which exploit object and operation semantics to sup- 
port autonomous and disconnected transaction pro- 
cessing. In Section 3 ,  we introduce the concepts of 
reorderabi l i ty  and of f r a g m e n t a b l e  data items (whose 
elements constitute the unit of caching and reconcili- 
ation of updates) and examine several such items. In 
Section 4 ,  an implementation of f r a g m e n t a b l e  s t a c k s  is 
shown and discussed. Section 5 discusses the future 
direction of this work and suggests areas for extended 
investigation and implementation. 

2 Exploiting Object Semantics 
Almost all types of transaction processing systems 

employ some semantic knowledge to provide increased 
availability of data,  to achieve a high degree of con- 
currency, and to simplify recovery in the presence of 
failures. Broadly speaking, the concurrency semantics 
of an object depend on the following object character- 
istics [IO]: 

s e m a n t i c s  of t h e  opera t ions  - which is related to 
the effects of an operation on the state of an ob- 
ject, 

opera t ion  i n p u t / o u t p u t  va lues  ~ which refers to 
both the direction of information flow to and 
from an object and the interpretation of the in- 
put/output values, 

organizataon of t h e  object - which refers to the 
abstract organization of an object (as opposed to 
its physical implementation), and 

object u sage  - which refers to how an object is 
used and what is done with information extracted 
from the object. 

The first three object characteristics have primarily 
been used to define various forms of c o m m u t a t i v i t y  
which determine semantically whether two operations 
can be allowed to execute concurrently without com- 
promising serial izabi l i ty ,  the traditional database cor- 
rectness criterion [9]. The last characteristic, object 
usage, has been exploited to define application-specific 
correctness criteria which transcend commutativity 
and serializability to allow even more operations to 
execute concurrently and asynchronously. 

Although these semantics-based transaction pro- 
cessing techniques have the potential to improve per- 
formance, it is not clear that these same techniques 
can be used to support mobile transaction process- 
ing. Therefore, it  is necessary to  evaluate these ex- 
isting semantics-based techniques by the measure of 
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how they apply to the mobile transaction processing 
environment and, in particular, how well they support 
disconnected operation. Below we examine how these 
techniques are commonly applied and briefly discuss 
their advantages and disadvantages in a mobile envi- 
ronment. To simplify the discussion we classify them 
into two groups: app l i ca t ion  i n d e p e n d e n t  s e m a n t i c s -  
based techniques and app l i ca t ion  d e p e n d e n t  s e m a n t i c s -  
based techniques. 
2.1 Application Independent Semantics 

Because the semantics of most operations are, by 
their very definition, well understood, this object char- 
acteristic is the first to be used and the one most often 
exploited. The most commonly used semantic prop- 
erty of operations is c o m m u t a t i v i t y .  

If two operations commute, then their effects on 
the state of an object and their return values are the 
same irrespective of their execution order. Operations 
which commute can be arbitrarily ordered in a concur- 
rent execution to effect serializability. Commutativity 
can be used to enhance recovery as well as concur- 
rency. If a protocol allows only commuting operations 
to execute concurrently, it prevents cascading aborts, 
localizing recovery to  transaction boundaries. 

Some operations commute in all object states (e.g., 
two increments). We can, however, identify opera- 
tions that commute only in specific object states. This 
property of operations is called state-based c o m m u t a -  
t i v i t y .  For example, two operations which push iden- 
tical values onto a stack may execute in any order and 
the resultant stack will be the same. That is, push 
operations with identical input values commute, while 
push operations with differing input values, do not. 
Output values can also be used to determine if two op- 
erations are state commuting. For example, two push 
operations that return “stack-overflow” when failing 
to push a value, commute. 

The output values in conjunction with the inputs 
of the operations have been used for new definitions 
of conflicting operations (i.e., operations that cannot 
execute concurrently) which are weaker than commu- 
tativity and yet ensure serializability. Although these 
definitions, such as ser ia l  d e p e n d e n c y  [14] and recouer- 
abi l i ty  [4], permit a higher degree of concurrency than 
commutativity and can be used within a traditional 
replicated database environment, they are associated 
with more complex recovery and involve more complex 
transaction management than commutativity. 

Clearly, commutativity can be used to enhance the 
concurrent access to, and simplify recovery of, shared 
data within a mobile host. For objects stored in the 
database server, if all operations of an object com- 
mute with each other in all states, then this object 
could be cached and manipulated at a mobile host 
asynchronously, without any coordination with the 
database server. The mobile host is only required to 
periodically propagate to the server the updates of the 
mobile transactions committed locally. Such objects 
can be exploited to facilitate the autonomous opera- 
tion of mobile hosts during disconnections. 

However, in reality very few operations of an ob- 
ject commute and cached objects require communi- 

cation to coordinate the execution of conflicting op- 
erations in order to  guarantee the consistency of the 
cached copies. In traditional caching schemes, every 
time a cached copy is updated, it is propagated to the 
database server which, in turn, invalidates or updates 
all other copies. Such communicatjon is prohibitively 
expensive for mobile hosts which communicate over 
low bandwidth wireless channels and have limited bat- 
tery life. Further, because wireless data communi- 
cattion employs broadcast technologies, frequent com- 
munication by each mobile host could result in wire- 
le,ss network congestion and decreased throughput. A 
number of cache coherence schemes have been studied 
(i:n the context of mobility and disconnections) that 
exploit the broadcast characteristics of wireless com- 
munication to reduce the communication cost without 
exploiting any object semantics [7]. 

Commutativity of operations can be exploited in 
caxhing methods that employ a cclncurrency control 
protocol to  ensure cache coherence. For example, in an 
optimistic concurrency control based scheme, cached 
objects on mobile hosts can be updated without any 
coordination (an attractive feature for disconnected 
operation) but the updates need to be propagated and 
vatlidated at the database server in order for the invok- 
ing transaction to  be committed [l;‘]. Unless conflicts 
between concurrent updates are rare, this scheme will 
lead to more abortions of mobile transactions (which 
are expected to be long-lived due to disconnections 
and long network delays) when compared to transac- 
tions executing on stationary hosts. In this case, both 
commutativity and serial dependency can be exploited 
to validate more mobile transactions. In a pessimistic 
scheme in which cached objects cain be locked exclu-  
s i ve l y ,  mobile transactions can be committed locally. 
However, pessimistic schemes might lead to unneces- 
sary transaction blocking since a mobile host cannot 
release any cached objects while it, is disconnected. 

Existing caching methods attempt to cache entire 
objects or, in some cases, complete files. Transmis- 
sion of these potentially large objects over low band- 
width communication channels can result in severe 
wireless network congestion and high communication 
cost. Furthermore, the limited cache size of a mo- 
bile host means that only a small number of (large) 
objects can be cached on a mobile host at any given 
time. Thus, it is important that the granularity of 
caching is as fine as possible so that a working subset 
of the database, sufficient to sustain a practical level 
of transaction processing during disconnections, can 
be: cached. Here the semantics of the object organiza- 
tion can be helpful in fragmenting large objects into 
smaller components that can be cached independently 
while maintaining consistency. The escrow transac- 
tional method [22, 21, 29, 191 is a perfect application 
of this principle. 

The escrow transactional method is designed specif- 
ically to  improve concurrent access to aggregate i t e m s  
by exploiting object structure, state-based commuta- 
tivity, and integrity constraints. Specifically, the es- 
crow method exploits the fact that aggregate items 
arme numeric values which represent a quantity of in- 
teirchangeable items, such as units of blood or dollars 
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in an account. Since all of the items are interchange- 
able, the quantity can be divided among a number of 
mobile hosts based on their data requirements [20, 311. 
Data consistency is ensured by limiting the operations 
on the cached quantity to increments and decrements 
that commute provided that certain boundary condi- 
tions derived from integrity constraints (e.g., a nega- 
tive physical inventory) are not violated. Thus, by as- 
suming that the worst case of pending operations will 
not violate boundary conditions, the database server 
can incorporate the effects of committed mobile trans- 
actions in an arbitrary order that preserves serializ- 
ability. 

Whereas escrow methods ensure serializability of 
global executions, the demarcation protocol [5], which 
was also designed to support autonomous updates on 
aggregate items, ensures only that local executions are 
serializable. The demarcation protocol does not rely 
on the commutativity of operations but it does ex- 
ploit the object organization and integrity constraints. 
Specifically, it preserves data consistency by enforcing 
explicit consistency constraints on the cached quanti- 
ties which establish safety limits during updates. As 
we will. see in the next section, aggregate items are 
good examples of fragmentable objects. 
2.2 Application Dependent Semantics 

Methods which exploit object usage enhance per- 
formance and functionality of transactions by relax- 
ing the notion of a serializability in favor of weaker, 
but equally acceptable, application-specific criteria. 
As opposed to serializability, these methods typically 
view da ta  cons i s t ency  and t r a n s a c t i o n  correctness  in- 
dependently [26]. 

Data consistency captures correctness from the per- 
spective of objects in the database. Data consistency 
requirements range from s t r i c t  cons i s t ency  (as de- 
fined by serializability) to even tua l  cons i s t ency  [l, 281. 
Eventual consistency denotes a temporal or spatial di- 
vergence from strict consistency the extend of which 
can be expressed in terms of degrees of i n c o n s i s t e n c y .  
For example, a degree may require consistency “at 
a specific real-time,” “within some time” or “after a 
certain amount of change to  some data,” or enforc- 
ing consistency “after a certain value of the data is 
reached,” etc. Divergence control protocols such as 
those for quasi-copies [l] and for epsilon-serializability 
[25] allow for the applications to specify their currency 
requirementss and the inconsistency with which they 
can cope. These protocols can also facilitate the tun- 
ing of cache management on mobile hosts according to 
the available bandwidth and monetary cost of wireless 
communication [6]. 

Transaction correctness requirements capture cor- 
rectness from the perspective of the structure and be- 
havior of transactions [la,  131. That  is, these methods 
allow applications to specify (1) the degree of i so la t ion  
of different transactions in terms of acceptable trans- 
action interleavings, delegation of operations and early 
or partial commitment of the operations of transac- 
tions, and (2) the degree of t r a n s a c t i o n  a u t o n o m y  in 
terms of transaction interdependencies such as commit 
and abort dependencies. 

Clearly, these relaxed correctness criteria require 
more from the transaction developers than serial- 
izability which works under the simple assumption 
that correctly written individual transactions preserve 
database consistency. In particular, a transaction may 
have to be aware of the functionality of other trans- 
actions and the potential interactions among transac- 
tions. This makes transaction development, as well 
as management, more difficult. Furthermore, transac- 
tion and database recovery also becomes more com- 
plex. Traditional recovery techniques are typically 
not sufficient to restore the database to  a consistent 
state after a failure and additional compensating steps 
are required to semantically undo the effects of previ- 
ousiy executed and committed operations. However, 
these relaxed correctness criteria are useful for mobile 
transaction processing because they can significantly 
increase the autonomy of mobile hosts. 

Application-specific criteria have been mainly pro- 
posed in database environments with characteristics 
similar to those of mobile database applications. As 
discussed above, ensuring serializability and maintain- 
ing strict consistency among data stored on both mo- 
bile and stationary hosts is very constraining as well 
a s  expensive [a, 15, 301. For this reason, current ap- 
proaches that aim to support transactions which per- 
form updates on cached objects at the mobile hosts 
advocate application-specific criteria. For example, an 
open-nested t ransac taon  model has been proposed in 
[ll] for modeling mobile transactions as a set of sub- 
transactions. The model allows for disconnected op- 
eration by supporting unilateral commitment of sub- 
transactions and compensating transactions. Further, 
it can be customized based on the application by vary- 
ing the degree of isolation and autonomy of the sub- 
transactions of a mobile transaction. 

In order to support mobile transactions that can 
accommodate spatial inconsistencies, dynamic object 
clustering has been proposed based on objects’ degree 
of inconsistency and two types of read and write op- 
er at ions: weak-  read,  weak-  w r i t  e ,  s tr ic t -read and s t r ic t -  
w r i t e  [23, 241. Strict-read and strict-write operations 
have the same semantics as the read and write opera- 
tions invoked by traditional ACID transactions [9]. A 
weak-read returns the value of a locally cached object 
written by a strict-write or a weak-write. A weak- 
write operation updates a locally cached object which 
might become permanent on cluster merging if the 
weak-write does not conflict with any strict-read or 
strict-write operation. 

A common characteristic of the different divergence 
control methods, escrow methods, and the demarca- 
tion protocol, is that all deal with read/write ob- 
jects or objects with numeric values. In the case of 
read/write objects and traditional caching schemes, 
the entire object is cached, which could, potentially, 
entail intolerable overhead in a mobile environment. 
Also, to make effective use of these methods, we need 
to apply them to as many data types as possible. In 
our approach to mobile transaction processing, we pro- 
pose the utilization of object organization and appli- 
cation semantics to break objects into smaller pieces 
to be cached independently and manipulated asyn- 
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chronously. The balance of this paper will outline our 
ideas and progress toward this end. 

3 Fragmentable Objects 
Consistency of data is a primary issue in all systems 

in which data are dispersed over multiple sites and in 
which both updates and retrievals are supported at all 
sites. As is evident from the previous section, the char- 
acteristics of the mobile environment, in particular the 
inherent restrictions of the wireless medium and of the 
mobile hosts (Figure a) ,  make semantics-based trans- 
action processing the only viable way to ensure data 
consistency in mobile database applications. To better 
support disconnected operations and, whenever pos- 
sible, strict data consistency, the approach presented 
here utilizes all types of object semantic information to  
provide finer granularity of caching and concurrency 
control and to allow for asynchronous manipulation 
of the cached objects and unilateral commitment of 
transactions on the mobile host. 

The basic idea is to split large and complex objects 
into smaller fragments of the same type as the large 
object by exploiting the object organization. With the 
appropriate split, a mobile host can cache an object 
p a r t i t i o n  (consisting of one or more object fragments) 
of just the right size, minimizing the storage require- 
ments on a mobile host. The second idea is to  make 
these fragments the unit of reconciliation of updates, 
that is, the unit of consistency. The objective is to  sup- 
port fragmentation of all objects in the database by 
exploiting commutativity of operation based on con- 
sistency constraints and object usage. To allow more 
flexibility (as well as to  deal with situations in which 
fragmentation under strict consistency requirements is 
not possible) applications can explicitly define the con- 
sistency constraints to  be enforced. In the rest of this 
paper we will primarily focus on the fragmentation of 
objects which ensure strict consistency. 

A “master copy” of each object resides on a station- 
ary database server (or, in the case of a distributed 
system, a t  a number of database servers). Mobile 
hosts specify the granularity of an object to  be cached 
and usage constraints by using the split operation. A 
merge operation is provided to allow transactions to 
release and incorporate cached fragments back into 
the master copy. Object fragments can be logical or 
physical divisions of the data object. Physical frag- 
ments need to be physically re-assembled into a single 
object while logical fragments are combined with some 
logical or arithmetic operation. Split and merge op- 
erations are type specific and as such the algorithms 
for splitting and merging object fragments could be 
encapsulated in the objects themselves. We refer to 
objects extended with these two operations (i.e.7 split 
and merge) as f ragmen tab le  objects. 

When a mobile host requires access to  an object, 
the mobile host sends a cache request to  the database 
server by invoking the split operation with two param- 
eters: selectaon c r i t e r ia ,  and cons i s t ency  cond i t ions .  
The selection criteria specify the object to be cached 
and the required size of the object partition. When 
the object partition is cached on a mobile host, it is 

MobiYe Hosts Vllireless Medium 

loiw bandwidth small s ze 

high bandwidth variability small screen 

energy demanding limited batery life 

monetarily expensive 

physical broadcasting in a cell 

limited storage -- both 
volatile and non-volatile 

frequent disconnections -- 
unpredictable and predictable 

susceptible to failures 

Figure 2: Wireless Network Characteristics 

logically removed from the master copy of the object 
and is only accessible by the transactions on the mo- 
bile host. However, the remaining part of the master 
copy is not affected and it is accessible a t  the server. 

The consistency conditions specify constraints on 
the fragment which need to  be satisfied to  maintain 
the consistency of the entire object. These condi- 
titons might include (a) allowable operations and con- 
straints on their input values and (b) conditions on the 
state of the object. Some operations on fragmentable 
hems may be disallowed or restricted to guarantee 
that the fragments may be properly merged. For ex- 
amples, operations on fragmented aggregate items are 
restricted to  increment and decrement. Sometimes the 
constraints associated with an object fragment will be 
directly related to a constraint that was associated 
with the entire object, e.g., negalive physical inven- 
tory. In other cases, the constraint may be necessary 
to  assure that the fragments in the partition can be 
merged while preserving the changes brought about 
by transactions committed against t,he fragments. For 
example, requiring that the values to  be added in a 
set must fall within a specific range. Finally, the con- 
straints may be related to the degree of consistency 
that is required by an application. An example of a 
condition on the state of an object is the ability to 
test for an “empty s t a c k  (which would necessitate 
including the fragment at the “bottom” of the stack). 

In order to support unilateral commitment of trans- 
action executing on a mobile hosi,, we must retain 
th,e effects of transaction operations on each fragment 
when the fragments are merged. Often the order of 
recombination will be dictated by t:he structure of the 
original object or the operations performed on each 
fr%gment. There are objects, however, whose frag- 
ments may be merged in a number of ways without 
destroying the data consistency of the object. In par- 
ticular, there are objects in which the ordering of the 
fragments is an artifact of the sequence of operations 
performed against the object. When the fragments of 
an object can be rearranged to reflect an alternative 
sequence of operations on the object, we say that the 
object is reorderable.  

3.1 Examples of Fragmentable Objects 
Aggregate Items: As mentioned previously, aggre- 
gate items are an excellent examp le of fragmentable 
items. Aggregate items are logically fragmented. For 
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this reason, the storage required for each fragment is 
identical. The selection associated with the split  com- 
mand is the entire object and the constraint conditions 
associated with each fragment state the minimum and 
maximum value that the aggregate fragment may as- 
sume. Aggregate items are merged logically by adding 
or subtracting fragment values. 

Operations on such aggregate items usually include 
(but are not limited to increasing, decreasing, or 

not commute with either increments or decrements 
and the exact value of the entire object cannot be 
determined at  the mobile host, only the first two op- 
erations (increase and decrease) are allowed to  process 
against a fragment. However, these operations com- 
mute provided that the constraints on the minimum 
and maximum value of the object are not violated. 
By assuring that the worst case of a number of pend- 
ing operations will not violate boundary conditions, 
serializability is ensured while enhancing performance 
and allowing for disconnected operation. 

Sets: Sets are collections of independent items (mem- 
bers) in which the relative ordering of members is 
unimportant. Sets can be split into a number of sub- 
sets and these subsets may be combined in an arbi- 
trary order to  reconstitute the original set. Subsets 
represent physical fragments of sets and the storage 
required is directly related to the number of elements 
in the fragment. 

When strict consistency is required, each mobile 
host needs to specify a range of elements as part of 

ion criteria. All set fragments must be dis- 
hen strict consistency is required, the con- 

straint conditions will specify that testing for mem- 
bership and insertion of items may only occur for el- 
ements within the range specified in the constraint 
conditions. A group of set fragments may be recom- 
bined into a single set by performing a unzon of the 
fragments. It should be noted that a tables is a type 
of set and fragmentation of tables with strict consis- 
tency IS equivalent to  horizontal fragmentation in a 
relational database system. 

If weak consistency is sufficient, the set fragments 
may overlap and insertion of members may result in 
duplication across different fragments. These differ- 
ences can be resolved by dropping duplicates from 
the set when the fragments are merged. If testing of 
membership is prohibited, the insertion of a duplicate 
member does not violate consistency constraints. If 
testing for membership must be allowed, consistency 
must be relaxed to  permit such insertions. 
Stacks: Stacks are lists of data that are accessed in 
a LIFO (last-in, first-out) fashion by means of push 
and pop operations. Push places a data item on the 
top of the stack. A pop removes the next available 
item from the top of the stack and returns the data 
item to the caller. The nature of these two operations 
implies that changes are made only to one end of the 
stack. All data items in the stack except the top can- 
not be accessed and are, essentially, “hidden” from all 
transactions. 

When stacks are accessed by database transactions, 

querying the current va 1 ue. Because querying does 
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each transaction may independently push and pop 
data items. In any serial execution all of the items 
pushed by a particular transaction will be adjacent in 
a stack. Strict consistency is maintained as long as this 
constraint is satisfied. Weak consistency constraints 
would allow for some interleaving to  occur among ob- 
jects from cooperating transactions. 

A stack fragment is the basic unit of consistency 
and is defined to be any portion of the stack which 
contains interdependent data. All data items items 
pushed by a single transaction are interdependent. If 
a data item is popped by a transaction, any interde- 
pendent items on the top of the stack become interde- 
pendent with the data items of the transaction which 
performed the pop. Interdependent data items must 
be contained in a single fragment. 

Stacks are physically fragmented objects. Each re- 
questing mobile host caches one or more stack frag- 
ments. When the stack fragments are returned to  the 
master copy, the stack fragments are physically rein- 
serted into the master stack. Stacks are also reorder- 
able, fragments may be rearranged to  provide larger 
contiguous segments to  satisfy a cache request. As an 
example, consider a stack S with initial contents S I ,  
and four transactions, T I ,  T2, T3, and T4. Assume 
that TI and T2 each push three items on S and com- 
mit. The stack now looks like this: 

Which is equivalent to  the serial execution TI -+ 
T2. Further, assume that the stack is fragmented into 
three parts, 

and the first two components are given to  mobile hosts, 
MH1 and M H 2 ,  respectively. If T’ on MH1 performs 
a two pops and commits, and T4 on MH2 performs 
two pops, a push, and commits, we are left with the 
following fragments: 

(on MH1) 

-1 (on M H z )  

*m 
Now, we can merge these fragments into a single stack 
that corresponds to  a serializable history. A simple 
concatenation yields: 

1  AT^  AT^  AT^ 51 U 
which is the same as a serial execution TI -+ T4 -+ 

T2 --f T3 against the initial stack S I .  To each of the 
transactions, T3 and T 4 ,  this is a perfectly acceptable 
sequence of events (and, of course, TI and T 2  commit- 
ted before the fragmentation had even 
equally correct history can be formed 
the two fragments in this fashion: 
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1 I] 
which corresponds to the serial execution T2 -+ T3 -+ 

TI -+ T4 against the initial stack SI .  In each of these 
equally acceptable histories, TI must precede T4 and 
T2 m u s t  precede T3 because T4 reads from TI and T3 
reads from T2. 

A more detailed description of fragmentable stack 
implementation is included in Section 4. 
Queues: Queues are lists of data that are accessed 
in a FIFO (first-in, first-out) fashion. Enqueue and 
dequeue are the two basic queue operations. Enqueue 
places a data item in the rear of a queue. Dequeue 
removes the next available item from the front of the 
queue and returns the data item to the caller. The 
nature of these two operations implies that changes 
are made only to  the two ends of the queue. All data 
items in the queue except the first and last are not 
accessible. 

Queues are also physically fragmented objects. As 
with stacks, a queue fragment is any portion of the 
queue which contains interdependent data. All data 
items items enqueued by a single transaction are inter- 
dependent. Interdependent data items must be con- 
tained in a single fragment. Queue fragments in which 
the original items have been completely consumed can 
be merged back in a fashion similar to  stacks while 
maintaining strict consistency. However, the behav- 
ior of a fragmented queue more closely approximates 
that of “weak queues” as proposed by [27] if items of 
the original fragment are merged back into the master 
queue. 

3.2 Formal Definitions 
Below we will formally define f r a g m e n t a b l e  objects  

and reorderable objects. An object ob is described by a 
pair (0, C) where 0 is the s t a t e  of the object and C is 
a (possibly empty set of cons i s t ency  cond i t ions  on the 

specified in C. A history H(ob) of an object represents 
the concurrent execution of a set of transactions indi- 
cating the (partial) order of operation invocations on 
the object. H(ob) = p l  o p2 o ... o p , ,  indicates both 
the order of execution of the operations, (p i  precedes 
p i + l ) ,  as well as the functional composition of oper- 
ations. Thus, a state 0 of an object produced by a 
sequence of operations equals the state produced by 
applying the history H(.b) corresponding to the se- 
quence of operations on the object’s initial state. Fur- 
ther, H(ob) is consistent with the operation invocation 
of individual transactions. 

DEFINITION 3.1: An object is ob = ( 0 , C )  is 
f ragmen tab le  iff it can be split into fragments 
(01, Cl), (02,C2) ...( On, C,) each of which sup- 
ports the same operations as ob (i.e., fragments 
have the same type as ob)  such that: 
(1) Transactions can be processed asynchronously 
against individual fragments (Oa, Ci),  each trans- 
action against a single fragment of an object, pro- 
ducing a history hi that satisfies the constraints 
Ci and results in new fragment state O:, and 

object. Any legal h istory of ob satisfies the constraints 

(2) The resultant fragments (Oi, Cl), (Oh, C2) 
...( O ~ , C , )  can be merged back into the origi- 
nal object ob = (O’,C) where 0’ corresponds 
to a legal history that is tht: concatenation of 
0 0 hi 0 h2 0 ... o h,. 

That is, a fragment corresponds to a subhistory of the 
origin<al object that can be expanded in a consistent 
manner as long as its associated consistency conditions 
are not violated. A fragment can be obtained by pro- 
jecting on the history of the object with respect to the 
selection conditions. The definition of a legal history 
depends on the semantics of the abject and the con- 
swtency requirements of the application. In the case 
of strict consistency, a legal history is a serializable 
hist0r.y. 

DEFINITION 3.2: An object ob I= (0, C) is reorder- 
able iff ob is fragmentable and the resultant frag- 
ments (Oil Cl), (Ok, Cz) ...( OA, C,) can be merged 
back into the original object ob = (O’,C) where 
0’ corresponds to a legal history that is not neces- 
sa,rily a concatenation of 0 o hl o h2 o ... oh,. That 
is, the fragments can be merged back in more than 
one way where each corresponds to a different le- 
gal history. 

Iinfornially, reorderable objects allow the re-arranging 
of the fragments during merging. Reordering an ob- 
ject is equivalent to reordering the operations on the 
object (and the resultant history), thus increasing the 
number of allowable interleavings of operations. In 
tlhis light, reorderability can be seen as an instance of 
serial dependency [ 141. 

4: Implementation of F’ragmentable 
Stacks 

Although splitting an object into suitable fragments 
and merging them back in a consistent manner is type 
dependent, in this section we will sliow a fragmentable 
stack implementation in order to indicate the overhead 
and thie complexity required to  manage and cache frag- 
nienta.ble objects. This stack implementation main- 
ttains strict consistency as defined by serializability on 
an unbounded stack. 

Maintaining Fragment Boundaries 

To insure serializability, some constraints must be 
iinposed on suitable fragmentation of the stack. In 
particular, the stack may only be firagmented between 
elemeints pushed by unrelated transactions. The basic 
strategy for fragmenting a single stack (or each of a 
number of independent stacks) is: 

For each fragment, Fk, of stack, s, if 3 data item 
Di in Fk written by committed transaction T,, 
then V data items D,, such that D, was written 
by transaction T,, D, must belong to fragment 
Fk. Furthermore, if transact,ion T, reads data 
from transaction T,, all remaining data items 
D,, such that D, was written by transaction Tm 

37 

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:59:42 UTC from IEEE Xplore.  Restrictions apply. 



must belong to the fragment. Simply put, inter- 
dependent items must be contained in a single 
stack fragment. host. 

fragmentation markers, these tags are not part of a 
fragment per se and hence are not cached at a mobile 

Push and Pop on Fragments 

On a mobile host, transactions may pop items from 
and push items on the stack partition as if the stack 
partition were the entire stack. Recall, however, that 
an empty stack partition is n o t  equivalent to  an empty 
stack. If a transaction attempts to pop from an empty 
stack partition, the condition is signaled. If the stack 

If data dependencies exist between a number of 
queues and/or stacks, this rule may be expanded to 
include each interdependent object. Interdependent 
objects may be collapsed into a single large object us- 
ing criteria similar to those for forming atomic sets 
in predicate-wise serializability testing. In general, a 
fragment must contain all data which is interdepen- 
de;t. 

Special markers are used to signal the division be- 
tween fragments. Each marker represents the begin- 
ning of stack fragment. To guarantee that the frag- 
menting strategy stated for interdependent data in 
stacks is observed, markers are inserted at appropriate 
points and removed using two simple rules: 

a. If a transaction, in the course of reading an entry 
from the stack, encounters a marker, it reads and 
discards the marker. 

b. If a transaction has read a marker from the stack, or 
if a transaction has pushed an item onto the stack, 
the transaction pushes a marker on the stack fol- 
lowing its committed data. 

These rules are observed at  the database server 
and at  each mobile host which has a portion of the 
fragmentable stack. Since a single marker is required 
for each stack fragment and the number of fragments 
cached by a mobile host should be small, the storage 
overhead for the mobile host is minimal. The maxi- 
mum required space is consumed if each fragment con- 
tains a single data item and the overhead for this case 
is a constant factor of the number of data items in the 
stack. 

Caching of Pragments 

For simplicity, we will assume that a master copy 
of the stack will be maintained by a single database 
server. An allocation request from the mobile host 
specifies a stack, the number of data items it desires to 
cache, and a flag. The flag is used to indicate whether 
the mobile needs to test for an “empty stack” condi- 
tion. Only the host holding the “bottom” stack frag- 
ment can detect an “empty stack”. If this fragment is 
requested and has already been allocated to another 
host, the allocation fails. 

To allow operation while disconnected, the mobile 
will request more stack items than needed by any one 
transaction. The database server will attempt to split 
thp stack to accommodate the mobile host. A stack 
partataon is a group of one or more stack fragments 
from the master stack. The database server should 
return a stack partition containing enough data items 
to fulfill the mobile host’s request. 

In order to keep track the current disposition of 
each stack fragment, the master stack is augmented 
with data tags. Fragments cached at a mobile host 
are tagged as belonging to the mobile host and logi- 
cally removed from the master stack. In contrast to 

partition contains the “bottom” fragment, then the 
pop operation detects an empty stack condition. Oth- 
erwise, the transaction which attempted the pop may 
block while the stack partition is expanded (by caching 
more stack fragments) or it may be aborted, whichever 
is more appropriate. 

Conventional concurrency control and recovery 
techniques may be used to provide controlled access 
to the stack partition and to ensure serializability [9]. 
Assuming two-phase locking, uncommitted data is not 
made available to mobile transactions other than the 
transaction that pushed them and items pushed by 
a single transaction are contiguous in the stack parti- 
tion. When a transaction on the mobile host commits, 
its pushed items are followed by a marker. 

As transactions are processed, their effects are 
logged on the mobile host where the transaction ex- 
ecutes to facilitate recovery from failed or aborted 
transactions. Mobile host logs are checkpointed pe- 
riodically on an appropriate mobility-support station 

Merging of Fragments 
When a mobile host reconnects or the stack parti- 

tion is no longer needed at the mobile host, any stack 
fragments remaining in the stack partition must be 
reconciled with master stack on the database server. 
The stack partition along with the log for commit- 
ted transactions are checkpointed on the appropriate 
mobility-support station, transferred to the database 
server and deleted from the mobile host. Once the 
transfer to the database server completes, the check- 
point may be deleted. 

Items consumed by committed transactions on the 
mobile host are deleted from the master stack by re- 
moving the stack fragments tagged with the mobile 
host id. Since stacks are reorderable, if the remain- 
ing stack partition does not contain the “bottom ele- 
ment,” it is placed in the location of one of the deleted 
stack fragments. Otherwise, it replaces the fragment 
with the “bottom element” in the master stack. Fi- 
nally, the fragment tags are adjusted to reflect each 
fragment state. 
Example 

To recap and illustrate the need for markers, let us 
consider an example of a stack that is used by a set of 
mobile transactions to evaluate arithmetic expressions 
in a cooperative fashion. 

Assume that each expression comes from a single 
transaction. Each expression may be partially evalu- 
ated by a transaction which pops stack entries until it 

p 8 ,  31. 
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finds an operator, performs the operation, pushes the 
result, and repeats. (The ”=” operator prints the re- 
sult and pushes nothing.) We will use “M” to denote 
a marker. Initially, the stack contains two expressions 
pushed and committed by transactions Tz and TI in 
that order. 

T i  
M 5 2 + 8 * 6 - =  

T 3  T 2  
M 2  5 0 * 4 / 5 - =  

I M 5 2 + 8 * 6 - =  I M 1 4 7 / 5 0 * 4 / 5 - =  11 

Furthermore, assume that a mobile hosts MH1 re- 
quests a stack fragment of size 5 and a mobile host 
MH2 a fragment of size 3. According to the stack 
fragment boundary rule, the only possible split of the 
stack is: 

II ‘2 M H 2 1  M 1 4 7 / 5 0 * 4 / 5 - =  1 
Now consider that a transaction, T3, reads the first 

three items from the stack (fragment) at  MH2 (i.e., 
“14” “7” “/”), evaluates the sub-expression, places the 
result on the stack and commits. 

- - I  

I M 5 2 + 8 * 6 - =  I M 2 5 0 * 4 / 5 - =  1 
Because no marker exists between the items from 

transactions T 3  and T2, any fragment containing 
items from one must contain items from both and 
the fragmentation criteria that guarantee serializabil- 
ity are satisfied. The dependency results because T 3  
reads from T 2  and, therefore, T 3  cannot possibly pre- 
cede T2. The resultant stack is reorderable and frag- 
mentable without further restriction. Use of the mark- 
ers maintains correct fragment boundaries and pre- 
vents this incorrect partitioning or reordering in a time 
and space efficient manner. 

5 Conclusions 
In this paper we have examined different types of 

semant,ic information with respect to their applicabil- 
ity in the context of mobile transaction processing. 
This examination led us to the realization that se- 
mantic information that requires access to the entire 
object is not suitable for mobile traiisactions irrespec- 
tive of their potential power to  allow for higher degrees 
of concurrency. For this reason, we have focused on 
those semantic notions that allow for concurrent ex- 
ecutions on independent fragments of an object that 
can be cached locally in a mobile host and toward this 
end we have introduced the notioris of fragmentable 
and reorderable objects. 

The importance of escrow methods for distributed 
(and, particularly, mobile) computing has long been 
recognized. In a very real way, we ha,ve made afirst at- 
tempt io  apply these escrow methods to non-aggregate 
items. By encompassing a large class: of escrowable ob- 
jects, we can support a greater variety of applications 
on mobile platforms that require strict data consis- 
tency. At the same time, we can provide equal support 
for applications that can tolerate different degrees of 
inconsistencies by allowing fragments to diverge in a 
controlled manner. 

In tlhe future, we intend to continue our investi- 
gation on fragmentable and reorderable objects and 
on methods to  maintain data consistency in mobile 
database environments in general. Finally, we want to 
to  apply our ideas in practice by developing protocols 
to  fragment and merge objects and1 to  test implemen- 
tations of these fragmentable objects in a simulated 
mobile environment in search of more efficient mech- 
anisms. 
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