Two-Phase Commit in Gigabit-Networked Distributed Databases*

Yousef J. Al-Houmaily
Dept. of Electrical Engineering
University of Pittsburgh
Pittsburgh, PA 15261

Abstract

In the future, different database sites will be intercon-
nected via gigabit networks, forming a very powerful dis-
tributed database system. In such an environment, the
propagation latency will be the dominant component of
the overall communication cost while the migration of
large amount of data will not pose a problem. Further-
more, computer systems are expected to become highly
reliable. In this paper, we present a two-phase commit
variant that exploits these new domain characteristics
to minimize the cost of distributed transaction commut-
ment. Although the protocol trades off efficiency during
normal processing for slower recovery, it supports for-
ward recovery that potentially reduces the overall cost
of recovery.

1 Introduction

Transactions in a distributed environment access
data located at different sites. Part of the correctness
of a distributed transaction i1s to ensure its atomicity
which requires that all the transaction’s effects either
persist at all the sites the transaction has visited or are
obliterated from them. This is achieved by employing
an atomic commitment protocol (ACP) that executes a
commit or an abort operation across multiple sites as
a single logical operation. The simplest and most used
ACP is the two-phase commit protocol (2PC) [5, 7].

2PC consists of a voting phase during which the coor-
dinator of a distributed transaction requests all the sites
participating in the transaction’s execution to prepare
to commit, and of a decision phase during which the co-
ordinator either decides to commit the transaction if all
the participants are prepared to commit (voted Yes), or
to abort if any participant has decided to abort (voted
No). If a participant has voted Yes, it can neither com-
mit nor abort the transaction until it receives the final
decision from the coordinator. When a participant re-
ceives the final decision, it complies with the decision
and sends back an acknowledgment. The coordinator
completes the protocol and discards any information in
its protocol table in main memory regarding the trans-
action when it receives acknowledgments from all the
participants.

The resilience of 2PC to system and communication
failures is achieved by recording the progress of the pro-
tocol in the logs of the coordinator and the participants.
The coordinator is required to force-write a decision
record prior to sending the final decision to the partic-
ipants. Since a force-write ensures that all log records

*Supported in part by N.S.F. under grant TRI-9210588.

Panos K. Chrysanthis
Dept. of Computer Science

University of Pittsburgh
Pittsburgh, PA 15260

are written into a stable storage that sustains system
failures, the final decision is not lost in the case of a
coordinator failure. Similarly, each participant force-
writes a prepared record before sending its vote and
a decision record before acting on and acknowledging
a final decision. When the coordinator completes the
protocol, it writes an end record without forcing it into
stable storage, indicating that the log records pertain-
ing to the transaction can be garbage collected when
necessary.

Future distributed database systems (DDBSs) are ex-
pected to execute on highly reliable computers that are
connected via high speed networks with data trans-
fer rates in the order of gigabits per second. In such
gigabit-networked DDBSs, the propagation latency will
be the dominant component of the overall communica-
tion cost while the migration of large amounts of data
will not pose a problem [6, 1]. In other words, the size of
messages in a database protocol is of less concern than
the required number of rounds or sequential phases of
message passing. Given this observation, and the need
to ensure the atomicity of distributed transactions in
gigabit-networked DDBS, we are prompted to ask the
question: [Is it possible to improve the performance of
2PC by permitting large messages? That is, can we re-
duce the number or the rounds of messages in 2PC by
not placing any limitations on the size of a message?

In this paper, we present the implicit yes-vote (IYV)
that improves on the other 2PC variants by exploit-
ing the performance and reliability properties of gigabit
computer networks. 1YV effectively eliminates the vot-
ing phase of 2PC by combining the participants’ votes
with the execution of the transactions’ operations, hence
reducing the number of sequential coordination mes-
sages during normal processing. In case of a commu-
nication or a participant failure, IYV supports forward
recovery by enabling a partially executed transaction to
resume 1its execution when the failure is fixed. This is
achieved by logging the read locks and the redo records
that are generated during the execution of operations at
both the coordinator and the participants. The under-
lying assumption in 1YV is that all sites employ strict
two-phase locking protocol (2PL) [4].

In Section 2, IYV is introduced and its behavior in
the presence of failures is discussed in detail. We also
apply to IYV the presume abort (PrA) optimization [9,
10] which has been adopted by the OSI-TP and X/Open
standards. In Section 3, we compare IYV with four
other well known ACPs and in Section 4, we evaluate
them in terms of the number of sequential messages and
forced writes that are required to reach a decision and
to release the locks held by a transaction.

2 Implicit Yes-Vote

The essence of 2PC that ensures the atomicity of a
distributed transaction is that it prevents a transaction
from unilaterally committing or aborting at a site while
in a prepare to commit state. A participant may decide
to abort a transaction either for correctness reasons such
as ensuring serializability, or for performance reasons
such as minimizing transaction blocking. Regarding the
latter, we can expect that a participant does not abort
a transaction because 1t has not received an operation
from the transaction for some time. It is the responsi-
bility of the coordinator to decide whether or not it is
necessary to abort a long-executing transaction.

Now, consider a distributed system in which all the
sites employ strict 2PL (which also avoids cascading
aborts). Participants never abort transactions to ensure
atomicity and only abort transactions in active state,
i.e., transactions having outstanding operation acknowl-
edgements, to resolve deadlocks or conserve resources.
In such a system, it is not possible for a participant
to unilaterally abort a transaction after it has acknowl-
edged the execution of an operation due to a serializ-
ability or atomicity violation, or a deadlock at that site.
If the transaction was involved in a local deadlock, its
operation would have been blocked or rejected rather
than being acknowledged.

Based on the above assumptions, we can use the ac-
knowledgment of the execution of an operation to im-
plicitly mean that the transaction 1s in its prepared state
at the participant. In this way, we can eliminate the
need for the voting phase of 2PC. That is, a transac-
tion enters its prepared to commit state at a site after
the execution of each of its operations. When in pre-
pared to commit state, a transaction can become active
again when a new operation request is submitted and
can be committed or aborted when a decision message
is received by the participant (Figure 1).

A remaining question is how to ensure that a trans-
action can be correctly recovered after a failure with-
out having to force-write the log records that are gen-
erated during the processing of each operation prior to
acknowledging its completion as in the case of early pre-
pare [11, 12]. Notice that a force-write involves a disk
access that suspends the protocol until the disk access is
completed. Also, unlike the unsolicited vote optimiza-
tion [13], the participants in IYV have no knowledge
about when their parts in a transaction execution have
been completed. Thus, participants cannot tell when to
force their logs into the stable storage. In the case of
IYV, we achieve this through a low-cost partial replica-
tion of each participant’s log at the coordinators’ sites
given that (1) migrating large amounts of data from a
participant to the coordinator (and vice versa) in giga-
bit networks will not pose a problem; and (2) the cost
of forcing a log 1s practically independent of its size,
1.e., the number of records to be written, and 1s due to
queueing delays.

We assume that each site employs page-level logging
and uses a traditional undo-redo recovery techniques [2]
in which the undo phase precedes the redo phase. As it
will become apparent in Section 2.2, recovery schemes
such as ARIES [8] which are in general highly efficient,
may not offer the same efficiency in the context of dual
logs adopted by IYV, because their redo phase precedes
the undo phase.

COORDINATOR PARTICIPANT STATE
op (1)
Force-write Active
START log
ACK Op (1) record
Prepared
Writre non-forced
redo log record(s)
""""""""""" Active
ACK Op(2)
Prepared
Writre non-forced
redo log record(s) op (n)
""""""""""" Active
ACK Op (n)
Prepared
Writre non-forced
redo log record(s)
and forced Decision
log record Decision
|Force—write Committing
Force-write 3
ACK Decision log (Aborting)
Decision [T®9°FS _________________________
Committed
(Aborted)

Writre non-forced
End log record

Figure 1: The IYV protocol.

In TYV, dual logging works as follows. Each par-
ticipant includes the redo records that have been gen-
erated during the execution of an operation with their
corresponding log sequence numbers (LSNs) in the ac-
knowledgment (ACK) message of the operation. When
the coordinator receives an ACK message, it writes a
non-forced log record containing the (participant’s) log
records in the message. In this way, the coordinator’s
log contains an image of the redo part of each partic-
ipant’s log which can be used to reconstruct the redo
part of a participant’s log in case it is corrupted due to
a system failure.

To facilitate forward recovery that allows transac-
tions to resume their execution after a participant fail-
ure, IYV must be able to reconstruct the complete state
of the recovered transactions including the lock table.
For this reason, the participants are required to include
in the ACK messages, along with the redo records, all
the read locks which have been acquired during the ex-
ecution of operations. In this way, a coordinator also
maintains a partial image of the lock table of each par-
ticipant. After a failure, transactions’ write locks are
re-acquired during the redo phase whereas read locks
are extracted from the partial image of the lock table
at the coordinator.

2.1 The IYV Protocol

When a participant receives the first operation of a
transaction, it force-writes a start record which in-
cludes the identity of the transaction’s coordinator in
its log and then executes the operation. The start
record is basically used by a participant to limit the
number of coordinators that are needed to be contacted
during its recovery after a failure. Any subsequent op-
erations received by the participant are processed and
logged (without forcing the log into stable storage) prior
to acknowledging them. If a participant fails to process
an operation, it aborts the transaction and replies with
negative acknowledgement (NACK).

If the coordinator receives either an abort request
from the transaction or a NACK from a participant, the
coordinator decides to abort the transaction. Once the

coordinator decides to abort the transaction, it force-
writes an abort record and then, sends abort messages
to all the participants. On the other hand, when the
coordinator receives a commit request from the trans-
action, it waits for the acknowledgment of the trans-
action’s pending operations before deciding to commit
the transaction. On a commit decision, the coordinator
force-writes a commit record prior to sending a commit
message to all the participants. In either case, the deci-
sion record includes the identities of all the participants.

When a participant receives a commit (abort) mes-
sage regarding a transaction, it writes a forced commit
(abort) record and commits (aborts) the transaction
releasing all the transaction’s resources. In the case of
an abort decision, the participant undoes all the effects
of the transaction (using its own log). A participant
finally acknowledges a decision after the corresponding
decision record is placed into the stable log.

Finally, when the coordinator receives the acknowl-
edgments from all the participants, it writes a non-
forced end log record and discards all information per-
taining to the transaction from its protocol table know-
ing that no participant will inquire about the transac-
tion’s outcome in the future.

2.2 Recovery in IYV

IYV is resilient to both communication and site fail-
ures (see Figure 2). As it is the case in the 2PC and
all its variants, site and communication failures are de-
tected by timeouts.

Communication Failures

Although we assume communication failures to be
rare in high speed networks, there are three places in
IYV where a communication failure might occur while
a site is waiting for a message. First is when a partic-
ipant has no pending acknowledgments and is waiting
for a new operation or a final decision. In this case,
the participant is blocked until the communication with
the coordinator is re-established. Then, the participant
inquires the coordinator about the transaction’s status.
The coordinator replies with either a final decision or
a still active message. In the former case, the partici-
pant enforces the final decision and then acknowledges
it, while in the latter case, the participant waits for fur-
ther operations.

The second place is when the coordinator of a trans-
action 1s waiting for an operation acknowledgment from
a participant. A participant may abort the transaction,
if a communication failure occurs while a participant
has a pending acknowledgment. Similarly, the coordi-
nator may abort the transaction and submits a final
abort decision to the rest of the participants. Notice
that the coordinator of a transaction may commit the
transaction despite communication failures with some
participats as long as these participants have no pend-
ing acknowledgments.

The third place is when the coordinator of a trans-
action is awaiting the acknowledgments of its final deci-
sion. Since the coordinator needs the acknowledgments
in order to discard the information pertaining to the
transaction from its protocol table and its log, it re-
submits its final decision once these communication fail-
ures are fixed. When a participant receives the final
decision after a failure, it either just acknowledges the

decision if it has already received and enforced the de-
cision prior to the failure!, or enforces the decision and
then sends back an acknowledgement message.

Coordinator Failure

Upon a coordinator restart, after a failure, the coor-
dinator re-builds its protocol table by scanning its log.
The coordinator needs to consider only those transac-
tions that have decision records without a corresponding
end record. For each of these transactions, the coor-
dinator creates an entry in its protocol table that in-
cludes the i1dentities of the participants as recorded in
the transaction’s decision record. Then, it restarts the
decision phase of IYV for each of these transactions by
re-submitting its decision to all the participants and re-
sumes normal operation.

If a participant has already received and enforced the
final decision prior to the failure, as in the case of a
communication failure, the participant simply responds
with an acknowledgment. If the participant has not
received the decision, it must have been waiting for the
decision and once it receives the decision, it force writes
a decision record and then sends an ACK message.

For those transactions without final decision records
(i.e., those transactions that were active prior to the
failure), the coordinator can safely forget about them
and consider them as aborted transactions. If a partici-
pant in the execution of one of these transactions has a
pending acknowledgment when it timeouts, it will abort
the transaction. On the other hand, if 1t is left blocked,
when the coordinator recovers, the participant will in-
quire about the status of the transaction. For those
transactions that are associated with decision records
as well as end records, the coordinator can safely dis-
card all information about these transactions knowing
that no participant will inquire about their outcome in
the future.

Participant Failure

After a failure and during the analysis phase of the
restart procedure, the participant determines the set of
transactions each associated with a start record and
without a corresponding decision record, and inquires
their coordinators about their status. Since the entire
log might not be written into a stable storage until af-
ter a decision record is forced written, the log may not
contain all the redo records of the operations committed
at the site. Thus, an inquiry message for a transaction
contains the largest LSN of the record in the stable log
pertaining to the transaction. This log record corre-
sponds to the transaction’s last operation executed by
the participant and having survived the failure. In the
mean time, the participant recovers those committed
and aborted transactions that have decision records per-
taining to them already stored in its stable log. That
is, the undo phase is performed and the redo phase is
initiated while waiting for the reply messages to arrive
from the coordinators.

For each active transaction finally committed, the co-
ordinator sends back a commit message augmented with
a list of all the transaction’s redo records that are stored
in its log and have LSNs greater than the one received

1A participant without any memory regarding the transaction
is assumed to have already enforced the decision and discarded
all information pertaining to the transaction.

Coordinator’s Algorithm

In case of a communication failure:

e Abort each active transaction that has a pending ac-
knowledgment at an inaccessible site or no participant
site can be found to process one of the transaction’s
operations.

In case of a site failure:

1. For each transaction that has a decision record in the
stable log without a corresponding end record, include
the transaction in the protocol table and restart the
decision phase.

2. Abort all active transactions (i.e., transactions without
decision log records).

3. Do not consider transactions with end records already
in the stable log.

4. Resume normal processing.

Participant’s Algorithm

In case of a communication failure:

e Abort all active transactions with pending acknowledg-
ments.

e Wait until the failure is fixed and then inquire about
the status of all active transactions without pending
acknowledgments.

— Either a decision or a still active message will be
received for each of these transactions.

In case of a site failure:

1. Analysis phase: identify committed, aborted and active
transactions, recording for each active transaction its
coordinator (from its start record) and largest LSN.

2. For each active transaction send an inquiry message
containing its largest LSN to its coordinator.

3. Undo the effects of aborted and active transactions.

4. Once the reply messages arrive, repair the log, update
the list of committed and still-active transactions and

re-build the lock table.
5. Complete the redo phase.

o Redo committed transactions and release their

locks.

o Redo still-active transactions.

6. Resume normal processing.

Figure 2: Recovery in IYV.

from the participant. On the other hand, a coordinator
has to send only an abort message in response to an
inquiry about an aborted transaction®.

For each active transaction that is still in progress
in all other sites (i.e., no decision was made), the co-
ordinator replies with a still-active message containing,
as in the case of a commit decision, a list of the redo
records associated with LSNs greater than the one re-
ceived from the participant. The message also contains
all the read locks that were held by the transaction at
the participant’s site prior to its failure.

Once the participant receives all the reply messages,
it repairs its log and completes the redo phase. The par-
ticipant also re-builds its lock table by re-acquiring the
update locks during the redo phase in conjunction with
the read locks received from the coordinators. Once the
redo phase is complete, the participant acknowledges all
decision messages and resumes its normal processing. In
this way, a long-executing transaction is not aborted as
a result of a participant failure as it would have been
the case with all the other 2PC variants.

The case that both the coordinator and a participant
site fail at the same time is handled in the same way as
above. However, it 1s necessary that the coordinator
recovers before the participant.

2.3 Implicit Yes-Vote Presume Abort

In 2PC, there is a hidden presumption that allows the
coordinator not to force write any log records prior to
the decision phase. During the recovery of a coordina-
tor, not finding a decision record pertaining to a transac-
tion is interpreted as an abort decision. This presump-
tion is made more explicit in the presume abort protocol
(PrA) [9, 10]. Implicit yes-vote presume abort (IYV-
PrA), and in a manner similar to PrA, adopts the abort
presumption. In IYV-PrA, the coordinator of a trans-
action needs only to force write a commit record. Any
missing information about a transaction is presumed to
mean that the transaction has been aborted. The abort
presumption is made explicit by not writing an abort
record at all and by discarding all the information about
an aborted transaction from the protocol table.

In IYV-PrA, participants also do not have to force-
write an abort decision, nor do they have to acknowl-
edge an abort message. Thus, in addition to log writes,
IYV-PrA reduces the number of coordination messages
for aborted transactions. If a participant fails before
the abort decision record is in stable storage, upon its
recovery, it will inquire the transaction’s coordinator
about the transaction’s status. Since the coordinator
would not have any information about the transaction,
it will direct the participant to abort the transaction by
presumption. The cost of a commit decision, however,
remains the same as in the IYV.

3 Comparison of IYV with other ACPs

As mentioned above, in contrast to unsolicited vote
(UV) optimization, IYV does not assume that each site
knows when it has executed the last operation on behalf
of a transaction in order to avoid writing the log records
associated with an operation prior to acknowledging it.

2Note that the effects of such a transaction have already been
undone by the participant during the undo phase.

2PC PrC PrA EP CL IYV [IYV-PrA [IYV | IYV-PrA
With Start Without Start
log records log records
Log force delays 2 3 2 3 1 2 2 1 1
Total log force writes 2n+1 n+2 2n+1 n+2 1 2n+1 2n+1 n+1 n+1
Message delays (Commit) 2 2 2 0 0 0 0 0 0
Message delays (Locks) 3 3 3 1 1 1 1
Total messages 4n 3n 4n n n 2n 2n 2n 2n
Total messages with piggybacking 3n 3n 3n n n n n n n

Table 1: The cost of the protocols to commit a transaction assuming the best

case scenarlo.

2PC PrC PrA EP CL IYV [IYV-PrA [IYV | IYV-PrA
With Start Without Start
log records log records
Log force delays 2 2 1 2 0 2 1 1 0
Total log force writes 2n+1 2n+1 n 2n+1 0 2n+1 n n+1 0
Message delays (Abort) 2 2 2 0 0 0 0 0 0
Message delays (Locks) 3 3 3 1 1 1 1 1 1
Total messages 4n 4n 3n 2n 2n 2n n 2n n
Total messages with piggybacking 3n 3n 3n n 2n n n n n

Table 2: The cost of the protocols to abort a transaction assuming the best case scenario.

Thus, IYV is more general compared to UV. In the spe-

cial cases in which UV is applicable, IYV and UV would

exhibit the similar behavior during normal processing.

The early prepare protocol (EP) [11, 12] combines UV
with presume commit (PrC) [9, 10]. PrC requires the
identities of the participants to be explicitly recorded
by the coordinator in a forced initiation log record,
to ensure that an aborted transaction is not presumed

as committed after a failure. Thus, in EP, the num-

ber of forced log writes pertaining to a transaction is
equal to the number of the participants that executed
the transaction (without a form of predeclaration). This
is because the list of participants has to be updated
and a new initiation record has to be forced written

each time a new participant executes an operation of

the transaction. In contrast, in IYV a coordinator does

not have to force write any initiation log records for

correctness purposes whereas the forced start record
by the participants aims to reduce the cost of recovery.

In the next section we evaluate the IYV variant which
eliminates the start record at the expense of slower

recovery.

Another non-2PC atomic protocol behaving similar

to EP is the coordinator log protocol (CL) which as-

sumes that transactions are short and most probably
going to commit [11, 12]. CL eliminates the need for any
(force-write) logging at the participants’ sites by having
the coordinators maintain the logs and using distributed
write-ahead logging (DWAL) [3]. That is, the log of a

participant is distributed among multiple coordinator

sites. CL also eliminates the initiation record of EP.

Since a participant in CL might inquire a coordina-
tor about the latest forced log write (i.e., to ensure the
WAL protocol), this might become completely costly

when compared with any of the 2PC variants.

Also,

rolling back aborted transactions has to be performed
completely over the network. This means that when a
participant aborts a transaction, it cannot release the
resources held by the transaction until it communicates
with the transaction’s coordinator and receives the undo

log records pertaining to the transaction.

Another problem with CL; as presented in [11, 12], is

that the log records of transactions cannot be garbage
collected by the coordinators and have to be remem-
bered forever. In CL, garbage collection is given up for
committed as well as aborted transactions even though
abort decisions are acknowledged by the participants.
(In this case, there is no actual benefit from the ac-
knowledgment messages except that they contain the

undo log records of aborted transactions.)

In case of failures, coordinators in IYV can make
their own decisions regarding active transactions with-
out communicating with any participant, whereas a re-
covering coordinator in CL has to communicate with all
possible participants in the system. This is the cost that
has to be paid in CL for eliminating the initiation
record. A recovering participant in CL, on the other
hand, has to wait until it receives all the log records
from the coordinators and until all active transactions
have been decided upon. In IYV, however, using the
“still active” message, a participant can recover its state
prior to its failure without having to wait until all active
transactions have been decided upon. Further, aborted
transactions in 1YV are handled locally by a partici-
pant without any communication with the coordinators
(the undo records do not have to be propagated to the

coordinators).

4 Evaluation of IYV

In this section, we evaluate IYV along with the pro-
tocols considered above, namely, 2PC, PrC, PrA, EP
and CL. Due to space limitations, we assume that the
reader is familiar with these protocols and hence we do
not elaborate on them. In our evaluation, we further
consider IYV-PrA as well as IYV variants which do not
require start records to be forced by the participants
at the expense of having to communicate with all the
coordinators in order to recover a failed participant.

In our evaluation, we use best and worst case scenar-
ios as in [11, 12] to highlight the performance differences
among the various ACPs protocols and we consider the
number of coordination messages and forced log writes
that are due to the protocols only (e.g., we do not con-

2PC PrC PrA EP CL IYV [IYV-PrA [IYV [IYV-PrA
With Start Without Start
log records log records
Log force delays 2 3 2 d+n+1 d+1 n+1 n+1 1 1
Total log force writes 2n+1 n+2 2n+1 d+n+1 d+1 2n+1 2n+1 n+1 n+1
DWAL Message delays 0 0 0 0 2d 0 0 0 0
Message delays (Commit) 2 2 2 0 2d 0 0 0 0
Message delays (Locks) 3 3 3 1 2d+1 1 1 1 1
Total messages 4n 3n 4n n 2d+n 2n 2n 2n 2n
Total messages with piggybacking 3n 3n 3n n 2d+n n n n n

Table 3: The cost of the protocols to commat a transaction assuming the worst case scenario.

2PC PrC PrA EP CL IYV [IYV-PrA [IYV [IYV-PrA
With Start Without Start
log records log records
Log force delays 2 2 1 d+n d n+1 n 1 0
Total log force writes 2n+1 2n+1 n d+2n d 2n+1 n+1
DWAL Message delays 0 0 0 0 4d 0 0 0 0
Message delays (Abort) 2 2 2 0 2d 0 0 0 0
Message delays (Locks) 3 3 3 1 4d+1 1 1 1 1
Total messages 4n 4n 3n 2n 4d+n 2n n 2n n
Total messages with piggybacking 3n 3n 3n n 4d+n n n n n

Table 4: The cost of the protocols to abort a transaction assuming the worst case scenario.

sider the number of messages that are due to the oper-
ations and their acknowledgments).

Table 1 and Table 2, compare the number of mes-
sages and forced log writes that are needed to commit
and abort a transaction, respectively, for the different
protocols based on the best case scenario. We denote
by n the number of participants that executed a trans-
action and by d the number of data items that have
been accessed by the transaction. In this scenario, we
assume that: The participants are known at the begin-
ning of a transaction, each participant executes at most
an operation on a single data item for each transaction
(i.e., d=n) and the operations of a transaction execute
in parallel on the participants. Also, participants have
sufficient memory space that prevents them from having
to force the log during the execution of a transaction.

The rows labeled “Log force delays” contain the se-
quence of forced log writes that are required up to the
point of commit/abort decision is made. The rows
labeled “Message delays (commit/abort)” contain the
number of sequential messages up to the commit/abort
point, and the rows labeled “Message delays (Locks)”
contain the number of sequential messages that are in-
volved in order to release all the locks held by a commit-
ting/aborting transaction. For example, in Table 1, the
“Log force delays” for 2PC is 2 because there are two
force log writes between the beginning of the protocol
and the time a commit decision is made by a transac-
tion’s coordinator. Also, 2PC involves two sequential
messages in order for a coordinator to make its final de-
cision regarding a transaction (i.e., the first phase), and
three sequential messages to release all the resources
(i.e., locks) held by the transaction at the participants.

In the best case scenario, CL dominates all other
2PC variants as far as the logging activities and forced
log writes are concerned for the commit case. It re-
quires a single log force write and a single message to
be sent to each participant. In the abort case, although
IYV-PrA (with the start log records) and CL need
the same number of sequential messages to abort and

release locks, IYV-PrA trades off a forced write for a
message in CL. Once the start log record is eliminated
from IYV-PrA, it dominates the CL by n messages in
the total message count.

Piggybacking the acknowledgments is an optimization
that can be used to eliminate the final round of messages
for the commit case in 2PC, PrA, IYV, and IYV-PrA,
but not in the case of PrC, EP and CL because a com-
mit final decision is never acknowledged in these pro-
tocols. Similarly, this optimization can be used in the
abort case with the 2PC, PrC, EP, and IYV but not
with PrA, CL and IYV-PrA. In PrA and IYV-PrA, an
abort decision is never acknowledged while in CL, the
acknowledgement is sent immediately because it con-
tains the undo log records of the aborted transaction.

Tables 3 and 4 compare the different protocols un-
der the worst case scenario. In this scenario, we assume
that: (1) participants are not known at the beginning of
a transaction, (2) each participant executes more than
one operation on behalf of a transaction (i.e., d > n),
(3) transactions execute serially (e.g., an operation 1s
submitted by a transaction only when the previous op-
eration has been executed and acknowledged), (4) each
operation generates a single log record, and (5) partic-
ipants have limited memory space. That is, each log
record that i1s generated due to the execution of an op-
eration has to be forced written into the stable log as a
worst case scenario. (Note that in our evaluation, we do
not include the number of forced log writes which are
due to the operations and which are the same in all the
protocols except for EP where the log records have to
be forced written all the time.)

In the worst case scenario, CL requires two explicit
messages to be exchanged between a participant and
the coordinator of a transaction for each operation exe-
cuted by the participant for the commit case (thus, the
2d in “DWAL Message delays”). For the abort case, four
messages are needed to be exchanged between the par-
ticipant and the coordinator of an aborted transaction.
This is because undoing an operation using ARIES [8],

the recovery scheme of CL is another write operation
that has to be logged. Since CL uses a DWAL log-
ging protocol, undoing an operation requires two more
explicit messages to be exchanged between the coordi-
nator and the participant in the worst case scenario.

The two scenarios show that the cost associated with
EP is highly dependent on the number of operations of
the transactions while CL is also dependent on the size
of main memory and the percentage of committed and
aborted transactions. Thus, EP and CL are rather in-
efficient in DDBSs with long-living transactions where
a transaction might execute a large number of opera-
tions at each site it accesses, a situation that is typi-
cally found in advanced distributed database applica-
tions. Together with EP and CL, IYV and IYV-PrA
with start record involve the least number of sequen-
tial messages. Although their performance depends on
the number of sequential forced start records, these
are at most equal to the number of participants which
is generally very small compared to the number of write
operations. It is clear from the tables that IYV and its
PrA optimization without start records promise the
minimum cost among the other 2PC variants.

Even though IYV requires the redo records gener-
ated during the execution of a transaction’s operation
be logged at both its coordinator as well as the par-
ticipants, such a duplicate logging should incur negli-
gible overhead because the log records are written in
a non-forced manner and without involving any extra
coordination messages. The only overhead is that IYV
requires more buffer space for the log of the coordina-
tor so that logging do not cause frequent flushing to
the log buffer. As mentioned earlier, we believe that,
in general, the overhead associated with the duplication
of logs and the extra information contained in the com-
mit and still-active messages is well offset by the reduc-
tion in the number of sequential coordination messages
and the gain of being able to support forward recovery
of interrupted, possibly long-lived, transactions due to
participant and communication failures.

5 Conclusion

In this paper, we proposed implicit yes-vote (IYV), a
2PC variant that is targeted toward those future highly
reliable distributed database sites interconnected via gi-
gabit networks. In such environments, the propagation
latency i1s more of an issue than the size of messages.
IYV exploits these new domain characteristics to mini-
mize the cost of transaction commitment at the cost of
slower recovery.

However, after a participant or a communication fail-
ure, IYV allows partially executed transactions that are
still active on other participants to resume their execu-
tion, a situation that is not possible in any other 2PC
variant. IYV supports forward recovery through a low-
cost partial replication of the log and lock table of each
participant at the coordinator sites. Forward recovery
potentially reduces the overall cost of recovery that has
been traded off for efficiency during normal processing.
Similar to all other 2PC variants, IYV is a blocking pro-
tocol in the face of communication and site failures.

Currently, we are investigating methods of reducing
the cost of recovery in the case of IYV without start
record and we are extending IYV to be used in the con-
text of multilevel distributed transactions.

Acknowledgment

We would like to thank George Samaras, Sujata
Banerjee and Ed Cymbalak for their helpful feedback
on this work.

References

[1] S. Banerjee and P. K. Chrysanthis. “Data Shar-
ing and Recovery in Gigabit-Networked Databases,”
Proc. of the 4th International Conference on Com-
puter Communications and Networks, 1995.

[2] P. A. Bernstein, V. Hadzilacos and N. Goodman,
Concurrency Control and Recovery in Database Sys-

tems, Adison-Wesley, Reading, MA, 1987.

[3] D. DeWitt, et al.,, “The Gamma Database Ma-
chine Project,” IEEE Transactions on Knowledge
and Data Engineering, Vol. 2, No. 1, pp. 44-69,
1990.

[4] K. P. Eswaran, et al., “The Notion of Consistency
and Predicate Locks in a Database System,” Com-
munications of the ACM, Vol. 19, No.11, pp.624-
633, 1976.

[5] J. Gray, “Notes on Data Base Operating Systems,”
In Operating Systems: An Advanced Course, LNCS,
Vol. 60, pp. 393-481, Springer-Verlag, 1978.

[6] L. Kleinrock, “The Latency/Bandwidth Tradeoff in
Gigabit Networks,” IEEE Communications Maga-
zine, Vol. 30, No. 4, pp. 36-40, 1992.

[7] B. W. Lampson, “Atomic Transactions,” In Dis-
tributed Systems: Architecture and Implementation
- An Advanced Course, LNCS, Vol. 105, pp. 246-265,
Springer-Verlag, 1981.

[8] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh,
and P. Schwarz, “ARIES: A Transaction Recov-
ery Method Supporting Fine-Granularity Locking
and Partial Rollbacks Using Write-Ahead Logging,”
ACM Transactions on Database Systems, Vol. 17,
No. 1, pp. 94-162, 1992.

[9] C. Mohan, B. Lindsay and R. Obermarck, “Trans-
action Management in the R* Distributed Database
Management System,” ACM Transactions on

Database Systems, Vol. 11, No. 4, pp. 378-596, 1986.

[10] G. Samaras, K. Britton, A. Citron and C. Mohan,
“Two-Phase Commit Optimizations and Tradeoffs
in the Commercial Environment,” Proc. of the 9th
International Conference on Data Engineering, pp.

520-529, 1993.

[11] J. Stamos and F. Cristian, “A Low-Cost Atomic
Commit Protocol,” Proc. of the 9th Symposium on

Reliable Distributed Systems, pp. 66-75, 1990.

[12] J. Stamos, and F. Cristian, “Coordinator Log
Transaction Execution Protocol,” Distributed and

Parallel Databases, Vol. 1, pp. 383-408, 1993.

[13] M. Stonebraker, “Concurrency Control and Consis-
tency of Multiple Copies of Data in Distributed IN-
GRES,” IEEE Transactions on Software Engineer-
ing, Vol. 5, No. 3, pp. 188-194, 1979.

