Visual Query of Completely Encapsulated Objects

Antonio Massari
Dipart. di Informatica e Sistemistica
University of Rome “La Sapienza”

00198 - Roma, Italy

Abstract

This paper presenis a general purpose object query
system and language, called QBI (Query by Icon), thai
involves the manipulation of icons for composing a
query. It requires neither special knowledge of the con-
tent of the underlying database or understanding of the
details of the database schema, hence it is equally use-
ful to both unsophisticated and ezpert users. A user
perceives the database as classes of objects and gener-
alized attributes while the system internally maintains
a schema of the underlying database rich in semantic
information. No relationship specification is required
for composing a query. Furthermore, automatic natu-
ral language feedback and cardinality constraints anal-
ysis assist users in query specification.

1 Introduction

Databases are being incorporated in more and more
complex applications such CAD/CASE/CIM systems,
multimedia systems and heterogeneous information
systems. Semantic and object-oriented (OO) models
have been proposed in order to deal with the inher-
ent limitations of the traditional data models as well
as the complexity of the structure of these, typically
distributed, advanced application databases [12]. In
addition, these models open new possibilities in query
processing based on fifth generation visual query lan-
guages [3?

Semantic and OO models provide few, conceptu-
ally rich, comstructs for defining the schema of a
database. Typically, semantic and OO models result
in a database schema which can be expressed and vi-
sualized as a type of graph. To capture the various se-
mantic aspects of a model, such graphs are composed
of different kinds of nodes and edges enhanced with
labels and annotations for expressing constraints. A
query is expressed by defining a logical access path on
the graph representing the database schema. The al-
lowable paths and the meaning of a specific path, i.e.,
the way that objects along a path are related, depend
on the model and the query language itself.

The effort required by users, particularly unsophis-
ticated onmes, for understanding the meaning of vari-
ous constraints and complex relationships, becomes
a stumbling block for an effective use of such query
language. Although navigation on semantic and OO
database schema is simplified by the use of references
(implicit joins), the user must still specify the appro-
priate connections. Similarly, in the cases where a

0-8186-7056-8/95 $04.00 © 1995 IEEE

18

Panos K. Chrysanthis
Dept. of Computer Science
University of Pittsburgh
Pittsburgh, PA 15260, U.S.A.

database schema is visualised as a diagram [2], and
queries are formulated by drawing nodes and edges to
be matched in the schema diagram, diagrams often
become too complex for unsophisticated users. Paz-
ticularly difficult is the visual formulation of queries
involving cyclic multiple paths.

In this paper we present QBI (Query By Icon),
a general purpose query system developed to sup-
port the exploration and query of large distributed
databases. QBI is based on the notion of complete ob-
jects, i.e., completely encapsulated objects, that pro-
vides logical access path independence and incremen-
tal composition. Hence, it requires no special knowl-
edge of the content of the underlying database nor
understanding of the details of the database schema.

The complete object model is motivated by the uni-
versal relation approach which is intended to provide
the user with a simplified model in which she/he can
compose queries without considering the underlying
structure of the relations in the database [8]. Uni-
versal Relation systems, assume that the database is
structured as a single relation whose attributes encap-
sulate all the semantics of the underlying database.
Similarly, by fully encapsulating both implicit and ex-
plicit relationships among objects within each object,
the complete object model allows the whole database
to be seen from within any single object. More specifi-
cally, a user perceives the existence of classes of objects
and a set of properties for each class, called the gener-
alized atiributes. Thus, in QBI, each object provides a
view of the whole underlying database from the point
of the object and can be thought of as an independent
“universal relation” or complete object.

QBI takes advantage of iconic metaphors for the
visualization of both structural information and con-
straints. The implicit ambiguity of iconic representa-
tion is resolved by using automatically generated natu-
ral language. In general, the main difference between
QBI and the other iconic interfaces proposed in the
literature 7, 11, 10] is in the way icons are defined
and used for expressing concepts. As opposed to
QBI, other systems do not usually assign uniform se-
mantics to icons and adopt instance browsing as the
principal querying strategy.

QBI internally uses the Binary Graph Model
(BGM), a semantic data model, for capturing most
of the aspects of the underlying database. In the next
section, BGM is formally defined. In Section 3, we
introduce the Complete Object Model and formalize

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:58:19 UTC from IEEE Xplore. Restrictions apply.

it in terms of BGM. Section 4 describes the salient
features and components of QBI prototype whereas
Section 5 illustrates the functionality of the prototype
through its use to query a radiological database.

2 The Binary Graph Model

The Binary Graph Model is central to QBI pro-
viding the mathematical representation for the Com-
plete Object Model and being employed as the inter-
nal representation of QBI. BGM is derived from the
Graph Model [5] that was proposed to support multi-
paradigm interfaces.

The major components of BGM are: the class of
objects, the binary relationship among classes, the ISA
relationship between a subclass and its superclass, and
cardinality constraints for the participation of class
instances into relationships. A BGM schema can be
expressed as a labeled graph called typed-graph.

DEFINITION 2.1: [Typed Graph] A typed-graph
g(N, E) is a labeled multigraph. The set N of nodes
consists of class nodes N¢ representing classes of ob-
jects and role nodes N representing relationships
between two classes. Class nodes can be either print-
able or nonprintable depending on whether they rep-
resent domains of values or abstract classes. An edge
in F can only link a class node to a role node and is
associated with a unique label in L. Each role node
has a degree equal to two.

A class node is said to be adjacent to a role node
if there is an edge connecting the two nodes. Each
role node will have exactly two adjacent class nodes.
When the adjacent class nodes are coincident we say
that the role node is reflezive. In this case labels on
edges are useful for disambiguating the two edges.

A BGM database is defined as a triple < g,¢c,m >,
where g is a typed-graph, c is a set of constraints,
and m is an interpretation. The schema of a database
is represented by g and ¢ whereas an instance of a
database (extension) are represented by the notion of
interpretation.

DEFINITION 2.2: [Interpretation] Let g be a typed-
graph. An interpretation for g is a function m
mapping each class node n. € N¢ to a set m(n.)
of objects and each role node n, € Ny to a set
m(n,g of pairs < Ibly(n,) : 1, lbl2(n,) : z; >, where
Ibly, Ibl; are functions returning the labels of the
two edges connected to n, (Ibly,lbly: Ng — L) and
< @1, 22 >€ m(ne1) X m(nez) where n.; and ny are
the adjacent class node of n,.

That is, an interpretation specifies the valid combi-
nations of values from the underlying classes.

DEFINITION 2.3: [Constraints] The set of con-
straints ¢ on a database is expressed by means of
a constraint language. In this paper we will refer to
the following three constraints:

o ATLEAST(k,m.1,n,) (minimum cardinality con-
straint) specifies that an instance of class node n.;
can participate in at least k interpretation involving

19

Figure 1: A Typed Graph

the adjacent role node n,.

o ATMOST(k,nc1,ny) (maximum cardinality con-
straint) specifies that an instance of class node n.;
can participate in at most k interpretation involving
the adjacent role node n,.

e ISA(ng n;) (subclass-superclass relationship)

specifies that the class n; is a subset of the class
ne (i.e.,m(ns) C m(n.)). The role nodes connected
to n. are considered as also being connected to ne,
i.e., ng inherits the edges of n,. Currently we as-
sume single inheritance, hence each class node has
to belong to one and only one class hierarchy.

In order to facilitate type checking of query expres-
sions, we define the notion of type of a class as a class
hierarchy. That is, the class nodes belonging to a class
hierarchy have the same type. Note that if n.; and n.2
have different types, their interpretations are disjoint.

Figure 1 shows an example of a typed graph. The
rectangular boxes represent class nodes (the print-
able ones are grayed) while the ovals represent role
nodes. No label on an edge is shown since there
are no reflexive role nodes that need to be disam-
biguated. The annotations (m,n) on edges represent
(ATLEAST,ATMOST) cardinality constraints. ISA
constraints are denoted by a thick arrow from a sub-
class node to its superclass.

3 The Complete Object Model

In QBI, the concepts of class of objects and atiribute
of a class exclusively form the external representa-
tion of the database structure due to their natural
simplicity. Specifically, a user perceives the underly-
ing database as a set of classes, each having several
properties called Generalized Atiributes (GA). In the
same way that attributes in the ER model [6] repre-
sent elementary properties of entities, a GA expresses
a generic property of a class; for example the set of
cars owned by a person is treated as a GA of person

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:58:19 UTC from |IEEE Xplore. Restrictions apply.

GA1: Birthdate of the person

GAZ2: Set of cars owned by the person

GA3: Set of hospitals located in the
same city where the person lives

Figure 2: Examples of Generalized Attributes

in a way similar to that of simple attributes such as
its name or birthdate.

A GA is strictly related to the concept of patkin a
typed-graph, where a path is a sequence of adjacent
class and role nodes always starting and ending with
a class node.

DEFINITION 3.1: [Path] Let G be a typed-graph.
A step s on G is the triple <class; &S}, role&),
class;(s)> where classy(s) = ncq,classy(s) = ng, €
Nc are adjacent to role(s) =n, € Ng. A pathpon G
is the sequence sy, 83, - - - sk of steps on G such that,
fori=1---k— 1, classz(s;) = classi(si41).

Given two class nodes n. (picked class node) and
7ic, a path p starting in n. and ending in 7, defines a
GA of n. as a function mapping each instance z of n,
onto a set of instances of ..

DEFINITION 3.2: [Generalized Attribute] Let G be
a typed-graph, n. a class node of G and p a path on
G such that first(p) = n; the GA of the class node
n. associated to p is a function yp: m(first(p)) —
p(m(last(p))) mapping every object zo € m(n.)
to a subset of objects of the last class node of p,
m(last(p)).

A GA can be either single valued or multivalued
depending on the cardinality constraints of the role
nodes involved in the path. Since a GAis a function 7p
returning a set of objects belonging to m(last;p)) we
will say that yp has a iype that is the type of iast(p).

GAs encapsulate both implicit and explicit rela-
tionships among objects within each object. Thus, by
means of the GAs, each object provides a view of the
the entire underlying database from the perspective
of the object. For example, a GA of the class node
person can be "All the hospitals located in
the same city where the person lives" (GA3in
Fig. 2). By observing such an attribute, the user per-
ceives that a hospital is located in a city, thatis a
part of the schema not directly connected to person.
The same information, of course, could be obtained

20

more easily by observing the GAs of hospital and
city. Figure 2 also shows the definition of two other
generalizsed attributes, GA1 and GA2, of person.

3.1 Query Specification

The query language of QBI is based on the select-
project paradigm: a query is expressed by first defin-
ing the conditions that determine a subset of the cho-
sen class node (:election) and then specifying those
printable GAs that are going to be part of the out-
put result (ptojection). A visual query specification is
translated internally into a triple < n., Cond, Show >,
where n. is a class node, Cond is a selection condition
and Show is a set of GAs of n. to be printed out.
Such a query will result in a subset of n., say 1., con-
taining all the objects of n. satisfying Cond. That is,
1i. represents a derived class from n. and as such it is
added to the typed-graph by connecting it to n. with
an ISA edge. Derived class nodes as well as primitive
class nodes that correspond to classes actually stored
in the database, can be used subsequently in the com-
position of more complex queries.

The selection condition is expressed using the GAs
of n. (picked class node) or other class nodes. Each
atom (i.e., logical clausel involves operands of the
same type (iype compatibility constraint) connected
by an appropriate operator. Operators can be cho-
sen from among a set of operators associated with the
operands type.

my(disease)

Figure 3: A selection condition

Consider, for example, a medical database dealing
with patients and diseases. Suppose there are the class
nodes Patient, Disease and a subclass of this node
Heart disease (Fig. 3). A multivalued GA of the
class node Patient will be "All the diseases the
patient has had" (GA1). Suppose the user is inter-
ested in all the patients that have had heart diseases;
the selection part of this query will be composed of the
atom A1l the diseases the patient has had
include some heart disease" obtained by compar-
ing the above GA and the constant set Heart disease
with the connective not-disjoint. Note that the
class node Heart disease has been used as a com-
parative constant in the atomic condition.

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:58:19 UTC from IEEE Xplore. Restrictions apply.

3.2 Finite Object Schemas

A GA has been defined above as a path in a typed-
graph. A path can be cyclic representing a useful prop-
erty, e.g., People living in the same city where
the person lives. As a consequence the set of all
possible GAs, I'(n.), associated to a class node n. is
unlimited.

Since not all paths are equally meaningful, and in
order to cope with infinitely long (cyclic) paths, QBI
defines a semantic distance function on paths which
returns a value for each path representing the mean-
ingfulness of the corresponding GA. A finite set of GAs
of an object is constructed by considering only those
GAs that are “meaningful enough” for the specifica-
tion of a query. The semantic distance is expressed
in terms of various aspects of the structure of the GA
such as the length of the path, the number of cycles,
inclusion/exclusion of specific paths, cardinality con-
straints as well as statistical information on the un-
derlying database.

DEFINITION 3.3: &Sema.ntic Distance Function] Let
¥p be a GA of a class node n.. The Semantic Dis-

tance Function Semd:T'(n.) — R maps 7p to a real
value Semd(vyp) that represents how much 7p is se-
mantically distant from n..

Given a (monotonically increasing) semantic dis-
tance function Semd and a threshold value s, the finite
object schema (finite GA set) of n., is defined as:

Tsemd(ne) = {1p € T(n.) | Semd(p) < s}

The value for the threshold can be determined by
considering the constraints on the system, like re-
sponse time and available memory. In our QBI proto-
type (Section 4), we found a threshold that permitted
the calculation of about ten thousand of GAs per class.

4 The Prototype

A prototype of QBI has been developed in C for
the MS-Windows environment using the toolkit XVT,
at the University of Rome “La Sapienza” and it is
tailored to provide access to a radiological database
[9]. The radiological database contains information
about doctors, patients, hospitals, lab tests, radiolog-
ical images etc. The size of the QBI prototype it-
self is only 0.5 MBytes whereas it stores less than 100
KBytes of intensional information about the radiolog-
ical database. Currently, the GA evaluator of the QBI
prototype is being enhanced at the University of Pitts-
burgh.

4.1 Visualization

In the prototype, visualization of both (primitive
and deriv;:]i} classes and GAs is based on icons and
automatically generated natural language text.

It is worth noting that the ability of expressing the
whole information content of a database schema in a
set of classes and attributes, allows the adoption of
a pure iconic paradigm for visualizing the database
structure. As a matter of fact, the major limitation

21

of iconic query systems [3], that is the visual repre-
sentation of relations among concepts, in QBI is not
present. The only visual relation that needs to be
shown is the containment relation between the icon
representing a class and the icon set of its GAs.

An icon consists of several graphical items:

e Picture. The picture is an image conveying a
metaphorical meaning for the class to be represented.
For GAs, the picture is the same of the last node of
the path.

o Description. The description is an automatically
generated natural language sentence describing the
GA or the class [4]. It plays an essential role for dis-
ambiguating the meaning of the icons.

o Label Since description is not always visualized, a
label is added to each icon to distinguish on the video
display the objects having the same picture.

o Shape. The shape is a geometric figure having an
outline that allows only the combination of similar
shapes. The shape is useful for representing compati-
bility constraints among types of objects.

o Frame. The frame is a stack of shapes indicating the
cardinality of the GA or of the class represented.

4.2 Interface Description

Three windows composing the QBI interface are re-
ferred to as the Workspace Window, the Query Win-
dow and the Browser Window (Fig. 4).

Workspace Window

This window contains of both the primitive and de-
rived classes. Each icon in this space corresponds to
a class node of the underlying typed-graph. The user
can freely arrange the icons in the workspace and cre-
ate duplicates. Pointing at an icon corresponds to
selecting the node n. of a query.

Query Window

The query window is activated when a class icon in
the Workspace is selected. In the query window the
user composes the selection condition Cond and the
projection Show by dragging and arranging icons in
the appropriate window spaces:

e Conditions Space: In this space the user builds
both the atoms of a selection condition and the
condition itself. Atoms can be combined together,
according to a positional convention, to form the
boolean expression representing the selection condi-
tion.

e Show Space: The Show Space contains the GAs
the user chooses to view in the output result.

e Description Space: This space contains a natu-
ral language description of the class being defined.
The description is automatically generated and dy-
namically updated whenever the selection conditions
change.

Also, within the query window, the GAs that are
semantically very close to a picked class are displayed

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:58:19 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:58:19 UTC from IEEE Xplore. Restrictions apply.

(by defa.ug} in the show space. This S:':itial GA set)
includes GAs having a semantic distance less or
equal to a constant threshold called ER threshold.
The ER threshold identifies an initial GA set consti-
tuted by the same attributes that would appear in an
equivalent Entity Relationship representation of the
database.

Browser Window

The prototype provides a facility for querying an
object schema, i.e., browsing the GA set of a class.
By means of the browser, a user can locate the GAs
of a picked class not contained in the initial GA set,
that are necessary for composing a query. The set of
GAs is sorted by their semantic distance so that the
most meaningful GAs are shown first. Each GA is
represented by an icon and a natural language sen-
tence describing it. A user can drag these icons from
the browser window into either the Condition or the
Show space of the Query window.

The GA set can be composed of thousands of ele-
ments, depending on the semantic distance threshold
used for determining the finite GA set. Thus, the man-
ual browsing of the GA set can be a non-trivial task
if the user is interested in semantically distant GAs.
For this reason, the browser provides a set of meia-
query operators that permit the specification of filter
conditions on the GA set. In this way, it allows the
user to restrict the search of the desired GAs within a
smaller set. In particular it is possible to express the
following metaquery conditions that are combined in
a conjunctive expression.

o Single: Select single valued GAs only.
e Printable: Select printable GAs only.

e Key: Select only those GAs that represent a key for
the picked class.

For example, it may be the case that the
GAs "Name of the city" or "Patients living
in the city" identify an instance of the class City;
in this case, if the user chose the key metaquery
condition, they would be selected together with the
other keys of City.

e Type: Select GAs of a certain type only.

That is, this metaquery condition selects all the
paths between the picked class node and the node
corresponding to the selected type. It is activated
by dragging an icon from the Workspace into the
Type space in the Browser window.

e Talk about: Select GAs “talking about” a certain
set of types.

The metaguery selects only those paths that pass
through the nodes associated with the specified
types. The visual interaction is similar to the previ-
ous one: the user drags into the Talk About space
the icons corresponding to types the GAs have to
include.

22

o Don’t Talk about: Select GAs ”that do not talk
about” a certain set of types.

The mechanism is similar to the previous one.

5 Querying a Radiological Database

In this section, we will describe how QBI can be
used to query a Radiological Database. We will use
screen dumps taken from the prototype to illustrate
the various steps of a query.

5.1 Metaquerying

First, a user selects the database schema to be con-
sidered for querying, in our example a radiological
database. In response, the workspace window appears
on the screen containing a set of icons corresponding
to primitive classes of objects (Fig. 4).

Suppose the user is interested in obtaining more
information on the class person. By pointing the cor-
responding icon, the query window appears. In order
to explore the relationships among the class person
and the other classes the user activates the browser
window. By observing the top of the list of GAs the
user can have an immediate perception of the most
meaningful attributes of person.

In the current version of the prototype, the thresh-
old value for determining the finite set of GAs gives
rise to several thousands of GAs for each class node.
As a consequence, a user interested in very distant
properties of the class person can easily explore these
properties with the help of the various selection op-
erators of the browser. For example, by dragging the
icon city in the Type space of the browser window
(Fig. 4), the user selects only those GAs of person
having the type city. If the user is interested in all
the GAs that ialk about city, the same icon will be
moved in the Talk about space (Fig. 52.

In order to better understand and explore the infor-
mation contained in the database, the operations we
have described thus far can be applied to other classes.

5.2 An example of a query

In this section, let us assume that a user is inter-
ested in determining the set of doctors living in the
same city in which they work. The result of this query
is a subset of the class doctor that can be saved as a
derived class. In order to build the derived class it is
necessary to specify the selection condition Cond: The
city where the doctor works is equal to the city where
the doctor lives. Cond can be specified by connect-
ing the two GAs: City where doctor x lives and
City where doctor x works with the connective Is
equal to.

The first GA is immediately found by scrolling the
list in the Browser window. This GA is dragged by
the user from the Browser window into the condition
space of the Query window. As far as the second GA
is concerned, the user needs to perform a metaquery
on the GA set of doctor by dragging the icon city
in the Type space of the Browser window (Fig. 6).
The first GA shown in the list represents the “best”

connection between doctor and city and it coincides
with the GA the user was looking for, that is: City
where a hospital is located. Such a hospital is the hos-
pital where doctor z works.

The second GA is then dragged into the condition
space and the two GAs are “attached” together; since
they have the same type (that of city), their shapes
allow this operation to be performed. Once the two
GAs have been attached together, a dialogue box con-
taining a set of valid connectives appears. By choosing
the equality connective the user ends the selection part
of her/his query. In the description space a sentence
((explaining the selection query is automatically added

Fig. 7).

5.3 A second query

Suppose the user is interested in determining all the
patients that have been examined by all and only the
Lucky Doctors. For each patient the user wants to
determine name, sex, birthdate and the set of radio-
logical images contained in all the examinations made
by the patient.

The selection query is performed by first pick-
ing the GA: Doctors that have assisted the
patient and then by combining this GA with the
derived class Lucky Doctors that was defined in the
previous query session. Since both the operands of
the selection predicate represent a set of objects, a
set oriented connective must be used, in particular
the set equality operator. Note how the possibility of
manipulating multivalued attributes and the possibil-
ity of specifying set oriented conditions, allows a very
easy way of expressing conditions that involve univer-
sal quantification.

For the projection query, the user does not have to
pick the name, sex and birthdate because they must
be already in the Show space; as far as the radiolog-
ical images are concerned, the user simply drags the
attribute from the browser into the Show space.

6 Conclusions and Future Work

In this paper, we have presented QBI, a visual
query language and system based on the Complete
Object Model. The goal of the system is to provide a
language that is general and easy-to-use by both un-
sophisticated and expert users. It defines two simple,
yet rich primitives, namely the notion of object classes
and generalized attributes that are amenable to selec-
tion and projection.

We are equally interested in extending both the the-
oretical and practical aspects of this work. In the area
of theory, we are currently working on formally show-
ing that our query language based on the notion of
Generalized Attribute is equivalent to domain rela-
tional calculus. We are also working on the develop-
ment of formal framework which can be used to char-
acterize the tradeoffs between expressive power and
usability of a query language. We plan to use this
framework to compare QBI with other visual query
language systems.

23

Acknowledgements

We would like to thank S.K. Chang for inspiring
this work, and S. Pavani and L. Saladini for their sug-
gestion on early versions of this paper. This work was
conducted when the second author was a Visiting Pro-
fessor at the University of Rome “La Sapienza”.

References
[1] Abiteboul S. and A. Bonner. Objects and
Views. Proceedings of the International Con-

ference ACM-SIGMOD, Denver, Colorado USA,
238-247, 1991.

Angelaccio M., T. Catarci and G. Santucci.
QBD*: A Graphical Query Language with Re-
cursion. IEEE Transactions on Software Engi-
neering, 16(10):1150-1163, 1990.

Batini C., T. Catarci, M.F. Costabile and S.
Levialdi. Visual Query Systems. Technical Re-
port No.04.91. Dipartimento di Informatica e Sis-
temistica, Universita’ di Rome ”"La Sapienza”,
1991.

Bono G., P. Ficorilli. Natural Language Restate-
ment of Queries Expressed in a Graphical Lan-
guage. Proceedings of the 11th International Con-
ference on Entity-Relationship Approach, Ger-
many, 1992.

Catarci T. and G. Santucci. Fundamental Graph-
ical Primitives for Visual Query Languages. In-
formation Systems, 3(18), 1993.

[6] Chen P.P. The Entity Relationship Model toward
a Unified View of Data. ACM Transactions on
Database Systems, 1(1), 1976.

Groette I.P. and E.G.Nillson. SICON: an Icon
Presentation Module for an E-R Database. Pro-
ceedings of the 7th International Conference on
Entity Relationship Approach, Roma, Italy, pp.
271-289, 1988.

Maier D., J.D. Ullman. Maximal Objects and
the Semantics of Universal Relation Databases.
ACM Transactions on Database Systems, 1(8):1-
14, 1983.

Massari A., S. Pavani, L. Saladini. QBI:An Iconic
Query System for Inexpert Users. Proceedings
of the Workshop on Advanced Visual Interfaces,
Bari, Italy, pp. 240-242, 1994.

Tonomura Y., S.Abe. Content Oriented Visual
Interfaces Using Video Icons for Visual Database
Systems. Proceedings of the IEEE Workshop on
Visual Languages, Roma, Italy, pp. 68-73, 1989.

Tsuda K., M.Hirakawa, M.Tanaka, T.Ichikawa.
Iconic Browser: An Iconic Retrival System for
Object-Oriented databases Journal of Visual lan-
guages and Computing, 1(1):59-76, 1990.

Zdonik S.B., D. Maier, eds. Readings in Object-
Oriented Database Systems. Morgan Kaufmann,
1990.

2]

(3]

4]

(5]

[7

—

(8]

(10]

(11]

(12}

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:58:19 UTC from IEEE Xplore. Restrictions apply.

ity whare person x ves

[ty whace a hospial s located. Such &
hospital is e hospial aving the same
Twme of e parson x.

Figure 4: Metaquerying

Ciy whate person x kves

Neme of he iy where person x bives

Pecple kving it the same city whate
peson x ives.

[Bospaas locsed in o cty whera
[personxkves.

Figure 5: Metaquerying (cont.)

24

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:58:19 UTC from IEEE Xplore. Restrictions apply.

 E—

City where d hospital is located. Such a
(hospital 1 the hospital whete doctor x
works.

Qu au

Allthe doctor = Ry [Ces whare several pacpis tive. These
aa people sre the doctors working in the
Aoy LA | hospral where doctor x works
hoy
E Hem) | Ciies where several pacpls hva. Thess
i ? Qd !i people are the paients that have made
(i (o [Pl » chedkups the dacton x hes preseribed

Ciies where several hospitals we
located. These hospials are the hospitals
'where saveral scaminations are stored.

Figure 6: A first query

e Create » new ingtance View instances

1eoplm
Nl

Figure 7: The selection condition

25

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:58:19 UTC from |IEEE Xplore. Restrictions apply.

