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1. INTRODUCTION

Although powerful, the transaction model adopted in traditional database

systems lacks functionality and performance when used for applications that

involve reactive (endless), open-ended (long-lived), and collaborative (interac-

tive) activities. Hence, various extensions to the traditional model have been

proposed, referred to herein as extended transactions. To facilitate the formal

description of transaction properties in an extended transaction model, we

have developed ACTA,l a comprehensive transaction framework. Specifically,

using ACTA, one can specify and reason about the nature of interactions

between extended transactions in a particular model. ACTA characterizes the

semantics of interactions (1) in terms of different types of dependencies

between transactions (e.g., commit dependency and abort dependency) and

(2) in terms of transactions’ effects on objects (their state and concurrency

status, i.e., synchronization state). Through the former, one can specify

relationships between significant (transaction management) events, such as

begin, commit, abort, split, and join, pertaining to different transactions.

Also, conditions under which such events can occur can be specified precisely.

Transactions’ effects on object’s state and status are specified by associating a

view and a confZict set with each transaction and by stating how these are

affected when significant events occur. A view of a transaction specifies the

state of objects visible to that transaction while the transaction’s conflict

set contains those operations with respect to which conflicts need to be

considered.

In Chrysanthis [1991] and Chrysanthis and Ramamritham [ 1991b], we

introduced the formalism underlying ACTA and demonstrated its expressive

power by using it to define extended-transaction models in an axiomatic form,

specify correctness properties of the models, and prove that a particular

model satisfies the specified properties. This article presents ACTA as a tool

for the synthesis of extended transaction models, one that supports the

development and analysis of new extended-transaction models in a system-

atic manner.

New transaction definitions can be derived either by tailoring existing

transaction models or by starting from first principles. As examples of the

former we develop Chain transactions (Section 3.1.2), Reporting transactions

(Section 3.1.3), and Cotransactions (Section 3.1.4) by modifying the specifica-

tion of joint transactions [Pu et al. 1988], and derive the Nested-Split-trans-

action model (Section 3.2) by combining the specifications of nested- and

split-transaction models [Moss 1981; Pu et al. 1988]. As an example of the

latter, we synthesize in Section 3.3 an open-nested-transaction model from

the high-level requirements on transactions adhering to the model.

1We chose the name ACTA, meanmg actzons in Latin. given the frameworks appropriateness
for expressing the properties of actions used to compose a computation.
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2. THE ACTA FORMAL FRAMEWORK

ACTA is a first-order logic-based formalism, It has five simple building

blocks: history, dependencies between transactions, the view of a transaction,

the conflict set of a transaction, and delegation.

This section provides a concise, yet complete, introduction to ACTA and its

formal underpinnings. Section 2.1 provides some of the preliminary concepts

underlying the ACTA formalism whereas Section 2.2 focuses on the concept of

history, which is central to the formalism. ACTA allows the specification of

the effects of transactions on other transactions and their effect on objects by

means of constraints on histories. Intertransaction dependencies, discussed

in Section 2.3, form the basis for the former while visibility of and conflicts

between operations on objects, discussed in Section 2.4, form the basis for the

latter. We will use examples from various extended transaction models to

illustrate the concepts,

2.1 Preliminaries

2.1.1 Object Events. A database is the entity that contains all the shared

objects in a system. A transaction accesses and manipulates the objects in the

database by invoking operations specific to individual objects. The state of an

object is represented by its contents. Each object has a type, which defines a

set of operations that provide the only means to create, change, and examine

the state of an object of that type. It is assumed that operations are atomic

and that an operation always produces an output (return value), that is, it

has an outcome (condition code) or a result. The result of an operation on an

object depends on the state of the object. For a given state s of an object, we

use return(s, p) to denote the output produced by operation p, and state(s,

p) to denote the state produced after the execution of p.

Definition 2.1,1.1. Invocation of an operation of an object is termed an

object event. The type of an object defines the operations and thus, the object

events that pertain to it. We use pt[ ob ] to denote the object event correspond-

ing to the invocation of the operation p on object ob by transaction t and OEt

to denote the set of object events that can be invokedz by transaction t (i.e.,

p,[ob] = OE, ).

The effects of an operation p invoked by a transaction t on an object ob are

not made permanent at the time of the execution of the operation. They need

to be explicitly committed or aborted.

—The effects of an operation p invoked by a transaction t on an object ob

are made permanent in the database when pt[ ob ] is committed. The

corresponding event is denoted by Commit [ p,[ ob ]].

—The effects of an operation p invoked by a transaction t on an object ob

are obliterated when the pt[ ob ] is aborted. The corresponding event is

2We WI1l use ‘Invoke event” to mean “cause an event to occur.” One of the meanings of the word

“revoke” IS “to bring about “
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Effects

on TransactIons on Objects

I
[nterlransaction View of Conflict Set Dele~atlon

Dependency Transaction of Transaction

Fig. 1. Dimensions of the ACTA framework.

denoted by Abort[ Pt[ obll. Thus, once an operation is aborted, the state of
the object will be as though the aborted operation never executed.

Depending on the semantics of the operations and on the object’s recov-

ery properties, aborting an operation may force the abortion of other

operations as well. For instance, in the case of atomic objects assumed by

most transaction models, all operations that have observed the effects of an

aborted operation are also aborted. For example, if the return values of

subsequently executed operations reflect the state of the object produced by

the aborted operation, these operations would also be aborted in the case of

atomic objects (see Section 2.5. 1). Nonatomic objects, on the other hand,

permit weaker consistency and recovery semantics such that operations

that observed the effects of aborted operations may not be affected.

Commit and Abort operations are defined on every object for every opera-

tion. Invoked operations that have neither committed nor aborted are termed

in-progress operations. Typically, an operation is committed only if the invok-

ing transaction commits, and it is aborted only if the invoking transaction

aborts. However, it is conceivable that an extended transaction may commit

only a subset of its operations on an object while aborting the rest. Further-

more, through delegation (see Section 2.4), a transaction other than the

event-invoker, i.e., the transaction that invoked an operation, can be granted

the responsibility to commit or abort the operation.

2.1.2 Significant Events. In addition to the invocation of operations on

objects, transactions invoke transaction management primitives. For exam-

ple, atomic transactions are associated with three transaction management
primitives: Begin, Commit, and Abort. The specific primitives and their se-

mantics depend on the specifics of a transaction model. For instance, whereas

the Commit by an atomic transaction implies that it is terminating success-

fully and that all of its effects on the objects should be made permanent in

the database, the Commit of a subtransaction of a nested transaction implies

that all of its effects on the objects should be made persistent and visible with

respect to its parent and sibling subtransactions.3 Other transaction manage-

—.
3As shown in Section 2.4, in ACTA, the ahdity of a nested subtransaction to make its effect

visible to its parent is specified by means of the notion of delegation.
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ment primitives include Spawn, found in the nested-transaction model, and

Split and Join, found in the split-transaction model [Pu et al. 1988].

Definition 2.1.2.1. Invocation of a transaction management primitive is

termed a significant event. A transaction model defines the significant events

that can be invoked by transactions adhering to that model. SEt denotes the

set of significant events relevant to transaction t.

ACTA provides the means by which significant events and their semantics

can be specified. It is useful to distinguish, given the set of significant events

associated with a transaction t, between events that are relevant to the

initiation of t and those that are relevant to the termination of t.

Definition 2.1.2.2. Initiation events, denoted by IEt, are a set of significant

events that can be invoked to initiate the execution of transaction t:lEt c SE(.

Definition 2,1.2.3. Termination events, denoted by TEt, are a set of signifi-

cant events that can be invoked to terminate the execution of transaction t:

TE, c SE,.

For example, in the split-transaction model, Begin and Split are transaction

initiation events whereas Commit, Abort, and Join are transaction termina-

tion events.

A transaction is in progress if it has been initiated by some initiation event

and has not yet executed one of the termination events associated with it. A

transaction terminates when it executes a termination event.

2.2 Histories and Conditions on Event Occurrences

Fundamental to ACTA is the notion of history [Bernstein et al. 1987] which

represents the concurrent execution of a set of transactions T. ACTA captures

both the effects of transactions on other transactions and their effects on

objects through constraints on histories. Transaction models are defined in

terms of a set of axioms which are invariant assertions about the histories

generated by the transactions adhering to the particular model. Axioms can

also be explicit preconditions or postconditions for operations and transac-

tion management primitives. Consequently, the correctness properties of

different transaction models can be expressed in terms of the properties of

the histories produced by these models.

Definition 2.2.1. A history H of the concurrent execution of a set of
transactions T contains all the events, significant events, and object events

invoked by the transactions in T and indicates the (partial) order in which

these events occur.

Definition 2.2.2. The predicate ● _ ● r is true if event e precedes event c‘

in history H. It is false, otherwise. (Thus, ● + ● ‘ implies that ~ = H and
E’ GH.)

H denotes the complete history. When a transaction invokes an event, that

event is appended to the current history, denoted by HCt. The projection of a
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history H according to a given criterion is a subhistory that satisfies the

criterion. For instance, the projection of a history with respect to committed

transactions, denoted by HCOm,~, includes only those events invoked by com-

mitted transactions. The partial order of the operations in a history pertain-

ing to T is consistent with the partial order -+ of the events associated with

each transaction t in T.
In general, we use ●, to denote the invocation of an event e, significant or

object, by transaction t.We will omit the event-invoker when it is not

important to specify the transaction which causes the event to occur in a

history(e =H= 3tef =H).

The occurrence of an event in a history can be affected in one of three ways:

(1) an event e can be constrained to occur only after another event ~‘; (2) an
event e can occur only if a condition c is true; and (3) a condition c can

require the occurrence of an event e.

Definition 2.2.3. ( ● = H) + Condition~, where - denotes implication,

specifies that the event c can belong to history H only if Condition~ is
satisfied. In other words, Condition~ is necessary for e to be in H. Condi-

tion~ is a predicate involving the events in H.

Consider ( c‘ = H) ~ ( ● + ● ‘). This states that the event ~‘ can belong to the

history H only if event e occurs before c‘.

Definition 2.2.4. Condition~ ~ (e = H) specifies that if Condition~ holds,

● should be in the history H. In other words, Condition~ is sufficient for e to

be in H.

Consider (e ~ ●‘) ~ ( a = H). This states that if event e occurs before e‘

then event a belongs to the history.

2.3 Effects of Transactions on Other Transactions

Dependencies provide a convenient way to specify and reason about the

behavior of concurrent transactions and can be precisely expressed in terms

of the significant events associated with the transactions. Basically, depen-

dencies are constraints on the histories produced by the concurrent execution

of interdependent transactions. In the rest of this section, after formally

specifying different types of dependencies, we identify the source of these

dependencies.

2.3.1 Types of Dependencies. Let t,and t]be two extended transactions

and H be a finite history which contains all the events pertaining to t,and

t].

Commit Dependency (tJ %~ t,). If both transactions t,and tjcommit then

the commitment of t,precedes the commitment of t,;i.e.,

(Committ, = H s Committ, = H + (Commit,, + Committ, )j.
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Abort Dependency (tJ .u9 t,). If t,aborts then tjaborts; i.e.,

Abortt, ● H + Abortt = II.
J

Weak-Abort Dependency (t] P79 t,). If t, aborts and t,has not yet commit-

ted, then t~ aborts. In other words, if t] commits and t, aborts then the

commitment of t]precedes the abortion of t,in a history; i.e.,

We would like to note that this list of dependencies involving the Commit and

Abort events is not exhaustive. Other dependencies that involve significant

events besides these events can be defined. As new significant events are

associated with extended transactions, new dependencies may be specified in

a similar manner (e.g., see Chrysanthis [ 1991]). In this sense, ACTA is an

open-ended framework.

Besides the logical representation introduced above, intertransaction de-

pendencies can be expressed in a pictorial form as graphs whose vertices

represent transactions and arcs of different shapes represent different depen-

dencies. We refer to such graphs as dependency graphs. Figure 2 shows the

pictorial representation of the dependencies defined above and in Section 3.2.
In general, dependency graphs can be more illustrative than the correspond-

ing sets of axioms in expressing the structure of extended transactions, such

as the explicit nesting structure of nested transactions. (As discussed in the

next section, one source of dependencies is the structure of extended transac-

tions.) Through dependency graphs, it is possible to capture both the static

structure as well as the dynamics of the evolution of the structure of

transactions. The structure of transactions evolves as significant events

inducing intertransaction dependencies occur.

2.3.2 Source of Dependencies. Dependencies between transactions may be

a direct result of the structural properties of transactions, or may develop

indirectly as a result of interactions of transactions over shared objects. These

are elaborated below.

Dependencies due to Structure. The structure of an extended transaction

defines its component transactions and the relationships between them.

Dependencies can express these relationships and thus can specify the links

in the structure. For example, in hierarchical y structured nested transac-

tions, the parent/child relationship is established at the time the child is

spau’rl~d This ;S e~pressed by ~ child transaction tC establishing a weak-abort
dependency on its parent tp (t,2’9 tp) and a parent establishing a commit

dependency on its child (t,,%’s7t,).

Spawn,P[tC] =H+ (tC7#~tP) ~ (tP fi”9tC)

The weak-abort dependency guarantees the abortion of an uncommitted child

if its parent aborts. Note that this does not prevent the child from committing

and making its effects on objects visible to its parent and siblings. (In nested

transactions, when a child transaction commits, its effects are not made
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Fig. 3. Structure of nested transactions.

permanent in the database. They are just made visible

Section 3.2.1 for a precise formal definition of nested

commit dependency ensures that an orphan, i.e., a child

parent has terminated, will not commit.

to its parent. See

transactions.) The

transaction whose

Dependencies due to Behavior. Dependencies formed by the interactions of

transactions over a shared object are determined by the object’s synchroniza-

tion properties. Broadly speaking, we can say that two operations conflict if

the order of their execution matters. For example, in the traditional frame-

work, a compatibility table [Bernstein et al. 1987] of an object ob expresses

simple relations between conflicting operations. A conflict relation has the

form

(P, L[o~l %[w) + (t,9tL)1

indicating that if transaction t, invokes an operation p and later a transac-

tion tjinvokes an operation q on the same object ob, then tjshould develop a

dependency of type 2? on t,. As we will see in the next section, ACTA allows

conflict relations to be complex expressions involving different types of depen-

dencies, operation arguments, and results, as well as operations on the same

or different objects.

2.4 Objects and the Effects of Transactions on Objects

Correctness of concurrent transaction executions depends on how transac-

tions affect each other as well as how they affect the objects. This, in turn,

depends on the effects of the significant events associated with a transaction

ACM TransactIons on Database Systems, Vol 19, NO 3, September 1994
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and of the operations invoked by a transaction. We studied the former in the

previous subsection. We focus on the latter now.

We begin with a discussion of the effects of operations on transactions and

their interrelationships. The visibility of the effects of one transaction’s

operations to another transaction are then discussed.

2.4.1 Conflicts between Operations and the Induced Dependencies. We

begin with the notion of conflicts between operations on an object and discuss

how it induces dependencies between transactions. We then refine it into

return-value-dependent and return-value-independent conflicts so as to

weaken the induced dependencies. Section 2.5 uses these notions to define

formally the correctness of both transactions and objects.
H(”bl, the projection of the history H with respect to an object ob, contains

the history of operation invocations on an object ob. Hf”b) = p ~ o pz o . . . 0 p.

indicates both the order of execution of the operations, (p, precedes p,+ 1), as

well as the functional composition of operations. Thus, a state s of an object

produced by a sequence of operations equals the state produced by applying

the history H(”b) corresponding to the sequence of operations on the object’s

initial state SO(s = state( so, H(”b))). For brevity, we will use E?(”b ) to denote

the state of an object produced by H(Ob), implicitly assuming initial state so.

Definition 2.4.1.1. Two operations p and q conf7ict in a state produced by

H(”b), denoted by conflict(H(Ob), p, q), iff

(state(H(Ob)Op, q) # state(H(Ob)Oq, p)) v

(return(H(”b), q) # return(H(Ob~ o p, q)) v

(return(H(”b), p) # return(HLOb) o q, p)).

Two operations that do not conflict are compatible.

Thus, two operations conflict if their effects on the state of an object or their

return values are not independent of their execution order.

Given a history H in which Pf,[ ob ] and q~l[ ob ] occur, the state of ob when

Pt,is executed is known from where Pttoccurs in the history.Hence, from
now on, we drop the first arguments in con fZict when it is implicit from the

context.

Interactions between conflicting operations can cause dependencies of dif-

ferent types between the invoking transactions. The type of interactions

induced by conflicting operations depends on whether the effects of opera-

tions on objects are irn mediate or deferred. An operation has an immediate

effect on an object only if it both changes the state of the object as it executes

and the new state is visible to subsequent operations. Thus, an operation p

operates on the (most recent) state of the object, i.e., the state produced by the

operation immediately preceding p. For example, effects are immediate in

objects which perform in-place updates and employs logs for recovery. Effects

of operations are deferred if operations are not allowed to change the state of

an object as soon as they occur, but instead, the changes are effected only

upon commitment of the operations. In this case, operations performed by a
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transaction are maintained in intentions lists. In the rest of the article, we

will consider the situation when the effects are immediate. The effects of

considering deferred updates are considered in Section 3.4.

As mentioned earlier, in ACTA, the concurrency properties of an object are

formally expressed in terms of confZict relations of the form:

conflict (pi [oh], qr [oh]) A (pt [0~] + qt,[o~]) - condition,
J

where Condition~ is typically a dependency relationship involving the trans-

actions t,and tjinvoking conflicting operations p and q on an object ob. For

instance, commutativity semantics of operations induce abort dependencies

between conflicting operations:

Obviously, the absence of a conflict relation between two operations defined

on an object indicates that the operations are compatible and do not induce

any dependency.4

Since state changes are observed only via return values, the return values

of conflicting operations can be considered to produce weaker types of depen-

dencies than abort dependencies, Toward this end, it is useful to distinguish

between return-value-dependent and return-value-independent conflicts.

Definition 2.4.1.2. return-value-independent( H(”b), p, q ) is true if con-

fZict(H( “b), p, q) is true and the return value of q is independent of whether

p precedes q, i.e., return(H([’b) o p, q) = return(H(Ob), q); return-value-depen-

dent(H(”b), p, q) is true if confZict(H(Ob), p, q) is true and return(H(Oh) o p,

q) # return(H(’’~), q).

Whereas commutativity does not distinguish between return-value-depen-

dent and return-value-independent conflicts, a weaker conflict notion, called

recoverability [Badrinath and Ramamritham 1992] results if we do. Specifi-
cally, the weaker %9 relationship is induced between return-value-indepen-

dent conflicting operations rather than .M&Z:

return-value-independent( p, q) A ( pt, [ ob ] + qt, [ ob ] ) * ( t~ %~ t,).

The generality of the conflict relations allows ACTA to capture different

types of type-specific concurrency control discussed in the literature

[Badrinath and Ramamritham 1992; Chrysanthis et al. 1991; Herlihy and

4Clearly, when an revoked operation confhcts with an operation m progress, a dependency, e.g.,

an abort or commit dependency, will be formed if the invoked operation is allowed to execute.

That is, this may induce an abortion or a specific commit ordering. One way to avoid this is to

force the revoking transaction to (a) wait until the confecting operation terminates (this is what

the tradhional “no” entry in a compatlblhty table means) or (b) abort. In either case, conflict

relationships between operations imply that the transaction management system must keep

track of in-progress operations and of dependenmes that have been reduced by the confhct. A

commonly used synchronization mechanism for keeping track of in-progress operations and

dependencies M based on (logical) locks.
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Weihl 1988; Schwarz and Spector 1984; Weihl 1988], and even to tailor them

for cooperative environments [Fernandez and Zdonik 1989; Skarra 1991].

2.4.2 Controlling Object Visibility

View of a Transaction. As defined earlier, visibility refers to the ability

of one transaction to see the effects of another transaction on objects uhile

they are executing. ACTA allows finer control over the visibility of ob-

jects by associating two entities, namely, view and conflict set, with every

transaction.

Definition 2.4.2.1. The viezu of a transaction, denoted by Viewt, specifies

the objects and the state of objects visible to transaction t at a point in time.

This implies that that view specifies what objects can be operated on by a

transaction. Additionally, view specifies the state of these objects that is

visible to the operations invoked by the transaction.

Viewt is formally a projection of a history where the projected events

satisfy some criterion, Projection–Condition, typically involving H,f, the

current history. In other words, Viewt is the subhistory constructed by

eliminating any events in H,f that do not satisfy the given Projection–Condi-

tion while preserving the partial ordering of events in the view. For example,

the view of a subtransaction t, in the nested-transaction model is defined to

be the current history, i.e., View~ = HC,. This states that (the effects of) all

the events that have occurred th& far are visible to t,,meaning that tccan

view the most recent state of objects in the database.

For a slightly more elaborate example, suppose that a subtransaction t, is

restricted to view, at any given moment during its execution, only those

objects that have been accessed by its parent transaction tp. The

Projection _Condition used to construct the view of such a subtransaction t,is

specified as follows.

vq, t, ob, qt[obl = Viewt, + 3rrtl, [obl ~HCf

That is, the view of t, is the history projected to contain all the operations q

invoked by any transaction t on any object ob on which tp,the parent of t,,

has performed some operation r.

Conflict Set of a Transaction

Defirution 2.4.2.2. The confZict set of a transaction t, denoted by Con-

fi?ictSet,, contains those operations in the current history with respect to

which the effects of conflicts have to be determined when t invokes an

operation.

A transaction t can invoke an operation on an object without worrying about

the consequences of conflicting with another operation invoked by transaction

t,if the operation performed by t,is in the view of t but is not included in the

conflict set of t.

ConflictSet, is a subset of the object events in HCt that satisfy some

Predicate:

Con flictSet, = {p,, [ ob ] I Predicate}.
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For example, let us consider nested transactions once again. In nested

transactions, a subtransaction tccan access any object accessed currently by

one of its ancestors ta,even if the operations performed by t, conflict with

those performed by ta.This is captured by:

ConfZictSett = {P,,[obl I Irzprogress(p,,[ obl) A t,+ t,A t,@ Ancestor(tC)};
Ancestor(tC ) is the set of ancestors of t,.
~nprogress( pf [ oh]) is true with respect to current history H, t if pt, [ Ob 1 has

been performed but has been neither committed nor aborted yet; I.e.,
Inprogress(p, [oh]) = (( Pt [ ob] ~ ~,,~ A

(( Commit[ ~,,[ oh]] @IIC~) A (Abort[ p,,[ oh]] ~ H,,))).

In other words, any operation invoked by an ancestor of t, is not contained in

ConflictSett . That is, the effects of the conflict between an operation invoked

by a child &ansaction t, and an operation p invoked by t,on an object ob

need to be taken into account only if(1) t,and t,are different, (2) t,is not an

ancestor (in the nested-transaction structure) of t,,and (3) p is still in
progress. For this reason, a transaction tC can invoke an operation that

conflicts with another in progress, invoked by its ancestor t.,ignoring the

dependencies that may form in the process.

The axiomatic definition of a transaction model specifies the Viewt and

ConflictSett of each transaction t in that model. These determine if a new

event can be invoked. Specifically, the preconditions of the event derived from

the axiomatic definition of its invoking transaction are evaluated with respect

to HCt using Viewt and Conf7ictSett. If its preconditions are satisfied, the new

event is invoked and appended to the HC~ reflecting its occurrence. The

axiomatic definitions specify also how new dependencies may be established.

As we saw earlier, if an event is an object event, the operation semantics may

also induce new dependencies.

Delegation by a Transaction. The final building block of ACTA is Delega-

tion. Traditionally, the invoker of an operation has the responsibility for

committing or aborting the operation. In general, however, the operation

invoker and the one committing the operation may be different.

Definition 2.4.2.3. ResponsibleTr( P,,[ ob 1) identifies the transaction re-

sponsible for committing or aborting the operation pt, [ ob 1 with respect to the

current history HC~.

In general, a transaction may delegate some of its responsibilities to another

transaction. More precisely:

Definition 2.4.2.4. Delegatet [ tj, pt [ ob 11 denotes that t, delegates to t, the

responsibility for committing or aborting operation pt,[ Ob1. More generally,

Delegatet [ tJ, DelegateSet ] denotes that t,delegates to t] the responsibility

for committing or aborting each operation in the DelegateSet.

Delegation has the following ramifications, which are formally stated in

Chrysanthis [1991]:

—ResponsibleTr( pLL[ obl) is t,, the event-invoker, unless t,delegatesPt,[Ob1

to another transaction, say tJ,at which point ResponsibleTr( pt, [ ob ]) will
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become tJ. If, subsequently, tj delegates pf,[obl toanother transaction, say

th,ResponsibleTr( Pt, [ ob ]) becomes th.

—The precondition for the event Delegatet,[ t~, pt [ ob 1] is that Responsi-

bleTr(ptt[ob]) is t,. The postcondition will [imply that Responsi-

bleTr(p,,[ oh]) is tk.

—A precondition for the event Abortt,[ p, [ ob ]] is that ResponsibleTr( pt,[ obl)

is tj.Similarly, a precondition for the event Corn mit,,[ p,l[ ob ]] is that

ResponsibleTr( p,t[ obl~ is t,.Hence, from now on, unless essential, we will

drop the subscript, e.g., t], associated with the operation abort and commit

events.

—Delegation cannot occur in the event that the delegatee has already

committed or aborted, and it has no effect if the delegated operations have

already been committed or aborted.

—From the perspective of dependencies, once an operation is delegated, it is

as though the delegatee performed the operation. Thus, delegation redi-

rects the dependencies induced by delegated operations from the delegator

to the delegatee—the dependencies are sort of responsibilities.

Note that delegation broadens the visibility of the delegatee and is useful in

selectively making tentative or partial results as well as hints, such as,

coordination information, accessible to other transactions.

In controlling visibility, we will find it useful to associate each transaction

with an access set.

Definition 2.4.2.5. AccessSet, = {p,i[ ob] I ResponsibleTr(pti[ oh]) = t}; i.e.,

AccessSet, contains all the operations for which t is responsible.

In nested transactions, when the root commits, its effects are made perma-

nent in the database, whereas when a subtransaction commits, via inheri-

tance, its effects are made visible to its parent transaction. The notion of

inheritance used in nested transactions is an instance of delegation. Specifi-

cally, when a child transaction tccommits, tcdelegates to its parent tpall the

operations that it is responsible for:

Commit,, e H = Delegate,L[ tP, AccessSet,L ] c H.

Delegation need not occur only upon commit or abort, but a transaction can

delegate any of the operations in its access set to another transaction at any
point during its execution. This is the case for Cotransactions and Reporting

Transactions, described in Section 3.

Delegation can be used not only in controlling the visibility of objects, but

also to specify the recovery properties of a transaction model. For instance, if

a subset of the effects of a transaction should not be obliterated when the

transaction aborts while at the same time they should not be made perma-

nent, the Abort event associated with the transaction can be defined to

delegate these effects to the appropriate transaction. In this way, the effects

of the delegated operations performed by the delegator on objects are not lost
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even if the delegator aborts. Instead, the delegatee has the responsibility for

committing or aborting these operations.

In cooperative environments, transactions cooperate by having intersecting

views, by allowing the effects of their operations to be visible while ignoring

the effects of conflicts, and by delegating operations to each other. By being

able to capture these aspects of transactions, the ACTA framework is applica-

ble to cooperative environments.

In the rest of the article, we assume that delegation is done by the system

in response to the invocation of a transaction management event, such as

Commit in the above example. This implies that as far as the history is

concerned, the commit and delegate events occur concurrently.

2.5 Simple Examples of ACTA Specifications

Atomic transactions combine the properties of serializability and failure

atomicity. These properties ensure that concurrent transactions execute with-

out any interference as though they executed in some serial order, and that

either all or none of a transaction’s operations are performed. Below we first

define the correctness properties of transactions and objects starting with the

serializability correctness criterion and the failure atomicity property. Subse-

quently, we state a set of axioms that are applicable to all transaction models.

2.5.1 Serializability, Object Correctness, and Failure Atomicity

Let T be the set of transactions.

Let B be a binary relation on transactions in T.

Let TCO~m be the subset of T containing committed transactions.

Let HCO~~ be the history of events relating to transactions in TCO.,~.

Definition 2.5.1.1 Serializability

(t, %’tJ) iff ~ob 3P, q(conflict(ptt[ ob], qt,[obl) A (pt,[obl + qt,[obl))

Let $3’” be the transitive-closure of E’; i.e.,

H ~0~~ is (confZict ) serializable iff Vt G T,omm 1 (t %’V t)

Conflicting operations induce serialization ordering requirements (denoted by

the % relation above), and serializability demands that this ordering must be

acyclic. Whereas serializability is concerned with the correctness of execution

of committed transactions, we must also worry about the correctness of the

objects as operations execute, and more importantly, as operations abort.
First, we must ensure that operations on individual objects also execute

serializable, that is, as if the committed transactions visited the objects one

after another. Second, we must ensure that when an operation aborts, it also
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aborts any other operation which is return-value dependent on it and there-

fore has observed the effects of the aborted operation.

Definition 2.5.1.2. Objects’ Correctness. An object ob behaves correctly iff’

(return-zxdue-dependent( p, q) ~ ( pt, [ ob 1 + qt,[ ob 1)) A

([ Comrnit[p,L[obl] - q,,[obl] V (Abort[p,,[obl] + qt,[obl)] -

[( Abort[p,[ob,] GH06 ) + (Abort[q, [obl] =H(oh)j].J

(t, ~~b tj)iff=p, q(conflict(p,t[ obl, q,,[obl] A (pt,[obl + qt,[obl)]

An object ob behaves serializable iff

An object ob is atomic if ob behaves correctly and serializabl~.

The first statement states that for an object to behave correctly it must

ensure that when an operation aborts, any return-value-dependent operation

that is subsequently executed, but prior to the abortion, must also be aborted.

This ensures the correct behavior of objects in the presence of failures

assuming immediate effects of operations on objects. A serializable behavior

of an object is ensured by preventing committed transactions from forming

cyclic %o~ relationships where %06 considers only the ‘6 relationships that

occur from accessing the object ob (%0~ c %’).

Definition 2.5.1.3. Transaction t is failure atomic if

(1) 3ob 3P (Commit[p,[ob]] G 1?) =

‘dob’ Vq ((q,[ob’] = H) - (Comrnit[q,[ob’]] ● H))

(2) 3ob =p (Abort[p,[ob]] = H) =

Vob’ Vq ((q,[ob’] = H) * (Abort[q,[ob’]] ● H)).

As mentioned earlier, failure atomicity implies that all or none of a transac-

tion’s operations are committed (by some transaction’). In the above defini-
tion, the “all” clause is captured by condition 1 which states that if an

operation invoked by a transaction t is committed on an object, all the

operations invoked by t are committed. The “none” clause is captured by

condition 2 which states that if an operation invoked by a transaction t is

aborted on an object, all the operations invoked by t are aborted. Note that

failure atomicity does not require an operation to be committed or aborted by

the invoking transaction.

In the same way that serializability and failure atomicity were expressed

above, other correctness properties of extended transactions, such as quasi-
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serializability [Du and Elmagarmid 1989] and predicatewise serializability

[Korth and Speegle 1988] can be expressed in ACTA [Chrysanthis 1991].

2.5.2 Fundamental Axioms of Transactions. Recall that each transaction

model defines a set of significant events that transactions adhering to that

model can invoke in addition to the invocation of operations on objects. A

transaction t is always associated with a set of initiation-significant events

( L13,) that can be invoked to initiate the execution of the transaction, and a

set of termination-significant events (TE~ ) that can be invoked to terminate

the execution of the transaction. A set of Fundamental Axioms which is

applicable to all transaction models specifies the relationship between signifi-

cant events of the same or different type, and between significant events and

operations on objects.

Definition 2.5.2.1. Fundamental Axioms of Transactions. Let t be a trans-

action and H ~ the projection of the history H with respect to t.

(l)va=lE, (a= H’)+ 3B=IEt (a+ /9)
A transaction cannot be initiated by two different events.

(2) V8GTE, 3ae IE, (ti GH’)a (a+ 8)
If a transaction has terminated, it must have been previously initiated.

(3)vy ETE, (7 EH’)+3a GTE, (74 a)

A transaction cannot be terminated by two different termination events.

(4) Vob Vp (pJob] G H) = ((% G IE, (a + p,[ob])) A

(=Y ● TE, (pt[obl + y)))

Only in-progress transactions can invoke operations on objects.

2.5.3 Axiomatic Definition of Atomic Transactions. Below we express in

ACTA the basic properties of atomic transactions with a set of axioms.

Definition 2.5.3.1. Aviomatic Definition of Atomic Transactions. t denotes

an atomic transaction.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

SE, = {Begin, Commit, Abort}

IE, = {Begin}

TE, = {Commit, Abort}

t satisfies the fundamental Axioms 1 to 4 (Definition 2.5.2.1)

View, = H,,
A transaction sees the current state of the objects in the database.

ConfZictSett = {p,[ obl I ResponsibleTr(p,[ obl) # t,Inprogresdp,[ obl)}

Effects of conflicts have to be considered against all in-progress opera-

tions performed by different transactions and for which t is not respon-

sible.

Vob 3ppt[ob] c H + (ob is atomic)
All objects upon which an atomic transaction invokes an operation are

atomic objects (see Definition 2.5.1.2). That is, they detect conflicts and

induce the appropriate dependencies.
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(8)

(9)

(lo)

(11)

(12)

. P K. Chrysanthls and K. Ramamritham

Committ G H = l(t %“ t).

An atomic transaction can commit only if it is not part of a cycle of %

relations developed through the invocation of conflicting operations.5

This and the next two axioms define the semantics of the Commit event
of atomic transactions in terms of the Commit operation defined on

objects.

~ob Sp Committ[ pt[ob]] = H * Committ = H

If an operation is committed on an object, the invoking transaction must

commit.

Commit, ● II = ‘dob Vp(p, [ob] = H - CommitJp,[obll = H)

If a transaction commits, all the operations invoked by the transaction

are committed.

3’ob 3p AbortJ Pt[obll = H - Abortt G ET
If an operation is aborted on an object, the invoking transaction must

abort. This and the following axiom define the semantics of the Abort
event in terms of the Abort operation defined on objects.

Abort, = H + Vob Vp(pJob] = H = Aboi-tJ p,[ob]] = H)

If a transaction aborts, all the operations invoked by the transaction are

aborted. Based on the above axioms, the failure atomicity and serializ-

ability properties of atomic transactions can be shown (see Chrysanthis

[1991]).

3. SYNTHESIZING NEW TRANSACTION MODELS

Below we synthesize two new families of extended-transaction models. The

first is derived from the joint-transaction model [Pu et al. 1988]. The second

is derived from the nested-transaction model [Moss 1981] and the split-trans-

action model [Pu et al. 1988]. We also synthesize a new open-nested-transac-

tion model starting from first principles and high-level requirements.

A common characteristic of these new extended-transaction model is that

they support delegation between transactions. The following definition of

conflicts takes into account the presence of delegation.

Definition 3.1. Let EN be a binary relation on transaction in TCO~~.

Vtl, t] = TCO,~~, t, # t]

(t, %; t~) iff

3ob lp, q ~t~, ( , [Obl, q, [W)tn (conflict p 7, .

~(pt,,, [obl - q,n[obl) ~

(ResporzsibleT’r( p,r,l[ oh]) = t,]

~ ( ResponsibleTr( p,rl[ ob 1) = tj]]

5Note that the atomiclty property local to individual objects is not sufficient to guarantee

serlahzab]e execution of concurrent transactions across all objects [ Weihl 1984].
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This definition extends the definition of the %’ relation (Definition 2.5.1.1) to

include the serialization orderings due to the delegated objects. To see that

%~ is a generalization of % ((t, ~ tj) = (t, %’~ tj)),consider the case in which

delegation does not occur. In the absence of delegation, tnl = t,and tn = tj.In

this way, by substituting %~ for % in the definition of serializability (Defini-

tion 2.5. 1.1), transactions are serialized with respect to operations for which

they are responsible.

Definition 3.2. HC<,~~ is (confZict ) serializable iff

There is no need to revisit the definition of failure atomicity in light of

delegation. Failure atomicity does not require the invoking transaction of an

operation to be the transaction to commit or abort the operation. Thus, failure

atomicity (Definition 2.5.1.3) allows the possibility for all the operations

invoked by a transaction and not delegated to another transaction to be

committed (aborted) by the invoking transaction and for all the delegated

operations to be committed (aborted) by the delegates. However, the exami-

nation of a transaction’s failure semantics only with respect to the objects

that the transaction is responsible for leads to a definition of another failure

property which is weaker than failure atomicity.

Definition 3.3. Transaction t is quasi-failure-atomic iff

(1) ~ob 3P ~t, Commit,[ p, [ oh]] ● H ~
Yob’ Vq VtJ(q,,[ ob’] = AccessSet, = CommitJ q,,[ ob’11 G H)

(2) ~ob ~p 3 Abortt[ p, [oh]] ● H +

Vob’ Yq Vt,(q,,[ ob ‘j ● AccessSett = Abortt[ q,,[ ob ‘]] ● H).

According to this definition, a transaction t is quasi-failure-atomic if either

“all” or “none” of the operations for which the transaction t is responsible are

committed. Recall that the AccessSett contains all the operations for which t

is responsible. (To recap, a transaction is failure atomic if all the operations it

invokes are committed or none at all; a transaction is quasi-failure-atomic if

all operations that it is responsible for are committed or none at all.) Clearly,

in general, in the absence of delegation, quasi-failure- atomicity is equivalent

to failure atomicity. More specifically, if delegation does not occur from a

transaction, its being quasi-failure-atomic implies that it is failure atomic.

3.1 Joint-Transaction Model and its Variations

In this section, we derive three new extended-transaction models, namely,

chain transactions, reporting transactions, and cotransactions, though a se-

ries of manipulations, beginning with the axiomatic definition of joint trans-

actions [Pu et al. 1988]. In Chrysanthis and Ramamritham [199 la], we

defined these models using dependency production rules, a formalism close to

dependency graphs which captures the static structure and the dynamics of

the evolution of the structure of transactions. Here we use axiomatic defini-

tions to express the properties of these transaction models.
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3.1.1 Joint Transactions. In the joint-transactions model, Join is a termi-

nation event (in addition to the standard Commit and Abort events). That is, it

is possible for a transaction, instead of committing or aborting, to join

another transaction. The joining transaction delegates its objects to the joint

transaction. Thus, the effects of the joining transaction are made persistent

in the database only when the joint transaction commits. Otherwise they are

discarded. Thus, if the joint transaction aborts, the joining transaction is

effectively aborted. A joint transaction can itself join another transaction.

Here are the basic properties of joint transactions, expressed in ACTA.

Definition 3.1.1.1. Axiomatic Definition of Joint Transactions

t. denotes a joining transaction.

tb denotes a joint transaction.

t denotes either a joining or a joint transaction.

(1) SE, = {Begin, JoIn, Commit, Abort}

(2) L!?, = {Begin}

(3) TE, = {Join, Commit, Abort}

(4) t satisfies the fundamental Axioms 1 to 4 (Definition 2.5.2.1)

(5) View, = HC,

(6) ConfZictSet, = {p, [ obl I ResponsibleTr(p,J 06D + t, Inprogmd P,[ obl)}

(7) Vob 3PP,[ obl G H - (ob is atomic)

(8) Commit, E H = ~(t %; t)

(9) =ob Elq Elt, Commit, [q,,[obll ● H + Commltt G H

(10) Commit, E H - ‘v’ob Vq Vtl(q,,[ obl ● AccessSet, - Committ[ qtz[ obll
E H)

(11) ~ob =q 3t, Abort, [q, L[ob]] ● H + Abort, ● I?

(12) Abort, ● H * Vob Vq Vt,(q,l[ obl G AccessSet, - AbortJ qt,[ obll E H)

(13) Join,a[ tb] G H * Delegate,@[ tb, AccessSet,c] = H

Axiom 1 states that transactions in the joint-transaction model are associated

with four significant events, namely, Begin, Join, Commit, and Abort. The

Begin, Commit, and Abort events have the same semantics as the correspond-

ing events of the atomic transactions (Axioms 4– 12).

Axiom 13 specifies that when Join occurs, the joining transaction’s access

set is delegated to the joint transaction. In this regard, a joining transaction

behaves similar to a child transaction in the nested-transaction model when

the child transaction commits (see Section 3.2. 1).

In Axiom 13, the joint transaction is the only parameter of Join; however,

as we will see below, an additional parameter needs to be associated with the

Join event when deriving reporting transactions from joint transactions.

We now state some of the failure and ordering properties of joint transac-

tions. Their proof can be found in Chrysanthis [1991].

LEMMA 3.1.1.2. A transaction t in the joint-transaction model is quasi-

failure-atomic.
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LEMMA 3.1.1.3. A transaction t in the joint-transaction model behaves like

an atomic transaction if t commits or aborts, i.e., if it does not ]“oin any other

transaction, and has not been joined by any other transaction.

In other words, a joint transaction that commits or aborts is failure atomic

and executes in a serializable manner.

THEOREM 3.1.1.4. A joining transaction t. is serializable with respect to

the joint transaction t~ iff Join,a[ tb]G H = = ((t. %fl t~) A (tb&J ta)).

This theorem states that if there is no cycle involving ta and tb then they are

serializable.

COROLLARY 3.1.1.5. A joining transaction t. may not be serializable with

respect to the joint transaction t~.

3.1.2 Chain Transactions. A special case of joint transactions is one that

restricts the structure of joint transactions to a linear chain of transactions.

We can call these transactions Chain Transactions.G A chain transaction is

formed initially by a traditional transaction joining another traditional trans-

action and subsequently by the joint transaction joining another traditional

transaction. This is achieved by introducing an axiom to restrict the invoca-

tion of the Join event such that only linear structures result (Axiom 14).

Definition 3.1.2.1. Axiomatic Definition of Chain Transactions

t. denotes a joining transaction.

t~ denotes a joint transaction.

t~ denotes either a joining or a joint transaction.

(1..13) Axiom 1..13 of Definition 3.1.1.1.

(14) Join,u[t~l ● H = Z t (Join,[t~l + Jointa[tbl)

All the lemmas and theorems expressing the correctness properties of joint

transactions (Section 3.1. 1) hold also for chain transactions.

Chain transactions can more appropriately capture a reliable computation

consisting of a varying sequence of tasks, each of which executes, possibly at

a different site of a computer network. That is, each task is structured as a

transaction. The beginning of the first transaction initiates the computation.

The computation expands dynamically when a transaction completes its

execution by joining another transaction, and hence extending the sequence

of transactions. The commitment of any transaction in the sequence success-

fully completes the computation. The abort of any transaction terminates the

computation, and due to quasi-failm-e-atomicity its effects, together with

those of all previous transactions in the sequence, are obliterated.

3.1.3 Reporting Transactions. A variation of the joint-transaction model

is the transaction model in which Join is not a termination event (Join ~ TEt).

A joining transaction continues its execution and periodically reports its
results to the joint transaction by delegating more operations to the joint

‘Chain transactions are of a more general form than IBMs Chain transactions.
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transaction. We call these transactions Reporting Transactions. Reporting

transactions must invoke either Commit or Abort to complete their computa-

tion (Axiom 3).

Here is the formal definition of reporting transactions in ACTA. Other than

the axioms for the Join event, the axioms for the other significant events are

the same as in the joint-transaction model.

Definition 3.1.3.1. Axiomatic Definition of Reporting Transactions

t<, denotes a joining transaction.

tb denotes a joint transaction.

t denotes either a joining or a joint transaction.

(1) SE, = {Begin, Join, Commit, Abort}

(2) IE, = {Begin}

(3) TE, = {Commit, Abort}

(4..12) Axiom 4..12 of Definition 3.1.1.1

(13) Join,(,[ th,ReportSet,al G H - Delegate,a[ t~, ReportSet,aj G H,
ReportSet,t, c AccessSet,n

(14) Join,a[ tb,ReportSet,c,] = H = (t. .c&7 t~)

(15) Join,u[ tb,ReportSet,,, ] E H

= Z t, t * tb (Join tfl[t, ReportSett,,l + JOit_Ita[tb, ReportSettal)

(16) Joint=[ tb,ReportSett,, ] = H ~ Join,,,[ ta,ReportSet,, ] @ H

ReportSet,n contains the operations on the objects to be delegated (Axiom 13).

Since ReportSettp G AccessSett,,, reporting transactions may delegate some
and not necessary all of their operations on objects at the time of a join.

The abort dependency induced by Axiom 14 effectively maintains the

termination semantics of joining transactions in the joint-transaction model

by guaranteeing the abortion of the joining transaction ta if the joint transac-

tion tb aborts. This is because Axiom 15 prevents ta from joining more than

one transaction. Furthermore, Axiom 16 prevents tb from joining back ta.
Note that the axioms do not prevent reporting transactions from forming

nonlinear structures. If only linear structures must be permitted, Axiom 14 of

chain transactions must be added to the above set of axioms. This point raises

the issue of “completeness” of a set of axioms. We discuss this topic in Section

3.4.

Reporting transactions provide a more interesting control structure than
joint transactions and can be useful in structuring data-driven computations.

For example, consider a computation that requires remote access to a database

over expensive communication links such as in a mobile computing environ-

ment. This computation can be split across the two sites using reporting

transactions where the joining transaction executes in the database site

whereas the joint transaction executes on the remote site. The joining trans-

action accesses the database and performs the initial processing on the data

delegating to the joint transaction only those operations on data that need to

be processed further at the remote site.
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Reporting transactions can be restricted to a linear form in a manner

similar to chain transactions in which case they can support pipeline-like

computations, or allowed to form more complex control structures by permit-

ting a reporting transaction to join more than one transaction in which case

they can support, for example, star-like computations.

3.1.4 Cotransactions. The characterization of reporting transactions al-
lows ta to continue its execution but prevents tb from joining ta.This is

specified in Axiom 15 where post(e) denotes the postcondition of event e.

Suppose that ta is suspended when it joins tband t~ is allowed to join ta.The

transaction t. can be effectively suspended if, at the time of the join, its view

becomes empty. With an empty view, t= can no longer access any object in the

system. We call this view curtailment. The ta will be able to resume execu-

tion when tb joins ta.This is because, after the join, t~’s view will be restored

while t~’s is curtailed. We call these transactions cotransactions because they

behave like coroutines, in which control is passed from one transaction to the

other transaction at the time of the delegation, and they resume execution

where they were previously suspended. In the cotransaction model specified

below, the view of the cotransaction that resumes execution is restored to

H,,.

Clearly, in the cotransaction model, the Join event is not a termination

event (Join @ TEt ), and cotransactions must invoke either commit or abort in

order to complete their execution (Axiom 3).

Here is the formal definition of cotransactions in ACTA:

Definition 3.1.4.1. Axiomatic Definition of Cotransactions
t ~ denotes a joining transaction.

th denotes a joint transaction.

t denotes either a joining or a joint transaction.

(1) SE, = {Begin, JoIn, Commit, Abort}

(2) IA’, = {Begin}

(3) TE, = {Commit, Abort}

(4..14) Axiom 4..14 of Definition 3.1.3.1

(15) post(Johtt,[t~l) s (Viewtu = o) ~ (Viewt, = H,t)

(16) Join,a[t~] G II - (tbS%’&2 ta)

Here P% 9 stands for strong commit dependency whereby if t,commits, t]

must commit:

The termination semantics of cotransactions are captured by Axioms 14

and 16. According to the semantics of joint and reporting transactions, Axiom
14 ensures the abortion of the joining transaction td if the joint transaction tb

aborts. Axiom 16 states that if the joint transaction tb commits, then the

joining transaction tu is also committed. Thus, both commit or neither.
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Cotransactions are useful in realizing applications that can be decomposed

into interactive, and potentially distributed, subtasks which cannot execute

in parallel. For instance, cotransactions can be used to set a meeting between

two persons by having one cotransaction executing per person against the

individual’s calendar database. Cotransactions, as well as reporting transac-

tions, can be easily modified to form more complex control structures in order

to produce more interesting styles of cooperation.

3.2 Nested-Split-Transaction Model

First we give the axiomatic definition of nested transactions and split trans-

actions and then show how a combined model can be produced.

In order to motivate the need for such a combined model, consider software

development in which a developer structures her/his work in a hierarchical

manner using nested transactions. Since software development may take an

arbitrary long time, the designer would like to be able (1) to abort some of the

operations of a nested transaction (subtransaction) when they are no longer

needed, for example, after a failed attempt to fix a bug and (2) to split a long

subtransaction into two sibling subtransactions which can commit or abort

independently. Such requirements are not satisfied by either the nested or

the split transaction models by themselves in an easy and straightforward

manner but can be satisfied by a model that combines the properties of both.

3.2.1 Nested Transactions. In the nested-transaction model, e.g., Moss

[ 1981], transactions are composed of subtransactions or child transactions

designed to localize failures within a transaction and to exploit parallelism

within transactions. A subtransaction can be further decomposed into oth-

er subtransactions, and thus, a transaction may expand in a hierarchical

manner. Subtransactions execute atomically with respect to their parent.

They can abort independently without causing the abortion of the whole

transaction.

A subtransaction can access potentially any object that is currently ac-

cessed by one of its ancestor transactions. Any object in the database is also

potentially accessible to the subtransaction, When a subtransaction commits,

the objects modified by it are made accessible to its parent transaction, and

the effects on the objects are made permanent in a database only when the

root transaction commits.

Now, let us define nested transactions using the ACTA formalism. Ances-

tors( t ) is the set of all ancestors of a transaction t whereas Descendants(t) is
the set of all descendants of t.Paren,t( t ) contains the parent transaction of t.

Definition 3.2.1.1. Axiomatic Definition of Nested Transactions

to denotes the root transaction. Parent(to ) = Ancestor(tO ) = @.

t. denotes a subtransaction of tp.Parent (t, ) = tP.

tP denotes a root or a subtraction.

(1) SE,, = {Begin, Spawn, Commit, Abort}

(2) L13t,]= {Begin}
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(3) TE,,, = {Commit, Abort}

(4) SE,, = {Spawn, Commit, Abort}

(5) IE,( = {Spawn}

(6) TE,C = {Commit, Abort}

(7) t, satisfies the fundamental Axioms 1 to 4 (Definition 2.5.2.1)

(8) View,, = H.,

(9) ConflictSet,O = {pt[ obl I ResponsibleTr(p,[ obl) + to, Inprogress( P,[ obI)}

(10) Vob 3pp,P[ ob] ● H = (ob is atomic)

(11) Committp ● H - =(t, Z; t,)

(12) aob 3P 3tCommit,P[ p,[obll G H s Commit,p G H A ~a~ent(tP) = @

(13) Commit,P = II A l%rerzf(tp) = @ =

Vob ‘dp Vt (pt[ ob] @ AccessSett = CornrnittP[ pt[ oh]] ● H)

(14) 3ob 3P 3 tAborttP[ P,[ obll ● H ~ Abort,p ● H

(15) Abort,p E H = Vob Vp ‘dt (pf[ ob] = AccessSet,~ = Abort,,,[ p,[ oh]] ~ H)

(16) Begintp ● H = Parent(tP) = @ A Ancestor = @

(17) ConflictSet, = {pt[ obl I ResponsibleTr(pJ obl) # t., t @ Ancestors(tC),

Inprogress( ~t[ oh])}

(18) Spawn,p[ tc]G H - Parent(t,) = tP

(19) Spawn,p[tc] G H * (tc%~ t,) A (t,$3X2t,)

(20) Commit,, e H ~ Delegate,c[ Parent(tC), AccessSett, ] G H

(21) Vt G Descendants(t,) ‘dob Vp, q(p,[ obl - q, [ obl)Conflict(pJ obl,

qtn[ ob 1) * 3 tC((Delegate,c[ tP, AccessSet,c ] +“q,,[ obl) A P,[ obl G

AccessSettL )

(22) Ancestor(t,) = Ancestor u {tp}A Vttp G Descendants(t) -
t, G Descendants t )

The nested-transaction model supports two types of transactions, namely,

root transactions and nested subtransactions, which are associated with

different significant events (Axioms 1 and 4). The semantics of root transac-

tions are similar to atomic transactions (Axioms 7– 15). The Abort event has
the same semantics for both transaction types which are similar to those of

the Abort in atomic transactions (Axioms 14 and 15). However, the semantics

of the Corn mit event are different for each transaction type. In the case of a

root transaction, Commit has the semantics of the Commit event in atomic
transactions (Axioms 11– 13). In contrast, because of the delegation that

occurs when a subtransaction commits, the operations in its access set are

made persistent and visible only to its parent transaction (Axiom 20). Axiom

20, which together with Axiom 11 defines the semantics of the Commit event
of subtransactions, specifies clearly that the commitment of a subtransaction

does not imply the commitment of its operations and the operations that it is

responsible for.
Spawn is used to initiate a new subtransaction. The Spawn event estab-

lishes a parent/child relationship between the spawning and spawned trans-

actions (Axiom 18). This relationship is reflected by the weak-abort depen-
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dency 71-$2 and commit dependency f7S7 between the related transactions

(Axiom 19). The ability of a subtransaction to invoke operations without
conflicting with the operations of its ancestor transactions is expressed by

excluding all the operations performed by its ancestors from the conflict set of

the subtransaction (Axiom 17). Axiom 17 also states that operations dele-

gated to the subtransaction and for which the subtransaction is responsible

do not conflict with any operation invoked by the subtransaction.

Axiom 21 states that given transaction t and its ancestor tp and operations

p and q, tP can invoke q after t invokes p if tp is responsible for committing

or aborting p. In other words, tp cannot invoke q before p is delegated to tp.

In the absence of this restriction, it would be possible for tp to develop an

abort dependency on t (:PQ’S?t)by invoking an operation that conflicts with

a preceding operation revoked by t. In such a case in which a parent

transaction develops an abort dependency on its child, if the child aborts, the

parent also aborts. This means that it would be possible for a subtransaction

to cause the abortion of its parent and possibly of the whole nested transac-

tion (if the parent happens to be the root transaction). But this violates the

property of nested transactions that localizes failures by allowing a subtrans-

action to abort independently without causing the abortion of the whole

transaction.

Based on the above axiomatic definition of nested transactions, the recov-

ery and concurrency properties of nested transactions can be shown (see

Appendix and Chrysanthis [1991]). For example, although Axioms 7, 10, and

11 are sufficient to ensure the serializability of atomic transactions, they are

not in the case of nested transactions because of Axiom 17, which allows

dependencies between a parent transaction and its children to be ignored.

Thus, a parent and a child transaction may not be serializable.

3.2.2 Split Transactions. In the split-transaction model [Pu et al. 1988], a

transaction ta can split into transactions ta and tb.At the time of the split,

operations invoked by ta up to the split can be divided between ta and tb

making each responsible for committing and aborting those operations as-

signed to them. In order to facilitate further data sharing between ta and th,

operations which remain the responsibility of ta may be designated as not

conflicting with operations invoked by tb after the split, and hence, tb can

view the effects of these operations. Depending on whether or not such

operations have been designated, a split may be serial or independent t. In the

former case, tamust commit in order for th to commit, whereas in the latter,
t= and t~ can commit or abort independently.

After the split, ta can split again, creating another split transaction tc.

Split transactions can further split, creating new split transactions. A se-

quence of serial splits leads to a different type of hierarchically structured

transactions from those of nested transactions. See Figure 4.

Definition 3.2.2.1. Axiomatic Definition of Split Transactions

t, denotes a primary transaction.

ta denotes a splitting transaction, primary or split,
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P& Fig. 4. Structure of split transactions
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denotes the split transaction of ta.

denotes a transaction, primary or split.

SE,, = {Begin, Split, Commit, Abort}

IEtr = {Begin}

TE,, = {Commit, Abort}

SE,, = {Split, Commit, Abort}

IE,, = {Split}

TE,, = {Commit, Abort)

t satisfies the fundamental Axioms 1 to 4 (Definition 2.5.2.1)

View, = HC,

ConfZictSet,r = {P,[ obl I ResponsibleTr(p,[ obl) + t,, Inprogress(pt[ obl)}

Vob 3ppt[ ob] ● H = (ob is atomic)

Commit, c H = T(t %; t)

3ob qq 3tL Committ[qtt[obll ● H * Commit, e H

Commit, = H - Vob Vq Vt, (q,z[ ob] ● AccessSet, - Committ[ q,,[ obll

G H)

3ob ~q ~t, Abortt[ qt,[ oh]] = H + Abortt ● H

Abort, = H - Vob Vq Vt,(q,,[ob] = AccessSet, = Abortt[ q,,[ obll G H)

Split,a[ t~, CanAccesstjtU)l G H - (CanAccess,$t.) + @ * (t~ JUZ t.))

Splittm[ tb,CcmAccess~jta)l G H ~ Delegateta[ t~, DelegateSet 1 G H

Vob 3P 3tp,[ob] = DelegateSet * (b’t’ Vq (ResponsibleTr(q,[ obl) = ta

A (q~ [ ob 1 - Delegateta[ t~, DelegateSet 1)) - qt J ob 1 c DelegateSet )

ConfZictSettb = {pt[ ob] I (ResponsibleTr(p,[ obl) + tb,t + ta,

.Inprogress( p,[ ob 1)) V (ResponsibleTr( p,[ oh]) = t., Inprogress

(pt[ obl) A (pt[ obl @ CanAccess,fta)))}

(20) Vob Vp, q(3r(rt [oh] = Ca~Access,~t. ))) ~ pta[ob] ● H ~

Conflict(pta[ obl, q,~[ obl * (pta[ obl s q,,[ obl)

In the split-transaction model, a transaction can be initiated through either

the Begin event, called primary transaction, or the Split event, called split
transaction. Although primary and split transactions are associated with

different significant events (Axioms 1 and 4), their corresponding events

share the same semantics (Axioms 11–15).
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Splitfa[ tb, CcznAccesst$ t. )1 splits a primary or a split transaction ta into a
splitting transaction taand split transaction t~. Since the idea is to allow the

splitting transaction to give the split transaction the responsibility for finaliz-

ing some of its operations (these are the operations in the DelegateSet, the

Split event is partially specified in terms of the delegation event Delegcztet=[ th,

DelegateSet ] (Axiom 17). To be more precise, a splitting transaction transfers

to a split transaction the responsibility for all the operations on a particular

object (Axiom 18). That is, when a splitting transaction delegates an opera-

tion on an object ob, it delegates all the operations on ob that the splitting

transaction is responsible for at the time of the split. Here, it is interesting to

note that, in contrast to transactions initiated by the Begin event, through

delegation, split transactions can affect objects in the database by committing

or aborting delegated operations and without invoking any operation on

them.

Further, the splitting transaction has the ability to allow the split transac-

tion to view some of its operations on some objects without conflict (these are

the operations in the CanAccesst~t~ )) (Axiom 19). However, the splitting

transaction cannot view the operations of the split transaction on the same

objects. A splitting transaction can continue to invoke operations on such

objects as long as the split transaction has not invoked a conflicting operation

on them (Axiom 20).

A split is independent, if CanAccesst,( t. ) is empty. In the case of serial

split, i.e., a split in which CanAccesst~(t~ ) is not empty, tb develops an abort

dependency on t. (Axiom 16).7

As in the case of nested transactions, Axioms 7, 10, and 11 are not

sufficient to ensure serializability of split transactions due to Axioms 17 and

19. However, split transactions are serializable, as shown in Chrysanthis

[1991]. That is, if ta splits tb serially, then ta precedes tb in any serializable
history in which both commit. If the split is independent then ta and tb in

any serializable history in which both commit. If the split is independent then

taand tbare serializable in any order. It should be pointed out that the above

axiomatic definition of split transactions is more general than their original

description which was within the context of lock-based concurrency control

protocols.

3.2.3 Nested-Split Transactions. Given our definitions for atomic transac-

tions (see Definition 2.5.3. 1), nested transactions (see Definition 3.2. 1.1) and

split transactions (see Definition 3,2.2. 1) in axiomatic form, it is not difficult

to see which axioms reflect the differences between these models and which

axioms capture their similarities.

For instance, the Begin, Abort, and Commit events in the split-transaction
model have the same semantics as those for the root transactions in the

nested-transaction model (which are the same as those of atomic transac-

7By taking into consideration the semantics of operations on the individual objects in

CanAccesstJta ), it would be possible to induce weaker dependencies, e.g., commit dependency,

rather than abort dependency.
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tions). However, although at first glance the Spawn event in nested transac-

tions and the Split event in split transactions appear to have similar seman-

tics, their precise definitions show the actual differences, e.g., in the induced

dependencies. Specifically, whereas the Spawn event induces a commit de-

pendency and a weak-abort dependency between the spawning and the

spawned transactions (Axiom 18 of Definition 3.2.1.1), the Split event induces

an abort dependency of the split transaction on the splitting transaction

(Axiom 19 of Definition 3.2.2.1). Additionally, in contrast to the Spawn event,
due to delegation the Split event may associate a nonempty access set with

the split transaction.

Given the similarities and differences between two models, the question of

whether the two transaction models can be used in conjunction becomes

important. Let us consider combining aspects from the nested and split

transaction models. We would like to check whether the resulting model

retains the properties of the two original models. This combination is derived

by combining, where possible, nested-transaction structures with split-trans-

action structures, i.e., by considering how to handle existing dependencies,

the view, and the conflict set of the individual transactions.

Split-and-Nested Transactions. The obvious first approach is to merge the

definitions of the two models. The resulting model is called split-and-nested.

In this model, given a nested transaction, it is possible to split the root or a

subtransaction. A split transaction may further split creating another split

transaction, or spawn a new subtransaction becoming a root of a new nested

transaction. In this way, a set of possibly dependent nested transactions may

be created (see Figure 5).

Definition 3.2.3.1. Axiomatic Definition of Split-and-Nested Transactions

to denotes a root or a primary transaction. Parent(to) = Ancestor(to) = q5.

tC denotes a subtransaction of tp.Parent ( tc ) = tP.

tb denotes the split transaction of t=.Parent(tb) = Ancestor = ~.

tp or t. denotes a splitting transaction, root/primary, a subtransaction, or

split.

(1) SE,,, = {Begin, Spawn, Split, Commit, Abort}

(2) LY,, = {Begin}

(3) TEtO = {Commit, Abort}

(4) SE,L = {Spawn, Split, Commit, Abort}

(5) IE,, = {Spawn}

(6) TE,, = {Commit, Abort}

(7) SE,, = {Spawn, Split, Commit, Abort}

(8) IEt, = {Split)

(9) TE,, = {Commit, Abort}

(10..25) Axiom 7..22 of Definition 3.2.1.1

(26..30) Axiom 16..20 of Definition 3.2.2.1

(31) Split,u[ th,CanAccesstjt.)] G H * parent(t~) = @
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Fig, 5. Structure of spht-and-nested transactions.

ot;

Axiom 31 ties together Split, a significant event that creates a new transac-

tion not supported by nested transactions, with the notion of parent and

ancestral transactions, not present in split transactions in a way similar to

the case of Begin and Spawn events (Axioms 19 and 21 (or Axioms 16 and 18

of nested transactions)).

The split-and-nested model produces only hierarchical transaction struc-

tures as in the two original models. It involves the same dependencies

between the various transaction types which are found in the original models.

The additional abort dependency induced between a root or a subtransaction

and its split transaction, in the case of serial split (Axiom 26 (or Axiom 16 of

split transactions)), does not violate the structure of nested transactions.

Such abort dependencies between (sub)transactions of a nested transaction

and other (sub)transactions are possible in the nested-transaction model and

may develop when transactions invoke conflicting operations on shared atomic

objects (Axiom 10 of nested transactions).

Although this new model retains the properties of split transactions, it does

not retain those of nested transactions. Specifically, split-and-nested transac-

tions do not have the same ordering and failure properties of nested transac-

tions. For instance, the split-and-nested-transaction model allows the effects

of subtransactions to be made permanent in the database by a transaction

other than their ancestral root transaction. 8 To illustrate this, suppose a

subtransaction t splits, delegating to its split transaction f‘ an operation

PJ ob 1. The delegated PJ ob 1 may be committed by t‘ since, when a split
transaction commits, it commits all the operation in its AccessSet to the
database (Axioms 16 and 31). Furthermore, in the case of an independent

split, it is possible for t (or its ancestral root transaction) to abort while

p~ [ ob ] is committed by t‘and vice versa,

RIt can be proved (1) that operations revoked by subtransactions of a nested transaction are

committed to the database only by the root transaction, and none of the subtransact~ons commit

any operation, and (2) that if a root transaction aborts, all operations performed by the root and

its descendants abort [Chrysanthls 1991].
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The split-and-nested-transaction model is an example of an open-nested

model in which some component transactions (subtransactions) may decide to

commit their effects in the database unilaterally. In Section 3.3, we will

synthesize an open-nested model by precisely stating the requirements on the

transactions adhering to the model.

Nested-Split Transactions. The split-and-nested-transaction model de-

fined above fails to retain the properties of nested transactions because the

split-and-nested-transaction model does not distinguish between splitting a

root and a subtransaction. In this model, it is possible for a subtransaction to

split a root transaction. In fact, a split transaction is always a root transac-

tion. However, the semantics of subtransactions are different from those of

root transactions. Suppose we want the semantics of a split transaction to be

similar to those of its splitting transaction. Thus, when a root transaction

splits, it should split into two root transaction, and when a subtransaction

splits, it should split into two sibling subtransactions. In this way, a split of

subtransaction can no longer make any operations’ effects permanent in the

database, but, as with any other subtransaction, when it commits, it dele-

gates all operations in its access set to its parent transaction. We call such a

derived model a nested-split-transaction model. Such transactions still retain

the properties of split transactions in the sense that both a splitting and its

split transaction exhibit the same behavior (i.e., their associated significant

events have the same semantics) (Axioms 11 to 15 of split transactions).

The axiomatic definition of nested-split transactions can be derived from

the definition of split-and-nested transactions by modifying Axioms 30 and

31, and by adding two new axioms, Axioms 32 and 33, one of which specifies

the dependencies that are assumed to hold after a subtransaction is split into

two subtransactions.

Definition 3.2.3.2. An Axiomatic Definition of Nested-Split Transactions

to denotes a root or a primary transaction. Parent(to ) = Ancestor( tP) = 4.

t, denotes a subtransaction of tp.Parent(tC ) = tP.

t ~ denotes the split transaction of ta.Parent(t~) = Arzcestor( t~) = ~.

tP or ta denotes a splitting transaction, root/primary, a subtransaction, or

split.

(1)
(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

SEtU = {Begin, Spawn, Split, Commit, Abort}

1,?3,,]= {Begin}

TE,U = {Commit, Abort}

SE,, = {Spawn, Split, Commit, Abort}

IE,( = {Spawn}

TE,C = {Commit, Abort}

SEt6 = {Spawn, Splitl Commit, Abort}

IE,, = {Split}

TEt, = {Commit, Abort}
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(10..25) Axiom 7..22 of Definition 3.2.1.1

(26..29) Axiom 16..19 of Definition 3.2.2.1

(30) Vt, t = ta V t G Descendant(t~)b’ob Vp,q Con flict(p,[ob], qt,[ob]) ~

Elr(r,u[obl G CanAccess,Jtfl))) A pfa[obl G H = (p, [obl ~ q,h[obl)

(31) Split,a[tb, CanAccess,~t~)] = H + Parent(t~) = Parent(t.)

(32) Split,o[ tb,CcznAccess,~tG)] = H + (Parent(t~) # @ =

(t~ 2Y9 Parent(t.)) A (Parent(t.) %2? t~))

(33) Vob 3 t 3pp,[ ob] = DelegateSet * (Vt’ E Descendant(t~) Vq(q,[ ob]
+

Split,a[ t~, CanAccesstft~)]) -3 t, ((Delegate, [ t., AccessSet,C] +

Splitt<,[ t ~, CanAccesst~ t. )]) A qt [ ob ] ● Acces~Set,, )

Axiom so corresponds to Axiom 20 of split transactions extended to take

into account the descendants of a splitting transaction ta which have the

ability of invoking operations without conflicting with the operations of ta.

That is, the descendants of a splitting transaction as well as the splitting

transaction itself can continue to invoke operations on objects in the

CanAccesst$ t.) as long as the split transaction has not invoked an operation

on them.

Axiom 31 establishes the parent relationship of the split subtransaction by

specifying that its parent is the parent of the subtransaction whose split it is.

Axiom 32 states that when a subtransaction ta splits a transaction tb,the

dependencies between subtransaction to and its parent, say transaction tp,

are assumed to hold between t~ and tp.

Axiom 33 states that in order for an operation on an object ob to be

delegated at the time of a split, the splitting transaction should be responsi-

ble for all the operations on ob invoked by any of its descendant transactions.

Consequently the split subtransaction is never delegated operations on ob-

jects which have been accessed by an active descendant of the splitting

transaction. Otherwise, the model would have required that the split sub-

transaction be considered an ancestor of the descendants of the splitting

transactions due to Axiom 19.

Note that not all of the existing dependencies of splitting transaction are

retained by the split transaction. For example, when a nonleaf subtransaction

ta splits, the dependencies between subtransaction ta and its children are not

assumed to hold between its split transaction tband t;s children. The reason

is that by establishing these dependencies either the hierarchical structure of

the nested transactions is destroyed, or some of the dependencies required by
the nested transactions are eliminated. To illustrate this, consider the case of

the independent split of a nonleaf subtransaction t, into tcland tc2.If the

above dependencies were retained, a subtransaction td of tC would have

weak-abort dependencies on two ancestors, tcl and tC2, which is clearly

disallowed by the hierarchical structure of the nested-transaction model. The

effects of retaining these dependencies are analyzed in Chrysanthis and

Ramamritham [1990].
Axioms 30 to 33 establish a sibling relationship between the splitting and

split subtransactions. Hence, given a nested transaction, it is possible to split
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a root or any subtransaction while properties of both nested and split

transactions are retained. Furthermore, due to delegation and the specifica-

tion of the CanAccess set at the time of a split, two sibling transactions can

cooperate effectively while they are still executing. In nested transactions,

two sibling subtransactions cannot achieve cooperation while both siblings

are active due to the conflict set specification of nested transactions (i.e.,

effects of conflicts relative to the operations invoked by a transaction are not

considered only by the descendants of the transaction). A nested subtransac-

tion t can observe the effects of one of its siblings t‘ on an object without

conflicts only after t‘has committed and delegated all its operations to their

parent. Thus, nested-split transactions support a higher level of visibility

between subtransactions than nested transactions, making them a useful

new transaction model for a cooperative environment. (A similar type of

interaction occurs in the extended-nested-transaction model proposed in Mo-

han et al. [1992].)

3.3 Open-Nested-Transaction Model

In an open-nested-transaction model, component transactions may decide to

commit or abort unilaterally. This model is particularly suitable in structur-

ing applications that need to access data stored in preexisting databases or

data repositories managed by systems that do not support any global commit

protocol such as two-phase commit protocol. Example of such applications are

telecommunication services and Computer-Integrated Manufacturing (CIM).

In this article, assume that we need an open-nested-transaction model that

supports two-level transactions with special components. Let s be a two-level

transaction that has n component transactions, tl, . . . . tn.Some of the compo-

nents are compensatable; each such t, has a compensating transaction

comp–t, that semantically undoes the effects of t,.

In order to derive the specification of this new transaction model, during

synthesis we need to identify the different types of transactions which the

model will support, the significant events associated with each type and the

relationships among transactions. We will express these transaction relation-

ships in terms of the significant events of the involved transactions. Also, for

each type we need to define the visibility (i.e., view) and conflict set of the

transactions of the type and the semantics of the events associated with a

particular transaction.

3.3.1 Specifying the Building Blocks. Let us begin the specification of this

model by associating all transactions, components or otherwise, with the

significant events {Begin, Commit, Abort}. Component and compensating

transactions are atomic transactions with structure-induced intertransaction

dependencies.

Component transactions can commit without waiting for any other compo-

nent or s to commit. However, if s aborts, a component transaction that has
not yet committed will be aborted. We can capture this requirement using a

weak-abort dependency.

Vo<i<rz(t, wgs)
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Suppose some of the components of s are considered vital in that s is

allowed to commit only if its uital components commit. These components are

members of the set VitalTrs. We can capture this requirement as follows.

If a vital transaction aborts, s will be aborted. Transaction s can commit

even if one of its nonvital components aborts, but s has to wait for them to

commit or abort. This is expressed using a commit dependency.

Assume that a compensatable component of s is a component of s which

can commit its operations even before s commits, but if s subsequently

aborts, the compensating transaction comp–t, of the committed component t,

must commit. Compensatable components are members of the set Comp–Trs.

Recall that &%&? stands for strong commit dependency whereby if t,com-

mits, comp–t, must commit.

Compensating transactions need to observe a state consistent with the

effects of their corresponding components, and hence, compensating transac-

tions must execute (and commit) in the reverse order of the commitment of

their corresponding components. We can capture this requirement by impos-

ing a begin-on-commit Q7%’g dependency on compensating transactions.

Vt, t] ● Comp-Trs (( Commit, I + Committ, ) = ( comp–tt ~38”&2 comp–tj ))

Begin-on-commit dependency states that transaction tjcannot begin execut-

ing until transaction t,has committed.

Suppose we assume that a compensating transaction compensates the

effects of a component by invoking the undo operations of each of the

operations invoked by the component. In this case, the compensating transac-

tion must be allowed to view (the current state of) only those objects accessed

by the corresponding component.

Vt, ob, ppt[obl G Viez.oCO~P_t, = % q,, [obl ● H,,

Since we assume that all component transactions, including noncompensat-
able ones, can commit at any time, noncompensatable components should not

be allowed to commit their effects on objects when they commit. There are a

number of ways to structure noncompensatable component transactions

[Chrysanthis 1991; Chrysanthis and Ramamritham 1992]. The simplest

method is to structure them as subtransactions (as in nested transactions)

which at commit time delegate all the operations in their Access Set to s.

b’O<i<n

( t, @ Comp–Trs - (Commitft G H ~ Delegatet, [s, AccessSet,L ] ~ H))
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It is possible to continue the development of our simple hierarchical

transaction model, but at this point we have already considered all the basic

interactions among the various special component transactions. For instance,

it is possible to require that some component transactions execute in a

predetlned order as in the case of the Saga transaction model [Garcia-Molina

and Salem 19871.

3.3.2 Complete Specification. Now let us put everything together. These

axioms constitute the specifications of the open-nested-transaction model.

Definition 3.3.2.1. Axiomatic Definition of Open-Nested Transactions

s denotes a top-level transaction.

ta denotes either a top-level or a component transaction.

t,denotes a compensatable component. tcE Comp–Trs.

comp –t. denotes a compensating transaction of tc.

tp denotes a transaction which is not a noncompensatable component.

tP = s v tP = Conzp–Trs V tp = comp–tC

t denotes either a top-level, a component, or a compensating transaction.

(1) SE, = {Begin, Commit, Abort}

(2) IE, = {Begin}

(3) TE, = {Commit, Abort}

(4) t satisfies the fundamental Axioms 1 to 4 (Definition 2.5.2.1)

(5) Viewta = H,L.

(6) ConflictSetj = {p, [ obl I ResponszbleTr(p, J ob 1) + t, lnprogress( pt[ obl)}

(7) Vob =pp,[ob] ● H ~ (ob is atomic)

(8) Commitf G H ~ n(t S; t)

(9) ~ob 3P ~~’ Cornrnit,,[ p,lobll G ~ * COmmL, G ~

(10) Committ ● H 5
Vob Vp ~t’( pf,[ ob] = AccessSettP ~ Commit,P[ Pt[ obll ● H)

(11) aob 3P =t’ AbortJ p,[obll G ~ * Abort, G ~

(12) Abort, ● ~ + Vob VP Vt’(p,[obl G AccessSet, = Abort~[P~[obll G ~,

(13) Vt’, ob, p p,[obl G ViewCO~P_,, = % q,LIobl E H.,

(14) b’te Comp-Trs Commit, ● H ~ Delegatet[ S, Accessf$et~l G H

(15) Beginf G H ~ ((t Z’9s) ~

(t G VitalTrs = (SJZ%3 t)) ~ (t @ VitalTrs = (S ~~ t))).

(16) Abort, ~ H * Vi (t, ● Comp-Trs * (comp-t, S%’9 tL))

(17) Vt, t,G Comp-Trs (( Commit,, ~ Commit,,) * (comp-t, ~~~ comp-t,))

In summary, Axioms 1 to 12 are similar to the corresponding ones of atomic

transactions. All 12 axioms pertain to top-level transactions and their com-

pensatable components. As in the case of atomic Lransactionfi, everything is

visible to these transactions (Axiom 5) whereas only objects accessed by a

component are visible to its compensating transaction (Axiom 13).
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For all transactions, a transaction’s operations conflict with all ongoing

operations invoked by other transactions (Axiom 6). The serialization must be

acyclic, i.e., the transactions must be serializable taking into consideration

the process of delegation (Axiom 8).

Axioms 9 to 12 state the failure atomicity property of open-nested transac-

tions whereas Axioms 14 to 17 capture their failure properties with respect to

compensatable and noncompensatable transactions. When a noncompensat-

able component commits, it delegates its access set to its top-level transaction

(Axiom 14). If a top-level transaction aborts, the compensating transaction
comp_t, for the committed component t, must commit (Axiom 16). Compen-

sating transactions must execute (and commit) in the reverse order of the

commitment of their corresponding components (Axiom 17).

Axiom 15 states that when a component begins, the component has a

weak-abort dependency on its top-level transaction; also, if the component

is vital, the top-level transaction has an abort dependency on the compo-

nent; otherwise the top-level transaction has a commit dependency on the

component,

The synthesis process followed above can be viewed as the derivation of a

new model by combining and modifying the specifications of existing transac-

tion models, namely, nested transactions and sagas [Garcia-Molina and

Salem 1987]. Obviously, the nested-transaction model and the open-nested-

transaction model have different properties merely due to the fact that they

involve different types of component transactions. (Subtransactions of nested

transactions are nonvital and noncompensatable.) This is still the case even if

we consider the special case of an open-nested transaction all of whose

component transactions are nonvital and noncompensatable and compare it

with a two-level nested transaction. The reason is that these two special

nested and open-nested transactions have different concurrent behaviors and

different visibility properties because of the differences in the specifications of

views and conflict sets. But for these differences, the two special cases of

nested and open-nested transactions have the same permanence and recovery

properties since (1) they have similar structure-induced dependencies and (2)

their Commit and Abort events have similar semantics.

We should point out that our open-nested model is representative of a class

of open-nested models in the sense that it captures many of the common

characteristics of the models in the class. The class includes s-transactions

[Veijalaine and Eliassen 1992], sagas [Garcia-Molina and Salem 1987], poly-

transactions [Sheth et al. 1992], DOM transactions [Buchmann et al. 1992],

and Flex transactions [Bukhes et al. 1993].

3.4 Discussion

The exercise of synthesizing different transaction models reveals the many

advantages of using a simple formalism like ACTA to deal with extended

transactions. We can precisely state the behavior of transactions adhering to

a given transaction model. We can modify some of the properties to tailor a

different transaction model. We can precisely delineate the differences be-
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tween models and understand what contributes to the differences and simi-

larities between transaction models.

Two related questions arise in the context of specifications: (1) are the

specifications for a particular transaction model complete? (2) are the specifi-

cations consistent with the requirements of a particular model?

Just as it is difficult to show the “completeness” of a set of requirements

specifications for a piece of software, it is difficult to show the completeness,

in absolute terms, of a set of axioms pertaining to a model. This is because

extended transactions can be endowed with “open-ended” semantics, whereby

each transaction model can have model-specific significant events where the

events have model-specific semantics. Let us consider an example. The chain

transaction model is derived by adding one axiom to the specifications of the

joint-transaction model. That is, the axioms defining the joint-transaction

model are a subset of the axioms defining the chain transaction model. The

extra axiom further constrains the occurrence of the join event and is

motivated by the additional requirement associated with chain transactions,

one that requires that only linear transaction sequences must be produced by

the model. Thus, while the axioms for the joint-transaction model can be

considered to be complete with respect to the requirements of the joint-trans-

action model, they are not complete with respect to the chain transaction

model. However, the axioms of the chain transaction model (with the addi-

tional axiom) can be shown to satisfy the requirements of the chain transac-

tion model and hence can be considered to be complete with respect to these

requirements.

ACTA allows a modeler to specify both the high-level properties (require-

ments) of a model and the lower-level behavioral aspects of the model in

terms of axioms. If the higher-level properties can be proven using the axioms

then with respect to the properties that have been proven, the axioms can be

considered to be complete. Also, then, the axiomatic specifications can be said

to be consistent with the requirements of a particular model.

In some sense, it is also possible to talk about completeness of a set of

axioms in absolute terms. Recall that a modeler is required to specify all the

significant events that can occur and to provide the semantics of all the

events. Also, he/she must specify the view and conflict set of all the different

transaction types that can occur in a model. This will allow us to check

whether all the necessary aspects of a transaction’s effects on objects as well

as on other transactions have been specified. However, since some of the

semantics are model-specific, e.g., there are special constraints on the invoca-

tion of the join event in the chain transaction model, it is not possible to

check whether all the semantics associated with an event have been speci-

fied, unless we check them against a set of higher-level requirements.

The analysis of whether a set of axioms satisfies a set of requirements can

be carried out within ACTA, by using first-order logic-based proof methods.

In the interest of space we included in an appendix the proofs for the
properties of just one model, the nested-transaction model.

Finally, it is important to point out that ACTA is not restricted to a single

version environment nor to a specific recovery or concurrency control scheme.
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In ACTA versions can be captured by appropriately setting the View of a

transaction.

—Each object ob in a multiversion environment needs to be annotated by its

version number obl, ob2, . . . . obn. Then operations on a particular version

can be included in the view of a transaction.

—Recall that Viewf = H,t implies that the view equals the current history

and applies to in-place updates. Viewt = (HCO~~ U Vp, ob I pt[ ob] G H)

states that the view equals the union of the committed history and the

operations invoked by the transaction itself. This is the case when inten-

tion lists are used, i.e., deferred updates are done to the objects.

4, CONCLUSION

The ACTA transaction framework was motivated by a need to provide a

RISC-like metamodel for treating extended transactions. What exactly makes

up the ACTA framework? ACTA is a first-order logic-based formalism along

with the precedence relation. Basically, ACTA allows a transaction modeler

to specify the behavioral properties of transactions that adhere to a model in

terms of (1) the set of events associated with a transaction model, (2) the

semantics of these significant events, in terms of their effect on objects and

other transactions, (3) the view of a transaction, and (4) the conflict set of a

transaction. ACTA allows a modeler to specify also the high-level properties

of a transaction model. One can verify then that these properties hold given

the specifications for the model. The final point was not stressed much in this

article because of our focus on synthesis. Specifically, we showed how the

building blocks of ACTA serve as powerful tools for the development of new

transaction models in a systematic and precise way. Thus, besides supporting

the specification and analysis of existing transaction models [Chrysanthis

1991; Chrysanthis and Ramamritham 1990; 1991 b], ACTA has the power to

specify the requirements of new database applications.
New transaction models can be synthesized either by tailoring existing

models or by starting from first principles. For instance, chain transactions

were a result of a restriction imposed on the invocation of the Join event
associated with joint transactions such that they result in linear structures

only. This restriction was captured by an axiom which, when added to the

axiomatic definition of joint transactions, yields the definition of chain trans-

actions. Also, reporting transactions and cotransactions were derived from
joint transactions by removmg the restriction that Join be a terminating

event. This allows a transaction to join multiple times with another transac-

tion, thereby delegating more operations to the joint transaction. Cotransac-

tions are more flexible than reporting transactions in the sense that they

allow transactions to join back and forth.
Nested-split transactions were derived by combining the axiomatic defini-

tions of nested transactions and split transactions, the requirement be-

ing that nested-split transactions retain the properties of nested and split

transactions.
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Finally, an open-nested-transaction model was synthesized, starting from

first principles. The behavior of transactions adhering to the model were

derived from the specifications of the components of the model.

ACTA has also been applied to derive from the original definition of the

Saga model [Garcia-Molina and Salem 1987], more flexible Saga models in

which failed components can be retried, replaced with alternative ones, or

ignored. More flexibility was achieved by introducing new component trans-

action types, new significant events associated with these types, and new

dependencies describing the relationship between these new transaction

types [Chrysanthis and Ramamritham 1992].

A variety of extended-transaction models, besides those referred to already

in the article, have appeared in the literature. (See Elmagarmid [1992] for a

description of some of these extended transaction models.) In Chrysanthis

[1991], several of these models have been specified and analyzed. Other

authors ([ Buchmann et al. 1992], for example) have also used ACTA to

specify the behaviors of their extended-transaction models.

Finally, even though we do not spell out the details in this article, the

ACTA formalism can be used to show the correctness of a particular imple-

mentation of a transaction model by first formalizing the properties of the

specific mechanisms used in the implementation and then showing that they

will maintain the correctness properties of the model. In this context, it will

be useful to investigate ways in which the ACTA primitives themselves can

be used to drive the development of these mechanisms. This is in line with

the work on the ConTract Model [Wachter and Reuter 1992] and CACS

[Stemple and Morrison 1992] in which activities are made up of multiple

(transaction-like) steps, with explicit dependency relationships specified be-
tween the steps. The system ensures that such dependencies hold when the

steps execute.

APPENDIX. THE PROPERTIES OF NESTED TRANSACTIONS

Here, we state the recovery and concurrency properties of nested transactions

and show how they follow from the axiomatic definition of nested trans-

actions (Definition 3.2.1.1) developed in Section 3.2.1. Theorem A.5

which follows from all lemmas in this appendix captures the recovery proper-

ties whereas Theorem A.6 captures the concurrency properties of nested

transactions.

hmmYIA A. 1. Suppose t, is a root or a child transaction in a nested-transac-

tion structure. tC is failure atomic.

PROOF. For tC to be failure atomic, tcmust satisfy the two conditions in

the definition of failure atomicity (Definition 2.5.1.3). These can be shown by

induction on the depth of the hierarchy where a root transaction is at depth O.

Basis Step 1. Let t,be at depth O. That is, tc is a root. Here, we first show

that a root is quasifailure-atomic and then show that a root is also failure

atomic.
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(1) t, satisfies the two conditions of quasifailure-atomicity (Definition 3.3):

(a) Condition 1 (the “all” clause) follows directly ffom Axioms 12 and 13.

(b) Condition 2 (the “none” clause) follows directly from Axioms 14 and
15.

(2) Axiom 20 does not apply to a root transaction since Parent(t, ) = ~, and
hence, a root does not delegate any of the operations in its AccessSet,

when it commits. Consequently, AccessSett contains all the operations

invoked by t,.Hence Axioms 12 to 15 also satisfy the two conditions in

failure atomicity. Thus, t, is failure atomic. More simply, since t, has

been shown to be quasi failure-atomic, since it does not delegate, it is also

failure atomic.

Basis Step 2. Let t,be a subtransaction at depth 1. That is, tc is a child of

the root.

(1) (Condition 1) If t,commits, due to Axiom 20, all operations invoked by t,
are delegated to the root. Since the root is quasifailure-atomic, either all

delegated operations will be aborted by the root or all will be committed

by the root.

(2) (Condition 2) If an operation invoked by tcaborts, due to Axioms 14 and
15 all operations invoked by t,are aborted.

Thus, t, satisfies the definition of failure atomicity.

Induction Step. Let us assume that subtransactions at depth < k are

failure atomic. Suppose tc,is at depth k + 1. Its parent, say tp,must be at

depth k.

(1) (Condition 1) If t,commits, due to Axiom 20 all operations invoked by t,
are delegated to tl,.Since tp is failure atomic (induction hypothesis)

either all delegated operations will be aborted by tp or one of its ances-

tors, or all will be committed by the root.

(2) (Condition 2) If an operation invoked by t, aborts, due to axioms 14 and
15 all the operations invoked by t,will be aborted.

Thus, tc is failure atomic. ❑

LEMMA A.2 No ORPHAN COMMITS. Let H be a history of a nested transac-

tion, tP and tC be transactions where tP is the parent of t,.

(((Commit,,, = H) A ~ (Commit,c s Commitf,, ),j v

((Aborttp G H) A ~ (Commit,L s Abortt,, ) )) - (Aborttc e H )

Informally, this states that an orphan, i.e., a child whose parent either

commits or aborts before it terminates, will be aborted.

PROOF. This lemma is derived by rewriting ( tp%s2 t,) and (tc7 @ tp)

logically, induced by Axiom 19.
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(1) (t, %9 t,)

~ (( Commiti G II) + (( Committ = II) + (Committ + Committ )))
= ( ~(Comm!tt ● II) v ~(Comrnittr = II) v (Comrnittc + Comr+ritt ))

+ (=(l(Comfiitt,, = H) V (Committ, + CommittP)) + l(CommitiL”G II))
(given that 11 is a complete history, tc would have been terminated by

invoking either Commit or Abort (Axiom 6). Only one of these termination

events can occur in H (Axiom 7). Thus, 7 (Committc c II) ~ ( Abortt =

H).
.

-= ((( Committp = H) A T (Commit(, + Committp)) = (Aborttc ● H))

(2) (t, 77-&2t,) ~ ((Abort,p = II) + (= (Commit,c + Abort,,, ) - (Abort,c = H)))

~ (((Abortt,, ● H) ~ 1 (Committ -= Aborttp)) = (Aborttt G H))

(3) From (1) and (2),

(((Commit,,, = H) ~ -(Commit,L - Commit,p)) v
((Abort,p ● H) A ~ (Commit,c + Abort,p))) == (Abort,c G H). n

LEMMA A.3. If a root transaction to aborts, all operations performed by to

and its descendants abort.

AbortfO ● H = ‘dt (t = to V t ● Descendants(tO))

Vob Vp (p,[ob] =H +Abort[p,[ob]] GH)

PROOF. This follows from the no-orphan-commits lemma and the failure

atomicity property of the root transaction and subtransactions. ❑

LEMMA A.4. Operations are committed only by root transactions:

Vob Vp Vt Commit,r[ p,[ob]] ● H * Parent(t,) == @

PROOF. This follows from Axiom 12, ‘dob Vt Committ [ pt[ oh]] c H -

COMMk,, ~ H A Parent(t,) = @ ❑

,

THEOREM A.5. Nested transactions have the following recovery properties:

(1) VtC, t, is a root or a child transaction in a nested-transaction structure; tC

is failure atomic.

(2) An orphan subtransaction, i.e., a child t, whose parent tP either commits

or aborts before it terminates, will be aborted (No Orphan Commits

lemma):

(((Committ,, = H) A - (CommittL + Committp]) v

((Abort,,, G H) A - (Commit,c + Abort,,))) + (Aborttc G H).

(3) If a root transaction to aborts, all operations performed by tO and its

descendants abort:

Abort,(, G H * Vt (t = to V t G Descendants to))

Vob Vp (q,[ob] = H *Abort[p,[ob]l GH)

(4) Operations are commzttecl only by root u-ansactions:

Vob Vp VtCommit,, [p,[ob]] = H * Parent(t, ) = ~.
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In the nested-transaction model, given that subtransactions delegate their

operations to their parent upon commitment, root transactions are responsi-

ble for all the operations invoked by their committed descendants; the

committed nonroot transactions do not commit any operations. The history of

events relating to committed nested transactions will appear as though only

the root transactions invoked operations on objects and, given the following

theorem, the operations were invoked serializable.

THEOREM A.6. A history of committed root transactions is serializable.

PROOF. Let H be a history of committed root transactions, Consider a root

transaction t.Given Axioms 10 and 20, ~ relation, and consequently FN

relation (recall from Section 3, (t, Z tJ) - (t,%N tj))is established between t

and any other transaction t‘ if t (or any of its committed descendants) has

invoked operations conflicting with those invoked by t‘(orany of its commit-

ted descendants). Thus, given Axiom 11, since H,c contains only committed

transactions, Ht is serializable (Definition 3.2). ❑
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