
Database Schema Evolution through the
Specif ication and Maintenance of Changes on

Entit ies and Relat ionships

Chien-Tsai Liu, Panos K. Chrysanthis*, Shi-Kuo Chang

Department of Computer Science
University of Pittsburgh, Pittsburgh, PAL 15260

Abstract . A flezible database system needs to support changes to its
schema in order to facilitate the requirements of new applications and to
support interoperability within a multidatabase system. In this paper, we
present an approach to schema evolution through changes to the Entity-
Relationship (ER) schema of a database. We enhance the graphical con-
structs used in ER diagrams, and develop EVER, an EVolutionary ER
diagram for specifying the derivation relationships between schema ver-
sions, relahonships among attributes, and the conditions for maintain-
ing consistent views of programs. Algorithms are presented for map-
ping the EVER diagram into the underlying database and constructing
database views for schema versions. Through the reconstruction of views
after database reorganization, changes to an ER diagram can be made
transparent to the application programs while all objects in the database
remain accessible to the application programs.

1 I n t r o d u c t i o n

As the reality of interest, usually captured by a database, changes over time,
there is a need to be able to reflect these changes in the database. In this way,
the requirements of new database applications can be facilitated. However, a
database stores information for a long time and, in general, it is neither easy nor
practical to re-structure a large database. Furthermore, it is not easy nor prac-
tical to modify complex application programs such as those found in database
systems [15]. Thus, there is a need to continue supporting existing application
programs, providing access to objects created under previous or new database
schemas. Similarly, new applications should be able to access existing objects.

Supporting consistent access to objects created under different schemas is
a requirement also in the context of multidatabase systems [10, 16, 22]. Here,
component database schemas, possibly corresponding to different data models,
need to evolve into a common, integrated, multidatabase schema that supports
efficient and transparent data sharing among the component databases. Since a
multidatabase system does not support complete integration, each component

* This work is partially supported by the N.S.F. under grant IRL9210588.

133

database system continues to operate in an independent fashion providing access
to its database through its existing local database schema.

Various approaches to the problem of changing database schemas and main-
raining consistency between instances created under different schemas have been
proposed, particularly in the context of object-oriented databases (OODBs)
[3, 4, 8, 2, 19, 23, 24]. In this paper, we present a different way to support
schema evolution, one based on the (Eztended) Entity-Relationship (ER/EER)
approach for data modeling [6, 21]. We also describe the implementation of the
ER-based databases and their schema evolution in the context of the relational
and OO data models. We chose to examine the semantics of changes in the
context of the ER model for two reasons. Firstly, the ER approach provides
a graphic oriented representation of a database schema, namely ER diagrams,
which are closer to the designer's perception of data, rather than to the logical
database schema which describes how data are stored in the database. Secondly,
we wanted to avoid defining yet another object-oriented model that would allow
for more types of relationships in order to support schema evolution. Since the
ER model supports many types of relationships, it has the potential of becoming
object-oriented [7, 13], and hence, effectively supporting the mapping of an ER
schema into any object-oriented one.

In our approach, a new schema is derived with the help of an EVolution-
ary ER diagram (EVER diagram). EVER diagrams are ER diagrams enhanced
with schema evolution graphical constructs that provide for the specification of
the derivation relationships between schema versions, the relationships among
attributes, and the conditions for maintaining consistent views of application
programs. Toward this end, we derived a classification of attribute relation-
ships between schema versions. EVER diagrams are transformed into an internal
database representation called a version derivation graph (VDG) which is subse-
quently mapped into the structures of the underlying database. With respect to
the underlying database, each schema version is expressed as a (database) view.
The view constitutes the actual interface to the application programs for access-
ing the objects in the database. Thus, views are reconstructed after a database
reorganization so that schema changes are made transparent to the application
programs while all objects in the database remain accessible to all the programs.

In the next section we survcy the various object-oriented approaches to
schema evolution some of which were proposed to support schema integration.
In Section 3, we formally analyze and classify the relationships of attributes
between the schemas before and after a change and discuss the issues in main-
taining a consistent database manipulated through different schema versions.
EVER diagrams are first introduced in Section 4 whereas their transformation
into an underlying database is discussed in Sections 5 and 6.

2 R e l a t e d W o r k

Schema evolution has mainly been investigated as an aspect of OODBs. Broadly,
approaches to schema evolution can be classified into schema modification, schema

134

versioning and schema derivation, based on the ezternal representation of the
structure of the objects in the database (object schema) to application programs,
and the internal representation of the objects in theunderlying database.

Schema modification approaches always support a single schema and a single
internal representation for each object [2, 5, 24]. Hence, all objects must be con-
verted to conform to the new schema. Because of this, the schema modification
approach does not support the transparency of change for the existing applica-
tion programs. The application programs that use the old schema may need to
be modified.

Schema versioning approaches support multiple schemas and multiple inter-
nal object representations for an object [1, 19]. The instantiation of objects to
a schema version is performed at the time of the creation of the objects. In this
approach, the objects belonging to a version of a schema always stays in that
version. Thus, if the schema of the objects is subsequently augmented, it would
not be possible for the objects to be updated by the programs associated with
a later version without loss of information. In an old version, an augmented
attribute may have insufficient storage.

Schema derivation approaches [3, 4, 8, 23] support multiple schemas for an
object and a common internal object representation. Irrespective of whether ob-
jects are created under different schema versions, they are converted to a common
representation. The instantiation of objects to a schema version is performed at
run-time. That is, the objects are presented to the programs as views on objects
in the underlying database. Although existing derivation approaches allow any
schema version of an object to evolve, it is not clear how object consistency can
be specified and maintained across schema versions derived from different paths.

Our approach belongs to the family of schema derivation approaches that
supports linear schema evolution (i.e., only the most recent schema can be
evolved). By considering discontinuities of attribute relationships in the evo-
lution history, our approach effectively resolves the object consistency problem
mentioned above.

3 An E R M o d e l S c h e m a Evo lu t ion

When a schema is changed, a new version of the schema (or new schema) is then
created. In the context of ER mode l , we use schema to refer to the description
of an entity type or a relationship type and object to refer to an instance of an
entity or a relationship type. Each schema version is the interface for programs to
access the database. Our approach supports linear evolution of database schema.
That is, a designer can only make changes to a new schema. The old schema
versions are mainly used for supporting the existing programs.

In this section, we analyze the attribute relationships between two schema
versions, and explicitly express these relationships in terms of functions. Then
we discuss the problem of discontinuity in specifying attribute relationships for
any two schema versions and the way our approach deals with this problem.
Finally, we present rules for maintenance of a consistent database.

135

A. Analysis of Attributes in Different Schema-Versions

When a schema evolves, the relationships between the attributes of the old
and the new schema capture the semantics of installed changes. These relation-
ships provide the crucial information for maintaining object consistency and
reorganization of the objects in the underlying database. In addition to the at-
tribute values [8], we classify the attributes between two schema versions based
on the relationships of their names and their domains.

�9 Common attributes: An attribute is said to be common to the two schemas,
if the name and domain of the attribute in the two schemas is identical.
�9 Domain-changed attributes: An attribute is said to be domain-changed if its
name in the two schemas is the same but its domain is different.
�9 Renamed attributes: An attribute is said to be renamed if the attribute in the
two schemas has different names but exactly same domains.
�9 Resumed attributes: An attribute is said to be resumed if the attribute was
deleted from the old schema but it is added back to the new schema.
�9 Derived attributes: An attribute is said to be derived if the value of the at-
tribute can be derived from the values of other attributes not necessarily of the
same schema version.
�9 Dependent attributes: An attribute, let us say B, is said to be dependen~ if
the value of the attribute is affected by changes to the values of attributes in
other schema versions, let us say "[A1,A2, . . . , Ak}, but the value of the de-
pendent at tr ibute cannot be derived from the values of the same attributes
{A1, A2, �9 �9 ", Ak}.
�9 Independent attributes: An attribute is said to be independent if its value nei-
ther affects, nor is affected by, the values of other attributes. If the attribute is an
attribute of the new schema, it is called new attribute. On the other hand, if the
attribute is an attribute of the old schema, it is called an el iminated attribute.

Derived and dependent attributes are further distinguished into four groups
depending on where they are defined. If {A1, A 2 , . . . , Ak} are attributes of the
old schema, and B is an attribute of the new schema, then B is classified as
forward. If {At,A~.,. . . ,A/~} are attributes of the new schema, and B is an
at tr ibute of the old schema, then B is classified as reverse. If {A1, A 2 , . . . , Ak}
can be attributes in the new schema or old schemas, and B is an attribute of
the new schema, then B is classified as forward complementary. However, if B
is an at tr ibute of the old schema, then B is a reverse complementary.

Let us illustrate the attribute relationships using an example shown in Table
1. In this example, the old schema of Car database consists of attributes RegNo
(Registration Number), Model, Color, WarrantyBegins (the year that the warranty
of the car is initiated), EngineType and Fuel (leaded or unleaded). After evolu-
tion, the new schema contains attributes VIN (Vehicle Identification Number),
Model, Color, WarrantyExpires (the year the warranty is expected to expire), War-
rantyExtension (the number of years that the warranty has been extended), and
MPG (mileage per gallon). From the table, it can be seen that attr ibute Model
is common to both schemas, whereas attr ibute VIN in the new schema is a re-

136

The old schema liThe new schema

R~aNo: ~tringp.o] v z N : s~ri,~a[~o]
Model : string[20] Model : string[20]
C o l o r : integer[1..256] !Co lo r : string[lO]
WarrantyBegins : integer[1900..1999] Warrant~lEzpires : integer[1900..2025]

WarrantgEztension : integer[O..lO]
EngineType : string[20]

M P G : integer[1..lO0]
Fuel : char[leaded, unleaded]

Table I. The evolution in a database schema for cars

named attr ibute corresponding to at tr ibute RegNo. Also the domain of at tr ibute
Color in the new schema is different from that of Color in the old schema; thus,
Color in the new schema is a domain-changed attribute. Attribute M PG in the
new schema is dependent on at tr ibute EngineType in the old one because when
the type of a car engine is changed, the mileage of the car may also need to be
changed. Thus, M PG is forward dependent on attr ibute EngineType. In the same
way, when the mileage of the car is changed, the type of the car engine may need
to be changed, too. Thus, EngineType is reverse dependent on attr ibute MPG.
More interesting, the derivation of values of at tr ibute WarrnntyExpires in the new
schema involves at tr ibute WvrrsntyExtension in the new schema and attr ibute
WvrrentyBegins in the old schema. Let us assume that the default warranty
period is one year. The at tr ibute VVarrsntyFxpires can be expressed as follows.

Warran~yEzp i re s = Warran~ jBeg ins + 1 + WarranQIEz~ension.
Thus, at tr ibute WarrantyExpires now becomes a forward complemectar~.l derived
attribute. On the other hand, if at tr ibute VVarrsntyExtension and WarrantyExpires
have been in the old schema, and at tr ibute WarrantyBegins in the new schema,
then at tr ibute WarrantyExplres would be a reverse complementary derived at-
tribute. Finally, at tr ibute Fuel is an eliminated attr ibute in the old schema. On
the other hand, if the at tr ibute Fuel had been in the new schema, but not appear
in the old one, then it would be a new attribute.

B. Specification of Attr ibute Relationships

The relationships of each at tr ibute group can be expressed with a help of
functions. Our framework uses four kinds of functions:

I d e n t i t y f u n c t i o n . If attributes a and b are always identical, their relationship
can be represented by using an identity function (I): a : I(b).

D e r i v a t i o n f u n c t i o n . If an at tr ibute a can be derived from bl, b2, . . , bk, the
relationship of a to attributes bx, b2, . . , bk can be represented by a derivation
function (f) : a -- f (b l , b2, . . , bk).

137

P r o m p t func t ion . If an attribute a depends on attributes bl, b2,...bk but it
cannot be derived solely from bl, b2,.., bk (e.g., it may need additional infor-
mation), the relationship of a to attributes bl, b2,...bk can be reprcscntcd
by using a prompt fiz~ctioa (~): a = ~(bl, b2,.., bk, ~), where @ represents
the additional information. �9 is possibly an interactive query against the
whole database. For example, if a car's EngineType is updated through the
old schema, then the car's mileage needs to be updated (see Table 1). The
car's MPG can be acquired by either prompting a user or extracting it from
the information in the database, e.g. Engine-Mileage cross reference table.
At this point it is interesting to point out the difference between derived and
prompt functions. A derivation function captures local object consistency
requirements, whereas a prompt function captures database consistency re-
quirements, and as such, it is executed against the whole database (globally)
and not within the object (locally).

Defaul t func t ion . If the value of an attribute a in an object is unspecified
but the value is required by an application program, then the value can be
acquired by invoking a default function (default). By assigning a default
value to an unspecified attribute value, the need of the application programs
associated with different schema versions can be resolved.

Attribute Group Associated function
01d schema New schema

common reverse identity function forward identity function

domain changed reverse derivation function forward derivation function
or reverse prompt function or forward prompt function

resumed reverse identity function forward identity function

forward derived forward derivation function
reverse derived Ireverse derivation function

forward-complementary forward-complementary
derived derivation function
reverse-complement ary reverse-complement ary
derived derivation function

forward dependent forward prompt function
reverse dependent reverse prompt function
forward-complementary forward-complementary
dependent prompt function
reverse-complementary reverse-complementary
dependent prompt function

new default function
eliminated default function

Table 2. The association of functions with attributes

138

These functions can be used to ensure object consistency for update and
retrieval operations. For example, suppose three consecutive schema versions
V~_I, ~ and Vi+l along a schema evolution course. When an at tr ibute a in V~
is updated, the new value of a is propagated to the attributes of V~_I tha t are
derived/depended on a using reverse or complementary reverse functions. At
the same time, the new value of a is propagated to the derived/depended at-
tributes in V~+I using forward or complementary forward functions. The possible
associations of functions with attributes are summarized in Table 2.

C. Discontinuity of Attr ibute Relationships

Although the at tr ibute relationships between attributes of two arbitrary schema
versions can be computed transitively using the specified functions, there may
exist an at tr ibute relationship between two schema versions that cannot be com-
puted from the specified relationships between consecutive schema versions. We
will elaborate on this problem using the example shown in Table 3.

V1

V I N : string[20]

Warran~yBegins : integer
EngineType : string[20]

�89 V3

V I N : string[20] V I N : string[20]
M P G : integer[1..lO0] M P G : string[3]

Warran t yEzp i r e s : integer

Table 3. The problem in representing attribute relationships

Let V1, V2 and V3 be three consecutive schema versions of a student database.
The relationship of at tr ibute WarrantyExpires in V3 to attribute WarrantyBegins
in V1 cannot be correctly captured, because at tr ibute WarrantyExpires in V3 is
new with respect to V2 and at tr ibute WarrantyBegins in V1 was criminated with
respect to V2 leading to the conclusion that these attributes are independent.
However, as we saw above, at tr ibute WarrantyExpires in V3 can be derived from
attr ibute WarrantyBegins in V1. This phenomenon is due to the discontinuity in
the evolution history of the attribute.

Such a discontinuity would have not occurred, if the designer had first "re-
sumed" the previously criminated attribute, and then followed the regular change
procedures. In this example, the designer must first interpose an intermediate
schema version V ~ (V I N , M P G , W a r r a n t y B e g i n s) , between V2 and V3. In V~,
WarrantyBegins is a resumed attr ibute from Vz. We call V 2' a resumed schema
version. The relationship of the resumed attr ibute in the two schema versions
can be expressed similar to a common attr ibute in terms of an identity function.

Thus, in our approach, a schema evolves from the resumed schema corre-
sponding to the latest schema version. The resumed schema version cannot be
seen by application programs and is constructed during schema evolution by

139

combining all the attributes of the latest schema version with all the eliminated
attributes of the previous schema versions. In this way, we re-establish discontin-
ued attribute relationships and therefore, we can reconstruct the relationships
between any two schema versions.

D. Maintaining Database Consistency Across Schema-Versions

Informally, a database is said to be consistent if two observers who view the
database through different schema versions see an object in ways that agree
with each other. In our framework based on ER schema evolution, we com-
pletely avoid the modification of application programs, by ensuring a consistent
database along three dimensions: object consistertc!h key consistency, and invari-
ant program views.

Object Consis tency. As discussed in the previous section, the maintenance
of object consistency can be accomplished through the specified functions.
Whenever an attribute value of an object is updated, those attributes that
depend on it must be updated by using the specified functions.

Key Consistency. The key consistency specifies the uniqueness of the objects
across the old and new schemas. That is, each object, irrespective of whether
it is created by the old or new schema, must be uniquely identified by using
the values of the key attributes defined in the old and new schema. The main-
tenance of key consistency cannot be performed by the integrity constraints
alone because the key attribute may be different in the different schema ver-
sions. Therefore, in our approach, we enforce the following condition when a
designer changes the key attribute: the mapping of the key attributes between
the new arid old schemas mus~ be one-to-one.

Invar lan t P r o g r a m Views. The invariant program views specify the seman-
tics of a database for the programs associated with a particular schema ver-
sion. However, the evolved database may not preserve the interpretation
made by the programs associated with the previous schema versions. Since
the views of programs to a database are appfication dependent, in our frame-
work, we provide facilities to allow a designer to specify the conditions under
which programs retain consistent view of the evolved database (see next sec-
tion).

4 EVER Diagrams for Specifying Schema Evolution

An ER diagram is a graphical representation of an ER database schema. In
order to support the specification of changes to ER diagrams, we extend the
basic graphical constructs of ER diagrams to present the relationships of schemas
before and after a change (Figure 1). We call this diagram EVER diagram. In
an EVER diagram, a designer can express the following associations:

- the derivation path of the new schema,
- the relationships of attributes between the new schema and the old schema,

140

- the participation of a new schema in relationship types (i.e., edges in an ER
diagram), and

- the conditions for maintaining invariant program views.

The derivation path indicates from where the new schema evolves. The at tr ibute
relationships specify the effect of changes to an at tr ibute on other attributes, and
can be expressed using functions. The change to an edge between an entity and
a relationship type implies that the participation of the entity type in the rela-
tionship type needs to be established or dropped. Consequently, the relationship
type needs to be evolved by adding to or deleting from the relationship type the
key at tr ibute of the affected entity type.

I'"-"-1 G8 G1 I I visible entity type

G2 ~ visible relationship type G9 ~

--()-
G4 ~ " key attribute G11 - - ~ " -

G5 -------O attribute G12 " ~

(36 t ~ defunct entity type 1313

d ! ,
~ | ! G7 ~- 2" efunct relationship type G14 ~.

G15 ~ visible inheritance link 1316 ~ '

defunct edge

version derivation

common, renamed
resumed attribute

domain changed attribute

derived attribute

dependent attribute

resumed schema

defunct inheritance link

Fig. 1. The icons for EVER diagrams

Here we will use examples to illustrate the use of the extended graphical
constructs (icons) G1 to G14 (Figure 1). Icons G15 and G16 will be discussed
in Section 6. Let us begin with the example shown in Figure 2(a). The new
schema, V2, is derived from the old schema, V1. The derivation of the schema
is represented using icon Gg. Since the old schema cannot be seen by the new
programs nor can be used for future evolution, we consider it as a defunct schema.
A defunct entity type, relationship type and edge can be represented using icons
G6, G7 and Gs, respectively. Therefore, V1 is represented by a dotted rectangle.
Similar to the defunct entity and relationship types, the resumed schema version
which consists of the resumed attributes and all attributes of the old schema
version can be represented using icons G14.

The icons, from Glo to G13, are used for representation of the at tr ibute
relationships�9 G10 indicates that the relationship of the two attributes at the
two ends of the icon are common or one is renamed as the other. If the names of
attributes at the two ends are the same, then they are common. Otherwise, the

141

~ ~B1
I

A1 "~

, V2

T
I I
i VI t

. - J

I
\

) B1 A2~

fv2

fvl
B1

A1

I v2]

I I t V1 t
! . . j

(a) (b) (c)

Fig. 2. The derivation of a schema the EVER diagram

B2

gl

attr ibute in the new version is renamed. For example, in Figure 2(a), attributes
A1 in the new and the old schema are common whereas at tr ibute B1 in the old
schema is renamed as B2 in the new schema. Gl l is used for representation of
a domain changed attribute. As shown in Figure 2(b), the domain of at tr ibute
B1 in the new schema is different from that of attr ibute B1 in the old schema,
hence a forward function (f~2) is associated with the end close to B1 in the new
schema. Similarly, a reverse function (f~l) is associated with the end close to
B1 in the old schema. G12 and Gla are used for representation of a derived and
dependent attribute, respectively. The attribute at the pointed end is derived
from, or dependent on, the attributes in the other end. The derivation or prompt
function for the attribute is associated with the attribute close to the pointed
end. Finally, let us refer to Figure 2(c). Attribute A2 in the new schema is derived
from attribute A1 in the old schema. Thus, a forward derivation function f l is
associated with the pointed end of the icon close to attr ibute A2. On the other
hand, attr ibute B~. is dependent on B1 and a prompt function (g!) is associated
with the pointed end of the icon close to B~.

As indicated in the previous section, in order to completely represent the at-
tribute relationships among schema versions, a resumed schema version needs to
be created to re-establish the relationships of eliminated attributes and therefore,
a new schema version is always created based on the resumed schema version.
Note that the resumed schema version is vir tual in the sense that it does not
physically exist. It serves as an aid to a designer for browsing the history of at-
tribute relationships along the course of schema evolution. Through the EVER
diagrams, a designer not only can visualize the relationships among schema ver-
sions but the designer can also browse through the history of changes.

At this point, let us revisit Table 3 and consider the specification of the
change from V2 to V3. From the table, one can see that attribute WarrantyEx-
pires is newly added to V3, and the domain of attribute MPG is changed. Since
there is an attribute relationship between attribute WarrantyBegins in V1 and
WarrantyExpires in V3, we must first create a resumed version, V~ in between
V~. and V3 to accommodate the resume attribute WarrantyBegins and all the at-
tributes of V~. Because of the resumed schema version, the relationship between
attribute WarrantyExpires and WarrantyBegins can be re-established.

142

The attribute relationships between MPG in V3 and V 2' can be represented
by derived functions. The reverse derivation function, f l , maps the domain of
attribute MPG in the V3 (V3(MPG)) to that of the attribute in V~ (V~(MPG)),
and the forward derivation function, f2, maps the domain of V2'(MPG) to that of
V3(MPG). Attributes WarrantyBegins and WatrantyExpirer can be derived from
each other and can be specified together with functions f l and f9 using LEVER
(a Language for EVolutionary ER diagram [12]) as follows.

F U N C T I O N S {
(~ (M P G) = f2(V2'(MPG))

W I T H I M P L E M E N T A T I O N ~ (M P G) = itoa(V~'(MPG)));
(Vzt(MpG) = fl(V3(MPG))

W I T H I M P L E M E N T A T I O N V2'(MPG) = itoa(V~(MPG)));
(WarrantyEzpires = f3(WarrantyBegins)

W I T H I M P L E M E N T A T I O N
WarrantyEzpires = Warran~yBegins + 1);

(WarrantyBegins = S,(WarrantyEzpires)
W I T H I M P L E M E N T A T I O N

(WarrantyBegins = WarrantyEzpires - 1))};

where itoa 0 is a system function which converts an integer into a string.

WarrantyExpires

V3 f3 0

Makerld Mname Year ~ , I t .

Maker [- - - - - - @ a d e B y ~ V'2 VlN I ,ogram I arrantyBegins

~- I "~---- --; l ~ol

' , ; A !2 /
: : V1 J, ~_gine~ype
I WarrantyBegins I

.J

F|g. 3. An example of EVER. diagrams for the specification of change

143

The EVER diagram representing the attribute relationships between schema
version V3 and 1/2' is shown in Figure 3. The old schema version V2 and the edge
connecting to it are defunct, so they are represented by the dotted rectangle
(Gs) and edge (Gs), respectively. Since V3 evolves from V 2' which is virtual, it
inherits all edges from V2. Schema version V3 and edge that connects to it can be
created and represented using a solid rectangle (G1) and edge (G3), respectively.
The derivation of the new schema from the old one can be depicted by using a
directed parallel line (Gg) which goes from V~ to V3. More examples of the use
of EVER diagrams to capture schema changes are shown in [11].

Thus far, we have discussed how EVER diagrams can capture all the aspects
involved in the evolution of the schema of a database that does not support class
hierarchies. Before considering schema evolution that involves class hierarchy and
inheritance, in the next section we will show how EVER diagrams are translated
into an underlying database model.

5 Transformation of EVER Diagrams into Databases

In order to support different implementation database models, instead of directly
translating an EVER diagram into an underlying database schema, a VDG (Ver-
sion Derivation Graph) representation, which is an internal representation of the
EVER diagram, is created~ and then map the VDG representation into a specific
underlying data model. The VDG representation captures the semantics of the
EVER diagram and provides the storage requirements of objects for mapping the
EVER diagram into the specific underlying data model. In the VDG representa-
tion there is a set of VDGs. Each VDG represents the derivation of a particular
schema in an EVER diagram. A VDG consists of a set of nodes and directed
edges. A node captures the object structure (attributes) of a schema version
and change relationships of the schema version to others. The objects created
under a schema version are conceptually attached to the VDG node representing
the schema version. A directed edge captures the object associations along the
schema evolution course. There are two types of edges: derivation and inheri-
tance edges. The inheritance edge will be discussed in Section 6. A derivation
edge connects two VDG nodes corresponding to two schema versions (the old
and the new) in an EVER diagram. That is, from the new schema version point
of view, the edge indicates that the objects created under the old schema version
must be converted to conform with the new schema version. Similarly, from the
old schema version point of view, the objects created under the new schema
version must be converted to conform with the old schema version. Thus, the
objects associated with the VDG nodes connected by derivation edges (i.e., the
derivatio~ lattice) comprise the entire set of objects of the particular schema. The
VDG representation is similar to the catalog and schemas with views to store the
information about the mapping of EVER diagrams into logical databases. Since,
a VDG is currently designed to support schema derivation, it is geared toward
a single internal object representation. The schema of an object is conceptually
represented as the union of attributes of all the schema versions in a derivation

144

lattice of the VDG (or the complete schema).
In considering the efficient maintenance of object consistency and use of

storage among schema versions, when the underlying database is re-organized
after a new schema version is created, objects are allocated additional storage
for only those attributes (the base attrib~ttes) that cannotshare the storage with
attributes of the old schema. Let E,~ be a schema version which is derived from
schema versions El, E2,. . . , E,=, where rt ~ {1..m}. Attribute ai E E,~ is said
to be a base attribute of E,~ if and only if one of the following conditions are
satisfied.

�9 group(ai) E {new, forvaa~cl-depender~t, forward-complemer~tarv-depender~t}

�9 3ak E Ej A j E { 1 , . . . , ra}, such that
a, = domai.-cha.ged(a) ^ (do _si e(a) C

where domain-cha~tged(a) returns the attributes that are derived from attr ibute
a and whose domain has been changed; dora_size(a) computes the storage re-
quirements for an at tr ibute a. Let Bi be a set of base attributes of schema
versions Ei, i E {1.m}. The complete schema of schemas {El , E2,.. . , E,~} (So)
can be expressed as: Sc = Ui=l i. Let us refer to the objects associated with
a complete schema as complete objects. In order to indicate whether the objects
created under a schema version need additional storage, we use two kinds of
nodes in a VDG: virtual and 7ton-virt~tal nodes.

A n o n - v i r t u a l n o d e corresponds to a schema version which is either the initial
one or is augmented with attributes that cannot be derived from the old
schema. Tha t is, a non-virtual node contains base attributes.

A v i r t u a l n o d e corresponds to a schema which does not contain any base at-
tribute.

Objects created under a new schema version that maps onto a non-virtual
node cannot be stored in the underlying database described by the old schema
versions. The underlying database needs to be re-organized in order to store
objects created under the new schema version. On the other hand, the objects
created from a schema version that maps onto virtual nodes can be completely
stored in the underlying databases.

Let us demonstrate the transformation of VDGs into an implementation
database schema which, we assume here, is relational (In the next section, we
will show an example of a VDG transformation into an OODB schema). The
relational database is "objectified" so that it can effectively support this mapping
as well as the construction and use of database views representing the different
schema versions. That is, we assume that each object, i.e. instance of entity
or relationship type, is associated with a systemwide unique and immutable
identifier (Old) not visible to application programs.

Refer to the example shown in Figure 4 in which two schemas are merged
together resulting in a new single schema. Suppose the schema Car initially
consists of attributes {VIN, Color}, and class Bus consists of {VIN, Seats}. As

145

C o l o r I - - - I ,

i S

(
| d

~ N

MaketId Mname

? ?

Maker I

Fig. 4. An example of EVER diagrams for merging two schemas

indicated in the diagram, Vehicle is derived from schemas Car and Bus. Since Car
and Bus are initial schemas, they are mapped into two VDGs, each consisting
of a single non-virtual node, N1 and N2, respectively. Being a non-virtual node,
N1 is mapped into a relation r l in the underlying database. The schema Tx of
rl contains all attributes of Car plus one extra attribute, the objec~ identifier
(Old): TI(VIN, Color, Old). Similarly, the VDG node N~ corresponding to Bus is
mapped into a relation r2 with schema T2(VIN, Seats, Old).

Schema Vehicle has three attributes: VehType (the type of a vehicle) which
is a new attribute to Vehicle, VIN which shares with both Car and Bus, Color
which shares with Car, and Seats with Bus. Since VehType as a new attribute,
corresponds to a base attribute, Vehicle is mapped into a non-virtual VDG node,
let us say N3. Thus, nodes N1, N2, and Na form a derivation lattice in the VDG.
The complete schema (Sc) of the derivation lattice is the union of base attributes
of Car, Bus and Vehicle: Sc = {VIN, Seats, Color, VehType}.

As in the case of VDG nodes /71 and N2, being a non-virtual node, N3
requires a new relation r3 with schema T3 (T3 = {VehType, Oid}) to store the base
attribute VehType. Since Vehicle shares attributes with Car and Bus schemas,
Vehicle is represented as a relational view on rl , r2 and r3.

In order to uniformly define a view for each schema version, we construct
each view in terms of the complete schema. That is, objects associated with
each schema version are expanded first to complete objects. In this example, the
set of complete objects is the union of the set of the expanded objects associated
with schemas Car, Bus and Vehicle. Each object schema, irrespective of whether
it maps onto a virtual or non-virtual VDG node, is expressed as a view on the
complete objects stored in the relations in the underlying database. Thus, the
view of a schema version (Si) is defined as a selection on the complete objects
based on the access conditions associated with S~, and then a projection on the
attributes of Si. Let Ezpand 0 be a procedure that converts an objects associated
with a particular schema version to a complete object. The conversion of the

146

base attributes and the attributes viewed through the schema version make use
of the functions specified in the EVER diagram. Let us illustrate step by step
the construction of the views for schemas Car, Bus and Vehicle in Figure 4.

S tep 1: Determine the complete schema of the derivation of the VDG. As indi-
cated above, the complete schema (S~) is S: = {VIN, Sea~s, Color, VehType}.
Step 2-" Determine the relations used to store the complete objects created
by each schema version. In this example, schema Car is an initial schema and
mapped into the schema of relation rz. Thus, the objects created under Car are
stored into rl. Similarly, the objects created under Bus are stored into r2. How-
ever, the objects created under Vehicle must be stored into all three relations rl,

r2 and r3.
S tep 8: Identify the complete objects created under a specific schema version.
The objects created under a schema version may be stored in different relations.
They can be identified by joining relations based on attribute Old. For example,
the objects created under schema version Vehicle (O~) are selected by joining rz,
r2 and r3 on Oid. Since the objects created under both Bus and Vehicle are stored
in r2, we must separate them to apply the corresponding Ev~pand 0 procedure.
The objects created under version Bus (O~.) are selected by discarding the objects
created under Vehicle from relation ra. Similarly, the objects created under Car
are selected by removing the objects created under Vehicle from relation rz.
The selection condition for identification of a set of the objects created under a
schema version can be derived as the following tame.

schema(E~) the created objects

IVehicle O~ = r3 ~ o ~ r2 ~O~d rz

Bus O~ = ~O~de(no~(r~)-rZo,~(o;))(r~)
Car 0~' = CrOide (f/oeg(r~)--r/o;a(O_,*)) (r l)

Step 4: Expand the complete objects created under a schema version to the ob-
jects viewed through the schema version, and thenscreen the objects that cannot
satisfy the specified condigior~s out from the view of the programs. Suppose the
programs that refer to entity types Car and Bus can be express as follows.

INVARIANT VIEWS {
(Car ACCESS W I T H CONDITIONS (ac~ : VehType = car));
(Bus A C C E S S W I T H C O N D I T I O N S (ac2 : VehType = bus)));

Let Viewi represent the view for schema Ei. If there are n schema versions, then,
the view of a schema version can be defined uniformly as belows:

i~--lrt
Yiewi = IIE,(crc~ditim~,~,(Ui=l Ezpand(O*))),

wher e / / stands for projection, cr for selection and ConditiOnSE~ for the condi-
tions specified against Ei. Therefore, in the example, the view of each schema
version can be expressed as:

V iewca,. ----- II(v,N, Co, o,-) (O'(V~h~',p) (~ . -a Szpand(O*)))
VieWB:, = IIwi~r,s,=t,) (tr W ehType=b:, } (U~--- -3 Ezpand(O;)))

/ " / t l I i = 3

147

Each view is stored in the corresponding VDG node and it may need to be
reconstructed after each database re-organization.

In our approach, we can guarantee that the update against a view can be
correctly translated into the sequence of updates on the complete objects in the
underlying database because of the following two reasons: (1) the key attributes
of different schema versions must be same or the mapping among them must be
one-to-one. Therefore, the complete objects stored in the underlying database
can be uniquely identified by using different key attributes. (2) The objects
viewed from a schema version are always a subset of the complete objects, and
can be mapped into~the unique complete objects in the underlying database.

6 Evolution of Extended ER Diagrams

The presentation of the EVER diagrams thus far has been restricted to the
evolution of database schemas for traditional database applications which can
be modeled using classification and aggregation mechanisms. However, in some
systems, such as object-oriented databases, there may exist inheritance rela-
tionships among entity types that capture the generalization/specialization ab-
straction between superclazses and subclasses of entity types. In the ER model,
class hierarchy and inheritance can be expressed using ez~ended ER (EER) dia-
grams [9, 21]. In this section, we discuss how EVER diagrams can facilitate the
evolution of EER diagrams and can be mapped into an OODB schema.

A. The Evolution of Inheritance Lattices

When a class in an inheritance lattice evolves, we require that the entire
inheritance lattice is evolved; Let us refer to the versions of an inheritance lattice
before and after evolution as the old and new lattices, respectively. Similar to the
evolution of an entity type (see Section 4), the resumed schema of an inheritance
lattice can be considered as the union of all the attributes of the classes in
the old lattice plus all the eliminated attributes of the previous versions of the
inheritance lattice. Once the resumed schema of the lattice is computed, the
attribute relationships between the new lattice and the resumed lattice, and the
conditions for maintenance of a consistent database can be specified using EVER
diagrams.

In addition to the E R / E E R constructs, the EVER diagram provides a con-
struct, namely, the defunct inheritance links (Icon Gls as shown in Figure 1),
that allows a designer to specify changes to inheritance relationships between
subclasses and superclasses in an EER diagram:

1. Add a new class and its associated inheritance links to an inheritance lattice.
2. Drop a class (with no objects) and its associated inheritance links from an

inheritance lattice, possibly in conjunction with a reduction of the domain
of the defining attribute which is used to define an entity type as a subclass
in an inheritance lattice.

3. Add to or delete inheritance links from an inheritance lattice.

148

4. Change the inheritance ordering (i.e., reverse the position of two classes in
an inheritance lattice).

In order to maintain a consistent database for application programs after a
change, our approach requires that changes must satisfy the criteria of object
consistency, key consistency, and invariant program vie~s (see Section 3).

Seats
Color

o r ! ~ , C a r i I I ~ i S e a t s

V Z N I ~ ~ 1 V I N
t _1

(a)

1
T

/ i Veh ic l e
~. N 3]

Co)

Fig. 5. (a) An evolved inheritance lattice in an EVER diagram, and (b) the corre-
sponding VDG

Let us use the example shown in Figure 5(a) to demonstrate how the EVER
is used for specifying the evolution of an inheritance lattice. Assume that the
class Vehicle is generalized from the two classes Car and Bus (Figure 4). The class
Vehicle gains a new attribute VehType indicating the type of Vehicles. Thus, the
resumed schema (R,) of the lattice is the union of the attribute sets of classes
Old(Car) (the old version of class Car) and Old(Bus) (the old version of class
Bus). That is, R, = {VIN, Color, Seats}. Out of these attributes, VIN is common
to all three classes Vehicle, Car and Bus. Attribute VehType is new to the class
Vehicle. Assume that the default value of attribute VehType is car if objects are
associated with class Car, and it is bus if objects are associated with class Bus.
Thus, the specification of default functions can be expressed as follows.

F U N C T I O N { ((VehType(x) = default)
W I T H I M P L E M E N T A T I O N

(i f SchemaTics(z) = Car then VehType(z) : car
eZse VehWupe(,) = bus)) };

B. The Mapping of an EVER Diagram onto VDGs

In the case of an inheritance lattice, a single VDG is used to represent all
the entity types (classes) which are part of the inheritance lattice. Such a VDG

149

can be constructed as follows. First, we compute the attribute set of each class
in the new lattice, and then, compare it with that of its corresponding old class
if there exists such one. If the new and old attribute sets are the same, both the
old and new classes share the same VDG node. On the other hand, if the new
class owns base attributes, then a non-virtual node is created for it; otherwise, a
virtual node is created for that new class. Last, for each new node representing a
class in the new lattice, establish an derivation path from a node corresponding
to a class from which the new class has evolved.

Consider again the above example shown in Figure 5(a). The EVER diagram
can be mapped onto a VDG (Figure 5(b)) in the following way. Since class Vehicle
has no corresponding class in the old inheritance lattice, and its participation
constraint is total, it is mapped to a virtual node N3 (dotted). Classes Car and
Bus gain an additional attribute by inheriting VehType from Vehicle. Hence,
both Car and Bus are mapped onto two new non-virtual nodes N~ (New(Car))
and N~ (New(Bus)), respectively. The edges from N1 to N~ and from N2 to N~
are derivation edges (thin lines) because New(Car) evolves from Old(Car) and
New(Bus) from Old(Bus). However, the edges from N~ to N3 and from N~ to
Na are inheritance edges (thick lines) because they are established based on
the inheritance links between Vehicle and New(Car) and between Vehicle and
New(Bus), respectively.

C. The Mapping of a VDG into an OODB

The mapping of a VDG into a relational database and the construction of
views for each version of a class in an inheritance lattice can be handled by
using a similar approach presented in Section 4. Below, we will demonstrate the
potential that a VDG can be mapped into an OODB.

In order to implement the EER schema evolution in the context of an OODB,
the primitive Augment() is introduced to augment an object structure in the
underlying OODB database originally defined by an old class. For example, as
shown in Figure 5(b), since the VDG nodes N~ (New(Car)) and N~ (New(Bus))
are non-virtual VDG nodes evolved from nodes N1 (Old(Car)) and N2 (Old(Bus)),
respectively, the underlying object structures for Old(Car) and Old(Bus) need
to be augmented: Augment(Old(Car)) wi th {VehType}, and Augment(Old(Bus))
w i th {VehType}. Since the node N3 representing class Vehicle is virtual, and has
inheritance edges connecting to subclasses N~ (New(Car)) and N~ (New(Bus)),
we do not create an object structure for the class Vehicle. The objects created
under the class Vehicle are either stored into the augmented class Car or Bus. In
other words, the objects associated with class Vehicle is the union of the objects
associated with augmented classes Car and Bus.

In this example, the complete schema (Scar) of derivation lattice Car consists
of {VIN, VehType, Color}, and the corresponding complete objects (Ocar) are
stored in the augmented class Car. Similarly, the complete schema (SB~s) of
derivation lattice Bus consists of {VIN, VehType, Seats}, and the corresponding
complete objects (OB,~,) are stored in the augmented class Bus. The objects of
the class Vehicle are the complete objects of classes Car and Bus (Ocar U OB~a).
Thus, the view for each version of the VDG can be constructed as follows.

150

ViewvehicZe ::= II(vlN, VehType)({Z tJ y [z 60car; Y �9 OBus})
VieWoid(C~.) : : = 11(vz~,VoZo.) ({ ~ I ~ e Oct.})
ViewN..(ca.) : : = 1E{VZN, V.hT~p,,Coio~) ({ Z I = e Oc.,})
Viewoid(Bu.) : : = II(VlN, Seat,)({Y IV 60Bu,})
ViewN..(B..) : : = H(VIN, WhTyp~,Seat.)({Y I Y 60B.,})

These views reflect the schema of the new inheritance lattice which is mapped
into the following object-oriented database schema (using C++ syntax):

class Vehicle { char �9 VIN; char �9
c lass Car : Vehicle { i n t e g e r Color; }
c lass Bus : Vehicle { in t e g e r Seats; }

VehType; }

T C o n c l u s i o n

In this paper, we presented a schema derivation approach to schema evolution
through changes to the ER schema of a database. The approach is supported by
EVER, an EVolutionary ER diagram for specifying the derivation relationships
between schema versions in ER/EER diagrams, relationships among attributes,
and the conditions for maintaining consistent views of programs. A methodol-
ogy was presented for mapping the EVER diagram into the underlying database
and constructing database views for schema versions. Through the reconstruc-
tion of views after database reorganization, changes to an ER/EER diagram
can be made transparent to the application programs while all objects in the
database remain accessible to the application programs. In order to demonstrate
its potentials, we used our methodology to evolve two database schemas, one that
assumed that the underlying database is relational, and the second that assumed
that the underlying database is object-oriented.

Since an EVER diagram may become quite complex in the case of large
applications, we are investigating an icon-based EVER diagram, in which a sub-
diagram can be encapsulated and replaced by an icon (called a complex icon).
This will lead to a cleaner and less clogged visual specification. In order to eval-
uate how well the proposed approach scales up, we plan to use it on real world
applications and study empirically its effects, in a manner similar to Sjoberg's
work [18] that quantifies schema evolution.

Finally, we intend to build a prototype for exploration of schema evolution
in different database models, and also to experiment with schema integration in
an attempt to facilitate interoperability in a multidatabase system.

R e f e r e n c e s

1. M. Ahlsen et al. Making Type Changes Transparent. In Proc. of IEEE Workshop
on Language for Automation, 1983.

2. J. Banerjee et al. Semantics and Implementation of Schema Evolution in Object-
Oriented Databases. In Proc. of AGM SIGMOD, 1987.

151

3. E. Bertino. A View Mechanism for Object-Oriented Databases. In Proc. of 3rd
Intl. Conference on Eztending Database Technology~ 1992.

4. S. E. Bratsberg. Unified Class Evolution by Object-Oriented Views. In Proc. of
the 11th Intl. Conference on Entity-Relationship Approach, 1992.

5. R. Bretl et al. The GemStone Data Management Systems. In W. Kim and
F. H. Lochovsky, editors, Object-Oriented Concepts, Databases and Applications.
Addlson-Wesley Publishing Co., 1989.

6. P. Chen. The Entity Relationship Model - Toward a Unified View of Data. ACM
Transactions on Database Systems, 1(1), 1976.

7. P. Chen. ER vs. OO. In Proceedings of the 11th International Conference on
Entity-Relationship Approach, 1992.

8. S. M. Clamen. Schema Evolution and Integration. Journal of Distributed and
Parallel Databases, 1994.

9. R. Elmasri and S. B. Navathe. Fundamentals of Database Systems, 2nd edition.
The Benjamin/Cummings Publishing Company, Inc., 1992.

10. L. Mark, Litwin, W. and N. Roussopoulos. Interoperabillty of Multiple Au-
tonomous Databases. ACM Computing Surveys, 22(3), 1990.

11. C. T. Liu, S. K. Chang, and P. K. Chrysanthis. Database Schema Evolution using
EVER Diagrams. In Proc. of Intl. Workshop on Advanced Visual Interfaces, 1994.

12. C.T. Liu, P.K. Chrysanthis, and S.K. Chang. Schema Evolution through Changes
to ER Diagrams. Journal of Computer and Information Sciences,, 9(4), 1994.

13. S. B. Navathe and M. K. PiUalamarri. OOER: Toward Making the E-R Approach
Object-Oriented. In Proc. of the 8th Intl. Conference on Entity-Relationship Ap-
proach, 1989.

14. X. Qian and G. Wiederhold. Knowledge-based Integrity Constraint Validation. In
Proc. of the Intl Conference on Very Large Data Bases, 1986.

15. M. E. Segal and O. Frieder. On-the-Fly Program Modification: Systems for Dy-
namic Updating. IEEE Software, 1993.

16. A. P. Sheth and J. A. Larson. Federated Database Systems for Managing Dis-
tributed, Heterogeneous, and Autonomous Databases. A CM Computing Surveys,
22(3), 1990.

17. E. Simon and P. Valduriez. Design and Implementation of an Extendible Integrity
Subsystem. In Proc. of ACM SIGMOD, 1984.

18. Dag Sjeberg. Quantifying Schema Evo]utlon. Information and Software Technol-
ogy, 35(1), 1993.

19. H. A. Sk~rra and S. B. Zdonik. Type Evolution in an Object-Oriented Database.
Research in Object-Oriented Databases. Addis0n-Wesley , 1987.

20. M. Stonebraker and L. A. Rowe. The Design of POSTGRES. In Proc. of ACM
SIGMOD, 1986.

21. T.J. Teorey, D. Yang, and J.P Fry. A Logical Design Methodology for Relational
Databases Using the Extended Entity-Relationship Model. A CM Computing Sur-
vey, 18(2), 1986.

22. Thomas et al. Heterogeneous Distributed Database Systems for Production Use.
A CM Computing Surveys, 22(3), 1990.

23. S. B. Zdonik. Object-Oriented Type Evolution. Advances in Database Program-
ming Languages. Addison-Wesley, 1990.

24. R. Zicari. A Framework for Schema Updates in an Object-Orlented Database
System. In Proc. of Conference on Data Engineering, 1991.

