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Abstract

Magjor advances in optical fiber transmission and
switching technology have enabled the development of
very high speed networks with data rates of the order of
gigabits per second. It is anticipated that in the future,
wide area gigabit networks will interconnect database
servers around the globe creating extremely powerful
distributed information systems. In this paper, we ez-
amine the implications of such a high speed network
on data access and sharing technigues and propose
a lock-based concurrency control protocol and a log-
based recovery protocol that ensures data consistency
in gigabit-networked databases. Both protocols ezploit
the characteristics of a gigabit network to enhance the
performance of the database system and, in particular,
the fact that the size of the message is less of a con-
cern than the number of sequential phases of message
passing.

1 Introduction

The evolution of very high speed networks is
prompting research in many areas, including that of
distributed database systems of the future. These net-
works will have speeds of the order of Gigabits per
second, and may even increase to Terabits per sec-
ond someday [1]. It is anticipated that in the future,
wide area gigabit networks will interconnect database
servers to clients around the globe creating extremely
powerful distributed information systems. We refer to
these as gigabit-networked dotabases (GNDB). A good
example of such a system is the proposed National In-
formation Infrastructure, which is expected to provide
fast, and reliable access to correct diverse data. Tradi-
tional data access and data sharing techniques are not
expected to scale to gigabit network rates [2-7]. Thus
if any advantages of a high speed network are to be
realized, new schemes are required, that can efficiently
utilize the huge bandwidths available.

At gigabit speeds, migrating large amounts of data
from the database servers to the clients (and vice
versa) will not pose a problem (Figure 1). Further-
more, in the future clients will be equipped with spe-
cialized hardware and execute specialized computa-
tions not supported by traditional database servers.
Thus, high speed networks will significantly change
the traditional client-server operating environment (8,
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9], where typically the servers do most of the process-
ing. In this new operating environment, it is expected
that data will be moved between the servers and the
clients and both servers and clients will be participat-
ing in maintaining their consistency. This means that
clients and servers must handle in a coordinated man-
ner the effects of concurrency and failures which are
the two basic sources of data inconsistencies.

In this paper, we propose a lock-based concurrency
control protocol, a variant of the sirict two-phase lock-
ing [10], and a log-based recovery protocol [11] that
ensures reliability in such a client-server database en-
vironment. Distributed concurrency control and re-
covery algorithms typically require sites to engage in
conversations (sequential message transfers involving
round-trip propagation delays). Both of the proposed
protocols exploit the characteristics of a gigabit net-
work to enhance the performance of the database sys-
tem, particularly the fact that the size of the mes-
sage is less of a concern than the number of sequential
phases of message passing in high speed networks. In
the next section, we elaborate on these characteristics
of high speed networks (Section 2). Then, in Section 3
we present the high speed network specific two-phase
locking protocol whereas the recovery scheme is pre-
sented in Section 4. Section 5 concludes the paper
with a summary and a discussion on future steps.

2 Background

Before introducing our high speed network-specific
concurrency and recovery protocols, it is important to
first discuss the characteristics of the high speed wide
area networks (WANs) and the traditional low speed
networks, and understand their differences.

High speed WANSs differ significantly from the tra-
ditional low speed networks. There are two basic
components! of the delay involved in moving data be-
tween two computers: the iransmission time, i.e., the
time to transfer all the data bits, and the propagation
latency, i.e., the time the first bit takes to arrive. As
the data rate in wide area networks continues to in-
crease due to technological breakthroughs in optical
fiber transmission and switching techniques, the data
transmission delay will decrease almost linearly. How-
ever, the signal propagation delay which is a function
of the length of the communication link and a phys-
ical constant, the speed of light, will remain almost

1Queuing delay at intermediate switches is ignored.

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:57:52 UTC from IEEE Xplore. Restrictions apply.



DB Client

DB Client

DB Client

DB Client
DB Server
Figure 1: Distributed Database System connected by
a High Speed WAN

constant, and relative to the data transmission de-
lay, will actually seem to increase. At gigabit rates,
the propagation latency is the dominant component
of the overall delay [2]. For example, the propagation
delay across the United States (at the speed of light)
is 20 milliseconds. At a network speed of 1 Mbps, the
transmission delay for a 1 Mb file is 1 second, and the
ratio of the propagation delay to the transmission de-
lay is 0.02. At 1 Gbps, the same ratio is computed
to be 20, a 1000 fold increase over the previous value.
Most existing protocols do not exhibit scalable per-
formance over such a wide range of variation of this
ratio [12]. Thus, the problem of propagation latencies
actually gets worse as the data rate increases.

This basic characteristic of high speed networks
(also referred to as a high bandwidth-delay product)
has significant implications on distributed applica-
tions. Moreover, since bits cannot travel faster than
the speed of light, and the distance between communi-
cating computers cannot be reduced, the only way to
combat propagation latency is to hide it in innovative
protocols. This is not to say that the performance of
a traditional distributed algorithm will be worse in a
high speed environment than in a low speed environ-
ment. Due to the lower data transmission delays in a
high speed network, the protocol will perform better
in a high speed network, but the marginal performance
improvement will decrease as the data rate continues
to increase. Beyond a certain data rate, there will
be no further improvement, no matter what the in-
crease in the data rate is, and unless newer database
protocols are developed that are distance-independent,
scalable performance will not be achieved. This obser-
vation has motivated the development of the two al-
gorithms proposed here which are the first ones in the
family of algorithms which we refer to as APLODDS
for Algorithms for Propagation Latency Optimization
in Distributed Database Systems.

3 Concurrency Control in GNDB

With the above issues in mind, a new scheme has
been developed that clearly illustrates the effects of
the new assumptions. To simplify the discussion, we
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consider here a distributed database with a single tra-
ditional database (DB) server and multiple clients
with local processing requirements. When a client
needs a data item, it sends a request to the DB server
which responds with the requested data item. Let us
also assume that a client executes one transaction at
a time. In the presence of concurrent requests from
different clients, the DB server preserves data consis-
tency by following the sirict two-phase locking proto-
col (2PL) [10], the most commonly used concurrency
control mechanism. The 2PL protocol ensures data
consistency as defined by serializability which requires
the concurrent, interleaved, execution of requests to
be equivalent to some serial, non-interleaved, execu-
tion of the same requests [11].

The 2PL protocol executes each transaction in two
phases. A transaction can access a data item only if
no other transaction has a lock on it?. During the
first phase, a transaction requests data items which
are shipped to it after the server acquires a lock on
them. In the second phase, all the locks are released
when the transaction is committed and all modified
data items are returned to the server.

Assuming that a transaction needs to access n data
items, the first phase of the protocol as described
above will involve n requests from the client to the
server and n replies from the server to the client, ex-
changed in minimum 2 messages if all requests are sent
at the same time or maximum 2n messages. The sec-
ond phase of 2PL will involve a single message. That
is, for each transaction, in the best case, strict 2PL in-
volves three rounds, i.e., sequential phases of message
passing corresponding to lock request, lock grant and
lock release. The time for each round may vary accord-
ing to the distance between the server and the client,
the client loading, message route taken, etc. However,
here we focus on the propagation latency, and hence
the distance between a particular client and the server.

As mentioned before, one of the motivations in a
high speed environment is to minimize both the num-
ber of messages as well as the rounds. The following
scheme proposes to reduce the number of phases of
message passing by grouping the lock (data) granting
and release. The DB server collects the lock requests
for each data item for a specified time interval. At the
end of this interval (referred to as the collection win-
dow), the lock is granted to the first transaction, and
the data item is sent to the respective client along with
the ordered list (also referred to as the forward list)
of the clients that have pending lock requests that ar-
rived within the window. As discussed below, within
each window, the forward list may be created based
on several rules to improve performance further.

When a transaction commits, the client sends the
new version of the data item to the client next on
the forward list along with the forward list. If the
transaction aborts, the client forwards the version of
the data that it has received to the next client. Finally,

2Concurrency can be enhanced by distinguishing between
shared (read) and exclusive locks. Several transactions can ac-

cess a data item simultaneously using a shared lock, To keep
the current discussion simple, only exclusive locking is assurned.
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Figure 2: Example execution of our scheme: Exclusive access

when the last client on the forward list terminates, it
sends the new version of the data to the server along
with the forward list which also reflects the outcome
of each transaction executed on the clients.

In this scheme, the lock release message of the pre-

vious client is combined with the lock grant message
of the next client, thereby eliminating one sequential
message required by the 2PL protocol between a client
and the server. For example, assume that n requests
for the same data item arrive within the same win-
dow. The 2PL scheme will require 3n messages and
3n rounds as opposed to the proposed scheme which
will require 2n+1 messages and 2n-+1 rounds. Clearly,
the messages in the proposed scheme have a larger size
than that in the 2PL scheme. Note that this group
granting and release of locks is not possible when the
DB server does all the data processing. The follow-
ing example demonstrates the working of this basic
scheme.
Example: Consider a system with one DB server, and
three clients numbered 1-3. Assume each client has
issued a transaction (say, T1, T2, and T3) that exclu-
sively access the same data item. Assuming that each
message/data transfer is accompanied with 2 units of
propagation latency. Since a high speed networking
environment is assumed, the message/data transmis-
sion time will be negligible. Let the collection window
duration be 1 unit, and the processing time per trans-
action after receiving the data item be 1 unit. The
collection window starts when the first transaction ar-
rives. It is also assumed that all three transactions
arrive within the same collection window. Figure 2
depicts the execution for the new protocol and com-
pares it with 2PL. The total execution time for our
scheme is 12 units, versus 15 units with 2PL.

While the gains from the new technique may seem
modest from the above example, under higher trans-
action rates, as the queues build up, it is possible to
demonstrate a significant performance improvement.
The rest of this section expands on the basic scheme.

3.1 Allowing Shared Access

In the above description of the basic scheme, only
exclusive access to data was considered. Obviously,
access to some data may be done in a shared fash-
ion, with multiple clients reading the data item simul-
taneously. Thus, shared access needs to be incorpo-
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rated into the basic scheme. However, in the interest
of strict consistency, while multiple clients may read
the data simultaneously, no client may write on it until
the clients reading the data have released the shared
lock. Actually, as it will become evident below, we
can do better than this by allowing multiple readers
and a single writer to execute concurrently while still
preserving strict consistency.

For each data item required in the shared mode by
multiple (reading) clients, the DB server can send a
copy of the data item to each of the reading clients,
with the forward list containing the client C; that re-
quires the data item next in the exclusive mode. At
the same time, a message containing the data item and
the list of the shared-mode clients is also sent to Cj
that requires exclusive access. Although this enables
C; to execute concurrently with the reading clients,
C; cannot release its updates until it receives a release
message from all the reading clients. Here is interest-
ing to point out that the protocol just described be-
haves similar to the two-copy version 2PL protocol [11]
which allows more concurrency than the standard 2PL
protocol. As before, if there are no waiting transac-
tions that need exclusive access, the release messages
are returned to the server. If there are n clients read-
ing a single data item, 3n messages in 3 rounds will
be required.

Example: The timing diagram for another example
is shown in Figure 3, where transactions 77 and T re-
quire shared access and T3 requires exclusive access to
the same data item. The total execution time for our
scheme is 9 units, while with 2PL, it takes a little more
than 10 units. The figure does not depict the best case
in which the lock is released by client 3 one time unit
earlier, that is, at the time immediately when it re-
ceives the release message from clients 1 and 2.

If all three transactions required shared access, then
the 2PL scheme would have required a little more than
5 units of time, while our scheme would have required
one more unit of time than the 2PL scheme. The per-
formance can be improved by reducing the collection
window appropriately (in this case by 1 unit). Thus,
collection window duration needs to be tied to the
statistics of shared and exclusive access in the system.

In order to illustrate the behavior of the protocol
when more than one data item is requested by each

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 14:57:52 UTC from IEEE Xplore. Restrictions apply.



Transactions Requests Data Cata Our Scheme
arrive at arrive at arrives at arrives at
clients server clients 1& 2 ciient 3 .
%2 Transaction
Brecution
| Y { | ] Il ! 1 | -
T T T T T bl
0 2 4 10 12
Transactions Requests Data Lock releases Data 2PL
arrive at arrive at arrives at arrive arrives at
clients server client 1 at server client 3
Hl - ,Hl ! v T S — -
0 2 6 8 12
Data
o arrives at
. client2 . .
Figure 3: Example execution of our scheme: Shared and exclusive access
Requests arrive at  Data arrives at
Transactions server: client 1: Dy
arrive at Ty: Dy, Ty: Dy,Dy  client2: Dy,Dy Dataartivesat D, D;  Data arrives at
clients Ty: Dy, D3 client 3: D3 client 3: D, released  Client 1: D,
l ll } l ll } i 1 P
0 2 4

Request arrives

at server:
Ty: Dy

Transaction
Execution

Figure 4: Example execution of our scheme: Dynamic shared and exclusive access

transaction, let us consider an example with three
transactions as before, except that now each transac-
tion requires two data items, as given below. For each
data item, the type of access (Exclusive: e, or shared:
s) is denoted as the superscript. Tj : {D%, Di},
T;: {DﬁaDé}; Ty {D§3D§}

Let us assume that all the requests for data items
arrive within the same window, except for T; which
requests D; after some initial processing. The timeline
for this scenario is provided in Figure 4.

In this example, the server can wait until the data
D, is released before sending it to client 1. However,
imagine the following scenario, where T requests Dy
at a later time, while T3 requests D; at a later time.
Under such circumstances, the server detects a dead-
lock, and has to abort one of the transactions (prefer-
ably the one with the least number of locks, or the
one that has spent the least amount of time in the
system). In the next section, we will discuss how care-
ful construction of the forward list potentially reduces
the number of deadlocks. In general, we assume that
the server detects deadlocks by maintaining a wait-for
graph and checking for cycles in the graph [11].

3.2 Creating the Forward List

For each data item, in each window, a forward list
is created during the time period that the requests
from the previous window are being served. This is
basically performed in two steps. These two steps can
be performed sequentially as described below, or in
an interactive manner, during which the forward list
is built incrementally.
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First Step: In the first step, the forward lists are con-
structed based on some ordering rules. There are
many ordering rules possible for each forwarding list,
with different performance implications:

e First-in-First-Out or sort by arrival of the requests.

@ Order by the client ID.

e Order by transaction priority.

e Order the list by the number of locks held by each
transaction. There are two possibilities:
e Transactions with fewer number of locks go first.
e Transactions with greater number of locks go first.

e Serve the read requests first.

e Split up the read requests according to the multi-
programming capabilities.

o Order requests such that the total distance traversed
by the messages is minimized.

The first two ordering criteria are simple, and it is
expected that they will perform the worst. Using one
or more of the remaining criteria, a cost function may
be developed, which may be minimized to obtain the
best performance. We intend to evaluate such cost
functions to determine the circumstances under which
the best performance may be obtained. The cost func-
tion minimization will certainly require more compu-
tations and hence more processing. However, it should
be noted that the processing is done while the server
is waiting for the data to be returned, thus making
efficient use of the CPU cycles.

The data structure for the forward list for each data
item will be a list with appropriate markers to delimit
the parallel shared accesses and the serial exclusive
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Figure 5: Structure of the Transaction Precedence
Graph for a Data Item

accesses. Bach list entry will contain the pair : the
transaction ID and the corresponding client site ID.
For the example in Figure 3, the forward list sent by
the server to clients 1 and 2is: [ (T%,1),(7%,2) ], (75,3),
where the entries between [..] are the shared accesses.

Second Step: In the second step, the initial forward

list (created in the first step) is re-ordered with dead-
lock prevention in mind. It is well known that the 2PL
protocol suffers from deadlocks. Two or more trans-
actions are said to be in a deadlock when neither of
the transactions can proceed because at least one of
the locks required by each of the transactions is held
by one of the other transactions.

Deadlocks can be prevented if in each of the for-
ward lists, the order of the transactions is the same.
Formally, the forward list for each data item can be
represented by a transaction precedence graph, which
need to be made consistent. That is two transactions
T; and T; must follow the same order < T3, T; > or
< T;,T; > in every precedence graph involving T; and
T;. The transaction precedence graph is a directed
graph which determines the order in which each data
item will move from one client site to another. Each
transaction that immediately precedes a transaction
is termed a predecessor transaction, and a transaction
that immediately follows is termed a successor trans-
action. Note that the precedence graph is consistent
with the lock granting order and hence consistent with
the serialization order. The transaction precedence
graph obtained after optimizing the cost function will
have a general structure as given in Figure 5. Bach
transaction in control of the data item may pass the
data item to one or multiple transactions. At any
time, there may be one or more concurrently execut-
ing transactions. The stages with just one transaction
refer to exclusive access by the transaction while the
stages with multiple transactions refer to shared ac-
cess by multiple transactions in parallel. It should
be clear from Figure 5 that a transaction may have
multiple successors and predecessors and the set of
successors/predecessors must be determined from the
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® ® ©
Figure 6: (a) Precedence Graph for D, (b) Precedence
Graph for Dy (c) Revised Precedence Graph for D,

precedence graphs of all data items accessed by the
transaction. The last node in the precedence graph
is the server, so the last client(s) can return the data
item to the server, which then serves the next window.

Also, to make efficient use of all the resources, some-
times the transaction precedence graph for a data item
may need to be further re-ordered while maintaining
its consistency achieved in step 2. The idea here is
to minimize the time a site is waiting for a data item
or to allow multiple data to be combined in a single
large message taking advantage of the huge bandwidth
of the network. For an example, consider Figures 6(a)
and (b) which depict parts of the precedence graphs
for two data items D, and D,. Since transaction Tj
has to wait for D, until T} releases it, so it might
make more sense to re-order transactions T; and T,
in the precedence graph for D, as well. The revised
precedence graph is depicted in Figure 6(c).

Again, it should be stressed that all of these com-
putations and reordering are done while the server is
waiting for the data items to be returned from the
clients in the previous window. Thus, these compu-
tations do not add to the transaction response time,
and in fact increase the utilization of the server CPU.

3.3 Related Work

In the concurrency control mechanism described
above, the DB server acts as a dispatcher for the data
items. This can also be viewed as a scheme where
the primary copy of each data item is stored at the
DB server, and a floating copy of the data item mi-
grates from client to client under the supervision of
the server. This scheme has a similar flavor to the
send-on-demand scheme proposed in [6]. However,
in that scheme, the data items were migrated from
site to site according to the demand generated. With
the location change, the ownership of the data item
is transferred to the new site, thus making the recov-
ery mechanism difficult (owing to the distribution of
the log records). The scheme proposed in this paper
differs in that each data item is owned by a specific
DB server. In the Mariposa database system [13], one
of the performance-enhancing criteria proposed was
that the ownership of data items should not be fixed,
and it was acknowledged that in doing so, the recov-
ery operation would become very difficult. However,
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the motivation there was different from the one here,
that of reducing the effects of communication propa-
gation latency. In the next section, a possible recovery
scheme is proposed.

4 Failure Recovery in GNDB

Thus far, we have not considered failures. The pro-
posed scheme can be made resilient, if we assume that
the server as well as each client support stable stor-
age. While the server is responsible for the recovery
of the database, the clients record each modification
to a data item in a log on stable storage and pass
around the corresponding log records along with the
data item. The client discards a log entry when the
log entry is stored on the server’s log. Without get-
ting into the details of the recovery process itself, it is
not hard to see that while a data item is granted to
a group of clients, the DB server cannot recover the
data item when a client fails until the failed client re-
covers. Thus, in a failure-prone environment a rore
efficient recovery scheme is required.

A potentially more efficient recovery scheme would
require that the server be informed about the outcome
of each transaction and its associated log records as
soon as possible. This can be achieved by requiring
each client to send to the server the new version of
the modified data at the same time when the new ver-
sion is forwarded to the client next on the forward
list. Note that the server need only to be informed
for the modified data. Although, the new resilient
scheme requires maximum 3n messages, same as the
2PL scheme, it requires only 2n + 1 rounds, as op-
posed to 3n of the 2PL scheme. An even more effi-
cient concurrency control and recovery scheme might
be possible at the cost of more messages with the ad-
vantage of less rounds. In the sequel, we consider such
a recovery scheme that attempts to reduce the overall
cost of recovery by distinguishing between reliable and
unreliable sites.

4.1 An Adaptive Recovery Scheme

Recovery is very difficult in a situation where data
items may migrate from site to site [13,14]. The future
high speed networking environment will provide cual-
ity of service (QoS) guarantees, including high net-
work reliability. Thus, the probability of network par-
titioning and link failures will be relatively low, and
only site failures need to be considered.

Every site may be dynamically classified into two
broad types: reliable and unreliable. The only differ-
ence between a reliable and an unreliable site is that if
a reliable site fails, recovery from the failure will hap-
pen within minutes (due to the presence of a back-up
processor, or other fast recovery mechanisms), while
an unreliable site may take up to several hours to re-
cover from a failure. In such a situation, two extreme
cases of recovery may be considered, depending on the
type of site executing the transaction. Below we first
discuss the recovery operation for reliable sites, and
then follow up with the more interesting case of unre-
liable sites. The server records each site as a reliable
or unreliable site. If there is.no information available
on a particular site, the server may adopt a pessimistic
approach and assume that the site is unreliable.
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A. Reliable Sites: Since reliable sites are expected
to be able to recover from failures relatively quickly,
reliable sites are assumed to support stable storage,
combined with an efficient write-ahead-logging (WAL)
scheme, e.g., Aries [15]. When a reliable site receives
a data item, the site force-writes the data item along
with its forward list to the stable storage, and then
sends an acknowledgement message to its predeces-
sor. A transaction can be committed as soon as the
part of the log pertaining to the transaction is on the
stable storage. Using this scheme, if the site fails, un-
til it comes back up again, the data items at that site
will be unavailable, but not lost. The important thing
to note is that no communication (and hence propa-
gation latency costs) is required with other client sites
to commit a transaction. Of course, the site will have
to synchronize its cache with the server, but can do so
after committing the transaction, thereby not adding
to the transaction response time.

B. Unreliable Sites: The recovery mechanism used
for unreliable sites is more complicated, and involves
communication with other sites. In the event of a
site failure, the objective here is to avoid blocking the
operation of all the other sites that require the data
items immediately after the current transaction on the
failed unreliable site. These sites are referred to as
the successor sites of the transaction and the trans-
action as the predecessor of these sites. Note that
each successor site of a transaction may require only
a subset of the data items currently held by the trans-
action. If the site processing a transaction fails, there
needs to be a method of bypassing the failed site, so
that the successor sites can continue operation, either
with the after-images of committed data items, or the
before-images of uncommitted data. The main prob-
lem stems from the need to ensure that every successor
site of a transaction comes to the same decision regard-
ing the transaction, viz., the transaction is committed
or aborted. In the following, we propose an atomic
commit protocol [11] that allows the set of successors
to reach a consistent decision, and gain access to the
correct data.

When a predecessor transaction of an unreliable site
commits, it sends the data item to its successor site as
well as to the successor of its successor for that data
itemn. Thus, all successors of an unreliable site obtain
the before-images of the data items required by them,
as well as learn the identity of their unreliable prede-
cessors. When the transaction at the unreliable site
is ready to commit, it writes a “Ready to commit”
entry into the stable log, then sends the after-images
of all the data items to the server as well as to the set
of its successors®. Once the after-images are broad-
cast to the set of successors, the transaction will wait
for at least one acknowledgment, and will repeatedly
try to elicit a response from the successor sites or the
server, in case it does not receive the acknowledgment
within a specified time-out period. The acknowledg-
ment serves as only a guarantee that at least one of

31f a site is concurrently processing n transactions, it will be
part of n successor site sets. Here it is assumed that n = 1. The
successor set is constructed from the forward lists.
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the successor sites or the server has the after-images. o If the successor is unreliable, send committed data to

The transaction is committed (a “Commit” log entry - the server, and

is mad%} only after it receives the first acknowledg- - the next two successors on each forward list.
ment. The first acknowledgment will typically arrive

from the physically closest, or the most lightly loaded o If waiting for a release from the immediate prede-
site at that time. When all the acknowledgments have cessor (after having received a message from the pre-
been received, the site may discard all information on predecessor site), after a timeout, the predecessor site
the transaction just executed. is declared to be failed,

Ifan unreliable site fails before or after sending the - Send enquiry message (ENQ) to the server with
after-images, the successor sites that do not receive the the failed predecessor site ID (pred-ID).
after-images within a specific time-out may enquire .
as to the status of the transaction from the server®. ¢ On receiving an ENQ message,

If the server has received the after-images (and has i th h . . .
acknowledged the message), it sends the after-images * if the server has received after-images of a data item
to all the successors. Otherwise, the server initiates a from pred-ID (and has acknowledged the data),
voting to abort the transaction at the failed site. - it will broadcast the released data to all the
In the first step of the voting, the server sends an successors of pred-ID.

enquiry message to all the successors of the failed site,
along with the successor set. Even if one successor
site has received the after-images, it will send this in-

* if the server has not heard from pred-ID, then the
server initiates a vote-to-abort the transaction at

formation to all the successors and the server, allow- pred-ID.

ing the successors to proceed with the execution of Voting scheme

their respective transactions. If none of the successors

or the server have the after-images, the predecessor Phase 1: Server sends to all successors of pred-ID a
transaction may be assumed to have aborted, and the request-to-abort message, along with the previ-

before-images of the data (that was sent by the server
or a previous client site) will be used.
When the failed site recovers, and sends the after-

ous uncommitted data, and the list of all prede-
cessors and successors of pred-ID.

images to successors and the server, the receiving sites — If a successor has received committed data
respond with an abort message which causes the trans- (and acknowledged) from pred-ID, it broad-
actlon at the failed site to abort. Thus, even under the casts the data (and the corresponding for-
very improbable circumstance that all the messages ward lists) to all the predecessors and suc-
containing the after-images are lost®, the successors cessors of pred-ID.

to the current transaction will be able to proceed on

the assumption that the predecessor transaction was — Otherwise, it sends its yes vote-to-abort to

aborted. The recovery algorithm including the voting the server and the predecessors and the suc-
protocol for unreliable sites is specified in Figure 7. cessors of pred-ID.

Example: Consider the same example as discussed Phase 2: All successors and predecessors of pred-ID
before with three transactions, all accessing the same decide to abort the message after getting all yes-
data item D, in exclusive mode. Further, site 2 re- votes from the successors of pred-ID.

quires data item Dy, which is then required by trans- .

action Ty at client site 4. Assume that the first o When a successor receives a message from either the
client site involved is reliable, and the other three sites server or one of the successors with the committed
are unreliable. Site 1 thus uses the simpler recovery data from pred-ID, it resumes normal operation with
scheme for transaction T; with local WAL commit pro- the new data.

cedure. If the client site 1 fails during the recovery .
process, all other successor sites (in this case, site 2) o When a predecessor of pred-ID receives the abort
will be blocked. However, since site 1 is a reliable messages from all the successors and the server, it
site, it will recover from the failure shortly. The more removes pred-ID from the relevant forward lists.
involved recovery case is when dealing with site 2.
Since site 2 is unreliable, client 1 will send its com-
mitted data D, to both sites 2 and 3 as well as the

e If the predecessor of pred-ID has already forwarded
the data to pred-ID, it ignores the abort messages.

o If any successor or the server receives the commit-
ted data from pred-ID after a vote-to-abort has been
passed, it sends an abort message to pred-ID.

4Note that the successor that does not receive the after-
images, does not know the identity of the other successors.

®1t should be noted that the new scheme is being proposed e After pred-ID recovers, it tries to elicit acknowledge-
for a high speed environment with QoS guarantees, and hence
it is indeed extremely unlikely that all the messages will be lost.
In fact, with emerging high speed networking technology, it will
be possible for applications to demand a particular grade of
service. Thus, for recovery mechanisms, it will be possible to
specify to the network that no message loss will be tolerated. Figure 7: Unreliable Site Recovery Protocol

ments from atleast one of the successors or the server.
If it receives an abort message in response, it aborts
its transaction.
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server. When ready to commit transaction T, site 2
will send the after-images of data items D, and D,
to both its successors (site 3 and 4) and the server.
Assuming that site 3 is physically closer to site 2 as
well as lightly loaded, the acknowledgment from site 3
reaches site 2 first. At this point, 75 commits. If for
some reason, site 4 does not receive the after-images,
within a timeout period, it can query site 2, 3, and
the server to obtain the after-images.

If site 2 fails after sending the after-images, and
both successors and the server do not receive the mes-
sages containing the after-images, the server will initi-
ate the voting procedure with the successors and pre-
decessors of the failed site 2. Since no site has the
after-images, they will all decide to abort the trans-
action at site 2, and use the before-images to process
their respective transactions, thus bypassing T3. In
the meantime, if site 2 recovers, and retransmits the
after-images, both successor’sites and the server will
return abort messages. T, will then be aborted.

5 Conclusions

In this paper, two novel data sharing and ac-
cess protocols, known as APPLODS (Algorithms
for Propagation Latency Optimization in Distributed
Database Systems) that are suited to the gigabit WAN
environment have been proposed. The purpose of
the paper was to motivate the need for new schemes
in a gigabit environment, and propose a possible la-
tency reduction mechanism. Previous research has
produced possible data sharing schemes that would
scale to the gigabit environments, but the recovery
process in those cases is extremely difficult. One of the
major contributions of this paper is the development
of a practical recovery process in conjunction with the
new data sharing scheme. For brevity, the above dis-
cussion made a number of simplifications such as a
single transaction per site, and a single type of lock,
and omitted to discuss a number of extensions such
as the possibility of the server to dynamically extend
a forward list. We believe these as well as other opti-
mizations will further enhance the performance of the
proposed scheme taking advantage of the new charac-
teristics of a high speed network.

An important parameter in this scheme is the win-
dow size, which will directly have performance impli-
cations. Having a small window size will cause a larger
number of sequential message transfers, thus reducing
the performance level. Also, the probability of dead-
lock increases with a decrease in window size, since the
opportunity of re-ordering the granting of locks within
a window to minimize deadlocks is also reduced. With
a large window size, the first transaction is delayed by
a maximum of the request collection duration, which
delays the other transactions as well. Thus, an opti-
mal value of the window size needs to be used. Also,
depending on the transaction rates, and its QoS re-
quirements, the window size may have to be dynami-
cally adjusted. Future work planned includes simula-
tion studies to demonstrate the expected performance
improvement, and also extend the proposed schemes
to other configurations of client-servers.
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