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Abstract .  A flezible database system needs to support changes to its 
schema in order to facilitate the requirements of new applications and to 
support interoperability within a multidatabase system. In this paper, we 
present an approach to schema evolution through changes to the Entity- 
Relationship (ER) schema of a database. We enhance the graphical con- 
structs used in ER diagrams, and develop EVER, an EVolutionary ER 
diagram for specifying the derivation relationships between schema ver- 
sions, relahonships among attributes, and the conditions for maintain- 
ing consistent views of programs. Algorithms are presented for map- 
ping the EVER diagram into the underlying database and constructing 
database views for schema versions. Through the reconstruction of views 
after database reorganization, changes to an ER diagram can be made 
transparent to the application programs while all objects in the database 
remain accessible to the application programs. 

1 I n t r o d u c t i o n  

As the reality of interest, usually captured by a database, changes over time, 
there is a need to be able to reflect these changes in the database. In this way, 
the requirements of new database applications can be facilitated. However, a 
database stores information for a long time and, in general, it is neither easy nor 
practical to re-structure a large database. Furthermore, it is not easy nor prac- 
tical to modify complex application programs such as those found in database 
systems [15]. Thus, there is a need to continue supporting existing application 
programs, providing access to objects created under previous or new database 
schemas. Similarly, new applications should be able to access existing objects. 

Supporting consistent access to objects created under different schemas is 
a requirement also in the context of multidatabase systems [10, 16, 22]. Here, 
component database schemas, possibly corresponding to different data  models, 
need to evolve into a common, integrated, multidatabase schema that  supports 
efficient and transparent data  sharing among the component databases. Since a 
multidatabase system does not support complete integration, each component 
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database system continues to operate in an independent fashion providing access 
to its database through its existing local database schema. 

Various approaches to the problem of changing database schemas and main- 
raining consistency between instances created under different schemas have been 
proposed, particularly in the context of object-oriented databases (OODBs) 
[3, 4, 8, 2, 19, 23, 24]. In this paper, we present a different way to support 
schema evolution, one based on the (Eztended) Entity-Relationship (ER/EER) 
approach for data modeling [6, 21]. We also describe the implementation of the 
ER-based databases and their schema evolution in the context of the relational 
and OO data models. We chose to examine the semantics of changes in the 
context of the ER model for two reasons. Firstly, the ER approach provides 
a graphic oriented representation of a database schema, namely ER diagrams, 
which are closer to the designer's perception of data, rather than to the logical 
database schema which describes how data are stored in the database. Secondly, 
we wanted to avoid defining yet another object-oriented model that would allow 
for more types of relationships in order to support schema evolution. Since the 
ER model supports many types of relationships, it has the potential of becoming 
object-oriented [7, 13], and hence, effectively supporting the mapping of an ER 
schema into any object-oriented one. 

In our approach, a new schema is derived with the help of an EVolution- 
ary ER diagram (EVER diagram). EVER diagrams are ER diagrams enhanced 
with schema evolution graphical constructs that provide for the specification of 
the derivation relationships between schema versions, the relationships among 
attributes, and the conditions for maintaining consistent views of application 
programs. Toward this end, we derived a classification of attribute relation- 
ships between schema versions. EVER diagrams are transformed into an internal 
database representation called a version derivation graph (VDG) which is subse- 
quently mapped into the structures of the underlying database. With respect to 
the underlying database, each schema version is expressed as a (database) view. 
The view constitutes the actual interface to the application programs for access- 
ing the objects in the database. Thus, views are reconstructed after a database 
reorganization so that schema changes are made transparent to the application 
programs while all objects in the database remain accessible to all the programs. 

In the next section we survcy the various object-oriented approaches to 
schema evolution some of which were proposed to support schema integration. 
In Section 3, we formally analyze and classify the relationships of attributes 
between the schemas before and after a change and discuss the issues in main- 
taining a consistent database manipulated through different schema versions. 
EVER diagrams are first introduced in Section 4 whereas their transformation 
into an underlying database is discussed in Sections 5 and 6. 

2 R e l a t e d  W o r k  

Schema evolution has mainly been investigated as an aspect of OODBs. Broadly, 
approaches to schema evolution can be classified into schema modification, schema 
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versioning and schema derivation, based on the ezternal representation of the 
structure of the objects in the database (object schema) to application programs, 
and the internal representation of the objects in theunderlying database. 

Schema modification approaches always support a single schema and a single 
internal representation for each object [2, 5, 24]. Hence, all objects must be con- 
verted to conform to the new schema. Because of this, the schema modification 
approach does not support the transparency of change for the existing applica- 
tion programs. The application programs that  use the old schema may need to 
be modified. 

Schema versioning approaches support multiple schemas and multiple inter- 
nal object representations for an object [1, 19]. The instantiation of objects to 
a schema version is performed at the time of the creation of the objects. In this 
approach, the objects belonging to a version of a schema always stays in that  
version. Thus, if the schema of the objects is subsequently augmented, it would 
not be possible for the objects to be updated by the programs associated with 
a later version without loss of information. In an old version, an augmented 
attribute may have insufficient storage. 

Schema derivation approaches [3, 4, 8, 23] support multiple schemas for an 
object and a common internal object representation. Irrespective of whether ob- 
jects are created under different schema versions, they are converted to a common 
representation. The instantiation of objects to a schema version is performed at 
run-time. That  is, the objects are presented to the programs as views on objects 
in the underlying database. Although existing derivation approaches allow any 
schema version of an object to evolve, it is not clear how object consistency can 
be specified and maintained across schema versions derived from different paths. 

Our approach belongs to the family of schema derivation approaches that  
supports linear schema evolution (i.e., only the most recent schema can be 
evolved). By considering discontinuities of attribute relationships in the evo- 
lution history, our approach effectively resolves the object consistency problem 
mentioned above. 

3 An  E R  M o d e l  S c h e m a  Evo lu t ion  

When a schema is changed, a new version of the schema (or new schema) is then 
created. In the context of ER mode l ,  we use schema to refer to the description 
of an entity type or a relationship type and object to refer to an instance of an 
entity or a relationship type. Each schema version is the interface for programs to 
access the database. Our approach supports linear evolution of database schema. 
That  is, a designer can only make changes to a new schema. The old schema 
versions are mainly used for supporting the existing programs. 

In this section, we analyze the attribute relationships between two schema 
versions, and explicitly express these relationships in terms of functions. Then 
we discuss the problem of discontinuity in specifying attribute relationships for 
any two schema versions and the way our approach deals with this problem. 
Finally, we present rules for maintenance of a consistent database. 
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A. Analysis of Attributes in Different Schema-Versions 

When a schema evolves, the relationships between the attributes of the old 
and the new schema capture the semantics of installed changes. These relation- 
ships provide the crucial information for maintaining object consistency and 
reorganization of the objects in the underlying database. In addition to the at- 
tribute values [8], we classify the attributes between two schema versions based 
on the relationships of their names and their domains. 

�9 Common attributes: An attribute is said to be common to the two schemas, 
if the name and domain of the attribute in the two schemas is identical. 
�9 Domain-changed attributes: An attribute is said to be domain-changed if its 
name in the two schemas is the same but its domain is different. 
�9 Renamed attributes: An attribute is said to be renamed if the attribute in the 
two schemas has different names but exactly same domains. 
�9 Resumed attributes: An attribute is said to be resumed if the attribute was 
deleted from the old schema but it is added back to the new schema. 
�9 Derived attributes: An attribute is said to be derived if the value of the at- 
tribute can be derived from the values of other attributes not necessarily of the 
same schema version. 
�9 Dependent attributes: An attribute, let us say B, is said to be dependen~ if 
the value of the attribute is affected by changes to the values of attributes in 
other schema versions, let us say "[A1,A2, . . . ,  Ak},  but the value of the de- 
pendent at tr ibute cannot be derived from the values of the same attributes 
{A1, A2, �9 �9 ", Ak}. 
�9 Independent attributes: An attribute is said to be independent if its value nei- 
ther affects, nor is affected by, the values of other attributes. If the attribute is an 
attribute of the new schema, it is called new attribute. On the other hand, if the 
attribute is an attribute of the old schema, it is called an el iminated attribute. 

Derived and dependent attributes are further distinguished into four groups 
depending on where they are defined. If {A1, A 2 , . . . ,  Ak} are attributes of the 
old schema, and B is an attribute of the new schema, then B is classified as 
forward. If {At,A~.,. . . ,A/~} are attributes of the new schema, and B is an 
at tr ibute of the old schema, then B is classified as reverse. If {A1, A 2 , . . . ,  Ak} 
can be attributes in the new schema or old schemas, and B is an attribute of 
the new schema, then B is classified as forward complementary. However, if B 
is an at tr ibute of the old schema, then B is a reverse complementary. 

Let us illustrate the attribute relationships using an example shown in Table 
1. In this example, the old schema of Car database consists of attributes RegNo 
(Registration Number), Model, Color, WarrantyBegins (the year that  the warranty 
of the car is initiated), EngineType and Fuel (leaded or unleaded). After evolu- 
tion, the new schema contains attributes VIN (Vehicle Identification Number), 
Model, Color, WarrantyExpires (the year the warranty is expected to expire), War- 
rantyExtension (the number of years that  the warranty has been extended), and 
MPG (mileage per gallon). From the table, it can be seen that  attr ibute Model 
is common to both schemas, whereas attr ibute VIN in the new schema is a re- 
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The old schema liThe new schema 

R~aNo: ~tringp.o] v z N :  s~ri,~a[~o] 
Model : string[20] Model : string[20] 
C o l o r :  integer[1..256] !Co lo r  : string[lO] 
WarrantyBegins : integer[1900..1999] Warrant~lEzpires : integer[1900..2025] 

WarrantgEztension : integer[O..lO] 
EngineType : string[20] 

M P G  : integer[1..lO0] 
Fuel : char[leaded, unleaded] 

Table I. The evolution in a database schema for cars 

named attr ibute corresponding to at tr ibute RegNo. Also the domain of at tr ibute 
Color in the new schema is different from that  of Color in the old schema; thus, 
Color in the new schema is a domain-changed attribute. Attribute M PG in the 
new schema is dependent on at tr ibute EngineType in the old one because when 
the type of a car engine is changed, the mileage of the car may also need to be 
changed. Thus, M PG is forward dependent on attr ibute EngineType. In the same 
way, when the mileage of the car is changed, the type of the car engine may need 
to be changed, too. Thus, EngineType is reverse dependent on attr ibute MPG. 
More interesting, the derivation of values of at tr ibute WarrnntyExpires in the new 
schema involves at tr ibute WvrrsntyExtension in the new schema and attr ibute 
WvrrentyBegins in the old schema. Let us assume that  the default warranty 
period is one year. The at tr ibute VVarrsntyFxpires can be expressed as follows. 

Warran~yEzp i re s  = Warran~ jBeg ins  + 1 + WarranQIEz~ension.  
Thus, at tr ibute WarrantyExpires now becomes a forward complemectar~.l derived 
attribute.  On the other hand, if at tr ibute VVarrsntyExtension and WarrantyExpires 
have been in the old schema, and at tr ibute WarrantyBegins in the new schema, 
then at tr ibute WarrantyExplres would be a reverse complementary derived at- 
tribute. Finally, at tr ibute Fuel is an eliminated attr ibute in the old schema. On 
the other hand, if the at tr ibute Fuel had been in the new schema, but  not appear 
in the old one, then it would be a new attribute. 

B. Specification of Attr ibute Relationships 

The relationships of each at tr ibute group can be expressed with a help of 
functions. Our framework uses four kinds of functions: 

I d e n t i t y  f u n c t i o n .  If attributes a and b are always identical, their relationship 
can be represented by using an identity function (I): a : I(b). 

D e r i v a t i o n  f u n c t i o n .  If an at tr ibute a can be derived from bl, b2, . . ,  bk, the 
relationship of a to attributes bx, b2, . . ,  bk can be represented by a derivation 
function (f) :  a -- f (b l ,  b2, . . ,  bk). 
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P r o m p t  func t ion .  If an attribute a depends on attributes bl, b2,...bk but it 
cannot be derived solely from bl, b2,.., bk (e.g., it may need additional infor- 
mation), the relationship of a to attributes bl, b2,...bk can be reprcscntcd 
by using a prompt fiz~ctioa (~): a = ~(bl, b2,.., bk, ~), where @ represents 
the additional information. �9 is possibly an interactive query against the 
whole database. For example, if a car's EngineType is updated through the 
old schema, then the car's mileage needs to be updated (see Table 1). The 
car's MPG can be acquired by either prompting a user or extracting it from 
the information in the database, e.g. Engine-Mileage cross reference table. 
At this point it is interesting to point out the difference between derived and 
prompt functions. A derivation function captures local object consistency 
requirements, whereas a prompt function captures database consistency re- 
quirements, and as such, it is executed against the whole database (globally) 
and not within the object (locally). 

Defaul t  func t ion .  If the value of an attribute a in an object is unspecified 
but the value is required by an application program, then the value can be 
acquired by invoking a default function (default). By assigning a default 
value to an unspecified attribute value, the need of the application programs 
associated with different schema versions can be resolved. 

Attribute Group Associated function 
01d schema New schema 

common reverse identity function forward identity function 

domain changed reverse derivation function forward derivation function 
or reverse prompt function or forward prompt function 

resumed reverse identity function forward identity function 

forward derived forward derivation function 
reverse derived Ireverse derivation function 

forward-complementary forward-complementary 
derived derivation function 
reverse-complement ary reverse-complement ary 
derived derivation function 

forward dependent forward prompt function 
reverse dependent reverse prompt function 
forward-complementary forward-complementary 
dependent prompt function 
reverse-complementary reverse-complementary 
dependent prompt function 

new default function 
eliminated default function 

Table 2. The association of functions with attributes 
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These functions can be used to ensure object consistency for update and 
retrieval operations. For example, suppose three consecutive schema versions 
V~_I, ~ and Vi+l along a schema evolution course. When an at tr ibute a in V~ 
is updated,  the new value of a is propagated to the attributes of V~_I tha t  are 
derived/depended on a using reverse or complementary reverse functions. At 
the same time, the new value of a is propagated to the derived/depended at- 
tributes in V~+I using forward or complementary forward functions. The possible 
associations of functions with attributes are summarized in Table 2. 

C. Discontinuity of Attr ibute Relationships 

Although the at tr ibute relationships between attributes of two arbitrary schema 
versions can be computed transitively using the specified functions, there may 
exist an at tr ibute relationship between two schema versions that  cannot be com- 
puted from the specified relationships between consecutive schema versions. We 
will elaborate on this problem using the example shown in Table 3. 

V1 

V I N  : string[20] 

Warran~yBegins  : integer 
EngineType : string[20] 

�89 V3 

V I N  : string[20] V I N  : string[20] 
M P G  : integer[1..lO0] M P G  : string[3] 

Warran t yEzp i r e s  : integer 

Table 3. The problem in representing attribute relationships 

Let V1, V2 and V3 be three consecutive schema versions of a student database. 
The relationship of at tr ibute WarrantyExpires in V3 to attribute WarrantyBegins 
in V1 cannot be correctly captured, because at tr ibute WarrantyExpires in V3 is 
new with respect to V2 and at tr ibute WarrantyBegins in V1 was criminated with 
respect to V2 leading to the conclusion that  these attributes are independent. 
However, as we saw above, at tr ibute WarrantyExpires in V3 can be derived from 
attr ibute WarrantyBegins in V1. This phenomenon is due to the discontinuity in 
the evolution history of the attribute. 

Such a discontinuity would have not occurred, if the designer had first "re- 
sumed" the previously criminated attribute, and then followed the regular change 
procedures. In this example, the designer must first interpose an intermediate 
schema version V ~ ( V I N ,  M P G ,  W a r r a n t y B e g i n s ) ,  between V2 and V3. In V~, 
WarrantyBegins is a resumed attr ibute from Vz. We call V 2' a resumed schema 
version. The relationship of the resumed attr ibute in the two schema versions 
can be expressed similar to a common attr ibute in terms of an identity function. 

Thus, in our approach, a schema evolves from the resumed schema corre- 
sponding to the latest schema version. The resumed schema version cannot be 
seen by application programs and is constructed during schema evolution by 
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combining all the attributes of the latest schema version with all the eliminated 
attributes of the previous schema versions. In this way, we re-establish discontin- 
ued attribute relationships and therefore, we can reconstruct the relationships 
between any two schema versions. 

D. Maintaining Database Consistency Across Schema-Versions 

Informally, a database is said to be consistent if two observers who view the 
database through different schema versions see an object in ways that agree 
with each other. In our framework based on ER schema evolution, we com- 
pletely avoid the modification of application programs, by ensuring a consistent 
database along three dimensions: object consistertc!h key consistency, and invari- 
ant program views. 

Object  Consis tency.  As discussed in the previous section, the maintenance 
of object consistency can be accomplished through the specified functions. 
Whenever an attribute value of an object is updated, those attributes that 
depend on it must be updated by using the specified functions. 

Key  Consistency.  The key consistency specifies the uniqueness of the objects 
across the old and new schemas. That is, each object, irrespective of whether 
it is created by the old or new schema, must be uniquely identified by using 
the values of the key attributes defined in the old and new schema. The main- 
tenance of key consistency cannot be performed by the integrity constraints 
alone because the key attribute may be different in the different schema ver- 
sions. Therefore, in our approach, we enforce the following condition when a 
designer changes the key attribute: the mapping of the key attributes between 
the new arid old schemas mus~ be one-to-one. 

Invar lan t  P r o g r a m  Views. The invariant program views specify the seman- 
tics of a database for the programs associated with a particular schema ver- 
sion. However, the evolved database may not preserve the interpretation 
made by the programs associated with the previous schema versions. Since 
the views of programs to a database are appfication dependent, in our frame- 
work, we provide facilities to allow a designer to specify the conditions under 
which programs retain consistent view of the evolved database (see next sec- 
tion). 

4 EVER Diagrams for Specifying Schema Evolution 

An ER diagram is a graphical representation of an ER database schema. In 
order to support the specification of changes to ER diagrams, we extend the 
basic graphical constructs of ER diagrams to present the relationships of schemas 
before and after a change (Figure 1). We call this diagram EVER diagram. In 
an EVER diagram, a designer can express the following associations: 

- the derivation path of the new schema, 
- the relationships of attributes between the new schema and the old schema, 
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- the participation of a new schema in relationship types (i.e., edges in an ER 
diagram), and 

- the conditions for maintaining invariant program views. 

The derivation path indicates from where the new schema evolves. The at tr ibute 
relationships specify the effect of changes to an at tr ibute on other attributes, and 
can be expressed using functions. The change to an edge between an entity and 
a relationship type implies that  the participation of the entity type in the rela- 
tionship type needs to be established or dropped. Consequently, the relationship 
type needs to be evolved by adding to or deleting from the relationship type the 
key at tr ibute of the affected entity type. 

I'"-"-1 G8 G1 I I visible entity type 

G2 ~ visible relationship type G9 ~ 

--()- 
G4 ~ " key attribute G11 - - ~ " -  

G5 -------O attribute G12 " ~  

(36 t ~ defunct entity type 1313 

d . . . . .  ! , 
~ | ! G7 ~- 2" efunct relationship type G14 ~. 

G15 ~ visible inheritance link 1316 . . . .  ~ '  

defunct edge 

version derivation 

common, renamed 
resumed attribute 

domain changed attribute 

derived attribute 

dependent attribute 

resumed schema 

defunct inheritance link 

Fig. 1. The icons for EVER diagrams 

Here we will use examples to illustrate the use of the extended graphical 
constructs (icons) G1 to G14 (Figure 1). Icons G15 and G16 will be discussed 
in Section 6. Let us begin with the example shown in Figure 2(a). The new 
schema, V2, is derived from the old schema, V1. The derivation of the schema 
is represented using icon Gg. Since the old schema cannot be seen by the new 
programs nor can be used for future evolution, we consider it as a defunct schema. 
A defunct entity type, relationship type and edge can be represented using icons 
G6, G7 and Gs, respectively. Therefore, V1 is represented by a dotted rectangle. 
Similar to the defunct entity and relationship types, the resumed schema version 
which consists of the resumed attributes and all attributes of the old schema 
version can be represented using icons G14. 

The icons, from Glo to G13, are used for representation of the at tr ibute 
relationships�9 G10 indicates that  the relationship of the two attributes at  the 
two ends of the icon are common or one is renamed as the other. If the names of 
attributes at the two ends are the same, then they are common. Otherwise, the 
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fvl 
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A1 

I v2 ] 

I I t V1 t 
! . . j  

(a) (b) (c) 

Fig. 2. The derivation of a schema the EVER diagram 

B2 

gl 

attr ibute in the new version is renamed. For example, in Figure 2(a), attributes 
A1 in the new and the old schema are common whereas at tr ibute B1 in the old 
schema is renamed as B2 in the new schema. Gl l  is used for representation of 
a domain changed attribute. As shown in Figure 2(b), the domain of at tr ibute 
B1 in the new schema is different from that  of attr ibute B1 in the old schema, 
hence a forward function (f~2) is associated with the end close to B1 in the new 
schema. Similarly, a reverse function (f~l) is associated with the end close to 
B1 in the old schema. G12 and Gla are used for representation of a derived and 
dependent attribute, respectively. The attribute at the pointed end is derived 
from, or dependent on, the attributes in the other end. The derivation or prompt 
function for the attribute is associated with the attribute close to the pointed 
end. Finally, let us refer to Figure 2(c). Attribute A2 in the new schema is derived 
from attribute A1 in the old schema. Thus, a forward derivation function f l  is 
associated with the pointed end of the icon close to attr ibute A2. On the other 
hand, attr ibute B~. is dependent on B1 and a prompt function (g!) is associated 
with the pointed end of the icon close to B~. 

As indicated in the previous section, in order to completely represent the at- 
tribute relationships among schema versions, a resumed schema version needs to 
be created to re-establish the relationships of eliminated attributes and therefore, 
a new schema version is always created based on the resumed schema version. 
Note that  the resumed schema version is vir tual  in the sense that  it does not 
physically exist. It serves as an aid to a designer for browsing the history of at- 
tribute relationships along the course of schema evolution. Through the EVER 
diagrams, a designer not only can visualize the relationships among schema ver- 
sions but the designer can also browse through the history of changes. 

At this point, let us revisit Table 3 and consider the specification of the 
change from V2 to V3. From the table, one can see that attribute WarrantyEx- 
pires is newly added to V3, and the domain of attribute MPG is changed. Since 
there is an attribute relationship between attribute WarrantyBegins in V1 and 
WarrantyExpires in V3, we must first create a resumed version, V~ in between 
V~. and V3 to accommodate the resume attribute WarrantyBegins and all the at- 
tributes of V~. Because of the resumed schema version, the relationship between 
attribute WarrantyExpires and WarrantyBegins can be re-established. 
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The attribute relationships between MPG in V3 and V 2' can be represented 
by derived functions. The reverse derivation function, f l ,  maps the domain of 
attribute MPG in the V3 (V3(MPG)) to that  of the attribute in V~ (V~(MPG)),  
and the forward derivation function, f2, maps the domain of V2'(MPG ) to that  of 
V3(MPG). Attributes WarrantyBegins and WatrantyExpirer can be derived from 
each other and can be specified together with functions f l  and f9 using LEVER 
(a Language for EVolutionary ER diagram [12]) as follows. 

F U N C T I O N S  { 
( ~ ( M P G )  = f2(V2'(MPG)) 

W I T H  I M P L E M E N T A T I O N  ~ ( M P G )  = itoa(V~'(MPG))); 
(Vzt(MpG) = fl(V3(MPG)) 

W I T H  I M P L E M E N T A T I O N  V2'(MPG ) = itoa(V~(MPG))); 
(WarrantyEzpires = f3(WarrantyBegins) 

W I T H  I M P L E M E N T A T I O N  
WarrantyEzpires = Warran~yBegins + 1); 

(WarrantyBegins = S,(WarrantyEzpires) 
W I T H  I M P L E M E N T A T I O N  

(WarrantyBegins = WarrantyEzpires - 1))}; 

where itoa 0 is a system function which converts an integer into a string. 

WarrantyExpires 

V3 f3 0 

Makerld Mname Year ~ ,  I t .  

Maker [ - - - - - - @ a d e B y ~  V'2 VlN I ,ogram I arrantyBegins 

~- I "~---- --; l ~ol 

' , ;  A !2 / 
: : V1 J, ~_gine~ype 
I WarrantyBegins I 

.J 

F|g. 3. An example of EVER. diagrams for the specification of change 
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The EVER diagram representing the attribute relationships between schema 
version V3 and 1/2' is shown in Figure 3. The old schema version V2 and the edge 
connecting to it are defunct, so they are represented by the dotted rectangle 
(Gs) and edge (Gs), respectively. Since V3 evolves from V 2' which is virtual, it 
inherits all edges from V2. Schema version V3 and edge that connects to it can be 
created and represented using a solid rectangle (G1) and edge (G3), respectively. 
The derivation of the new schema from the old one can be depicted by using a 
directed parallel line (Gg) which goes from V~ to V3. More examples of the use 
of EVER diagrams to capture schema changes are shown in [11]. 

Thus far, we have discussed how EVER diagrams can capture all the aspects 
involved in the evolution of the schema of a database that does not support class 
hierarchies. Before considering schema evolution that involves class hierarchy and 
inheritance, in the next section we will show how EVER diagrams are translated 
into an underlying database model. 

5 Transformation of EVER Diagrams into Databases 

In order to support different implementation database models, instead of directly 
translating an EVER diagram into an underlying database schema, a VDG ( Ver- 
sion Derivation Graph) representation, which is an internal representation of the 
EVER diagram, is created~ and then map the VDG representation into a specific 
underlying data model. The VDG representation captures the semantics of the 
EVER diagram and provides the storage requirements of objects for mapping the 
EVER diagram into the specific underlying data model. In the VDG representa- 
tion there is a set of VDGs. Each VDG represents the derivation of a particular 
schema in an EVER diagram. A VDG consists of a set of nodes and directed 
edges. A node captures the object structure (attributes) of a schema version 
and change relationships of the schema version to others. The objects created 
under a schema version are conceptually attached to the VDG node representing 
the schema version. A directed edge captures the object associations along the 
schema evolution course. There are two types of edges: derivation and inheri- 
tance edges. The inheritance edge will be discussed in Section 6. A derivation 
edge connects two VDG nodes corresponding to two schema versions (the old 
and the new) in an EVER diagram. That is, from the new schema version point 
of view, the edge indicates that the objects created under the old schema version 
must be converted to conform with the new schema version. Similarly, from the 
old schema version point of view, the objects created under the new schema 
version must be converted to conform with the old schema version. Thus, the 
objects associated with the VDG nodes connected by derivation edges (i.e., the 
derivatio~ lattice) comprise the entire set of objects of the particular schema. The  
VDG representation is similar to the catalog and schemas with views to store the 
information about the mapping of EVER diagrams into logical databases. Since, 
a VDG is currently designed to support schema derivation, it is geared toward 
a single internal object representation. The schema of an object is conceptually 
represented as the union of attributes of all the schema versions in a derivation 
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lattice of the VDG (or the complete schema). 
In considering the efficient maintenance of object consistency and use of 

storage among schema versions, when the underlying database is re-organized 
after a new schema version is created, objects are allocated additional storage 
for only those attributes (the base attrib~ttes) that  cannotshare  the storage with 
attributes of the old schema. Let E,~ be a schema version which is derived from 
schema versions El, E2,. . . ,  E,=, where rt ~ {1..m}. Attribute ai E E,~ is said 
to be a base attribute of E,~ if and only if one of the following conditions are 
satisfied. 

�9 group(ai) E {new, forvaa~cl-depender~t, forward-complemer~tarv-depender~t} 

�9 3ak E Ej  A j E { 1 , . . . ,  ra}, such that  
a, = domai.-cha.ged(a ) ^ (do _si e(a ) C 

where domain-cha~tged(a) returns the attributes that  are derived from attr ibute 
a and whose domain has been changed; dora_size(a) computes the storage re- 
quirements for an at tr ibute a. Let Bi be a set of base attributes of schema 
versions Ei, i E {1.m}. The complete schema of schemas {El ,  E2,.. . ,  E,~} (So) 
can be expressed as: Sc = Ui=l  i. Let us refer to the objects associated with 
a complete schema as complete objects. In order to indicate whether the objects 
created under a schema version need additional storage, we use two kinds of 
nodes in a VDG: virtual and 7ton-virt~tal nodes. 

A n o n - v i r t u a l  n o d e  corresponds to a schema version which is either the initial 
one or is augmented with attributes that  cannot be derived from the old 
schema. Tha t  is, a non-virtual node contains base attributes. 

A v i r t u a l  n o d e  corresponds to a schema which does not contain any base at- 
tribute. 

Objects created under a new schema version that  maps onto a non-virtual 
node cannot be stored in the underlying database described by the old schema 
versions. The underlying database needs to be re-organized in order to store 
objects created under the new schema version. On the other hand, the objects 
created from a schema version that  maps onto virtual nodes can be completely 
stored in the underlying databases. 

Let us demonstrate the transformation of VDGs into an implementation 
database schema which, we assume here, is relational (In the next section, we 
will show an example of a VDG transformation into an OODB schema). The 
relational database is "objectified" so that  it can effectively support this mapping 
as well as the construction and use of database views representing the different 
schema versions. That  is, we assume that  each object, i.e. instance of entity 
or relationship type, is associated with a systemwide unique and immutable 
identifier (Old) not visible to application programs. 

Refer to the example shown in Figure 4 in which two schemas are merged 
together resulting in a new single schema. Suppose the schema Car initially 
consists of attributes {VIN, Color}, and class Bus consists of {VIN, Seats}. As 
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Fig. 4. An example of EVER diagrams for merging two schemas 

indicated in the diagram, Vehicle is derived from schemas Car and Bus. Since Car 
and Bus are initial schemas, they are mapped into two VDGs, each consisting 
of a single non-virtual node, N1 and N2, respectively. Being a non-virtual node, 
N1 is mapped into a relation r l  in the underlying database. The schema Tx of 
rl  contains all attributes of Car plus one extra attribute, the objec~ identifier 
(Old): TI(VIN, Color, Old). Similarly, the VDG node N~ corresponding to Bus is 
mapped into a relation r2 with schema T2(VIN, Seats, Old). 

Schema Vehicle has three attributes: VehType (the type of a vehicle) which 
is a new attribute to Vehicle, VIN which shares with both Car and Bus, Color 
which shares with Car, and Seats with Bus. Since VehType as a new attribute, 
corresponds to a base attribute, Vehicle is mapped into a non-virtual VDG node, 
let us say N3. Thus, nodes N1, N2, and Na form a derivation lattice in the VDG. 
The complete schema (Sc) of the derivation lattice is the union of base attributes 
of Car, Bus and Vehicle: Sc = {VIN, Seats, Color, VehType}. 

As in the case of VDG nodes /71 and N2, being a non-virtual node, N3 
requires a new relation r3 with schema T3 (T3 = {VehType, Oid}) to store the base 
attribute VehType. Since Vehicle shares attributes with Car and Bus schemas, 
Vehicle is represented as a relational view on rl ,  r2 and r3. 

In order to uniformly define a view for each schema version, we construct 
each view in terms of the complete schema. That  is, objects associated with 
each schema version are expanded first to complete objects. In this example, the 
set of complete objects is the union of the set of the expanded objects associated 
with schemas Car, Bus and Vehicle. Each object schema, irrespective of whether 
it maps onto a virtual or non-virtual VDG node, is expressed as a view on the 
complete objects stored in the relations in the underlying database. Thus, the 
view of a schema version (Si) is defined as a selection on the complete objects 
based on the access conditions associated with S~, and then a projection on the 
attributes of Si. Let Ezpand 0 be a procedure that  converts an objects associated 
with a particular schema version to a complete object. The conversion of the 
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base attributes and the attributes viewed through the schema version make use 
of the functions specified in the EVER diagram. Let us illustrate step by step 
the construction of the views for schemas Car, Bus and Vehicle in Figure 4. 

S tep  1: Determine the complete schema of the derivation of the VDG. As indi- 
cated above, the complete schema (S~) is S: = {VIN,  Sea~s, Color, VehType}. 
Step  2-" Determine the relations used to store the complete objects created 
by each schema version. In this example, schema Car is an initial schema and 
mapped into the schema of relation rz. Thus, the objects created under Car are 
stored into rl.  Similarly, the objects created under Bus are stored into r2. How- 
ever, the objects created under Vehicle must be stored into all three relations rl,  

r2 and r3. 
S tep  8: Identify the complete objects created under a specific schema version. 
The objects created under a schema version may be stored in different relations. 
They can be identified by joining relations based on attribute Old. For example, 
the objects created under schema version Vehicle (O~) are selected by joining rz, 
r2 and r3 on Oid. Since the objects created under both Bus and Vehicle are stored 
in r2, we must separate them to apply the corresponding Ev~pand 0 procedure. 
The objects created under version Bus (O~.) are selected by discarding the objects 
created under Vehicle from relation ra. Similarly, the objects created under Car 
are selected by removing the objects created under Vehicle from relation rz. 
The selection condition for identification of a set of the objects created under a 
schema version can be derived as the following tame. 

schema(E~) the created objects 

IVehicle O~ = r3 ~ o ~  r2 ~O~d rz 

Bus O~ = ~O~de(no~(r~)-rZo,~(o;))(r~) 
Car 0~' = CrOide (f/oeg(r~)--r/o;a(O_,*)) ( r l )  

Step  4: Expand the complete objects created under a schema version to the ob- 
jects viewed through the schema version, and thenscreen the objects that cannot 
satisfy the specified condigior~s out from the view of the programs. Suppose the 
programs that refer to entity types Car and Bus can be express as follows. 

INVARIANT VIEWS { 
(Car ACCESS W I T H  CONDITIONS (ac~ : VehType = car)); 
(Bus A C C E S S  W I T H  C O N D I T I O N S  (ac2 : VehType = bus))); 

Let Viewi represent the view for schema Ei. If there are n schema versions, then, 
the view of a schema version can be defined uniformly as belows: 

i~--lrt 
Yiewi = IIE,(crc~ditim~,~,(Ui=l Ezpand(O*))), 

wher e / /  stands for projection, cr for selection and ConditiOnSE~ for the condi- 
tions specified against Ei. Therefore, in the example, the view of each schema 
version can be expressed as: 

V iewca,. ----- II(v,N, Co, o,-) (O'(V~h~',p . . . . .  ) (~ . -a  Szpand( O* ) ) ) 
VieWB:, = IIwi~r,s,=t, ) (tr W ehType=b:, } (U~--- -3 Ezpand( O; ) ) ) 

/ " /  t l  I i = 3  
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Each view is stored in the corresponding VDG node and it may need to be 
reconstructed after each database re-organization. 

In our approach, we can guarantee that  the update against a view can be 
correctly translated into the sequence of updates on the complete objects in the 
underlying database because of the following two reasons: (1) the key attributes 
of different schema versions must be same or the mapping among them must be 
one-to-one. Therefore, the complete objects stored in the underlying database 
can be uniquely identified by using different key attributes. (2) The objects 
viewed from a schema version are always a subset of the complete objects, and 
can be mapped into~the unique complete objects in the underlying database. 

6 Evolution of Extended ER Diagrams 

The presentation of the EVER diagrams thus far has been restricted to the 
evolution of database schemas for traditional database applications which can 
be modeled using classification and aggregation mechanisms. However, in some 
systems, such as object-oriented databases, there may exist inheritance rela- 
tionships among entity types that  capture the generalization/specialization ab- 
straction between superclazses and subclasses of entity types. In the ER model, 
class hierarchy and inheritance can be expressed using ez~ended ER (EER) dia- 
grams [9, 21]. In this section, we discuss how EVER diagrams can facilitate the 
evolution of EER diagrams and can be mapped into an OODB schema. 

A. The Evolution of Inheritance Lattices 

When a class in an inheritance lattice evolves, we require that  the entire 
inheritance lattice is evolved; Let us refer to the versions of an inheritance lattice 
before and after evolution as the old and new lattices, respectively. Similar to the 
evolution of an entity type (see Section 4), the resumed schema of an inheritance 
lattice can be considered as the union of all the attributes of the classes in 
the old lattice plus all the eliminated attributes of the previous versions of the 
inheritance lattice. Once the resumed schema of the lattice is computed, the 
attribute relationships between the new lattice and the resumed lattice, and the 
conditions for maintenance of a consistent database can be specified using EVER 
diagrams. 

In addition to the E R / E E R  constructs, the EVER diagram provides a con- 
struct, namely, the defunct inheritance links (Icon Gls as shown in Figure 1), 
that  allows a designer to specify changes to inheritance relationships between 
subclasses and superclasses in an EER diagram: 

1. Add a new class and its associated inheritance links to an inheritance lattice. 
2. Drop a class (with no objects) and its associated inheritance links from an 

inheritance lattice, possibly in conjunction with a reduction of the domain 
of the defining attribute which is used to define an entity type as a subclass 
in an inheritance lattice. 

3. Add to or delete inheritance links from an inheritance lattice. 
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4. Change the inheritance ordering (i.e., reverse the position of two classes in 
an inheritance lattice). 

In order to maintain a consistent database for application programs after a 
change, our approach requires that  changes must satisfy the criteria of object 
consistency, key consistency, and invariant program vie~s (see Section 3). 
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Fig. 5. (a) An evolved inheritance lattice in an EVER diagram, and (b) the corre- 
sponding VDG 

Let us use the example shown in Figure 5(a) to demonstrate how the EVER 
is used for specifying the evolution of an inheritance lattice. Assume that  the 
class Vehicle is generalized from the two classes Car and Bus (Figure 4). The class 
Vehicle gains a new attribute VehType indicating the type of Vehicles. Thus, the 
resumed schema (R,) of the lattice is the union of the attribute sets of classes 
Old(Car) (the old version of class Car) and Old(Bus) (the old version of class 
Bus). That  is, R, = {VIN, Color, Seats}. Out of these attributes, VIN is common 
to all three classes Vehicle, Car and Bus. Attribute VehType is new to the class 
Vehicle. Assume that  the default value of attribute VehType is car if objects are 
associated with class Car, and it is bus if objects are associated with class Bus. 
Thus, the specification of default functions can be expressed as follows. 

F U N C T I O N  { ((VehType(x) = default) 
W I T H  I M P L E M E N T A T I O N  

( i f  SchemaTics(z) = Car then VehType(z) : car 
eZse VehWupe(,) = bus) ) }; 

B. The Mapping of an EVER Diagram onto VDGs 

In the case of an inheritance lattice, a single VDG is used to represent all 
the entity types (classes) which are part of the inheritance lattice. Such a VDG 
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can be constructed as follows. First, we compute the attribute set of each class 
in the new lattice, and then, compare it with that of its corresponding old class 
if there exists such one. If the new and old attribute sets are the same, both the 
old and new classes share the same VDG node. On the other hand, if the new 
class owns base attributes, then a non-virtual node is created for it; otherwise, a 
virtual node is created for that new class. Last, for each new node representing a 
class in the new lattice, establish an derivation path from a node corresponding 
to a class from which the new class has evolved. 

Consider again the above example shown in Figure 5(a). The EVER diagram 
can be mapped onto a VDG (Figure 5(b)) in the following way. Since class Vehicle 
has no corresponding class in the old inheritance lattice, and its participation 
constraint is total, it is mapped to a virtual node N3 (dotted). Classes Car and 
Bus gain an additional attribute by inheriting VehType from Vehicle. Hence, 
both Car and Bus are mapped onto two new non-virtual nodes N~ (New(Car)) 
and N~ (New(Bus)), respectively. The edges from N1 to N~ and from N2 to N~ 
are derivation edges (thin lines) because New(Car) evolves from Old(Car) and 
New(Bus) from Old(Bus). However, the edges from N~ to N3 and from N~ to 
Na are inheritance edges (thick lines) because they are established based on 
the inheritance links between Vehicle and New(Car) and between Vehicle and 
New(Bus), respectively. 

C. The Mapping of a VDG into an OODB 

The mapping of a VDG into a relational database and the construction of 
views for each version of a class in an inheritance lattice can be handled by 
using a similar approach presented in Section 4. Below, we will demonstrate the 
potential that a VDG can be mapped into an OODB. 

In order to implement the EER schema evolution in the context of an OODB, 
the primitive Augment() is introduced to augment an object structure in the 
underlying OODB database originally defined by an old class. For example, as 
shown in Figure 5(b), since the VDG nodes N~ (New(Car)) and N~ (New(Bus)) 
are non-virtual VDG nodes evolved from nodes N1 (Old(Car)) and N2 (Old(Bus)), 
respectively, the underlying object structures for Old(Car) and Old(Bus) need 
to be augmented: Augment(Old(Car)) wi th  {VehType}, and Augment(Old(Bus)) 
w i th  {VehType}. Since the node N3 representing class Vehicle is virtual, and has 
inheritance edges connecting to subclasses N~ (New(Car)) and N~ (New(Bus)), 
we do not create an object structure for the class Vehicle. The objects created 
under the class Vehicle are either stored into the augmented class Car or Bus. In 
other words, the objects associated with class Vehicle is the union of the objects 
associated with augmented classes Car and Bus. 

In this example, the complete schema (Scar) of derivation lattice Car consists 
of {VIN, VehType, Color}, and the corresponding complete objects (Ocar) are 
stored in the augmented class Car. Similarly, the complete schema (SB~s) of 
derivation lattice Bus consists of {VIN, VehType, Seats}, and the corresponding 
complete objects (OB,~,) are stored in the augmented class Bus. The objects of 
the class Vehicle are the complete objects of classes Car and Bus (Ocar U OB~a). 
Thus, the view for each version of the VDG can be constructed as follows. 
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ViewvehicZe ::= II(vlN, VehType)({Z tJ y [ z 60car; Y �9 OBus}) 
VieWoid(C~.) : : =  11(vz~,VoZo.) ( { ~  I ~ e Oct.}) 
ViewN..(ca.) : : =  1E{VZN, V.hT~p,,Coio~) ( { Z  I = e Oc.,}) 
Viewoid(Bu.) : : =  II(VlN, Seat,)({Y IV 60Bu,}) 
ViewN..(B..) : : =  H(VIN, WhTyp~,Seat.)({Y I Y 60B.,}) 

These views reflect the schema of the new inheritance lattice which is mapped 
into the following object-oriented database schema (using C++  syntax): 

class  Vehicle { char  �9 VIN; char  �9 
c lass  Car : Vehicle { i n t e g e r  Color; } 
c lass  Bus : Vehicle { in t e g e r  Seats; } 

VehType; } 

T C o n c l u s i o n  

In this paper, we presented a schema derivation approach to schema evolution 
through changes to the ER schema of a database. The approach is supported by 
EVER, an EVolutionary ER diagram for specifying the derivation relationships 
between schema versions in ER/EER diagrams, relationships among attributes, 
and the conditions for maintaining consistent views of programs. A methodol- 
ogy was presented for mapping the EVER diagram into the underlying database 
and constructing database views for schema versions. Through the reconstruc- 
tion of views after database reorganization, changes to an ER/EER diagram 
can be made transparent to the application programs while all objects in the 
database remain accessible to the application programs. In order to demonstrate 
its potentials, we used our methodology to evolve two database schemas, one that 
assumed that the underlying database is relational, and the second that assumed 
that the underlying database is object-oriented. 

Since an EVER diagram may become quite complex in the case of large 
applications, we are investigating an icon-based EVER diagram, in which a sub- 
diagram can be encapsulated and replaced by an icon (called a complex icon). 
This will lead to a cleaner and less clogged visual specification. In order to eval- 
uate how well the proposed approach scales up, we plan to use it on real world 
applications and study empirically its effects, in a manner similar to Sjoberg's 
work [18] that quantifies schema evolution. 

Finally, we intend to build a prototype for exploration of schema evolution 
in different database models, and also to experiment with schema integration in 
an attempt to facilitate interoperability in a multidatabase system. 
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