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Abstract 
M a j o r  advances  in opt ical  f iber  t r a n s m i s s i o n  and  

swi tch ing  technology h a v e  enabled t h e  deve lopment  of 
v e r y  h i g h  speed n e t w o r k s  with d a t a  ra tes  of t h e  order  of 
gigabi ts  p e r  second.  It i s  ant ic ipated t h a t  in th'e f u t u r e ,  
w i d e  area gigabi t  n e t w o r k s  wi l l  in terconnect  database 
s e r v e r s  around t h e  globe creat ing ex tremely  power fu l  
dis tr ibuted i n f o r m a t i o n  s y s t e m s .  In this paper,  w e  ex- 
a m i n e  t h e  i m p l i c a t i o n s  of s u c h  a h i g h  speed n e t w o r k  
on d a t a  access  a n d  shar ing  techniques  and  propose 
a lock-based concurrency  control  protocol  and  a log- 
based recovery protocol  t h a t  ensures  d a t a  cons is tency  
an gigabit-networked databases .  B o t h  protocols  exploi t  
t h e  charac ter i s t ics  of a gigabi t  network:  t o  enhance  t h e  
p e r f o r m a n c e  of t h e  database s y s t e m  a n d ,  in par t icu lar ,  
t h e  f a c t  t h a t  t h e  s i ze  of t h e  m e s s a g e  i s  less  of a con- 
c e r n  t h a n  t h e  n u m b e r  of sequent ial  p h a s e s  of m e s s a g e  
passing.  

1 Introduction 
The evolution of very high speed networks is 

prompting research in many areas, including that of 
distributed database systems of the future. These net- 
works will have speeds of the order of Gigabits per 
second, and may even increase to Terabits per sec- 
ond someday [l]. It is anticipated that in the future, 
wide area gigabit networks will interconnect database 
servers to clients around the globe creating extremely 
powerful distributed information systems. We refer to 
these as gigabi t -networked databases  (GNDB). A good 
example of such a system is the proposed National In- 
formation Infrastructure, which is expected to provide 
fast, and reliable access to  correct diverse data. Tradi- 
tional data access and data sharing techniques are not 
expected to  scale to gigabit network rates [2-71. Thus 
if any advantages of  a high speed network are to be 
realized, new schemes are required, that can efficiently 
utilize the huge bandwidths available. 

At gigabit speeds, migrating large amounts of data 
from the database servers to the clients (and vice 
versa) will not pose a problem (Figure 1).  F'urther- 
more, in the future clients will be equipped with spe- 
cialized hardware and execute specialized computa- 
tions not supported by traditional database servers. 
Thus, high speed networks will significantly change 
the traditional client-server operating environment [8, 
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91, where typically the servers do most of the process- 
ing. In this new operating environment, it is expected 
that data will be moved between the servers and the 
clients and both servers and clients will be participat- 
ing in maintaining their consistency. This means that 
clients and servers must handle in a coordinated man- 
ner the effects of concurrency and failures which are 
the two basic sources of data inconsistencies. 

In this paper, we propose a lock-based concurrency 
control protocol, a variant of the s t r i c t  two-phase  lock- 
i n g  [lo], and a log-based recovery protocol [ll] that  
ensures reliability in such a client-server database en- 
vironment. Distributed concurrency control and re- 
covery algorithms typically require sites t o  engage in 
conversa t ions  (sequential message transfers involving 
round-trip propagation delays). Both of the proposed 
protocols exploit the characteristics of a gigabit net- 
work to enhance the performance of the database sys- 
tem,.particularly the fact that the size of the mes- 
sage IS less of a concern than the number of sequential 
phases of message passing in high speed networks. In 
the next section, we elaborate on these characteristics 
of high speed networks (Section 2). Then, in Section 3 
we present the high speed network specific two-phase 
locking protocol whereas the recovery scheme is pre- 
sented in Section 4. Section 5 concludes the paper 
with a summary and a discussion on future steps. 

2 Background 
Before introducing our high speed network-specific 

concurrency and recovery protocols, it is important t o  
first discuss the characteristics of the high speed wide 
area networks (WANs) and the traditional low speed 
networks, and understand their differences. 

High speed WANs differ significantly from the tra- 
ditional low speed networks. There are two basic 
components' of the delay involved in moving data be- 
tween two computers: the t r a n s m i s s i o n  t i m e ,  i.e., the 
time to transfer all the data bits, and the propagat ion  
la tency ,  i.e., the time the first bit takes to arrive. As 
the data rate in wide area networks continues to in- 
crease due to technological breakthroughs in optical 
fiber transmission and switching techniques, the data 
transmission delay will decrease almost linearly. How- 
ever, the signal propagation delay which is a function 
of the length of the communication link and a phys- 
ical constant, the speed of light, will remain almost 

'Queuing delay at intermediate switches is ignored. 
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consider here a distributed database with a single tra- 
ditional database (DB) server and multiple clients 
with local processing requirements. When a client 
needs a data  item, it sends a request to the DB seicver 
which responds with the requested data  item. Let us 
also assume that a client executes one transaction at 
a time. In the presence of concurrent requests firom 
different clients, the DB server preserves data  conisis- 
tency by following the s t r i c t  two-phase  locking proto- 
col (2PL) [lo], the most commonly used concurrency 
control mechanism. The 2PL protocol ensures dlata 
consistency as defined by iierializability which requires 
the concurrent, interleaved, execution of requests to 
be equivalent to some serial, non-interleaved, execu- 
tion of the same requests [Ill. 

The 2PL protocol executes each transaction in two 
phases. A transaction cart access a data  item only if 
no other transaction has a lock on it2. During the 
first phase, a transaction requests data  items which 

Clie,,t 

Figure 1: Distributed Database System connected by 
a High Speed WAN 

constant, and relative to the data  transmission de- 
lay, will actually seem to  increase. At gigabit rates, 
the propagation latency is the dominant component 
of the overall delay [2]. For example, the propagttion 
delay across the United States (at the speed of light) 
is 20 milliseconds. At a network speed of 1 Mbps, the 
transmission delay for a 1 Mb file is 1 second, and the 
ratio of the propagation delay to the transmission de- 
lay is 0.02. At l Gbps, the same ratio is c o m p t e d  
to be 20, a 1000 fold increase over the previous value. 
Most existing protocols do not exhibit scalable per- 
formance over such a wide range of variation of' this 
ratio [12]. Thus, the problem of propagation latencies 
actually gets worse as the data  rate increases. 

This basic characteristic of high speed networks 
(also referred to  as a high bandwidth-delay product) 
has significant implications on distributed applica- 
tions. Moreover, since bits cannot travel faster than 
the speed of light, and the distance between comniuni- 
cating computers cannot be reduced, the only wiiy to 
combat propagation latency is to hide it in i n n o v a t i v e  
protocols. This is not to  say that the performance of 
a traditional distributed algorithm will be worse in a 
high speed environment than in a low speed environ- 
ment. Due to the lower data  transmission delays in a 
high speed network, the protocol will perform better 
in a high speed network, but the marginal performance 
improvement will decrease as the data  rate continues 
to increase. Beyond a certain data  rate, there will 
be no further improvement, no matter what the in- 
crease in the data  rate is, and unless newer database 
protocols are developed that are dis tance- independent ,  
scalable performance will not be achieved. This obser- 
vation has motivated the development of the two al- 
gorithms proposed here which are the first ones ii? the 
family of algorithms which we refer to as APLODDS 
for Algorithms for Propagation Latency Optimization 
in Distributed Database Systems. 

are sLipped to it after the server acquires a lock on 
them. In the second phase, all the locks are released 
when the transaction is committed and all modified 
data items are returned to  the server. 

Assuming that a transaction needs to  access n data 
items, the first phase of the protocol as described 
above will involve n requests from the client to the 
server and n replies from the server to  the client, ex- 
changed in minimum 2 messages if all requests are sent 
at the same time or maximum 2n messages. The sec- 
ond phase of 2PL will involve a single message. That 
is, for each transaction, in the best case, strict 2PL in- 
volves three Tounds,  i.e., sequential phases of message 
passing corresponding to lock request, lock grant and 
lock release. The time for each round may vary accord- 
ing to the distance between the server and the client, 
the client loading, message. route taken, etc. However, 
here we focus on the propagation latency, and hence 
the distance between a particular client and the server. 

As mentioned before, cine of the motivations in a 
high speed environment is to  minimize both the num- 
ber of messages as well as the rounds. The following 
scheme proposes to  reduce the number of phases of 
message passing by groupzng the lock (data) granting 
and release. The DB server collects the lock requests 
for each data item for a splecified time interval. At the 
end of this interval (referred to  as the collection win- 
dow), the lock is granted io  the first transaction, and 
the data item is sent to  the respective client along with 
the ordered list (also referred to as the f o r w a r d  l i s t )  
of the clients that  have pending lock requests that  ar- 
rived within the window. As discussed below, within 
each window, the forward list may be created based 
on several rules to improve performance further. 

When a transaction coimmits, the client sends the 
new version of the data  item to the client next on 
the forward list along with the forward list. If the 
transaction aborts, the client forwards the version of 
the data  that it has received to the next client. Finally, 

3 Concurrency Control in GNDB 
With the above issues in mind, a new scheml: has 

been developed that clearly illustrates the effects of 
the new assumptions. To simplify the discussion, we 

'Concurrency can be enhanced by distinguishing between 
shared (read) and exclusive locks. Several transactions can ac- 
cess a data item simultaneously using a shared lock. To keep 
the current discussion simple, o n l y  exclusive locking is assumed. 
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Figure 2: Example execution of our scheme: Exclusive access 

when the last client on the forward list terminates, it 
sends the new version of the data to  the server along 
with the forward list which also reflects the outcome 
of each transaction executed on the clients. 

In this scheme, the lock release message of the pre- 
vious client is combined with the lock grant message 
of the next client, thereby eliminating one sequential 
message required by the 2PL protocol between a client 
and the server. For example, assume that n  requests 
for the same data item arrive within the same win- 
dow. The 2PL scheme will require 3n messages and 
3n rounds as opposed to the proposed scheme which 
will require 2 n + l  messages and 2 n + l  rounds. Clearly, 
the messages in the proposed scheme have a larger size 
than that in the 2PL scheme. Note that this group 
granting and release of locks is not possible when the 
DB server does all the data processing. The follow- 
ing example demonstrates the working of this basic 
scheme. 
Example: Consider a system with one DB server, and 
three clients numbered 1-3. Assume each client has 
issued a transaction (say, T I ,  Tz, and T3) that exclu- 
sively access the same data item. Assuming that each 
message/data transfer is accompanied with 2 units of 
propagation latency. Since a high speed networking 
environment is assumed, the message/data transmis- 
sion time will be negligible. Let the collection window 
duration be 1 unit, and the processing time per trans- 
action after receiving the data item be 1 unit. The 
collection window starts when the first transaction ar- 
rives. It is also assumed that all three transactions 
arrive within the same collection window. Figure 2 
depicts the execution for the new protocol and com- 
pares it with 2PL. The total execution time for our 
scheme is 12 units, versus 15 units with 2PL. 

While the gains from the new technique may seem 
modest from the above example, under higher trans- 
action rates, as the queues build up, it is possible to 
demonstrate a significant performance improvement. 
The rest of this section expands on the basic scheme. 
3.1 Allowing Shared Access 

In the above description of the basic scheme, only 
exclusive access to data was considered. Obviously, 
access to some da ta  may be done in a shared fash- 
ion, with multiple clients reading the data item simul- 
taneously. Thus, shared access needs to be incorpo- 

rated into the basic scheme. However, in the interest 
of strict consistency, while multiple clients may read 
the data simultaneously, no client may write on it until 
the clients reading the data have released the shared 
lock. Actually, as it will become evident below, we 
can do better than this by allowing multiple readers 
and a single writer to execute concurrently while still 
preserving strict consistency. 

For each data item required in the shared mode by 
multiple (reading) clients, the DB server can send a 
copy of the data item to each of the reading clients, 
with the forward list containing the client C; that  re- 
quires the data item next in the exclusive mode. At 
the same time, a message containing the data item and 
the list of the shared-mode clients is also sent t o  C; 
that requires exclusive access. Although this enables 
Ci to execute concurrently with the reading clients, 
C, cannot release its updates until it receives a release 
message from all the reading clients. Here is interest- 
ing to point out that the protocol just described be- 
haves similar to the two-copy version 2PL protocol [ll] 
which allows more concurrency than the standard 2PL 
protocol. As before, if there are no waiting transac- 
tions that need exclusive access, the release messages 
are returned to the server. If there are n  clients read- 
ing a single data item, 3n messages in 3 rounds will 
be required. 
Example: The timing diagram for another example 
is shown in Figure 3, where transactions TI and Tz re- 
quire shared access and T3 requires exclusive access to 
the same data item. The total execution time for our 
scheme is 9 units, while with 2PL, it takes a little more 
than 10 units. The figure does not depict the best case 
in which the lock is released by client 3 one time unit 
earlier, that is, at the time immediately when it re- 
ceives the release message from clients 1 and 2. 

If all three transactions required shared access, then 
the 2PL scheme would have required a little more than 
5 units of time, while our scheme would have required 
one more unit of time than the 2PL scheme. The per- 
formance can be improved by reducing the collection 
window appropriately (in this case by 1 unit). Thus, 
collection window duration needs to be tied to the 
statistics of shared and exclusive access in the system. 

In order to illustrate the behavior of the protocol 
when more than one data item is requested by each 
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Figure 3: Example execution of our scheme: Shared and exclusive access 
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Figure 4: Example execution of our scheme: Dynamic shared and exclusive access 

transaction, let us consider an example with three 
transactions as before, except that  now each transac- 
tion requires two data  items, as given below. For each 
data  item, the type of access (Exclusive: e, or sha.red: 
s )  is denoted as the superscript. TI : {D:,D:}, 

Let us assume that all the requests for data  items 
arrive within the same window, except for TI which 
requests Dz after some initial processing. The timeline 
for this scenario is provided in Figure 4. 

In this example, the server can wait until the data  
0 2  is released before sending it to client 1. However, 
imagine the following scenario, where TI requests Dz 
at a later time, while T2 requests D1 at a later time. 
Under such circumstances, the server detects a diead- 
lock, and has to  abort one of the transactions (prefer- 
ably the one with the least number of locks, or the 
one that has spent the least amount of time in the 
system). In the next section, we will discuss how care- 
ful construction of the forward list potentially reduces 
the number of deadlocks. In general, we assume that 
the server detects deadlocks by maintaining a wai l - for  
graph and checking for cycles in the graph [ll]. 

3.2 Creating the Forward List 
For each data  item, in each window, a forward list 

is created during the time period that the requests 
from the previous window are being served. This is 
basically performed in two steps. These two steps can 
be performed sequentially as described below, or in 
an interactive manner, during which the forward list 
is built incrementally. 

Tz : {D;, D;}, Ti : {D;, Di} 

F i r s t  Step:  In the first step, the forward lists are con- 
strutted based on some ordering rules. There are 
many ordering rules possible for each forwarding list, 
with different performance implications: 
0 First-in-First-Out or sort by arrival of the requests. 
0 Order by the client ID. 
0 Order by transaction priority. 
0 Order the list by the number of locks held by each 

transaction. There are two possibilities: 
0 Transactions with feweir number of locks go first. 
0 aansactions with greater number of locks go first. 

0 Serve the read requests first. 
0 Split up the read requests according to the multi- 

programming capabilities. 
0 Order requests such that the total distance traversed 

by the messages is minimised. 
The first two ordering criteria are simple, and it, is 

expected that they will perform the worst. Using one 
or more of the remaining criteria, a cost function may 
be developed, which may be minimized to obtain ithe 
best performance. We intend to evaluate such cost 
functions to determine the Circumstances under which 
the best performance may be obtained. The cost func- 
tion minimisation will certainly require more compu- 
tations and hence more processing. However, it should 
be noted that the processing is done while the server 
is waiting for the data  to be returned, thus making 
efficient use of the CPU cycles. 

The data  structure for the forward list for each data  
item will be a list with appropriate markers to delimit 
the parallel shared accesses and the serial exclusive 
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Figure 5: Structure of the Transaction Precedence 
Graph for a Data Item 

accesses. Each list entry will contain the pair : the 
transaction ID and the corresponding client site ID. 
For the example in Figure 3, the forward list sent by 
the server t o  clients 1 and 2 is: [ (TI,l),(T2,2) 1, (T3,3), 
where the entries between [..] are the shared accesses. 
Second Step: In the second step, the initial forward 
list (created in the first step) is re-ordered with dead- 
lock prevention in mind. It is well known that the 2PL 
protocol suffers from deadlocks. Two or more trans- 
actions are said to be in a deadlock when neither of 
the transactions can proceed because at least one of 
the locks required by each of the transactions is held 
by one of the other transactions. 

Deadlocks can be prevented if in each of the for- 
ward lists, the order of the transactions is the same. 
Formally, the forward list for each data item can be 
represented by a transaction precedence graph, which 
need to be made consistent. That is two transactions 
Ti and Tj must follow the same order < Ti, T j  > or 
< 3,  T; > in every precedence graph involving T; and 
3.  The transaction precedence graph is a directed 
graph which determines the order in which each data 
item will move from one client site to another. Each 
transaction that immediately precedes a transaction 
is termed a predecessor transaction, and a transaction 
that immediately follows is termed a successor trans- 
action. Note that the precedence graph is consistent 
with the lock granting order and hence consistent with 
the serialization order. The transaction precedence 
graph obtained after optimizing the cost function will 
have a general structure as given in Figure 5. Each 
transaction in control of the data item may pass the 
data item to one or multiple transactions. At any 
time, there may be one or more concurrently execut- 
ing transactions. The stages with just one transaction 
refer to exclusive access by the transaction while the 
stages with multiple transactions refer to shared ac- 
cess by multiple transactions in parallel. It should 
be clear from Figure 5 that a transaction may have 
multiple successors and predecessors and the set of 
successors/predecessors must be determined from the 

9 

(a) (b) (e) 

Figure 6: (a) Precedence Graph for D, (b) Precedence 
Graph for D, (c) Revised Precedence Graph for D, 

precedence graphs of all data items accessed by the 
transaction. The last node in the precedence graph 
is the server, so the last client(s) can return the data 
item to the server, which then serves the next window. 

Also, to make efficient use of all the resources, some- 
times the transaction precedence graph for a data item 
may need to be further re-ordered while maintaining 
its consistency achieved in step 2. The idea here is 
to minimize the time a site is waiting for a data item 
or to allow multiple data to be combined in a single 
large message taking advantage of the huge bandwidth 
of the network. For an example, consider Figures 6(a) 
and (b) which depict parts of the precedence graphs 
for two data items D, and D,. Since transaction 3 
has to wait for D, until T k  releases it, so it might 
make more sense to re-order transactions Tj and TI 
in the precedence graph for D, as well. The revised 
precedence graph is depicted in Figure 6(c). 

Again, it should be stressed that all of these com- 
putations and reordering are done while the server is 
waiting for the data items to be returned from the 
clients in the previous window. Thus, these compu- 
tations do not add to  the transaction response time, 
and in fact increase the utilization of the server CPU. 
3.3 Related Work 

In the concurrency control mechanism described 
above, the DB server acts as a dispatcher for the data 
items. This can also be viewed as a scheme where 
the primary copy of each da ta  item is stored at the 
DB server, and a floating copy of the data item mi- 
grates from client to client under the supervision of 
the server. This scheme has a similar flavor to the 
send-on-demand scheme proposed in [6]. However, 
in that scheme, the data items were migrated from 
site to site according to  the demand generated. With 
the location change, the ownership of the data item 
is transferred to the new site, thus making the recov- 
ery mechanism difficult (owing to the distribution of 
the log records). The scheme proposed in this paper 
differs in that each data item is owned by a specific 
DB server. In the Mariposa database system [13], one 
of the performance-enhancing criteria proposed was 
that the ownership of data items should not be fixed, 
and it was acknowledged that in doing so, the recov- 
ery operation would become very difficult. However, 
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the motivation there was different from the one here, 
that of reducing the effects of communication propa- 
gation latency. In the next section, a possible recovery 
scheme is proposed. 

4 Failure Recovery in GNDB 
Thus far, we have not considered failures. The pro- 

posed scheme can be made resilient, if we assume that 
the server as well as each client support stable stor- 
age. While the server is responsible €or the recovery 
of the database, the clients record each modificakion 
to a data item in a log on stable storage and pass 
around the corresponding log records along with the 
data item. The client discards a log entry when the 
log entry is stored on the server’s log. Without get- 
ting into the details of the recovery process itself, it is 
not hard to see that while a data item is granted to 
a group of clients, the DB Server cannot recover the 
data item when a client fails until the failed client re- 
covers. Thus, in a failure-prone environment a rnore 
efficient recovery scheme is required. 

A potentially more efficient recovery scheme would 
require that the server be informed about the outcome 
of each transaction and its associated log records as 
soon as possible. This can be achieved by requiring 
each client to send to  the server the new version of 
the modified da ta  at the same time when the new ver- 
sion is forwarded to the client next on the forward 
list. Note that the server need only to be informed 
for the modified data. Although, the new resilient 
scheme requires maximum 3n messages, same as the 
2PL scheme, it requires only 2n + 1 rounds, as op- 
posed to 3n of the 2PL scheme. An even more effi- 
cient concurrency control and recovery scheme might 
be possible a t  the cost of more messages with the ad- 
vantage of less rounds. In the sequel, we consider such 
a recovery scheme that attempts to reduce the ovlerall 
cost of recovery by distinguishing between reliable and 
unreliable sites. 
4.1 An Adaptive Recovery Scheme 

Recovery is very difficult in a situation where data 
items may migrate from site to site [13,14]. The future 
high speed networking environment will provide qual- 
ity of service (QoS) guarantees, including high net- 
work reliability. Thus, the probability of network par- 
titioning and link failures will be relatively low, and 
only site failures need to  be considered. 

Every site may be dynamically classified into two 
broad types: reliable and unrel iable .  The only differ- 
ence between a reliable and an  unreliable site is that if 
a reliable site fails, recovery from the failure will Ihap- 
pen within minutes (due to the presence of a back-up 
processor, or other fast recovery mechanisms), while 
an unreliable site may take up  to several hours to re- 
cover from a failure. In such a situation, two extreme 
cases of recovery may be considered, depending or1 the 
type of site executing the transaction. Below we first 
discuss the recovery operation for reliable sites, and 
then follow up  with the more interesting case of unre- 
liable sites. The server records each site as a reliable 
or unreliable site. If there is.no information available 
on a particular site, the server may adopt a pessimistic 
approach and assume that the site is unreliable. 

A. Reliable Sites: Since reliable sites are expected 
to be able to recover from failures relatively quiclcly, 
reliable sites are assumed to  support stable storage, 
combined with an efficient write-ahead-logging (WAL) 
scheme, e.g., Aries [15]. When a reliable site receives 
a data item, the site force-writes the da ta  item along 
with its forward list to the stable storage, and then 
sends an acknowledgement message to its predeces- 
sor. A transaction can be committed as soon as the 
part of the log pertaining io  the transaction is on the 
stable storage. Using this scheme, if the site fails, un- 
til it comes back up again, the data items a t  that aite 
will be unavailable, but nob lost. The important thing 
to note is that no communication (and hence propa- 
gation latency costs) is required with other client sites 
to commit a transaction. Of course, the site will have 
to synchronize its cache with the server, but can do so 
after committing the transaction, thereby not adding 
to the transaction response time. 

B. Unreliable Sites: The recovery mechanism used 
for unreliable sites is more complicated, and involves 
communication with other. sites. In the event of a 
site failure, the objective here is to avoid blocking the 
operation of all the other sites that require the data 
items immediately after the current transaction on the 
failed unreliable site. These sites are referred to as 
the saccessor sites of the transaction and the trans- 
action as the predecessor of these sites. Note that 
each successor site of a transaction may require only 
a subset of the data items currently held by the trans- 
action. If the site processing a transaction fails, there 
needs to be a method of bypassing the failed site, so 
that the successor sites can1 continue operation, eitlher 
with the after-images of committed data items, or the 
before-images of uncommitted data. The main prob- 
lem stems from the need to ensure that every successor 
site of a transaction comes tfo the same decision regard- 
ing the transaction, viz., the transaction is committed 
or aborted. In the following, we propose an  a t o m i c  
c o m m i t  protocol [ll] that allows the set of successors 
to reach a consistent decision, and gain access to the 
correct data. 

When a predecessor transaction of an unreliable site 
commits, it  sends the data item to its successor site as 
well as to the successor of its successor for that data 
item. Thus, all successors <of an unreliable site obtain 
the before-images of the dahs items required by them, 
as well as learn the identity of their unreliable prede- 
cessors. When the transaction a t  the unreliable site 
is ready to commit, it writes a “Ready to  commit” 
entry into the stable log, then sends the after-images 
of all the data items to the server as well as to the set 
of its successors3. Once the after-images are broad- 
cast to the set of successors, the transaction will wait 
for at least one acknowledgment, and will repeatedly 
try to elicit a response from the successor sites or the 
server, in case it does not receive the acknowledgment 
within a specified time-out period. The acknowledg- 
ment serves as only a guarantee that at least one of 

31f a site is concurrently processing n transactions, it wiU be 
part of n successor site sets. Here it is assumed that n = 1.  The 
successor set is constructed from the forward lists. 
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the successor sites or the server has the after-images. 
The transaction is committed (a “Commit” log entry 
is made only after it receives the first acknowledg- 
ment. Tke first acknowledgment will typically arrive 
from the physically closest, or the most lightly loaded 
site at that time. When all the acknowledgments have 
been received, the site may discard all information on 
the transaction just executed. 

If an unreliable site fails before or after sending the 
after-images, the successor sites that do not receive the 
after-images within a specific time-out may enquire 
as to  the status of the transaction from the server*. 
If the server has received the after-images (and has 
acknowledged the message) , it sends the after-images 
to all the successors. Otherwise, the server initiates a 
voting to abort the transaction at the failed site. 

In the first step of the voting, the server sends an 
enquiry message to all the successors of the failed site, 
along with the successor set. Even if one successor 
site has received the after-images, it will send this in- 
formation to  all the successors and the server, allow- 
ing the successors to proceed with the execution of 
their respective transactions. If none of the successors 
or the server have the after-images, the predecessor 
transaction may be assumed to  have aborted, and the 
before-images of the data (that was sent by the server 
or a previous client site) will be used. 

When the failed site recovers, and sends the after- 
images to successors and the server, the receiving sites 
respond with an  abort message which causes the trans- 
action at the failed site to abort. Thus, even under the 
very improbable circumstance that all the messages 
containing the after-images are lost5 , the successors 
to the current transaction will be able to proceed on 
the assumption that the predecessor transaction was 
aborted. The recovery algorithm including the voting 
protocol for unreliable sites is specified in Figure 7. 

Example: Consider the same example as discussed 
before with three transactions, all accessing the same 
data item D, in exclusive mode. Further, site 2 re- 
quires data item Dy, which is then required by trans- 
action T4 at client site 4. Assume that the first 
client site involved is reliable, and the other three sites 
are unreliable. Site 1 thus uses the simpler recovery 
scheme for transaction T I  with local WAL commit pro- 
cedure. If the client site 1 fails during the recovery 
process, all other successor sites (in this case, site 2) 
will be blocked. However, since site 1 is a reliable 
site, it will recover from the failure shortly. The more 
involved recovery case is when dealing with site 2. 

Since site 2 is unreliable, client 1 will send its com- 
mitted da ta  D, to both sites 2 and 3 as well as the 

&Note that the successor that does not receive the after- 
images, does not know the identity of the other successors. 

61t should be noted that the new scheme is being proposed 
for a high speed environment with QoS guarantees, and hence 
it i s  indeed extremely unlikely that all the messages will be lost. 
In fact, with emerging high speed networking technology, it will 
be possible for applications to demand a particular grade of 
service. Thus, for recovery mechanisms, it will be possible to 
specify to the network that no message loss will be tolerated. 

0 If the successor is unreliable, send committed data to 
- the server, and 
- the next two successors on each forward list. 

a If waiting for a release from the immediate prede- 
cessor (after having received a message from the pre- 
predecessor site), after a timeout , the predecessor site 
is declared to be failed, 

- Send enquiry message (ENQ) to the server with 
the failed predecessor site ID (pred-ID). 

0 On receiving an ENQ message, 

*. if the server has received after-images of a data item 
from pred-ID (and has acknowledged the data), 

- it will broadcast the released data to all the 
successors of pred-ID. 

* if the server has not heard from pred-ID, then the 
server initiates a vote-to-abort the transaction at 
pred-ID. 

Voting scheme 

Phase 1: Server sends to all successors of pred-ID a 
request-to-abort message, along with the previ- 
ous uncommitted data, and the list of all prede- 
cessors and successors of pred-ID. 
- If a successor has received committed data 

(and acknowledged) from pred-ID, it broad- 
casts the data (and the corresponding for- 
ward lists) to all the predecessors and suc- 
cessors of pred-ID. 

- Otherwise, it sends its yes vote-to-abort to 
the server and the predecessors and the suc- 
cessors of pred-ID. 

Phase 2: All successors and predecessors of pred-ID 
decide to abort the message after getting all yes- 
votes from the successors of pred-ID. 

0 When a successor receives a message from either the 
server or one of the successors with the committed 
data from pred-ID, it resumes normal operation with 
the new data. 

0 When a predecessor of pred-ID receives the abort 
messages from all the successors and the server, it 
removes pred-ID from the relevant forward lists. 

0 If the predecessor of pred-ID has already forwarded 
the data to pred-ID, it ignores the abort messages. 
If any successor or the server receives the commit- 
ted data from pred-ID after a vote-to-abort has been 
passed, it sends an abort message to pred-ID. 

t After pred-ID recovers, it tries to elicit acknowledge- 
ments from atleast one of the successors or the server. 
If it receives an abort message in response, it aborts 
its transaction. 

Figure 7: Unreliable Site Recovery Protocol 
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server. When ready to  commit transaction Tz, site 2 
will send the after-images of data items D, and D, 
to both its successors (site 3 and 4) and the server. 
Assuming that site 3 is physically closer to site 2 as 
well as lightly loaded, the acknowledgment from rite 3 
reaches site 2 first. At this point, Tz commits. If for 
some reason, site 4 does not receive the after-images, 
within a timeout period, it can query site 2, 3, and 
the server t o  obtain the after-images. 

If site 2 fails after sending the after-images, and 
both successors and the server do not receive the mes- 
sages containing the after-images, the server will initi- 
ate the voting procedure with the successors and pre- 
decessors of the failed site 2. Since no site ha:; the 
after-images, they will all decide to abort the ttans- 
action at site 2, and use the before-images to process 
their respective transactions, thus bypassing Tz. In 
the meantime, if site 2 recovers, and retransmits the 
after-images, both successor‘ sites and the server will 
return abort messages. T2 will then be aborted. 

5 Conclusions 
In this paper, two novel data sharing ancl ac- 

cess protocols, known as APPLODS (Algorithms 
for Propagation Latency Optimization in DistriEiuted 
Database Systems) that are suited to the gigabit WAN 
environment have been proposed. The purpose of 
the paper was to  motivate the need for new schemes 
in a gigabit environment, and propose a possible la- 
tency reduction mechanism. Previous research has 
produced possible data sharing schemes that would 
scale to the gigabit environments, but the recovery 
process in those cases is extremely difficult. One of the 
major contributions of this paper is the development 
of a practical recovery process in conjunction with the 
new data sharing scheme. For brevity, the above: dis- 
cussion made a number of simplifications such as a 
single transaction per site, and a single type of lock, 
and omitted to  discuss a number of extensions such 
as the possibility of the server to dynamically extend 
a forward list. We believe these as well as other opti- 
mizations will further enhance the performance of the 
proposed scheme taking advantage of the new ch<arac- 
teristics of a high speed network. 

An important parameter in this scheme is the win- 
dow size, which will directly have performance impli- 
cations. Having a small window size will cause a larger 
number of sequential message transfers, thus reducing 
the performance level. Also, the probability of clead- 
lock increases with a decrease in window size, since the 
opportunity of re-ordering the granting of locks within 
a window to  minimize deadlocks is also reduced. ‘With 
a large window size, the first transaction is delayed by 
a maximum of the request collection duration, which 
delays the other transactions as well. Thus, an opti- 
mal value of the window size needs to be used. Also, 
depending on the transaction rates, and its QoS re- 
quirements, the window size may have to be dynami- 
cally adjusted. Future work planned includes sirnula- 
tion studies to  demonstrate the expected performance 
improvement, and also extend the proposed schemes 
to other configurations of client-servers. 
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