Check for
Updates

Requirements-Based Design Evaluation

Stephen T. Frezza
Dept. of Electrical Engineering
University of Pittsburgh
{frezza, levitan}@ee.pitt.edu

Abstract— This paper presents a methodology for au-
tomating the evaluation of partial designs using black-box
testing techniques. This methodology generates black-box
evaluation tests using a novel semantic graph data model
to maintain the relationships between the related design
and requirements data. We demonstrate the utility of this
technique by using the relationship information to auto-
matically generate and run functionality tests of partial
designs against the related requirements.

I. INTRODUCTION

Current Computer-Aided Design (CAD) tools are
geared to help the designer develop good designs from
specifications. Likewise, current computer-aided require-
ments tools are geared to help the analyst formulate good
requirements, and create specifications. However, designs
often have their requirements change while the design is
being developed, and there is little support for continu-
ally reflecting these changes in the specifications. Conse-
quently, the quality of the design (i.e., how well the design
meets the expectations placed on it) suffers.

Worse, design quality is difficult to assure if the rela-
tionships between the requirements and the design are not
available to enable comparison. Without a record of these
relationships (traditionally referred to as traceability [5]),
aspects of the design that do not meet the stated require-
ments are difficult to identify. Hence our goal is twofold:
(1) to develop a design system where the requirements,
design, and particularly the traceability information can
be maintained, and (2) to use these structures to help
evaluate the quality of the design.

In order to meet the first part of this goal, we develop
a unified semantic graph representation of requirements
and design data, where the links explicitly represent rela-
tions among the requirements and design data. The abil-
ity to model the relational links between requirements and
design data defines a framework for developing further
computer-aided support for concurrent development. We
then demonstrate the usefulness of this effort by develop-
ing a means of testing the design quality by using trace
information to automate functional evaluation testing of
design modules.

1 This work was supported, in part, by the National Science Foun-
dation under Grants MIP-9102721 and IRI-9010588.

32nd ACM/IEEE Design Automation Conference O
Permission to copy without fee all or part of this material is granted, provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright noticeand the title of the publication and its date appear,
and notice is giventhat copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requiresafee
and/or specific permission. [J 1995 ACM 0-89791-756-1/95/0006 $3.50

Steven P. Levitan

1

Panos K. Chrysanthis

Computer Science Department
University of Pittsburgh
panos@cs.pitt.edu

The rest of the paper is organized as follows. Section II
presents background to this work in the area of design
data and process modeling, along with related research in
design and requirements representation. Section III intro-
duces our graph model, which unifies requirements and
design representations. Section IV describes a method
for automated functional evaluation. Section V illustrates
the details of how we generate functionality tests for the
roundoff design of a floating-point Arithmetic and Logic
Unit (FP ALU). This section discusses the testset results
for the roundoff example. Section VI concludes the paper
with a summary.

II. BACKGROUND

The general flow of the design process can be broadly
modeled by: requirements formulation + synthesis + anal-
ysis + evaluation. When one includes various forms of pro-
cess feedback, this is a reasonable process model of what
designers typically do. This model (with many variations)
is common to most cognitive and management models of
the design process. Our observation is that this model
(implicitly or exphc1tly) underlies almost all current soft-
ware and requirements engineering environments, CAD
frameworks and automated design systems.

While cognitive and management models certainly have
their uses, our focus is on the organization, structure and
use of the design information, and not on how a particu-
lar set of designers (design agents) manage or order their
activities for producing that information. A related view
of design process is to model design as a search process.
While search-based models can do an effective job of mod-
eling how design problems are solved, they do not address
the interactions between developing what the design prob-
lem is, and finding the solution to that problem. Our
work gears towards a design process model, such as the
Design As Exploration (DAE) model [15], that addresses
the information interaction between the development of
and solution to the design problem.

The DAE model defines two fundamental forms of de-
sign data: the architectural design (AD) data used to con-
struct a finished device and requirements definition (RD)
data which represent the requirements model for the de-
sign problem. In the model, the RD and the AD are de-
veloped simultaneously, in a process termed design explo-
ration. The DAE model incorporates two forms of knowl-
edge feedback: design learning and evaluation. We uti-
lize the DAE model because it clearly provides for the
support of, and the interaction between the requirements
definition and the architectural design. The DAE model
is also useful because it explicitly supports evaluation of
the architectural design with respect to the requirements
definition. We enhance the DAE model by providing a
richer, unified design data model including links between

http://crossmark.crossref.org/dialog/?doi=10.1145%2F217474.217510&domain=pdf&date_stamp=1995-01-01

and among the RD and AD data entities.

Recently, a more formal model of the electronic design
process has been proposed in [8] which provides an ex-
cellent model of sub-problem interaction for the solution
of particular design problems. This model parallels the
DAE work in that it views the design process as having
two fundamental information components: knowledge and
data, and provides for the separation and linking of de-
sign object desired behavior (RD data) and realization
(AD data). However, the model uses a cognitive model
that views design as a search process, and thus does not
address the issues involved with simultaneously develop-
ing the requirements for and the solution to the design
problem being solved.

Design and Requirements Data Representation

Following the DAE model, our enhanced model takes
the view that there are two broad classes of design in-
formation: RD data and AD data. This view runs con-
trary to orthodor requirements engineering, where differ-
ent forms of specifications are often considered separately
from the requirements definition. Our heretical [12] view
is that specifications are combinations of design and re-
quirements data that serve specific (e.g., contractual or
descriptive) purposes, and that the critical areas of data
representation and relation are those of the various forms
of requirements and design data.

Since design representation work tends to be domain-
specific, the AD data representation work for computer
hardware has mostly been in the area of VLSI CAD data-
bases. Recent research has focused on the efficient repre-
sentation and retrieval of design information, particularly
version and equivalence maintenance. For example, in the
Version Data Model [9], the equivalence, configuration and
version relationships are explicitly considered as represen-
tational dimensions of design information (see Figure 1a).
Configuration relationships support the design hierarchy,
equivalence relationships describe how one design descrip-
tion is similar to another design description for the same
design object, and version relationships describe how one
variant of a design entity is related to another variant of
the same entity.

Configurations Configurations

1
1
1
Vv
Versions
(b) Requirements Data
Model (RD)

1
1
1
Versions V
Fig. 1. (a) Version Data
Model (AD)

Viewpoints

The Version Data Model is interesting in that it rep-
resents a common terminology and collection of mecha-
nisms for representing engineering design data. However,
like most of the CAD database work, this model fails to
address the need to provide for and maintain the relation-
ships between requirements and design data.

Most requirements representation work has focused on
the development of requirements frameworks, e.g., [4].
Comparing the design data model and these frameworks,

Equivalences

we identify a similar set of relationships that exists for re-
quirements data. Our requirements data model 1s shown
in Figure 1b. Similar to the Version Data Model, require-
ments entities include the three types of relationships that
design entities have: configuration (is-part-of), equiva-
lence (same-as) and version (derived-from). In addition,
our requirements model supports viewpoint (related-to)
relationships, which are used to distinguish different stake-
holder’s views on the requirements for aspects of the sys-
tem being developed. This data model allows require-
ments information to be stored using different description
types, such as entity-relationship [4] or line-item [1], and
allows representations for the connections among the RD
entities.

III. A UNIFIED REPRESENTATION FOR REQUIREMENTS
AND DESIGN

The semantic graph data model introduced by our work
is unique in that it identifies the classes of relationships
that need to be maintained between the requirements and
design data. In each part of the model, we use links to
represent a relationship and maintain the necessary infor-
mation about the relationship, a feature we rely on heavily
for test generation. This is a unified approach to design
representation, because all of the information and the re-
lationships between different abstraction levels are main-
tained in the same database [10].

A. Design Representation

An example of AD captured in our unified data model
is shown in Figure 2. Here we introduce a part of the
Floating-Point Arithmetic and Logic Unit (FP ALU) for
a DLX 32-bit RISC Microprocessor [6]. The design is
based on the requirements for FP functionality as con-
tained in the ANSI/ IEEFE Standard for Binary Floaling-
Point Arithmetic [2], and those which can be derived from
standard understandings of computer arithmetic [11]. We
discuss aspects of the FP ALU example in more detail in

Sections IV and V.
Architectural Design

Entities
FP* FP+ FP+
S FPdi v. vhdl
Magic Entity
VHDL Entities Y e
FPdi v. r@_/
FP\
FPdi v. spi ce
/, o Spice Netlist Entity
/
L TR—

— Equivalence Link
.~~~ Configuration Link

= —— VerdonLink

Fig. 2. Different views of the DLX floating-point ALU design

This figure shows a part of the VHDL view of the FP
ALU. Shown are configuration links that trace the hierar-

chy of the VHDL entities, as well as several version links
from the Add-to-infinite-precision entity, with the non-
current versions linked to the current version. While the
versions of this entity are all shown linked to the current
entity, they could also be arranged in a tree-like fashion.
Figure 2 also contains three equivalent representations for
the FP+ entity: one in VHDL, Magic, and Spice. Each
of these entities are connected by equivalence links, indi-
cating that the representations for the entity are circuit-
equivalent. For the FP+ AD entity, we show a Spice
netlist derived from a Magic layout which in turn has been
derived from the VHDL architecture/entity pair.

B. Requirements Representation

Figure 3 shows an example of RD in our unified data
model, representing some line-item requirements and their
equivalent simulateable representations. Shown are frag-
ments of the requirements for floating-point number for-
mats required for the FP ALU employed in the DLX.
The ANSI/ IEEE FP Standard, the required FP num-
ber Formats, as well as the particular Sets of Values, are
depicted at the top right-hand corner of the figure. Each
of the number formats take on particular Sets of Values;
for which Precision, Maxr and Min Ezponent values, etc.,

are defined.

Requirements Definition
Q Requirement

Entities
@ Executable (RSL) Specification ’

LT Y
-

Sets of Values

2z 'Configuraion Relation 2 e
\\/ Equivaence Relation

Format Width=32

DATA: SP_EXPONENT_OFFSET.
LOCALITY: GLOBAL.
TYPE: INTEGER.
INITIAL_VALUE: 127.

DATA: UNPACKED_SIGN_A.
@ LOCALITY: LOCAL
— TYPE: BOOLEAN.
Z

|

LOCALITY: GLOBAL.
TYPE: INTEGER.

DATA: UNPACKED_SP_SIGNIFICAND_LENGTH.
INITIAL_VALUE: 24,

DATA: UNPACKED_EXPONENT_A,
LOCALITY: LOCAL,
TYPE: INTEGER.

FILE: UNPACKED_SP_SIGNIFICAND_A
LOCALITY: LOCAL.

CONTAINS:
DATA: UNPACKED_BIT_VALUE

DATA: UNPACKED_SP_SIGNIFICAND_BIT_POSITION,

ORDERED_BY:
DATA: UNPACKED_SP_SIGNIFICAND_BIT_POSITION,

Fig. 3. Example of a requirements hierarchy showing configuration
and equivalence relations

Also shown are the Basic Formats requirements which
are comprised of configuration links to field definitions
and a set of equivalence relations to RSL constructs.
The equivalence relations link simulateable specifica-
tion statements to particular requirements, e.g., DATA:
SP_EXPONENT OFFSET, is associated with the Fxponent
Bias=127 requirement. Figure 3 shows one viewpoint,
and no no versions are shown.

We are particularly interested in simulateable require-
ments in order to be effective in generating functional eval-
uation tests. Different simulateable requirement modeling
languages have been proposed [16], and the simulateable
requirements modeling language we have integrated into
our system is the Requirements Specification Language
(RSL) [1]. RSL’s availability, its ability to support in-

line requirements as well as simulation semantics makes
it a useful example of the type of requirements modeling
languages that our unified data model can support.

RSL has its limitations in that orthodox system-
specification languages like RSL can lead to low flexibility
in the design as the inherent over-specification obstructs
change [12]. However, RSL has reasonable simulation se-
mantics which we employ to demonstrate the value of be-
ing able to incrementally test the implementation of a de-
veloping design against the requirements model.

C. Linking the Requirements and the Design

A key aspect to being able to use any simulateable re-
quirements model effectively is the ability to focus the
simulation on the appropriate part of the requirements
model. Here the relational links within and between the
RD and AD data classes serve a key role by providing the
means for identifying the subset of requirements applica-
ble to the design module under consideration. When prop-
erly constructed, these relational links are termed trace-
ability links because they provide a thread of origin from
the implementation to the requirements [5], and serve as
a validation that the design does indeed do what it was
intended to do.

We identify and support four categories of traceability
links, and identify their roles in tracing through the RD
and AD data. Two of these categories represent intra-
dependencies, that is, dependencies within the RD and
AD data classes. Similarly, two categories represent inter-
dependencies, that is, the dependencies between the de-
sign data classes. For example, [RD—AD] denotes the
link types that indicate how some AD data is dependent
upon some RD data.

Rational Dependency [RD—AD]: purpose of design ob-
ject is tied to a particular (non-null) set of re-
quirements; normally called forward traceability
links [14].

Technical Dependency [AD— AD]: dependence of one de-
sign object on another to perform/meet its require-
ments. This link relates to the design entities’ com-
bined ability to do the right thing - and typically en-
compasses the interface/connections internal to the
design. These links also include the configuration
relations among the design entities.

Contextual Dependency [RD— RD]: purpose of require-
ment object is tied to other requirements objects,
and includes the configuration relations among RD
data. Can include requirements that are derived (or
implicitly stated) in the environment, such as where
optative descriptions imply (or rely upon) assertive
descriptions within the requirements model [7].

Implicative Dependency [AD— RD]: design entity implies
other requirements/constraints on the design. A
typical example would be where design decisions af-
fect/influence the requirements definitions. Similar
to contextual dependencies, these form one class of
links normally called reverse traceability links [14].

Figure 4 illustrates these four types of links. Sev-
eral rational dependencies are shown, e.g., the link from
the FP+_Completion RD entity to the FP+ AD entity.
This link identifies how for the FP+ design to succeed,
it must address the FP+_Completion requirement. Tech-
nical dependencies are shown linking the SP_Format and

'SP Required’)™ """

Format Parameters

Requirements Definition
Entities

—= Rational Dependency

- - —= Contextual Dependency
- - = Technical Dependency

—= |mplicative Dependency

Architectural Design
Entities

TTea
' Support SP and DP only’
)/} L - ’
Supported Operations *

- e h N \\
Supported DP Operations v ‘: :'
FP+ Implemented in Hardware /’

! ,’/
s Supported SP Operations v S
OPFPE '
Link Classifications: N FP+ Completesin 2x40ns

Unpack >

Pre-normalization =
Y
—_Add-to-inifinite-precision =
V

Post-normalization —

— Rond

Post Result -

— PostResult

Fig. 4. Linked requirements and design entities

DP_Format AD entities to the Unpack AD entity, indicat-
ing that the operation of Unpack depends upon the imple-
mentation details of the two format entities. Contextual
dependencies are shown linking the Arithmetic RD en-
tity to the Supported_Operations and FP+_Speed RD enti-
ties. This contextual link captures the notion that details
of the arithmetic requirements are addressed by the Sup-
ported_Operations and FP+_Speed RD entities. Finally, an
implicative dependency is shown linking the DP_Format
AD entity and the Support_SP_and_DP_only RD entity.
This is an implicative dependency because the DP_Format
is a design decision, and is not explicitly required for the
DLX. While rooted in the requirements definition for the
DLX, the DP_Formatinfluences the requirements that re-
late to the support required for all FP number formats.

To summarize, our semantic graph model is unique in
that 1t identifies the classes of relationships that need to
be maintained within and between the requirements and
design data. In each part of the model, we use links to
both represent a relationship and maintain the necessary
information about the relationship. One key benefit of
the model is highlighted in the next section, where we
illustrate the ability to automatically generate black-box
functional evaluation tests.

IV. AUTOMATED FUNCTIONAL EVALUATION

Functional evaluation testing answers the question,
“does this part of the design function correctly?” We
approximate ‘correct’ behavior by simulating the require-
ments associated with the design entity in question. Since
we focus on evaluating a piece of the design with respect
to an identified set of requirements and not with its inter-
nal workings, black-box testing techniques [13] are most
appropriate.

We implement black-box functional evaluation testing
by employing boundary-value analysis and equivalence
partitioning techniques [13]. While this is not the only
test-case design strategy available, it shows promise of be-
ing able to uncover most errors at a reasonable cost, where

cost is the number of tests run per error discovered. In
general, this type of black-box testing involves the gener-
ation of a black-box testset, the generation of correct re-
sults, the generation of the implemented system’s results,
and a comparison of these two results.

This form of test-generation presupposes the existence
of a simulateable requirements representation, a simulate-
able design representation and input classes that map
equivalently to both the requirements and the design sim-
ulations. In our case, the first step is to generate a sim-
ulateable requirements specification (SRS) for the design
entity under consideration. As the design is not neces-
sarily directly traceable to the simulateable requirements,
Figure 5 shows the three substeps involved: Tracing to the
set of related requirements (1a), tracing to the subset of
simulateable (RSL) requirements (1b), and constructing
the SRS (1c).

The VHDL design entities are directly simulateable, so
the second step is to create an I/O Specification based on
the names that will be used in each of the requirements
and design simulations (2). We use the semantic link in-
formation for insuring that the I/0O specification includes
the AD names (or fields) that relate to the RD names that
will be used in the testset. This is a key factor for ensur-
ing that the test results generated from each simulation
are directly comparable.

Effective black-box testing depends on tailoring the
testset to the design entity under test. We use informa-
tion from the (design) I/0 specification and the SRS to
generate a testset (3) tailored to the design entity. This
involves identifying the input classes from the SRS and
I/0 specification and selecting appropriate boundary val-
ues for each input class, thus the class names map from
the SRS (RD), and parallel the design (AD) names. In-
put classes consist of input ranges, determined by the data
type used in the design.

Simple heuristics are applied to the input ranges of each
class to determine what values to test for, e.g., for bit
strings the min, min+1, mid, max-1 and max values are
tried. These combinations are then checked for their con-

> SPFormat
O E =

> SPFormat

= >

Related RSL Statements

Reguirement Definitions

A
,
.
,

,
,
,

- s

7.

,

,

Architectural Design

= Smlateable /
ndOfundoff

Testset

A £ Specification /@

Z)

1102

< Roundoff 1/0

: Specification >,

®

Correct
Results

i
2 \ = |
/= e

Fig. 5. Black-box functional evaluation for FP ALU roundoff

trol content and for redundancies in order to keep the
generated testset from growing unnecessarily large. Other
heuristics could be applied as well.

The next step is to apply the testset to the SRS to gen-
erate the correct results (4). Since we provide for a data
model that supports many forms of design and require-
ment representations, applying a testset to a particular
representation involves selecting/generating a simulator
for the representation and mapping the testset values to
the inputs to the simulation. For example, RSL requires
a custom simulator for each SRS, whereas VHDL might
have two types of simulators (behavioral and structural)
depending on the design.

The fifth step is to apply the testset to the implemented
design to generate the simulation results (5). Figure 6
shows the evolution from a VHDL design representation
to a completed simulation.

In the FP ALU roundoff example, the design represen-
tation type 1s matched with the rules for simulating the
representation. In this case there are two means of gener-
ating VHDL simulators: one for process (behavioral), and
one for non-process VHDL entities. Once the simulation is
set up, the testset, formatted for the particular simulator
(testset.vsim_in) is given as the input to the simulation,
and the results are collected for comparison to the ‘correct’
roundoff SRS simulation results.

The last step of the process is to compare the simula-
tion results to the correct results (6). The presentation
and comparison of the test results is important, as all dis-
crepancies need to be highlighted, and the individual test
setups made available to the designer. We do not address
the interface issues, as our emphasis is on generating the
information rather than presentation.

Entity: Round
Type: VHDL

entity round is
port(Mode: IN bit_vector(1 downto 0);
SPost Norm I N bit;
EPostNorm I N bit
MPostNorm I N bi
StickyPN: IN bi
Result: QUT b
clk: IN bi

testset.vsimin

VHDL Sinul ation Rules
if rocess bl ocks) then

Use .
Sinul ator Type ::=vsSim
Conpil ation ::= make_vsi

Simulator ::=${entity} _Vsi
::=round_vsim i
ol se - \ %round_vm m

use X
Sinul ator Type ::=vsim

end round;

architecture proc of ro
signal Rbit;
signal L: bit;
signal Carry: bit;

signal Inexact: bit
begin

R <= MPost Nor m(0) ; Conpi | ation ::= vconp
L <= MPost Norn(1); Simulator ::=vsim
process endif;
variabl e tempM bit_vector (24 dowito 0),
variabl e tenpE: bit_vector(8 downto 0);
vari abl e i: bit_vector(4 downto 0);
begi n testset.results
wait until (CLK falling ='1');

case Mode(1 downto 0) is
when B'00" => -- Round To Nearest Even

Fig. 6. Simulation of implemented roundoff design

V. RoUNDOFF EXAMPLE

Consider one small but important aspect of the design
of the FP ALU in the DLX, the implementation of round-
off. Our goal is to evaluate the function of this isolated
part of the design, and compare it to its requirements. To
this end, we generate a roundoff SRS and I/O specifica-
tion from the linked RD data, and use this information to
generate a testset - yielding six input classes.

The input class names for the roundoff testset come
from the linked requirements entities: mode, sign, expo-
nent, round, fraction, and sticky. The data types used
to define the ranges for the black-box input classes come
from the the corresponding I/O specification variables:
Mode(1 downto 0), SPostNorm, EPostNorm(7 downto 0),

MPostNorm(0), MPostNorm(23 downto 1) and StickyPN
respectively. Before testset reduction, these six input
classes would each have five potential values: Min, Min+1,
Mid, Max-1, and Max. For example, the VHDL designer
represented the post-normalized exponent field (EPost-
Norm) as an eight-bit value, which would be mapped
to the five values: 00000000, 00000001, 01111111,
11111110, and 11111111,

Without testset reduction, this technique would yield
56 = 15625 test cases. However, using the RD link in-
formation, we can determine that mode is a control vari-
able, and 1s associated with the four required FP rounding
modes; sign is a single bit having exactly two values, ezpo-
nent is a string of bits which can take on the five specified
test values, round has exactly two values, fraction takes
on five values, and sticky has exactly two values yielding
a testset containing 4 X 2 x 5 x 2 x b x 2 = 800 cases.

These input classes and their corresponding values and
ranges are shown in Table I which summarizes the reduced
testset for round. The values depicted were used to gener-
ate a set of equivalent SRS and design simulation inputs,
which in turn were used to calculate the roundoff require-
ments simulation (correct) and design simulation results.

Class name Values Notes

[design name] Count

Mode 00, 01, 10, 11 4 Enumerate

[Mode] controls

Sign 0,1 2 Reduces to

[SPostNorm] Min/Max

Exponent 00000000, 00000001, Min, Min + 1

[EPostNorm] 01111111, 5 Mid
11111110,11111111 Max - 1, Max

Round 0,1 2

[MPostNorm(0)]

Fraction 11111111111111111111111, Max

[MPostNorm ~ 11111111111111111111110, Max - 1

(23..1)] 01111111111111111111111, 5 Mid

00000000000000000000001, Min + 1
00000000000000000000000 Min

Sticky 0,1 2

[StickyPN]

TABLE 1
REDUCED INPUT TEST CLASSES AND VALUES FOR FP ROUNDOFF

Figure 7 presents parts of the test results for the VHDL
design entity round, specifically a piece of the tests that
correspond to the required rounding mode RTNE (Round
To Nearest Even). The design simulation output variable
is round, and the correct results are shown in the correct
round = . output line.

|

| Case 18 RTHNE min min max min max
| correct round = 00000000011111111111111111111111
| round 00000000011111111111111111111111
|

time = 36000 3600.0ns
| Case 19 RTHE min min max max min
| correct round = 00000000100000000000000000000000
| round = 00001100100000000000000000000000
| time = 38000 = 3800.0ns

Fig. 7. Summary black-box test results for FP ALU roundoff
showing two detected errors

The summary results for case 19 of Figure 7 show dis-

crepancies between the correct results (correct round =

.) and the implemented results (round = ...). As it
turns out, this error was caused by some extraneous code
in the behavioral design for roundoff, which was deter-
mined to be the cause of five other errors detected in 800
tests (test cases 20, 59, 60, 159, and 160). Once the ex-
traneous code was removed, subsequent use of the testset
discovered no more errors.

VI. SUMMARY

In this paper, we have presented an information process
model for design, and used this model as a basis for a uni-
fied semantic graph data model for representing linked re-
quirements and design data. Based on this data model, we
presented a methodology for automating functional evalu-
ation testing using black-box testing techniques. We also
presented the details of an example showing the gener-
ation of black-box functional tests for the roundoff of a
floating-point adder. Our unified database is being devel-
oped using ODF [3], and its O++ language, which is a
persistent superset of C++4.

REFERENCES

[1] Alford, M. Software requirements engineering methodology
(SREM) at the age of eleven: Requirements driven design. Mod-
ern Software Engineering: Foundations and Current Perspec-
twes, ch. 11, pp. 351-377. Van Nostrand Reinhold, 1990.

[2] American National Standards Institute and the IEEE Stan-
dards Board, New York, NY. [IEEFE Standard for Binary
Floating-Point Arithmetic, 1985. ANSI/TEEE Std 754-1985.

[3] Dar, S., Gehani, N., and Jagadish, H. ODE object database
and environment. AT&T Bell Laboratories, CTR Lab, 1991.

[4] Finkelstein, A., Kramer, J., Nuseibeh, B., Finkelstein, L., and
Goedicke, M. Viewpoints: A framework for integrating multiple
perspectives in system development. Int. J. of Software Engi-
neering and Knowledge Engineering, 2(1):31-58, Mar. 1992.

[5] Gotel, O. and Finkelstein, A. Modeling the contribution struc-
ture underlying requirements. Proc. of the 1st Int. Conf. on
Requirements Engineering (ICRE), pp. 94-101, Apr. 1994.

[6] Hennessey, J. L. and Patterson, D. A. Computer Architecture
e Quantitatitve Approach. Morgan Kaufmann, 1990.

[7] Jackson, M. and Zave, P. Domain descriptions. Proc. of the
IEEE Int. Symp. on Requirements Engineering, pp. 56—64, Jan.
1993.

[8] Jacome, M. and Director, S. A formal basis for design process
planning and management. IEEE/ACM Int. Conf. on CAD-
94, pp. 516-521, Nov. 1994.

[9] Katz, R. H. Toward a unified framework for version modeling
in engineering databases. ACM Computing Surveys, 22(4):375—
408, Dec. 1990.

[10] Kollaritsch, P., Lusky, S., Matzke, D., Smith, D., and Stanford,
P. A unified design representation can work. 26th ACM/IEEE
Design Automation Conf., pp. 811-813, June 1989.

[11] Koren, I. Computer Arithmetic Algorithms. Prentice Hall,
1993.

[12] McDermid, J. A. Requirements Engineering - Social and Tech-
nical Issues, ch. Requirements analysis: Orthodoxy, fundamen-
talism and heresy, pp. 17-40. Academic Press, 1994.

[13] Myers, G. J. The Art of Software Testing. J. Wiley & Sons,
1979.

[14] Ramesh, B. and Edwards, M. Issues in the development of a
requirements traceability model. Proc. of the IEEE Int. Symp.
on Requirements Engineering, pp. 256-259, Jan. 1993.

[15] Smithers, T. Design as exploration: Puzzle-making and puzzle-
solving. Workshop on Search-Based and Exploration-Based
Models of Design Process, pp. 1-21, June 1992.

[16] Webster, D. E. Mapping the design information representation
terrain. IEEE Computer, 21(12):8-23, Dec. 1988.

	DAC95
	Front Matter
	Table of Contents
	Session Index
	Author Index

