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1. INTRODUCTION

Although powerful, the transaction model adopted in traditional database
systems lacks functionality and performance when used for applications that
involve reactive (endless), open-ended (long-lived), and collaborative (interac-
tive) activities. Hence, various extensions to the traditional model have been
proposed, referred to herein as extended transactions. To facilitate the formal
description of transaction properties in an extended transaction model, we
have developed ACTA,! a comprehensive transaction framework. Specifically,
using ACTA, one can specify and reason about the nature of interactions
between extended transactions in a particular model. ACTA characterizes the
semantics of interactions (1) in terms of different types of dependencies
between transactions (e.g., commit dependency and abort dependency) and
(2) in terms of transactions’ effects on objects (their state and concurrency
status, i.e., synchronization state). Through the former, one can specify
relationships between significant (transaction management) events, such as
begin, commit, abort, split, and join, pertaining to different transactions.
Also, conditions under which such events can occur can be specified precisely.
Transactions’ effects on object’s state and status are specified by associating a
view and a conflict set with each transaction and by stating how these are
affected when significant events occur. A view of a transaction specifies the
state of objects visible to that transaction while the transaction’s conflict
set contains those operations with respect to which conflicts need to be
considered.

In Chrysanthis [1991] and Chrysanthis and Ramamritham [1991b], we
introduced the formalism underlying ACTA and demonstrated its expressive
power by using it to define extended-transaction models in an axiomatic form,
specify correctness properties of the models, and prove that a particular
model satisfies the specified properties. This article presents ACTA as a tool
for the synthesis of extended transaction models, one that supports the
development and analysis of new extended-transaction models in a system-
atic manner.

New transaction definitions can be derived either by tailoring existing
transaction models or by starting from first principles. As examples of the
former we develop Chain transactions (Section 3.1.2), Reporting transactions
(Section 3.1.3), and Cotransactions (Section 3.1.4) by modifying the specifica-
tion of joint transactions [Pu et al. 1988], and derive the Nested-Split-trans-
action model (Section 3.2) by combining the specifications of nested- and
split-transaction models [Moss 1981; Pu et al. 1988]. As an example of the
latter, we synthesize in Section 3.3 an open-nested-transaction model from
the high-level requirements on transactions adhering to the model.

We chose the name ACTA, meaning actions in Latin, given the framework’s appropriateness
for expressing the properties of actions used to compose a computation.
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2. THE ACTA FORMAL FRAMEWORK

ACTA is a first-order logic-based formalism. It has five simple building
blocks: history, dependencies between transactions, the view of a transaction,
the conflict set of a transaction, and delegation.

This section provides a concise, yet complete, introduction to ACTA and its
formal underpinnings. Section 2.1 provides some of the preliminary concepts
underlying the ACTA formalism whereas Section 2.2 focuses on the concept of
history, which is central to the formalism. ACTA allows the specification of
the effects of transactions on other transactions and their effect on objects by
means of constraints on histories. Intertransaction dependencies, discussed
in Section 2.3, form the basis for the former while visibility of and conflicts
between operations on objects, discussed in Section 2.4, form the basis for the
latter. We will use examples from various extended transaction models to
illustrate the concepts.

2.1 Preliminaries

2.1.1 Object Events. A database is the entity that contains all the shared
objects in a system. A transaction accesses and manipulates the objects in the
database by invoking operations specific to individual objects. The state of an
object is represented by its contents. Each object has a type, which defines a
set of operations that provide the only means to create, change, and examine
the state of an object of that type. It is assumed that operations are atomic
and that an operation always produces an output (return value), that is, it
has an outcome {(condition code) or a result. The result of an operation on an
object depends on the state of the object. For a given state s of an object, we
use return(s, p) to denote the output produced by operation p, and state(s,
p) to denote the state produced after the execution of p.

Definition 2.1.1.1. Invocation of an operation of an object is termed an
object event. The type of an object defines the operations and thus, the object
events that pertain to it. We use p,[0b] to denote the object event correspond-
ing to the invocation of the operation p on object 0b by transaction ¢ and OFE,
to denote the set of object events that can be invoked® by transaction ¢ (i.e.,
p,lob] € OE,).

The effects of an operation p invoked by a transaction ¢ on an object 0b are
not made permanent at the time of the execution of the operation. They need
to be explicitly commitied or aborted.

—The effects of an operation p invoked by a transaction ¢ on an object ob
are made permanent in the database when p,[ob] is committed. The
corresponding event is denoted by Commit[ p,[ob]].

—The effects of an operation p invoked by a transaction # on an object ob
are obliterated when the p[ob] is aborted. The corresponding event is

2 : .. .
We will use “invoke event” to mean “cause an event to occur.” One of the meanings of the word
“invoke” 1s “to bring about.”
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Effects
on Transactions on Objects
Intertransaction View of Conflict Set Delecation
Dependency Transaction  of Transaction 8

Fig. 1. Dimensions of the ACTA framework.

denoted by Abort[ p,[ob]]. Thus, once an operation is aborted, the state of
the object will be as though the aborted operation never executed.

Depending on the semantics of the operations and on the object’s recov-
ery properties, aborting an operation may force the abortion of other
operations as well. For instance, in the case of atomic objects assumed by
most transaction models, all operations that have observed the effects of an
aborted operation are also aborted. For example, if the return values of
subsequently executed operations reflect the state of the object produced by
the aborted operation, these operations would also be aborted in the case of
atomic objects (see Section 2.5.1). Nonatomic objects, on the other hand,
permit weaker consistency and recovery semantics such that operations
that observed the effects of aborted operations may not be affected.

Commit and Abort operations are defined on every object for every opera-
tion. Invoked operations that have neither committed nor aborted are termed
in-progress operations. Typically, an operation is committed only if the invok-
ing transaction commits, and it is aborted only if the invoking transaction
aborts. However, it is conceivable that an extended transaction may commit
only a subset of its operations on an object while aborting the rest. Further-
more, through delegation (see Section 2.4), a transaction other than the
event-invoker, i.e., the transaction that invoked an operation, can be granted
the responsibility to commit or abort the operation.

2.1.2 Significant Events. In addition to the invocation of operations on
objects, transactions invoke transaction management primitives. For exam-
ple, atomic transactions are associated with three transaction management
primitives: Begin, Commit, and Abort. The specific primitives and their se-
mantics depend on the specifics of a transaction model. For instance, whereas
the Commit by an atomic transaction implies that it is terminating success-
fully and that all of its effects on the objects should be made permanent in
the database, the Commit of a subtransaction of a nested transaction implies
that all of its effects on the objects should be made persistent and visible with
respect to its parent and sibling subtransactions.? Other transaction manage-

3As shown in Section 2.4, in ACTA, the ability of a nested subtransaction to make its effect
visible to its parent is specified by means of the notion of delegation.
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ment primitives include Spawn, found in the nested-transaction model, and
Split and Join, found in the split-transaction model [Pu et al. 1988].

Definition 2.1.2.1. Invocation of a transaction management primitive is
termed a significant event. A transaction model defines the significant events
that can be invoked by transactions adhering to that model. SE, denotes the
set of significant events relevant to transaction ¢.

ACTA provides the means by which significant events and their semantics
can be specified. It is useful to distinguish, given the set of significant events
associated with a transaction ¢, between events that are relevant to the
initiation of ¢ and those that are relevant to the termination of ¢.

Definition 2.1.2.2. Initiation events, denoted by IE,, are a set of significant
events that can be invoked to initiate the execution of transaction ¢: IE, C SE,.

Definition 2.1.2.3. Termination events, denoted by TE,, are a set of signifi-

cant events that can be invoked to terminate the execution of transaction ¢:
TE, ¢ SE,.

For example, in the split-transaction model, Begin and Split are transaction
initiation events whereas Commit, Abort, and Join are transaction termina-
tion events.

A transaction is in progress if it has been initiated by some initiation event
and has not yet executed one of the termination events associated with it. A
transaction terminates when it executes a termination event.

2.2 Histories and Conditions on Event Occurrences

Fundamental to ACTA is the notion of Zistory [Bernstein et al. 1987] which
represents the concurrent execution of a set of transactions 7. ACTA captures
both the effects of transactions on other transactions and their effects on
objects through constraints on histories. Transaction models are defined in
terms of a set of axioms which are invariant assertions about the histories
generated by the transactions adhering to the particular model. Axioms can
also be explicit preconditions or postconditions for operations and transac-
tion management primitives. Consequently, the correctness properties of
different transaction models can be expressed in terms of the properties of
the histories produced by these models.

Definition 2.2.1. A history H of the concurrent execution of a set of
transactions 7T contains all the events, significant events, and object events
invoked by the transactions in 7' and indicates the (partial) order in which
these events occur.

Definition 2.2.2. The predicate € — €’ is true if event e precedes event €’
in history H. It is false, otherwise. (Thus, € — €' implies that e € H and
e e H)

H denotes the complete history. When a transaction invokes an event, that
event is appended to the current history, denoted by H,,. The projection of a
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history H according to a given criterion is a subhistory that satisfies the
criterion. For instance, the projection of a history with respect to committed
transactions, denoted by H,,,,,,, includes only those events invoked by com-
mitted transactions. The partial order of the operations in a history pertain-
ing to T is consistent with the partial order — of the events associated with
each transaction ¢ in 7.

In general, we use ¢, to denote the invocation of an event ¢, significant or
object, by transaction ¢#. We will omit the event-invoker when it is not
important to specify the transaction which causes the event to occur in a
history (e € H = Jt e, € H).

The occurrence of an event in a history can be affected in one of three ways:
(1) an event € can be constrained to occur only after another event €’; (2) an
evenl e can occur only if a condition c is true; and (3) a condition ¢ can
require the occurrence of an event e.

Definition 2.2.3. (e € H) = Conditiony, where = denotes implication,
specifies that the event e can belong to history H only if Conditiony is
satisfied. In other words, Condition; is necessary for € to be in H. Condi-
tiony is a predicate involving the events in H.

Consider (¢’ € H) = (e — €'). This states that the event ¢’ can belong to the
history H only if event € occurs before €.

Definition 2.2.4. Conditiony; = (e € H) specifies that if Conditiony holds,
€ should be in the history H. In other words, Condition is sufficient for € to
be in H.

Consider (e — €¢') = (« € H). This states that if event € occurs before €’
then event a belongs to the history.

2.3 Effects of Transactions on Other Transactions

Dependencies provide a convenient way to specify and reason about the
behavior of concurrent transactions and can be precisely expressed in terms
of the significant events associated with the transactions. Basically, depen-
dencies are constraints on the histories produced by the concurrent execution
of interdependent transactions. In the rest of this section, after formally
specifying different types of dependencies, we identify the source of these
dependencies.

2.3.1 Types of Dependencies. Let ¢; and ¢, be two extended transactions
and H be a finite history which containg all the events pertaining to ¢, and
t,.

Commit Dependency (t; #< t,). If both transactions ¢, and ¢, commit then
the commitment of ¢, precedes the commitment of 7 ; i.e.,

Commit, € H = (Commit,i € H = (Commit, — Committj)).
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Abort Dependency (t,. &7 t,). If t, aborts then ¢, aborts; i.e.,
Abort, € H = Abort, < H.

Weak-Abort Dependency (¢, 77 t ). If t, aborts and ¢, has not yet commit-
ted, then ¢, aborts. In other words, if ¢, commits and ¢, aborts then the
commitment of ¢, precedes the abortion of ¢, in a history; i.e.,

Abort, € H = (ﬁ(Committj — Abort, ) = (Abort, H))

We would like to note that this list of dependencies involving the Commit and
Abort events is not exhaustive. Other dependencies that involve significant
events besides these events can be defined. As new significant events are
associated with extended transactions, new dependencies may be specified in
a similar manner (e.g., see Chrysanthis [1991]). In this sense, ACTA is an
open-ended framework.

Besides the logical representation introduced above, intertransaction de-
pendencies can be expressed in a pictorial form as graphs whose vertices
represent transactions and arcs of different shapes represent different depen-
dencies. We refer to such graphs as dependency graphs. Figure 2 shows the
pictorial representation of the dependencies defined above and in Section 3.2.
In general, dependency graphs can be more illustrative than the correspond-
ing sets of axioms in expressing the structure of extended transactions, such
as the explicit nesting structure of nested transactions. (As discussed in the
next section, one source of dependencies is the structure of extended transac-
tions.) Through dependency graphs, it is possible to capture both the static
structure as well as the dynamics of the evolution of the structure of
transactions. The structure of transactions evolves as significant events
inducing intertransaction dependencies occur.

2.3.2 Source of Dependencies. Dependencies between transactions may be
a direct result of the structural properties of transactions, or may develop
indirectly as a result of interactions of transactions over shared objects. These
are elaborated below.

Dependencies due to Structure. The structure of an extended transaction
defines its component transactions and the relationships between them.
Dependencies can express these relationships and thus can specify the links
in the structure. For example, in hierarchically structured nested transac-
tions, the parent/child relationship is established at the time the child is
spawned. This is expressed by a child transaction ¢, establishing a weak-abort
dependency on its parent ¢, (¢,%7°2 t,) and a parent establishing a commit
dependency on its child (¢, ®ot,.).

Spawn, [t ] e H= (t, 7% t,) A (1, t,)

The weak-abort dependency guarantees the abortion of an uncommitted child
if its parent aborts. Note that this does not prevent the child from committing
and making its effects on objects visible to its parent and siblings. (In nested
transactions, when a child transaction commits, its effects are not made
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Fig. 2. Intertransaction dependencies graph.

Fig. 3. Structure of nested transactions.

permanent in the database. They are just made visible to its parent. See
Section 3.2.1 for a precise formal definition of nested transactions.) The
commit dependency ensures that an orphan, i.e., a child transaction whose
parent has terminated, will not commit.

Dependencies due to Behavior. Dependencies formed by the interactions of
transactions over a shared object are determined by the object’s synchroniza-
tion properties. Broadly speaking, we can say that two operations conflict if
the order of their execution matters. For example, in the traditional frame-
work, a compatibility table [Bernstein et al. 1987] of an object 0b expresses
simple relations between conflicting operations. A conflict relation has the
form

(p Lobl > g, lob)) = (¢, 1)

indicating that if transaction ¢, invokes an operation p and later a transac-
tion £, invokes an operation g on the same object ob, then ¢, should develop a
dependency of type & on t,. As we will see in the next section, ACTA allows
conflict relations to be complex expressions involving different types of depen-
dencies, operation arguments, and results, as well as operations on the same

or different objects.

2.4 Obijects and the Effects of Transactions on Objects

Correctness of concurrent transaction executions depends on how transac-
tions affect each other as well as how they affect the objects. This, in turn,
depends on the effects of the significant events associated with a transaction
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and of the operations invoked by a transaction. We studied the former in the
previous subsection. We focus on the latter now.

We begin with a discussion of the effects of operations on transactions and
their interrelationships. The visibility of the effects of one transaction’s
operations to another transaction are then discussed.

2.4.1 Conflicts between Operations and the Induced Dependencies. We
begin with the notion of conflicts between operations on an object and discuss
how it induces dependencies between transactions. We then refine it into
return-value-dependent and return-value-independent conflicts so as to
weaken the induced dependencies. Section 2.5 uses these notions to define
formally the correctness of both transactions and objects.

H“Y the projection of the history H with respect to an object 0b, contains
the history of operation invocations on an object 0b. H°®) = p o p, o op,
indicates both the order of execution of the operations, ( p, precedes p,, ), as
well as the functional composition of operations. Thus, a state s of an object
produced by a sequence of operations equals the state produced by applying
the history H(°?) corresponding to the sequence of operations on the object’s
initial state s, (s = state(s,, H°*)). For brevity, we will use H°®’ to denote
the state of an object produced by H", implicitly assuming initial state s,.

Definition 2.4.1.1. Two operations p and q conflict in a state produced by
HY denoted by conflict(H®, p, q), iff

(state(HY o p, q) + state(H® o q, p)) V
(return(H®, q) + return(H“® o p, q)) v
(return(H®, p) # return(H® o q, p)).

Two operations that do not conflict are compatible.

Thus, two operations conflict if their effects on the state of an object or their
return values are not independent of their execution order.

Given a history H in which p, [ob] and g, [0b] occur, the state of 0ob when
p;, is executed is known from where P, occurs in the history. Hence, from
now on, we drop the first arguments in conﬂzct when it is implicit from the
context.

Interactions between conflicting operations can cause dependencies of dif-
ferent types between the invoking transactions. The type of interactions
induced by conflicting operations depends on whether the effects of opera-
tions on objects are immediate or deferred. An operation has an immediate
effect on an object only if it both changes the state of the object as it executes
and the new state is visible to subsequent operations. Thus, an operation p
operates on the (most recent) state of the object, i.e., the state produced by the
operation immediately preceding p. For example, effects are immediate in
objects which perform in-place updates and employs logs for recovery. Effects
of operations are deferred if operations are not allowed to change the state of
an object as soon as they occur, but instead, the changes are effected only
upon commitment of the operations. In this case, operations performed by a
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transaction are maintained in intentions lists. In the rest of the article, we
will consider the situation when the effects are immediate. The effects of
considering deferred updates are considered in Section 3.4.

As mentioned earlier, in ACTA, the concurrency properties of an object are
formally expressed in terms of conflict relations of the form:

conﬂict(pll[ob], qtj[ob]) A (ptl[ob] — qtj[ob]) = Conditiony,

where Conditiony is typically a dependency relationship involving the trans-
actions #, and ¢, invoking conflicting operations p and g on an object ob. For
instance, commutativity semantics of operations induce abort dependencies
between conflicting operations:

conflict( p, [ ob], qtj[ob]) A (p,lob] - q,l[ob]) = (t,¥Dt,).

Obviously, the absence of a conflict relation between two operations defined
on an object indicates that the operations are compatible and do not induce
any dependency.*

Since state changes are observed only via return values, the return values
of conflicting operations can be considered to produce weaker types of depen-
dencies than abort dependencies. Toward this end, it is useful to distinguish
between return-value-dependent and return-value-independent conflicts.

Definition 2.4.1.2. return-value-independent(H*®, p, q) is true if con-
flict(H°?, p, g) is true and the return value of ¢ is independent of whether
p precedes g, i.e., return(H? o p, q) = return{ H°®, q); return-value-depen-
dent(H©?), p, q) is true if conflict(H®?, p, q) is true and return(H" o p,
q) # return(H"?, q).

Whereas commutativity does not distinguish between return-value-depen-
dent and return-value-independent conflicts, a weaker conflict notion, called
recoverability [Badrinath and Ramamritham 1992] results if we do. Specifi-
cally, the weaker ¢’ relationship is induced between return-value-indepen-
dent conflicting operations rather than .w&:

return-value-independent(p, q) A (pty[ob] - qtj[ob]) = (t,#2t).

The generality of the conflict relations allows ACTA to capture different
types of type-specific concurrency control discussed in the literature
[Badrinath and Ramamritham 1992; Chrysanthis et al. 1991; Herlihy and

4Clearly, when an invoked operation conflicts with an operation in progress, a dependency, e.g.,
an abort or commit dependency, will be formed if the invoked operation is allowed to execute.
That is, this may induce an abortion or a specific commit ordering. One way to avoid this is to
force the invoking transaction to (a) wait until the conflicting operation terminates (this is what
the traditional “no” entry in a compatibility table means) or (b) abort. In either case, conflict
relationships between operations imply that the transaction management system must keep
track of in-progress operations and of dependencies that have been induced by the conflict. A
commonly used synchronization mechanism for keeping track of in-progress operations and
dependencies is based on (logical) locks.
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Weihl 1988; Schwarz and Spector 1984; Weihl 1988], and even to tailor them
for cooperative environments [Fernandez and Zdonik 1989; Skarra 1991].

2.4.2 Controlling Object Visibility

View of a Transaction. As defined earlier, visibility refers to the ability
of one transaction to see the effects of another transaction on objects while
they are executing. ACTA allows finer control over the visibility of ob-
jects by associating two entities, namely, view and conflict set, with every
transaction.

Definition 2.4.2.1. The view of a transaction, denoted by View,, specifies
the objects and the state of objects visible to transaction ¢ at a point in time.

This implies that that view specifies what objects can be operated on by a
transaction. Additionally, view specifies the state of these objects that is
visible to the operations invoked by the transaction.

View, is formally a projection of a history where the projected events
satisfy some criterion, Projection_Condition, typically involving H,,, the
current history. In other words, View, is the subhistory constructed by
eliminating any events in H,, that do not satisfy the given Projection_Condi-
tion while preserving the partial ordering of events in the view. For example,
the view of a subtransaction ¢, in the nested-transaction model is defined to
be the current history, i.e., View, = H_,. This states that (the effects of) all
the events that have occurred thus far are visible to t., meaning that ¢, can
view the most recent state of objects in the database.

For a slightly more elaborate example, suppose that a subtransaction ¢, is
restricted to view, at any given moment during its execution, only those
objects that have been accessed by its parent transaction ¢,. The
Projection _Condition used to construct the view of such a subtransaction ¢, is
specified as follows.

Yg,t,ob,qlobl View, = Elrrtp[ob] e H,

That is, the view of ¢, is the history projected to contain all the operations ¢
invoked by any transaction ¢ on any object ob on which ¢,, the parent of ¢,
has performed some operation r.

Conflict Set of a Transaction

Definition 2.4.2.2. The conflict set of a transaction ¢, denoted by Con-
flictSet,, contains those operations in the current history with respect to
which the effects of conflicts have to be determined when ¢ invokes an
operation,

A transaction ¢ can invoke an operation on an object without worrying about
the consequences of conflicting with another operation invoked by transaction
t, if the operation performed by ¢, is in the view of ¢ but is not included in the
conflict set of ¢.

ConflictSet, is a subset of the object events in H_ , that satisfy some
Predicate:

ConflictSet, = {ptl[ob] | Predicate}.
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For example, let us consider nested transactions once again. In nested
transactions, a subtransaction ¢, can access any object accessed currently by
one of its ancestors ¢,, even if the operations performed by ¢, conflict with
those performed by ¢,. This is captured by:

ConflictSet, = {p,[obl | Inprogress(p,[obD) At , #t Nt & Ancestor(t,)};

Ancestor(t,) is the set of ancestors of t

Inprogrees(p[ [ob]) is true with respect to current history H,, if P, [0b] has

been performed but has been neither committed nor aborted yet; le.,
Inprogress(p, [ob]) = ((p,[ob] € H ) A
((Commit| pt Lobll & H,,) A (Abort] p,Lobll & H )N.

In other words, any operation invoked by an ancestor of ¢, is not contained in
ConflictSet, . That is, the effects of the conflict between an operation invoked
by a child transaction t, and an operation p invoked by ¢, on an object ob
need to be taken into account only if (1) ¢, and ¢, are dlfferent (2) ¢, is not an
ancestor (in the nested-transaction structure) of t, and (3) p is still in
progress. For this reason, a transaction ¢, can invoke an operation that
conflicts with another in progress, invoked by its ancestor t,, ignoring the
dependencies that may form in the process.

The axiomatic definition of a transaction model specifies the View, and
ConflictSet, of each transaction ¢ in that model. These determine if a new
event can be invoked. Specifically, the preconditions of the event derived from
the axiomatic definition of its invoking transaction are evaluated with respect
to H,, using View, and ConflictSet,. If its preconditions are satisfied, the new
event is invoked and appended to the H,, reflecting its occurrence. The
axiomatic definitions specify also how new dependencies may be established.
As we saw earlier, if an event is an object event, the operation semantics may
also induce new dependencies.

Delegation by a Transaction. The final building block of ACTA is Delega-
tion. Traditionally, the invoker of an operation has the responsibility for
committing or aborting the operation. In general, however, the operation
invoker and the one committing the operation may be different.

Definition 2.4.2.3. ResponsibleTr(p,[ob]) identifies the transaction re-
sponsible for committing or aborting the operation p, [ob] with respect to the
current history H,,.

In general, a transaction may delegate some of its responsibilities to another
transaction. More precisely:

Definition 2.4.2.4. Delegate,[t,, p,[0b]] denotes that ¢, delegates to ¢, the
responsibility for committing or aborting operation P, [ob] More generally,
Delegate, [ ¢, , DelegateSet] denotes that ¢, delegates to t, the responsibility
for commlttlng or aborting each operatlon in the DelegateSet

Delegation has the following ramifications, which are formally stated in
Chrysanthis [1991]:

—ResponsibleTr(p,[ob]) is t,, the event-invoker, unless ¢, delegates p, [ob]
to another transaction, say t,, at which point ResponszbleTr( P, [0b]) will
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become ¢ . If, subsequently, ¢, delegates ptt[ob] to another transaction, say
ty, ResponsibleTr(ptt[ob]) becomes ¢,.

—The precondition for the event Delegate,[t,, p,[ob]] is that Responsi-
bleTr(p,[ob]) is t. The postcondition will imply that Responsi-
bleTr(p, [0D)) is t,.

—A precondition for the event Abort,[ p,[ob]] is that ResponsibleTr(p, [ob])
is ¢,. Similarly, a precondition for the event Committj[ptl[ob]] is that
ResponsibleTr(p, [ob]) is t,. Hence, from now on, unless essential, we will
drop the subscript, e.g., f,, associated with the operation abort and commit
events.

—Delegation cannot occur in the event that the delegatee has already
committed or aborted, and it has no effect if the delegated operations have
already been committed or aborted.

—From the perspective of dependencies, once an operation is delegated, it is
as though the delegatee performed the operation. Thus, delegation redi-
rects the dependencies induced by delegated operations from the delegator
to the delegatee—the dependencies are sort of responsibilities.

Note that delegation broadens the visibility of the delegatee and is useful in
selectively making tentative or partial results as well as hints, such as,
coordination information, accessible to other transactions.

In controlling visibility, we will find it useful to associate each transaction
with an access set.

Definition 2.4.2.5. AccessSet, = {p,[0b] IResponsibleTr(ptl[ob]) =t} i.e.,
AccessSet, contains all the operations for which ¢ is responsible.

In nested transactions, when the root commits, its effects are made perma-
nent in the database, whereas when a subtransaction commits, via inheri-
tance, its effects are made visible to its parent transaction. The notion of
inheritance used in nested transactions is an instance of delegation. Specifi-
cally, when a child transaction #, commits, ¢, delegates to its parent ¢, all the
operations that it is responsible for:

Commit, € H < Delegate, [t,, AccessSet, | € H.

Delegation need not occur only upon commit or abort, but a transaction can
delegate any of the operations in its access set to another transaction at any
point during its execution. This is the case for Cotransactions and Reporting
Transactions, described in Section 3.

Delegation can be used not only in controlling the visibility of objects, but
also to specify the recovery properties of a transaction model. For instance, if
a subset of the effects of a transaction should not be obliterated when the
transaction aborts while at the same time they should not be made perma-
nent, the Abort event associated with the transaction can be defined to
delegate these effects to the appropriate transaction. In this way, the effects
of the delegated operations performed by the delegator on objects are not lost
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even if the delegator aborts. Instead, the delegatee has the responsibility for
committing or aborting these operations.

In cooperative environments, transactions cooperate by having intersecting
views, by allowing the effects of their operations to be visible while ignoring
the effects of conflicts, and by delegating operations to each other. By being
able to capture these aspects of transactions, the ACTA framework is applica-
ble to cooperative environments.

In the rest of the article, we assume that delegation is done by the system
in response to the invocation of a transaction management event, such as
Commit in the above example. This implies that as far as the history is
concerned, the commit and delegate events occur concurrently.

2.5 Simple Examples of ACTA Specifications

Atomic transactions combine the properties of serializability and failure
atomicity. These properties ensure that concurrent transactions execute with-
out any interference as though they executed in some serial order, and that
either all or none of a transaction’s operations are performed. Below we first
define the correctness properties of transactions and objects starting with the
serializability correctness criterion and the failure atomicity property. Subse-
quently, we state a set of axioms that are applicable to all transaction models.

2.5.1 Serializability, Object Correctness, and Failure Atomicity

Let T be the set of transactions.
Let # be a binary relation on transactions in 7.
Let T be the subset of 7' containing committed transactions.

Let H, be the history of events relating to transactions in 7.,,,,,,-

comm

Definition 2.5.1.1 Serializability

comm?

Vi, t; € Togmm» i # £,

(¢, & t,) iff Job Jp, q(conﬂict(ptl[ob], qtj[ob]) A (ptl[ob] - qtj[ob]))
Let * be the transitive-closure of ¢’; i.e.,
(¢, &% 1) i [(1,2t,) vV 3t (¢, G 8, AL, T 1))

H is (conflict) serializable iff Vt € T,

comm

—(t €*¢t).

omm

Conflicting operations induce serialization ordering requirements (denoted by
the & relation above), and serializability demands that this ordering must be
acyclic. Whereas serializability is concerned with the correctness of execution
of committed transactions, we must also worry about the correctness of the
objects as operations execute, and more importantly, as operations abort.
First, we must ensure that operations on individual objects also execute
serializably, that is, as if the committed transactions visited the objects one
after another. Second, we must ensure that when an operation aborts, it also
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aborts any other operation which is return-value dependent on it and there-
fore has observed the effects of the aborted operation.

Definition 2.5.1.2. Objects’ Correctness. An object ob behaves correctly iff
Vit €T, t #t,Yp,q
(return-value-dependent(p. q) A (p,[0b] = g, [0b1)) A
~((Commit] p,[0b]] = g,T0b]) v ( Abort| p, [0b]] — g, ob])) =
((Abort] p[0b]] € ") = (Abort[q, [ob]] € H'"™)).

t T t, +t

1 Yy comm? “i J
(t, 8, ¢,)iff Ap, q(conﬂict(ptl[ob]. qt,[ob]) A (p,lob]l - qtj[ob]))
An object 0b behaves serializably iff

Vie T, ~(t&5 ).

com

An object 0b is atomic if ob behaves correctly and serializably.

The first statement states that for an object to behave correctly it must
ensure that when an operation aborts, any return-value-dependent operation
that is subsequently executed, but prior to the abortion, must also be aborted.
This ensures the correct behavior of objects in the presence of failures
assuming immediate effects of operations on objects. A serializable behavior
of an object is ensured by preventing committed transactions from forming
cyclic €, relationships where ¢, considers only the % relationships that
occur from accessing the object ob (&, < ).

Definition 2.5.1.3. Transaction ¢ is failure atomic if

(1) Job Ip (Commit] p,lobl]l € H) =

Yob' Vg ((q,lob’] € H) = (Commitlq,lob'l] € H))
(2) Job IAp (Abort[ p,lobll € H) =

Vob' ¥q ((qlob'] € H) = (Abortlq,[ob']] € H)).

As mentioned earlier, failure atomicity implies that all or none of a transac-
tion’s operations are committed (by some transaction). In the above defini-
tion, the “all” clause is captured by condition 1 which states that if an
operation invoked by a transaction ¢ is committed on an object, all the
operations invoked by ¢ are committed. The “none” clause is captured by
condition 2 which states that if an operation invoked by a transaction ¢ is
aborted on an object, all the operations invoked by ¢ are aborted. Note that
failure atomicity does not require an operation to be committed or aborted by
the invoking transaction.

In the same way that serializability and failure atomicity were expressed
above, other correctness properties of extended transactions, such as quasi-
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serializability [Du and Elmagarmid 1989] and predicatewise serializability
[Korth and Speegle 1988] can be expressed in ACTA [Chrysanthis 1991].

2.5.2 Fundamental Axioms of Transactions. Recall that each transaction
model defines a set of significant events that transactions adhering to that
model can invoke in addition to the invocation of operations on objects. A
transaction ¢ is always associated with a set of initiation-significant events
(IE,) that can be invoked to initiate the execution of the transaction, and a
set of termination-significant events (TE,) that can be invoked to terminate
the execution of the transaction. A set of Fundamental Axioms which is
applicable to all transaction models specifies the relationship between signifi-
cant events of the same or different type, and between significant events and
operations on objects.

Definition 2.5.2.1. Fundamental Axioms of Transactions. Let ¢ be a trans-
action and H® the projection of the history H with respect to ¢.

() VaeelE, (acH)Y=>AB<IE, (a— B)

A transaction cannot be initiated by two different events.
2) V8 TE, Ja € IE, (8§ € H') = (a — 8)

If a transaction has terminated, it must have been previously initiated.
B)VyeTE, (ye HY=>A456< TE, (y— §)

A transaction cannot be terminated by two different termination events.
(4) YobVp (p,lobl e H) = (Ja € IE, (« — p,lob]) A

Ay e TE, (p,lob] - v)))

Only in-progress transactions can invoke operations on objects.

2.5.3 Axiomatic Definition of Atomic Transactions. Below we express in
ACTA the basic properties of atomic transactions with a set of axioms.

Definition 2.5.3.1. Axiomatic Definition of Atomic Transactions. t denotes
an atomic transaction.

(1) SE, = {Begin, Commit, Abort}
(2) IE, = {Begin}
(3) TE, = {Commit, Abort}
(4) ¢ satisfies the fundamental Axioms 1 to 4 (Definition 2.5.2.1)
(5) View,=H,
A transaction sees the current state of the objects in the database.

(6) ConflictSet, = {p,[ob]| ResponsibleTr(p,[ob]) # t, Inprogress(p,ob])}
Effects of conflicts have to be considered against all in-progress opera-
tions performed by different transactions and for which ¢ is not respon-

sible.
(7) Vob3App,lobl € H = (ob is atomic)

All objects upon which an atomic transaction invokes an operation are
atomic objects (see Definition 2.5.1.2). That is, they detect conflicts and
induce the appropriate dependencies.
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(8) Commit, €« H= —(& €*¢)
An atomic transaction can commit only if it is not part of a cycle of &
relations developed through the invocation of conflicting operations.’
This and the next two axioms define the semantics of the Commit event
of atomic transactions in terms of the Commit operation defined on
objects.

(9) 3ob Ap Commit,[ p,lob]] € H = Commit, € H
If an operation is committed on an object, the invoking transaction must
commit.

(10) Commit, € H = Vob Vp(p,[ob] € H = Commit| p,lobll € H)
If a transaction commits, all the operations invoked by the transaction
are committed.

(11) Job Ip Abort, p,lobll € H = Abort, € H
If an operation is aborted on an object, the invoking transaction must
abort. This and the following axiom define the semantics of the Abort
event in terms of the Abort operation defined on objects.

(12) Abort, € H = Yob Vp(p,lob] € H = Abort,| p,[ob]] € H)
If a transaction aborts, all the operations invoked by the transaction are
aborted. Based on the above axioms, the failure atomicity and serializ-

ability properties of atomic transactions can be shown (see Chrysanthis
[1991)).

3. SYNTHESIZING NEW TRANSACTION MODELS

Below we synthesize two new families of extended-transaction models. The
first is derived from the joint-transaction model [Pu et al. 1988]. The second
is derived from the nested-transaction model [Moss 1981} and the split-trans-
action model [Pu et al. 1988]. We also synthesize a new open-nested-transac-
tion model starting from first principles and high-level requirements.

A common characteristic of these new extended-transaction model is that
they support delegation between transactions. The following definition of
conflicts takes into account the presence of delegation.

Definition 3.1. Let %) be a binary relation on transactionin 7, ,, ..
th: t_] = Tcomm’ tl i t]

(¢, &y t,) iff
Job3p, q 3z, t, (conﬂict(ptm[ob], q, [0b])
A(p: Lobl = g, [0b]) A
(ResponsibleTr(p, [ob]) = t,)

/\(ResponsibleTr(pt [0b]) = tj))

n

*Note that the atomicity property local to individual objects is not sufficient to guarantee
serializable execution of concurrent transactions across all objects [Weihl 1984].
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This definition extends the definition of the # relation (Definition 2.5.1.1) to
include the serialization orderings due to the delegated objects. To see that
%y is a generalization of & ((¢, & tj) = (t, &y tj)), consider the case in which
delegation does not occur. In the absence of delegation, ¢,, = ¢, and ¢, = ¢,. In
this way, by substituting %, for # in the definition of serializability (Defini-
tion 2.5.1.1), transactions are serialized with respect to operations for which
they are responsible.

Definition 3.2. H

comm 18 (conflict) serializable iff

YieT ﬁ(tgj’; t).

comm

There is no need to revisit the definition of failure atomicity in light of
delegation. Failure atomicity does not require the invoking transaction of an
operation to be the transaction to commit or abort the operation. Thus, failure
atomicity (Definition 2.5.1.3) allows the possibility for all the operations
invoked by a transaction and not delegated to another transaction to be
committed (aborted) by the invoking transaction and for all the delegated
operations to be committed (aborted) by the delegatees. However, the exami-
nation of a transaction’s failure semantics only with respect to the objects
that the transaction is responsible for leads to a definition of another failure
property which is weaker than failure atomicity.

Definition 3.3. Transaction ¢ is quasi-failure-atomic iff

(1) Job Ip 3¢, Commit [ p,[ob]l € H =

Yob'Vq Vi(q,[ob'] € AccessSet, = Commit [q,[ob']] € H)
(2) Job Ip J Abort| p,[obll € H =

Vob' Vg Vt,(qtj[ob’j € AccessSet, = Abortt[qtj[ob’]] c H).

According to this definition, a transaction ¢ is quasi-failure-atomic if either
“all” or “none” of the operations for which the transaction ¢ is responsible are
committed. Recall that the AccessSet, contains all the operations for which ¢
is responsible. (To recap, a transaction is failure atomic if all the operations it
invokes are committed or none at all; a transaction is quasi-failure-atomic if
all operations that it is responsible for are committed or none at all.) Clearly,
in general, in the absence of delegation, quasi-failure-atomicity is equivalent
to failure atomicity. More specifically, if delegation does not occur from a
transaction, its being quasi-failure-atomic implies that it is failure atomic.

3.1 Joint-Transaction Model and its Variations

In this section, we derive three new extended-transaction models, namely,
chain transactions, reporting transactions, and cotransactions, though a se-
ries of manipulations, beginning with the axiomatic definition of joint trans-
actions [Pu et al. 1988]. In Chrysanthis and Ramamritham [1991a], we
defined these models using dependency production rules, a formalism close to
dependency graphs which captures the static structure and the dynamics of
the evolution of the structure of transactions. Here we use axiomatic defini-
tions to express the properties of these transaction models.
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3.1.1 Joint Transactions. In the joint-transactions model, Join is a termi-
nation event (in addition to the standard Commit and Abort events). That is, it
is possible for a transaction, instead of committing or aborting, to join
another transaction. The joining transaction delegates its objects to the joint
transaction. Thus, the effects of the joining transaction are made persistent
in the database only when the joint transaction commits. Otherwise they are
discarded. Thus, if the joint transaction aborts, the joining transaction is
effectively aborted. A joint transaction can itself join another transaction.

Here are the basic properties of joint transactions, expressed in ACTA.

Definition 3.1.1.1. Axiomatic Definition of Joint Transactions

t, denotes a joining transaction.
t, denotes a joint transaction.
¢ denotes either a joining or a joint transaction.

(1) SE, = {Begin, Join, Commit, Abort}

(2) IE, = {Begin}

(3) TE, = {Join, Commit, Abort}

(4) ¢t satisfies the fundamental Axioms 1 to 4 (Definition 2.5.2.1)

(5) View,=H,,

(6) ConflictSet, = {p,[ob] | ResponsibleTr(p,[obl) # t, Inprogress( p,[ob])}

(7) Vob3pplobl € H = (ob is atomic)

(8) Commit, e H= —(t %5 t)

(9)  Fob 3q ¢, Commit|lq,lob]l € H = Commit, € H

(10) Commit, € H = Vob Vq Vt,(q,[0b] € AccessSet, = Commit [ g, [ob]]
e H)

(11) Job Iq 3t, Abort,lq,[ob]l € H = Abort, € H

(12) Abort, € H = Yob Vq Vt,(q,[0b] € AccessSet, = Abort,[q,[ob]l € H)

(13) Join, [t,] € H < Delegate, [t,, AccessSet, | € H

Axiom 1 states that transactions in the joint-transaction model are associated
with four significant events, namely, Begin, Join, Commit, and Abort. The
Begin, Commit, and Abort events have the same semantics as the correspond-
ing events of the atomic transactions (Axioms 4-12).

Axiom 13 specifies that when Join occurs, the joining transaction’s access
set is delegated to the joint transaction. In this regard, a joining transaction
behaves similar to a child transaction in the nested-transaction model when
the child transaction commits (see Section 3.2.1).

In Axiom 13, the joint transaction is the only parameter of Join; however,
as we will see below, an additional parameter needs to be associated with the
Join event when deriving reporting transactions from joint transactions.

We now state some of the failure and ordering properties of joint transac-
tions. Their proof can be found in Chrysanthis [1991].

LemmA 3.1.1.2. A transaction t in the joint-transaction model is quasi-
failure-atomic.
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LemMA 3.1.1.3. A transaction t in the joint-transaction model behaves like
an atomic transaction if t commits or aborts, i.e., if it does not join any other
transaction, and has not been joined by any other transaction.

In other words, a joint transaction that commits or aborts is failure atomic
and executes in a serializable manner.

THEOREM 3.1.1.4. A joining transaction i, is serializable with respect to
the joint transaction t, iff Join, [t,] € H = —((t, &y t,) A (¢, &5 t,).

This theorem states that if there is no cycle involving ¢, and ¢, then they are
serializable.

COROLLARY 3.1.1.5. A joining transaction t, may not be serializable with
respect to the joint transaction t,.

3.1.2 Chain Transactions. A special case of joint transactions is one that
restricts the structure of joint transactions to a linear chain of transactions.
We can call these transactions Chain Transactions.® A chain transaction is
formed initially by a traditional transaction joining another traditional trans-
action and subsequently by the joint transaction joining another traditional
transaction. This is achieved by introducing an axiom to restrict the invoca-
tion of the Join event such that only linear structures result (Axiom 14).

Definition 3.1.2.1. Axiomatic Definition of Chain Transactions
t, denotes a joining transaction.

t, denotes a joint transaction.

t,, denotes either a joining or a joint transaction.

(1..13) Axiom 1..13 of Definition 3.1.1.1.
(14)  Join, [¢,] € H = At (Join,[t,] — Join, [£,])

All the lemmas and theorems expressing the correctness properties of joint
transactions (Section 3.1.1) hold also for chain transactions.

Chain transactions can more appropriately capture a reliable computation
consisting of a varying sequence of tasks, each of which executes, possibly at
a different site of a computer network. That is, each task is structured as a
transaction. The beginning of the first transaction initiates the computation.
The computation expands dynamically when a transaction completes its
execution by joining another transaction, and hence extending the sequence
of transactions. The commitment of any transaction in the sequence success-
fully completes the computation. The abort of any transaction terminates the
computation, and due to quasi-failure-atomicity its effects, together with
those of all previous transactions in the sequence, are obliterated.

3.1.3 Reporting Transactions. A variation of the joint-transaction model
is the transaction model in which Join is not a termination event (Join & TE,).
A joining transaction continues its execution and periodically reports its
results to the joint transaction by delegating more operations to the joint

%Chain transactions are of a more general form than IBM’s Chain transactions.
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transaction. We call these transactions Reporting Transactions. Reporting
transactions must invoke either Commit or Abort to complete their computa-
tion (Axiom 3).

Here is the formal definition of reporting transactions in ACTA. Other than
the axioms for the Join event, the axioms for the other significant events are
the same as in the joint-transaction model.

Definition 3.1.3.1. Axiomatic Definition of Reporting Transactions
t, denotes a joining transaction.

t, denotes a joint transaction.

¢t denotes either a joining or a joint transaction.

(1) SE, = {Begin, Join, Commit, Abort}

(2)  IE, = {Begin}

3 TE, = {Commit, Abort}

(4..12) Axiom 4..12 of Definition 3.1.1.1

(13)  Join, [¢,, ReportSet, | € H < Delegate, [t,, ReportSet, ] € H,
ReportSet, C AccessSet,

(14)  Join, [¢,, ReportSet, | € H = (t, 4P t,)

(15)  Join, [tb, ReportSet, ] e H
= Zl t,t#t, (Join, ¢, ReportSet, | — Join, [t,, ReportSet, 1)

(16)  Join, [¢,, ReportSettu] € H = Join, [¢,, ReportSet, | € H

ReportSet, contains the operations on the objects to be delegated (Axiom 13).
Since ReportSet C AccessSet, , reporting transactions may delegate some
and not necessarﬂy all of their operations on objects at the time of a join.

The abort dependency induced by Axiom 14 effectively maintains the
termination semantics of joining transactions in the joint-transaction model
by guaranteeing the abortion of the joining transaction ¢, if the joint transac-
tion ¢, aborts. This is because Axiom 15 prevents ¢, from joining more than
one transaction. Furthermore, Axiom 16 prevents ¢, from joining back ¢,.

Note that the axioms do not prevent reporting transactions from forming
nonlinear structures. If only linear structures must be permitted, Axiom 14 of
chain transactions must be added to the above set of axioms. This point raises
the issue of “completeness” of a set of axioms. We discuss this topic in Section
3.4.

Reporting transactions provide a more interesting control structure than
joint transactions and can be useful in structuring data-driven computations.
For example, consider a computation that requires remote access to a database
over expensive communication links such as in a mobile computing environ-
ment. This computation can be split across the two sites using reporting
transactions where the joining transaction executes in the database site
whereas the joint transaction executes on the remote site. The joining trans-
action accesses the database and performs the initial processing on the data
delegating to the joint transaction only those operations on data that need to
be processed further at the remote site.
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Reporting transactions can be restricted to a linear form in a manner
similar to chain transactions in which case they can support pipeline-like
computations, or allowed to form more complex control structures by permit-
ting a reporting transaction to join more than one transaction in which case
they can support, for example, star-like computations.

3.1.4 Cotransactions. The characterization of reporting transactions al-
lows t, to continue its execution but prevents ¢, from joining ¢, This is
specified in Axiom 15 where post(e) denotes the postcondition of event e.
Suppose that ¢, is suspended when it joins ¢, and ¢, is allowed to join #,. The
transaction ¢, can be effectively suspended if, at the time of the join, its view
becomes empty. With an empty view, #, can no longer access any object in the
system. We call this view curtailment. The ¢, will be able to resume execu-
tion when ¢, joins ¢,. This is because, after the join, ¢,’s view will be restored
while ¢,’s is curtailed. We call these transactions cotransactions because they
behave like coroutines, in which control is passed from one transaction to the
other transaction at the time of the delegation, and they resume execution
where they were previously suspended. In the cotransaction model specified

below, the view of the cotransaction that resumes execution is restored to
H

ct*

Clearly, in the cotransaction model, the Join event is not a termination
event (Join ¢ TE,), and cotransactions must invoke either commit or abort in
order to complete their execution (Axiom 3).

Here is the formal definition of cotransactions in ACTA:

Definition 3.1.4.1. Axiomatic Definition of Cotransactions
t, denotes a joining transaction.

t, denotes a joint transaction.

t denotes either a joining or a joint transaction.

&8 SE, = {Begin, Join, Commit, Abort}

(2)  IE, = {Begin}

(3) TE, = {Commit, Abort}

{4..14) Axiom 4..14 of Definition 3.1.3.1

(158)  post(Join, [¢,]) = (View, = ¢) A (View, = H,)
(16)  Join, [t,] € H = (¢, ¥ &< t,)

Here &2 stands for strong commit dependency whereby if ¢, commits, £
must commit:

(t; 5 &2 ¢): (Commit,, € H = Commit, € H).

The termination semantics of cotransactions are captured by Axioms 14
and 16. According to the semantics of joint and reporting transactions, Axiom
14 ensures the abortion of the joining transaction ¢, if the joint transaction ¢,
aborts. Axiom 16 states that if the joint transaction ¢, commits, then the
joining transaction f¢, is also committed. Thus, both commit or neither.
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Cotransactions are useful in realizing applications that can be decomposed
into interactive, and potentially distributed, subtasks which cannot execute
in parallel. For instance, cotransactions can be used to set a meeting between
two persons by having one cotransaction executing per person against the
individual’s calendar database. Cotransactions, as well as reporting transac-
tions, can be easily modified to form more complex control structures in order
to produce more interesting styles of cooperation.

3.2 Nested-Split-Transaction Model

First we give the axiomatic definition of nested transactions and split trans-
actions and then show how a combined model can be produced.

In order to motivate the need for such a combined model, consider software
development in which a developer structures her/his work in a hierarchical
manner using nested transactions. Since software development may take an
arbitrary long time, the designer would like to be able (1) to abort some of the
operations of a nested transaction (subtransaction) when they are no longer
needed, for example, after a failed attempt to fix a bug and (2) to split a long
subtransaction into two sibling subtransactions which can commit or abort
independently. Such requirements are not satisfied by either the nested or
the split transaction models by themselves in an easy and straightforward
manner but can be satisfied by a model that combines the properties of both.

3.2.1 Nested Transactions. In the nested-transaction model, e.g., Moss
[1981], transactions are composed of subtransactions or child transactions
designed to localize failures within a transaction and to exploit parallelism
within transactions. A subtransaction can be further decomposed into oth-
er subtransactions, and thus, a transaction may expand in a hierarchical
manner. Subtransactions execute atomically with respect to their parent.
They can abort independently without causing the abortion of the whole
transaction.

A subtransaction can access potentially any object that is currently ac-
cessed by one of its ancestor transactions. Any object in the database is also
potentially accessible to the subtransaction. When a subtransaction commits,
the objects modified by it are made accessible to its parent transaction, and
the effects on the objects are made permanent in a database only when the
root transaction commits.

Now, let us define nested transactions using the ACTA formalism. Ances-
tors(t) is the set of all ancestors of a transaction t whereas Descendants(t) is
the set of all descendants of ¢. Parent(¢) contains the parent transaction of ¢.

Definition 3.2.1.1. Axiomatic Definition of Nested Transactions

t, denotes the root transaction. Parent(t,) = Ancestor(t,) = ¢.
¢, denotes a subtransaction of ¢,. Parent(t,) = t,.
t, denotes a root or a subtraction.

(1) SE, = {Begin, Spawn, Commit, Abort}
(2) IE, = {Begin}
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(3) TE, = {Commit, Abort}
4 SE, = {Spawn, Commit, Abort}
(5) IE, = {Spawn}
(6) TE, = {Commit, Abort}
(7) t, satisfies the fundamental Axioms 1 to 4 (Definition 2.5.2.1)
® Viewtp =H,
(9) ConflictSet, = {p[lobl| ResponsibleTr(p,lob]) # t,, Inprogress(p,[ob]}
(10) Yob prtp[ob] e H = (ob is atomic)
(11) Commit, € H = ~(t, %3 t,)
(12) Job dp EltCommittp[pt[ob]] e H = Committp € H A Parent(t,) = ¢
(13) Commit, & H A Parent(t,) = ¢ =
Yob ¥p Vi (p,lob] € AccessSett, = Committp[ plobll € H)
(14) Job 3p 3¢ Abort, [ plobll € H = Abort, € H
(15) Abort, & H = Yob Vp V¢ (p[ob] € AccessSet, = Abort, [ plobll € H)
(16) Begin, € H = Parent(t,) = ¢ N Ancestor(t,) - ¢ 1
(17) ConflictSet, = {p,[lobl | ResponsibleTr(plob]) # t., t & Ancestors(t,),
Inprogress(p,ob))}
(18) Spawn, [{] € H = Parent(t,) = ¢,
(19) Spawn, [t ] € H = (t 72 t,) A (t, €D ¢,)
(20) Commit, € H « Delegate, [ Parent(t,), AccessSet, | € H
@21 VvVt e Descendants(tp)Vob Vp, g(plob]l - qtp[ob])Conﬂict(pt[ob],
q, [ob]) = 3t (Delegate, [t,, AccessSet, ] — g, LobD A plobl €
AccessSet, )
(22) Ancestor(t,) = Ancestor(tp) U {tp} ANVt € Descendants(t) =
t, € Descendants(t)

The nested-transaction model supports two types of transactions, namely,
root transactions and nested subtransactions, which are associated with
different significant events (Axioms 1 and 4). The semantics of root transac-
tions are similar to atomic transactions (Axioms 7-15). The Abort event has
the same semantics for both transaction types which are similar to those of
the Abort in atomic transactions (Axioms 14 and 15). However, the semantics
of the Commit event are different for each transaction type. In the case of a
root transaction, Commit has the semantics of the Commit event in atomic
transactions (Axioms 11-13). In contrast, because of the delegation that
occurs when a subtransaction commits, the operations in its access set are
made persistent and visible only to its parent transaction (Axiom 20). Axiom
20, which together with Axiom 11 defines the semantics of the Commit event
of subtransactions, specifies clearly that the commitment of a subtransaction
does not imply the commitment of its operations and the operations that it is
responsible for.

Spawn is used to initiate a new subtransaction. The Spawn event estab-
lishes a parent/child relationship between the spawning and spawned trans-
actions (Axiom 18). This relationship is reflected by the weak-abort depen-
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dency #Z'Z and commit dependency %% between the related transactions
(Axiom 19). The ability of a subtransaction to invoke operations without
conflicting with the operations of its ancestor transactions is expressed by
excluding all the operations performed by its ancestors from the conflict set of
the subtransaction (Axiom 17). Axiom 17 also states that operations dele-
gated to the subtransaction and for which the subtransaction is responsible
do not conflict with any operation invoked by the subtransaction.

Axiom 21 states that given transaction ¢ and its ancestor ¢, and operations
p and g, [, can invoke g after ¢ invokes p if ¢, is responsible for committing
or aborting p. In other words, ¢, cannot invoke g before p is delegated to ¢,.
In the absence of this restriction, it would be possible for ¢, to develop an
abort dependency on # ( t, ¥ t) by invoking an operation that conflicts with
a preceding operation invoked by #. In such a case in which a parent
transaction develops an abort dependency on its child, if the child aborts, the
parent also aborts. This means that it would be possible for a subtransaction
to cause the abortion of its parent and possibly of the whole nested transac-
tion (if the parent happens to be the root transaction). But this violates the
property of nested transactions that localizes failures by allowing a subtrans-
action to abort independently without causing the abortion of the whole
transaction.

Based on the above axiomatic definition of nested transactions, the recov-
ery and concurrency properties of nested transactions can be shown (see
Appendix and Chrysanthis [1991]). For example, although Axioms 7, 10, and
11 are sufficient to ensure the serializability of atomic transactions, they are
not in the case of nested transactions because of Axiom 17, which allows
dependencies between a parent transaction and its children to be ignored.
Thus, a parent and a child transaction may not be serializable.

3.2.2 Split Transactions. In the split-transaction model [Pu et al. 1988], a
transaction £, can split into transactions ¢, and £,. At the time of the split,
operations invoked by ¢, up to the split can be divided between ¢, and ¢,
making each responsible for committing and aborting those operations as-
signed to them. In order to facilitate further data sharing between ¢, and ¢,,
operations which remain the responsibility of ¢, may be designated as not
conflicting with operations invoked by ¢, after the split, and hence, ¢, can
view the effects of these operations. Depending on whether or not such
operations have been designated, a split may be serial or independent. In the
former case, ¢, must commit in order for ¢, to commit, whereas in the latter,
t, and 7, can commit or abort independently.

After the split, £, can split again, creating another split transaction 7.
Split transactions can further split, creating new split transactions. A se-
quence of serial splits leads to a different type of hierarchically structured
transactions from those of nested transactions. See Figure 4.

Definition 3.2.2.1. Axiomatic Definition of Split Transactions

¢, denotes a primary transaction.
¢, denotes a splitting transaction, primary or split.
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@ Fig. 4. Structure of split transactions.

t, denotes the split transaction of ¢,.
t denotes a transaction, primary or split.

(1) SE, = {Begin, Split, Commit, Abort}

(2) IE, = {Begin}

(3) TE, = {Commit, Abort}

) SE, = {Split, Commit, Abort}

(5) IE, = (Spiit

®) TE, = {Commit, Abort}

(7) t satisfies the fundamental Axioms 1 to 4 (Definition 2.5.2.1)

(8) View, =H,

(9) ConflictSet, = {p[ob]| ResponsibleTr(p,[ob]) #1t,, Inprogress(p,[ obD}

(10) Yob App,lob] € H = (0b is atomic)

(1) Commit, e H = (¢t &5 ¢)

(12) 3ob 3q 3t, Commit,[q,[obll € H = Commit, € H

(13) Commit, € H = Yob Vq V¢, (g,[0b] € AccessSet, = Commit,[q,[ob]]
e H)

(14) 0b Iq 3¢, Abort,lq,[ob]l € H = Abort, € H

(15) Abort, € H = Yob VYq Vt,(q,[0b] € AccessSet, = Abort[q,[ob]] € H)

(16) Split, [t,, CanAccess,(t,)] € H = (CanAccess,(t,) + ¢ = (¢, ¥D t,)

(17) Split, [¢,, CanAccess,(t,)] € H < Delegate, [¢,, DelegateSet] € H

(18) VYob Ap It p,[ob] € DelegateSet = (Vt' Yq (ResponsibleTr(q,[ob]) = t,
A(g,lob] — Delegate, [t,, DelegateSet])) = q,[ob] € DelegateSet)

(19) ConflictSet, = {p[ob] | (ResponsibleTr(plob]) #t,,t +t,,
Inprogress(p,[ob])) V (ResponsibleTr(p,lob]) = t,, Inprogress
(plobD) A (plob]l & CanAccess,(t,))}

(20) Vob Vp,q(Ar(r, [ob] € CanAccess,(t, D)) A p,lobl € H A
Conflict(p, [ob], q,[0b] = (p, [0b] - g, [0b])

In the split-transaction model, a transaction can be initiated through either
the Begin event, called primary transaction, or the Split event, called split
transaction. Although primary and split transactions are associated with
different significant events (Axioms 1 and 4), their corresponding events
share the same semantics (Axioms 11-15).
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Split, [¢,, CanAccess, (t,)] splits a primary or a split transaction ¢, into a
splitting transaction z‘aaand split transaction ¢,. Since the idea is to allow the
splitting transaction to give the split transaction the responsibility for finaliz-
ing some of its operations (these are the operations in the DelegateSet, the
Split event is partially specified in terms of the delegation event Delegate, [¢,,
DelegateSet] (Axiom 17). To be more precise, a splitting transaction transfers
to a split transaction the responsibility for all the operations on a particular
object (Axiom 18). That is, when a splitting transaction delegates an opera-
tion on an object 0b, it delegates all the operations on ob that the splitting
transaction is responsible for at the time of the split. Here, it is interesting to
note that, in contrast to transactions initiated by the Begin event, through
delegation, split transactions can affect objects in the database by committing
or aborting delegated operations and without invoking any operation on
them.

Further, the splitting transaction has the ability to allow the split transac-
tion to view some of its operations on some objects without conflict (these are
the operations in the CanAccesstb(ta)) (Axiom 19). However, the splitting
transaction cannot view the operations of the split transaction on the same
objects. A splitting transaction can continue to invoke operations on such
objects as long as the split transaction has not invoked a conflicting operation
on them (Axiom 20).

A split is independent, if CanAccess,(t,) is empty. In the case of serial
split, i.e., a split in which C’anAccesstb(ta) is not empty, ¢, develops an abort
dependency on ¢, (Axiom 16).

As in the case of nested transactions, Axioms 7, 10, and 11 are not
sufficient to ensure serializability of split transactions due to Axioms 17 and
19. However, split transactions are serializable, as shown in Chrysanthis
[1991]. That is, if ¢, splits ¢, serially, then ¢, precedes f, in any serializable
history in which both commit. If the split is independent then ¢, and ¢, in
any serializable history in which both commit. If the split is independent then
t, and ¢, are serializable in any order. It should be pointed out that the above
axiomatic definition of split transactions is more general than their original
description which was within the context of lock-based concurrency control
protocols.

3.2.3 Nested-Split Transactions. Given our definitions for atomic transac-
tions (see Definition 2.5.3.1), nested transactions (see Definition 3.2.1.1) and
split transactions (see Definition 3.2.2.1) in axiomatic form, it is not difficult
to see which axioms reflect the differences between these models and which
axioms capture their similarities.

For instance, the Begin, Abort, and Commit events in the split-transaction
model have the same semantics as those for the root transactions in the
nested-transaction model (which are the same as those of atomic transac-

7By taking into consideration the semantics of operations on the individual objects in
CanAccess, (t,), it would be possible to induce weaker dependencies, e.g.. commit dependency,
rather than abort dependency.
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tions). However, although at first glance the Spawn event in nested transac-
tions and the Split event in split transactions appear to have similar seman-
tics, their precise definitions show the actual differences, e.g., in the induced
dependencies. Specifically, whereas the Spawn event induces a commit de-
pendency and a weak-abort dependency between the spawning and the
spawned transactions (Axiom 18 of Definition 3.2.1.1), the Split event induces
an abort dependency of the split transaction on the splitting transaction
{Axiom 19 of Definition 3.2.2.1). Additionally, in contrast to the Spawn event,
due to delegation the Split event may associate a nonempty access set with
the split transaction.

Given the similarities and differences between two models, the question of
whether the two transaction models can be used in conjunction becomes
important. Let us consider combining aspects from the nested and split
transaction models. We would like to check whether the resulting model
retains the properties of the two original models. This combination is derived
by combining, where possible, nested-transaction structures with split-trans-
action structures, i.e., by considering how to handle existing dependencies,
the view, and the conflict set of the individual transactions.

Split-and-Nested Transactions. The obvious first approach is to merge the
definitions of the two models. The resulting model is called split-and-nested.
In this model, given a nested transaction, it is possible to split the root or a
subtransaction. A split transaction may further split creating another split
transaction, or spawn a new subtransaction becoming a root of a new nested
transaction. In this way, a set of possibly dependent nested transactions may
be created (see Figure 5).

Definition 8.2.3.1. Axiomatic Definition of Split-and-Nested Transactions

t, denotes a root or a primary transaction. Parent(t,) = Ancestor(t,) = ¢.

denotes a subtransaction of ¢,. Parent({,) = ¢,.

t, denotes the split transaction of ¢,. Parent(t,) = Ancestor(t,) = ¢.

¢, or {, denotes a splitting transaction, root/primary, a subtransaction, or
split.

(1) SE, = {Begin, Spawn, Split, Commit, Abort}

(2) IE, = {Begin}

(3) TE,, = {Commit, Abort}

(4) SE, = {Spawn, Split, Commit, Abort}

(5 IE, = {Spawn}

(6) TE, = {Commit, Abort}

(7 SE, = {Spawn, Split, Commit, Abort}

(8) IE, = {Split}

(9) TE, = {Commit, Abort}

(10..25) Axiom 7..22 of Definition 3.2.1.1

(26..30) Axiom 16..20 of Definition 3.2.2.1

(31) Split, [, CanAccess, (t,)] € H = parent(t,) = ¢
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Fig. 5. Structure of split-and-nested transactions.

Axiom 31 ties together Spiit, a significant event that creates a new transac-
tion not supported by nested transactions, with the notion of parent and
ancestral transactions, not present in split transactions in a way similar to
the case of Begin and Spawn events (Axioms 19 and 21 (or Axioms 16 and 18
of nested transactions)).

The split-and-nested model produces only hierarchical transaction struc-
tures as in the two original models. It involves the same dependencies
between the various transaction types which are found in the original models.
The additional abort dependency induced between a root or a subtransaction
and its split transaction, in the case of serial split (Axiom 26 (or Axiom 16 of
split transactions)), does not violate the structure of nested transactions.
Such abort dependencies between (sub)transactions of a nested transaction
and other (sub)transactions are possible in the nested-transaction model and
may develop when transactions invoke conflicting operations on shared atomic
objects (Axiom 10 of nested transactions).

Although this new model retains the properties of split transactions, it does
not retain those of nested transactions. Specifically, split-and-nested transac-
tions do not have the same ordering and failure properties of nested transac-
tions. For instance, the split-and-nested-transaction model allows the effects
of subtransactions to be made permanent in the database by a transaction
other than their ancestral root transaction.® To illustrate this, suppose a
subtransaction ¢ splits, delegating to its split transaction ¢’ an operation
p;lob]l. The delegated p,lob] may be committed by ¢’ since, when a split
transaction commits, it commits all the operation in its AccessSet to the
database (Axioms 16 and 31). Furthermore, in the case of an independent
split, it is possible for ¢ (or its ancestral root transaction) to abort while
p,lob] 1s committed by ¢’ and vice versa.

*It can be proved (1) that operations invoked by subtransactions of a nested transaction are
committed to the database only by the root transaction, and none of the subtransactions commit
any operation, and (2) that if a root transaction aborts, all operations performed by the root and
its descendants abort [Chrysanthis 1991].
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The split-and-nested-transaction model is an example of an open-nested
model in which some component transactions (subtransactions) may decide to
commit their effects in the database unilaterally. In Section 3.3, we will
synthesize an open-nested model by precisely stating the requirements on the
transactions adhering to the model.

Nested-Split Transactions. The split-and-nested-transaction model de-
fined above fails to retain the properties of nested transactions because the
split-and-nested-transaction model does not distinguish between splitting a
root and a subtransaction. In this model, it is possible for a subtransaction to
split a root transaction. In fact, a split transaction is always a root transac-
tion. However, the semantics of subtransactions are different from those of
root transactions. Suppose we want the semantics of a split transaction to be
similar to those of its splitting transaction. Thus, when a root transaction
splits, it should split into two root transaction, and when a subtransaction
splits, it should split into two sibling subtransactions. In this way, a split of
subtransaction can no longer make any operations’ effects permanent in the
database, but, as with any other subtransaction, when it commits, it dele-
gates all operations in its access set to its parent transaction. We call such a
derived model a nested-split-transaction model. Such transactions still retain
the properties of split transactions in the sense that both a splitting and its
split transaction exhibit the same behavior (i.e., their associated significant
events have the same semantics) (Axioms 11 to 15 of split transactions).

The axiomatic definition of nested-split transactions can be derived from
the definition of split-and-nested transactions by modifying Axioms 30 and
31, and by adding two new axioms, Axioms 32 and 33, one of which specifies
the dependencies that are assumed to hold after a subtransaction is split into
two subtransactions.

Definition 3.2.3.2. An Axiomatic Definition of Nested-Split Transactions

t, denotes a root or a primary transaction. Parent(t,) = Ancestor(t,) = ¢.
t, denotes a subtransaction of ¢,. Parent(t) =t,.

t, denotes the split transaction of ¢,. Parent(t,) = Ancestor(t,) = ¢.

t, or t, denotes a splitting transaction, root/ primary, a subtransaction, or
split.

(v SE, = {Begin, Spawn, Split, Commit, Abort}
(2) IE, = {Begin}

3) TE, = {Commit, Abort}

(4) SE, = {Spawn, Split, Commit, Abort}

(5) IEt[ = {Spawn}

(6) TE, = {Commit, Abort}

(7 SE, = {Spawn, Split, Commit, Abort}

®  IE, - {Spli}

9) TE, = {Commit, Abort}
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(10..25) Axiom 7..22 of Definition 3.2.1.1

(26..29) Axiom 16..19 of Definition 3.2.2.1

(30) Vi, & =t, V1t & Descendant(t,)¥ob Yp,q Conflict(p,[ob], q,[0b]) A
(31‘(1"[“[013] € CanAccess, (t,) A p, [ob]l € H = (p,lob] —» q,lob])

(31 Split, [¢,, CanAccess, (t,)] € H = Parent(t,) = Parent(t,)

(32) Split, [¢,, CanAccess, (t,)] € H = (Parent(t,) # ¢ =
(t, %D Parent(t,)) A (Parent(t YED t,)

(33) Vob 3t App,lob] € DelegateSet = (Vt¢' & Descendant(t,)¥q(q,[ob]
—
Split, [ t,, CanAccess, (¢t,)]) = 3t (Delegate, [t,, AccessSet, 1-
Split, [tb, CanAccess,, (t D A g, [ob] S AccessSet )

Axiom 30 corresponds to Axiom 20 of split transactlons extended to take
into account the descendants of a splitting transaction ¢, which have the
ability of invoking operations without conflicting with the operations of ¢,,.
That is, the descendants of a splitting transaction as well as the splitting
transaction itself can continue to invoke operations on objects in the
CanAccess, (t,) as long as the split transaction has not invoked an operation
on them.

Axiom 31 establishes the parent relationship of the split subtransaction by
specifying that its parent is the parent of the subtransaction whose split it is.

Axiom 32 states that when a subtransaction ¢, splits a transaction #,, the
dependencies between subtransaction ¢, and 1ts parent, say transaction ¢,
are assumed to hold between ¢, and ¢,.

Axiom 33 states that in order for an operation on an object 0b to be
delegated at the time of a split, the splitting transaction should be responsi-
ble for all the operations on 0b invoked by any of its descendant transactions.
Consequently the split subtransaction is never delegated operations on ob-
Jects which have been accessed by an active descendant of the splitting
transaction. Otherwise, the model would have required that the split sub-
transaction be considered an ancestor of the descendants of the splitting
transactions due to Axiom 19.

Note that not all of the existing dependencies of splitting transaction are
retained by the split transaction. For example, when a nonleaf subtransaction
t, splits, the dependencies between subtransaction ¢, and its children are not
assumed to hold between its split transaction ¢, and ¢, s children. The reason
is that by establishing these dependencies either the hierarchical structure of
the nested transactions is destroyed, or some of the dependencies required by
the nested transactions are eliminated. To illustrate this, consider the case of
the independent split of a nonleaf subtransaction ¢, into ¢,, and t,,. If the
above dependencies were retained, a subtransaction ¢; of #, would have
weak-abort dependencies on two ancestors, ¢,, and ¢, which is clearly
disallowed by the hierarchical structure of the nested-transaction model. The
effects of retaining these dependencies are analyzed in Chrysanthis and
Ramamritham [1990].

Axioms 30 to 33 establish a sibling relationship between the splitting and
split subtransactions. Hence, given a nested transaction, it is possible to split
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a root or any subtransaction while properties of both nested and split
transactions are retained. Furthermore, due to delegation and the specifica-
tion of the CanAccess set at the time of a split, two sibling transactions can
cooperate effectively while they are still executing. In nested transactions,
two sibling subtransactions cannot achieve cooperation while both siblings
are active due to the conflict set specification of nested transactions (i.e.,
effects of conflicts relative to the operations invoked by a transaction are not
considered only by the descendants of the transaction). A nested subtransac-
tion ¢ can observe the effects of one of its siblings ¢’ on an object without
conflicts only after ¢’ has committed and delegated all its operations to their
parent. Thus, nested-split transactions support a higher level of visibility
between subtransactions than nested transactions, making them a useful
new transaction model for a cooperative environment. (A similar type of
interaction occurs in the extended-nested-transaction model proposed in Mo-
han et al. [1992].)

3.3 Open-Nested-Transaction Model

In an open-nested-transaction model, component transactions may decide to
commit or abort unilaterally. This model is particularly suitable in structur-
ing applications that need to access data stored in preexisting databases or
data repositories managed by systems that do not support any global commit
protocol such as two-phase commit protocol. Example of such applications are
telecommunication services and Computer-Integrated Manufacturing (CIM).

In this article, assume that we need an open-nested-transaction model that
supports two-level transactions with special components. Let s be a two-level
transaction that has n component transactions, ¢,,...,t,. Some of the compo-
nents are compensatable; each such ¢, has a compensating transaction
comp-t; that semantically undoes the effects of ¢,.

In order to derive the specification of this new transaction model, during
synthesis we need to identify the different types of transactions which the
model will support, the significant events associated with each type and the
relationships among transactions. We will express these transaction relation-
ships in terms of the significant events of the involved transactions. Also, for
each type we need to define the visibility (i.e., view) and conflict set of the
transactions of the type and the semantics of the events associated with a
particular transaction.

3.3.1 Specifying the Building Blocks. Let us begin the specification of this
model by associating all transactions, components or otherwise, with the
significant events {Begin, Commit, Abort}. Component and compensating
transactions are atomic transactions with structure-induced intertransaction
dependencies.

Component transactions can commit without waiting for any other compo-
nent or s to commit. However, if s aborts, a component transaction that has
not yet committed will be aborted. We can capture this requirement using a
weak-abort dependency.

VO<i<n(§,#7Ds)
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Suppose some of the components of s are considered vital in that s is
allowed to commit only if its vital components commit. These components are
members of the set VitalTrs. We can capture this requirement as follows.

Y0 <i <n (¢, € VitalTrs = (s %2 t,))

If a vital transaction aborts, s will be aborted. Transaction s can commit
even if one of its nonvital components aborts, but s has to wait for them to
commit or abort. This is expressed using a commit dependency.

Y0 <i <n (¢ & VitalTrs = (s €2 t,))

Assume that a compensatable component of s is a component of s which
can commit its operations even before s commits, but if s subsequently
aborts, the compensating transaction comp_t, of the committed component ¢,
must commit. Compensatable components are members of the set Comp_Trs.

Abort, e H= V0 <i < n(t, € Comp_-Trs = (comp_t, SED t,))

Recall that &2 stands for strong commit dependency whereby if ¢, com-
mits, comp-¢, must commit.

Compensating transactions need to observe a state consistent with the
effects of their corresponding components, and hence, compensating transac-
tions must execute (and commit) in the reverse order of the commitment of
their corresponding components. We can capture this requirement by impos-
ing a begin-on-commit B dependency on compensating transactions.

Vi t, € Comp_Trs ((Committl - Commz'ttj) = (comp_t, BED comp_tj))

Begin-on-commit dependency states that transaction ¢, cannot begin execut-
ing until transaction ¢, has committed.

(t, BED L,): (Begintj € H = (Commit, — Begin,j))

Suppose we assume that a compensating transaction compensates the
effects of a component by invoking the wundo operations of each of the
operations invoked by the component. In this case, the compensating transac-
tion must be allowed to view (the current state of) only those objects accessed
by the corresponding component.

V¢, ob, p p,lob] € View = dqq,[ob] € H,,

comp_t,

Since we assume that all component transactions, including noncompensat-
able ones, can commit at any time, noncompensatable components should not
be allowed to commit their effects on objects when they commit. There are a
number of ways to structure noncompensatable component transactions
[Chrysanthis 1991; Chrysanthis and Ramamritham 1992]. The simplest
method is to structure them as subtransactions (as in nested transactions)
which at commit time delegate all the operations in their AccessSet to s.

VO<i<n

(tl ¢ Comp-Trs = (Commit, € H < Delegate, [ s, AccessSet, | € H))
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It is possible to continue the development of our simple hierarchical
transaction model, but at this point we have already considered all the basic
interactions among the various special component transactions. For instance,
it is possible to require that some component transactions execute in a
predefined order as in the case of the Saga transaction model [Garcia-Molina
and Salem 1987].

3.3.2 Complete Specification. Now let us put everything together. These
axioms constitute the specifications of the open-nested-transaction model.

Definition 3.3.2.1. Axiomatic Definition of Open-Nested Transactions

s denotes a top-level transaction.
¢, denotes either a top-level or a component transaction.
¢, denotes a compensatable component. ¢, € Comp_Trs.
comp_t, denotes a compensating transaction of ¢,.
t, denotes a transaction which is not a noncompensatable component.

t,=sVt,=Comp.TrsVt,=comp-t,

¢ denotes either a top-level, a component, or a compensating transaction.

(1) SE, = {Begin, Commit, Abort}
(2) IE, = {Begin}
(8) TE, = {Commit, Abort}
(4) ¢ satisfies the fundamental Axioms 1 to 4 (Definition 2.5.2.1)
(5) View, =H,,.
(6) ConflictSet, ={p,|ob]| ResponsibleTr(p,[ob]) +t, Inprogress(p,[ob]}
(7) Yob 3App,lob]l € H = (ob is atomic)
(8) Commit, e H= (¢t &y t)
(9) 3ob Ap It' Commit, [ p,lob]} € H » Commit, < H
(10) Commit, € H = '
Vob Vp Vt'(p,lob] € AccessSetlp = Committp[ p,lobll € H)
(11) Job Ap At' Abort | p,lobl] € H = Abort, € H
(12) Abort, € H = Yob Yp Vt'( p,[ob] € AccessSet, = Abort [ p,[ob]] € H)
(13) V¢', ob, p p,lob] € View,,,,, , = 3q q,[ob] € H,
(14) Vt & Comp_Trs Commit, € H < Delegate,[s, AccessSet,] € H
(15) Begin, € H = (¢ #'2 s) A
(¢ € VitalTrs = (s &2 1)) A (¢t & VitalTrs = (s €D t))).
(16) Abort, € H = Vi (t, € Comp_Trs = (comp_t, SED t,))
(17) V¢, t, € Comp-Trs ((Commit, — Commit,) = (comp—t, BED comp_t,))

In summary, Axioms 1 to 12 are similar to the corresponding ones of atomic
transactions. All 12 axioms pertain to top-level transactions and their com-
pensatable components. As in the case of atomic transactions, everything 1s
visible to these transactions (Axiom 5) whereas only objects accessed by a
component are visible to its compensating transaction (Axiom 13).
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For all transactions, a transaction’s operations conflict with all ongoing
operations invoked by other transactions (Axiom 6). The serialization must be
acyclic, i.e., the transactions must be serializable taking into consideration
the process of delegation (Axiom 8).

Axioms 9 to 12 state the failure atomicity property of open-nested transac-
tions whereas Axioms 14 to 17 capture their failure properties with respect to
compensatable and noncompensatable transactions. When a noncompensat-
able component commits, it delegates its access set to its top-level transaction
(Axiom 14). If a top-level transaction aborts, the compensating transaction
comp_t, for the committed component ¢, must commit (Axiom 16). Compen-
sating transactions must execute (and commit) in the reverse order of the
commitment of their corresponding components (Axiom 17).

Axiom 15 states that when a component begins, the component has a
weak-abort dependency on its top-level transaction; also, if the component
is vital, the top-level transaction has an abort dependency on the compo-
nent; otherwise the top-level transaction has a commit dependency on the
component,

The synthesis process followed above can be viewed as the derivation of a
new model by combining and modifying the specifications of existing transac-
tion models, namely, nested transactions and sagas [Garcia-Molina and
Salem 1987]. Obviously, the nested-transaction model and the open-nested-
transaction model have different properties merely due to the fact that they
involve different types of component transactions. (Subtransactions of nested
transactions are nonvital and noncompensatable.) This is still the case even if
we consider the special case of an open-nested transaction all of whose
component transactions are nonvital and noncompensatable and compare it
with a two-level nested transaction. The reason is that these two special
nested and open-nested transactions have different concurrent behaviors and
different visibility properties because of the differences in the specifications of
views and conflict sets. But for these differences, the two special cases of
nested and open-nested transactions have the same permanence and recovery
properties since (1) they have similar structure-induced dependencies and (2)
their Commit and Abort events have similar semantics.

We should point out that our open-nested model is representative of a class
of open-nested models in the sense that it captures many of the common
characteristics of the models in the class. The class includes s-transactions
[Veijalaine and Eliassen 1992], sagas [Garcia-Molina and Salem 1987], poly-
transactions [Sheth et al. 1992], DOM transactions [Buchmann et al. 1992],
and Flex transactions [Bukhes et al. 1993].

3.4 Discussion

The exercise of synthesizing different transaction models reveals the many
advantages of using a simple formalism like ACTA to deal with extended
transactions. We can precisely state the behavior of transactions adhering to
a given transaction model. We can modify some of the properties to tailor a
different transaction model. We can precisely delineate the differences be-
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tween models and understand what contributes to the differences and simi-
larities between transaction models.

Two related questions arise in the context of specifications: (1) are the
specifications for a particular transaction model complete? (2) are the specifi-
cations consistent with the requirements of a particular model?

Just as it is difficult to show the “completeness” of a set of requirements
specifications for a piece of software, it is difficult to show the completeness,
in absolute terms, of a set of axioms pertaining to a model. This is because
extended transactions can be endowed with “open-ended” semantics, whereby
each transaction model can have model-specific significant events where the
events have model-specific semantics. Let us consider an example. The chain
transaction mode! is derived by adding one axiom to the specifications of the
joint-transaction model. That is, the axioms defining the joint-transaction
model are a subset of the axioms defining the chain transaction model. The
extra axiom further constrains the occurrence of the join event and is
motivated by the additional requirement associated with chain transactions,
one that requires that only linear transaction sequences must be produced by
the model. Thus, while the axioms for the joint-transaction model can be
considered to be complete with respect to the requirements of the joint-trans-
action model, they are not complete with respect to the chain transaction
model. However, the axioms of the chain transaction model (with the addi-
tional axiom) can be shown to satisfy the requirements of the chain transac-
tion model and hence can be considered to be complete with respect to these
requirements,

ACTA allows a modeler to specify both the high-level properties (require-
ments) of a model and the lower-level behavioral aspects of the model in
terms of axioms. If the higher-level properties can be proven using the axioms
then with respect to the properties that have been proven, the axioms can be
considered to be complete. Also, then, the axiomatic specifications can be said
to be consistent with the requirements of a particular model.

In some sense, it is also possible to talk about completeness of a set of
axioms in absolute terms. Recall that a modeler is required to specify all the
significant events that can occur and to provide the semantics of all the
events. Also, he /she must specify the view and conflict set of all the different
transaction types that can occur in a model. This will allow us to check
whether all the necessary aspects of a transaction’s effects on objects as well
as on other transactions have been specified. However, since some of the
semantics are model-specific, e.g., there are special constraints on the invoca-
tion of the join event in the chain transaction model, it is not possible to
check whether all the semantics associated with an event have been speci-
fied, unless we check them against a set of higher-level requirements.

The analysis of whether a set of axioms satisfies a set of requirements can
be carried out within ACTA, by using first-order logic-based proof methods.
In the interest of space we included in an appendix the proofs for the
properties of just one model, the nested-transaction model.

Finally, it is important to point out that ACTA is not restricted to a single
version environment nor to a specific recovery or concurrency control scheme.
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In ACTA versions can be captured by appropriately setting the View of a
transaction.

—Each object 0b in a multiversion environment needs to be annotated by its
version number ob!, 0b?, ..., 0b". Then operations on a particular version
can be included in the view of a transaction.

—Recall that View, = H,, implies that the view equals the current history

and applies to in-place updates. View, = (H,,,,, U ¥Yp, 0b|plobl ¢ H)
states that the view equals the union of the committed history and the
operations invoked by the transaction itself. This is the case when inten-

tion lists are used, i.e., deferred updates are done to the objects.

4. CONCLUSION

The ACTA transaction framework was motivated by a need to provide a
RISC-like metamodel for treating extended transactions. What exactly makes
up the ACTA framework? ACTA is a first-order logic-based formalism along
with the precedence relation. Basically, ACTA allows a transaction modeler
to specify the behavioral properties of transactions that adhere to a model in
terms of (1) the set of events associated with a transaction model, (2) the
semantics of these significant events, in terms of their effect on objects and
other transactions, (3) the view of a transaction, and (4) the conflict set of a
transaction. ACTA allows a modeler to specify also the high-level properties
of a transaction model. One can verify then that these properties hold given
the specifications for the model. The final point was not stressed much in this
article because of our focus on synthesis. Specifically, we showed how the
building blocks of ACTA serve as powerful tools for the development of new
transaction models in a systematic and precise way. Thus, besides supporting
the specification and analysis of existing transaction models [Chrysanthis
1991; Chrysanthis and Ramamritham 1990; 1991b], ACTA has the power to
specify the requirements of new database applications.

New transaction models can be synthesized either by tailoring existing
models or by starting from first principles. For instance, chain transactions
were a result of a restriction imposed on the invocation of the Join event
associated with joint transactions such that they result in linear structures
only. This restriction was captured by an axiom which, when added to the
axiomatic definition of joint transactions, yields the definition of chain trans-
actions. Also, reporting transactions and cotransactions were derived from
joint transactions by removing the restriction that Join be a terminating
event. This allows a transaction to join multiple times with another transac-
tion, thereby delegating more operations to the joint transaction. Cotransac-
tions are more flexible than reporting transactions in the sense that they
allow transactions to join back and forth.

Nested-split transactions were derived by combining the axiomatic defini-
tions of nested transactions and split transactions, the requirement be-
ing that nested-split transactions retain the properties of nested and split
transactions.
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Finally, an open-nested-transaction model was synthesized, starting from
first principles. The behavior of transactions adhering to the model were
derived from the specifications of the components of the model.

ACTA has also been applied to derive from the original definition of the
Saga model [Garcia-Molina and Salem 1987], more flexible Saga models in
which failed components can be retried, replaced with alternative ones, or
ignored. More flexibility was achieved by introducing new component trans-
action types, new significant events associated with these types, and new
dependencies describing the relationship between these new transaction
types [Chrysanthis and Ramamritham 1992].

A variety of extended-transaction models, besides those referred to already
in the article, have appeared in the literature. (See Elmagarmid [1992] for a
description of some of these extended transaction models.) In Chrysanthis
[1991], several of these models have been specified and analyzed. Other
authors ([Buchmann et al. 1992], for example) have also used ACTA to
specify the behaviors of their extended-transaction models.

Finally, even though we do not spell out the details in this article, the
ACTA formalism can be used to show the correctness of a particular imple-
mentation of a transaction model by first formalizing the properties of the
specific mechanisms used in the implementation and then showing that they
will maintain the correctness properties of the model. In this context, it will
be useful to investigate ways in which the ACTA primitives themselves can
be used to drive the development of these mechanisms. This is in line with
the work on the ConTract Model [Wichter and Reuter 1992] and CACS
[Stemple and Morrison 1992] in which activities are made up of multiple
(transaction-like) steps, with explicit dependency relationships specified be-
tween the steps. The system ensures that such dependencies hold when the
steps execute.

APPENDIX. THE PROPERTIES OF NESTED TRANSACTIONS

Here, we state the recovery and concurrency properties of nested transactions
and show how they follow from the axiomatic definition of nested trans-
actions (Definition 3.2.1.1) developed in Section 3.2.1. Theorem A.5
which follows from all lemmas in this appendix captures the recovery proper-
ties whereas Theorem A.6 captures the concurrency properties of nested
transactions.

LEmMMA Al Suppose t, is a root or a child transaction in a nested-transac-
tion structure. t, is failure atomic.

ProoF. For ¢, to be failure atomic, ¢, must satisfy the two conditions in
the definition of failure atomicity (Definition 2.5.1.3). These can be shown by
induction on the depth of the hierarchy where a root transaction is at depth 0.

Basis Step 1. Let ¢, be at depth 0. That is, ¢, is a root. Here, we first show
that a root is guasifailure-atomic and then show that a root is also failure
atomic.
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(1) ¢, satisfies the two conditions of quasifailure-atomicity (Definition 3.3):

(a) Condition 1 (the “all” clause) follows directly from Axioms 12 and 13.

{b) Condition 2 (the “none” clause) follows directly from Axioms 14 and
15.

(2) Axiom 20 does not apply to a root transaction since Parent(t,) = ¢, and
hence, a root does not delegate any of the operations in its AccessSet,
when it commits. Consequently, AccessSet, contains all the operations
invoked by ¢ . Hence Axioms 12 to 15 also satisfy the two conditions in
failure atomicity. Thus, ¢, is failure atomic. More simply, since ¢. has
been shown to be quasifailure-atomic, since it does not delegate, it is also
failure atomic.

Basis Step 2. Let ¢, be a subtransaction at depth 1. That is, ¢, is a child of
the root.

(1) (Condition 1) If ¢, commits, due to Axiom 20, all operations invoked by ¢,
are delegated to the root. Since the root is quasifailure-atomic, either all
delegated operations will be aborted by the root or all will be committed
by the root.

(2) (Condition 2) If an operation invoked by ¢, aborts, due to Axioms 14 and
15 all operations invoked by ¢, are aborted.

Thus, t, satisfies the definition of failure atomicity.

Induction Step. Let us assume that subtransactions at depth < £k are
failure atomic. Suppose ¢, is at depth & + 1. Its parent, say ¢,, must be at
depth k.

p?

(1) (Condition 1) If £, commits, due to Axiom 20 all operations invoked by ¢,
are delegated to ¢,. Since ¢, is failure atomic (induction hypothesis)
either all delegated operations will be aborted by £, or one of its ances-
tors, or all will be committed by the root.

(2) (Condition 2) If an operation invoked by ¢, aborts, due to axioms 14 and
15 all the operations invoked by ¢, will be aborted.

Thus, ¢, is failure atomic. O

LEMMA A.2 No OrRPHAN ComMmits. Let H be a history of a nested transac-
tion, t, and t. be transactions where t, is the parent of t,.

(((Commntp € H) A —(Commit, — Commit,lj))

%
((Aborttp € H) A - (Commit, — Aborttp))) = (Abort, € H)

Informally, this states that an orphan, i.e., a child whose parent either
commits or aborts before it terminates, will be aborted.

Proor. This lemma is derived by rewriting (¢, 2 ¢) and (t, # 2 t,)
logically, induced by Axiom 19.
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(D) (t Dt )
o ((Comm|t € H) = ((Commit, € H) = (Commit, — Commit, )))
< (—|(Comm|t eH)V —|(Comm|t eH)V (Commlt - Commlt ))
e (= (ﬂ(Commlt eH)v (Commit — Commit, )) = —(Commit, '€ H))
(given that H is a complete hlstory, t. would have been terminated by
invoking either Commit or Abort (Ax10m 6). Only one of these termination
events can occur in H (Axiom 7). Thus, —(Commit, € H) < (Abort, €
H).
= ((Commit, € H) A —~(Commit, - Commit, ) = (Abort, € H))

@2 ¢, 72t,) < ((Abort eH)= (- (Commlt - Abort ) = (Abort e H))
< (((Abort e H) A ﬁ(Comm|t « Abort, )) = (Abort e H))

(3) From (1) and (2),
(((Commit, € H) A —(Commit, - Commit, )) Y

((Abort e H) A —1(Comm|t — Abort, ))) = (Abort, € H). 0

LEmMMA A.3. If a root transaction t, aborts, all operatzons performed by t,
and its descendants abort.

Abort, € H = VYt (¢t =t,V t € Descendants(t,))
Yob Vp (p,lob] € H = Abort] p,lobl] € H)

Proor. This follows from the no-orphan-commits lemma and the failure
atomicity property of the root transaction and subtransactions. [

LEmMMA A.4. Operations are committed only by root transactions:
Vob Vp VYt Commit, [ plobll € H = Parent(t,) = ¢

Proor. This follows from Axiom 12, Vob Vi Committr[pt[ob]] e H=
Commit, € H A Parent(t,) = ¢. O

THEOREM A.5. Nested transactions have the following recovery properties:
(1) Vt,, t, is a root or a child transaction in a nested-transaction structure; t,

is failure atomic.

(2) An orphan subtransaction, i.e., a child ¢, whose parent t, either commits
or aborts before it terminates, will be aborted (No Orphan Commils
lemma):

(((Commit,p € H) A = (Commit, — Committp)) v
((Aborttp € H) A = (Commit, — Aborttp))) = (Abort, € H).

(3) If a root transaction t, aborts, all operations performed by t, and its
descendants abort:

Abort, € H = V't (¢t =t, V t € Descendants(t,))
Yob Vp (q,lob]l € H = Abort[ p,lobl]l € H)

(4) Operations are committed only by root transactions:
Yob Vp VtCommitt,[p,[ob]] € H = Parent(t,) = &.
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In the nested-transaction model, given that subtransactions delegate their
operations to their parent upon commitment, root transactions are responsi-
ble for all the operations invoked by their committed descendants; the
committed nonroot transactions do not commit any operations. The history of
events relating to committed nested transactions will appear as though only
the root transactions invoked operations on objects and, given the following
theorem, the operations were invoked serializably.

THEOREM A.6. A history of committed root transactions is serializable.

Proor. Let H be a history of committed root transactions. Consider a root
transaction {. Given Axioms 10 and 20, &€ relation, and consequently %
relation (recall from Section 3, (¢, #'¢,) = (¢, &) t,)) is established between ¢
and any other transaction ¢’ if ¢ (or any of its committed descendants) has
invoked operations conflicting with those invoked by ¢’ (or any of its commit-
ted descendants). Thus, given Axiom 11, since H, contains only committed
transactions, H, is serializable (Definition 3.2). [
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