Autonomy Requirements in
Heterogeneous Distributed Database Systems

Panos K. Chrysanthis*, Krithi Ramamritham**

* Dept. of Computer Science, University of Pittsburgh, Pittsburgh, PA 15260
*x% Dept. of Computer Science, University of Massachusetts, Amherst, MA 01003

Abstract

In the context of multidatabase systems and heterogeneous distributed database sys-
tems, it has been observed that autonomy of the component databases has to be violated
in order to maintain traditional database and transaction properties. However, very little
work exists that systematically analyzes (a) the semantics of autonomy and (b) the impli-
cations of autonomy wvis a vis correctness specifications and database protocols. Hence, this
paper is aimed at characterizing the different types of autonomy by focusing on transaction
management and showing the relationships between autonomy requirements and database
protocols. As a case-study, we investigate the autonomy implications of the two-phase
commit protocol and its multidatabase variants. Our analysis shows that these protocols
involve tradeoffs between the autonomy of the transactions, with respect to accessing the
data objects, and the autonomy of the transaction management system, with respect to
responding to the transaction management primitives. As a result, this paper brings out
the practical considerations involved in selecting between alternative protocols.

1 Introduction

Heterogeneous Distributed Database Systems (also called Multidatabase systems (MDBS)) log-
ically integrate multiple pre-existing databases systems providing a uniform and transparent
access to data stored in these databases. MDBSs respond to the needs of organizations to
interoperate their databases already in service that support their own applications and users.
An MDBS allows each local database system to continue to operate in an independent fashion.
That is, an MDBS preserves the autonomy of the local database systems, meaning that the
MDBS design (ideally) does not require any changes to existing databases and transactions,
and to the local database management systems (DBMS).

Consistency of data is the primary issue in all systems in which data is dispersed over
multiple databases, and in which both updates and retrievals are supported. Whereas consis-
tency entails control over all data across the multiple databases, autonomy implies lack of any
such global control. In traditional distributed databases, full consistency is ensured by serial-
izability in conjunction with failure atomicity at the cost of autonomy [BHG87]. In the context
of MDBS, it has been observed that autonomy of individual nodes or database systems has to
be violated in order to maintain traditional database and transaction properties. In fact, differ-
ent, and quite often inconsistent, names have been associated with different types of autonomy
requirements. However, very little work exists that systematically analyzes (a) the semantics
of autonomy requirements and (b) their implications vis a vis correctness specifications and
database protocols. Hence, this paper is aimed at achieving the following:

e characterizing different types of autonomy, with emphasis on transaction management,
e explicitly showing the effect of database protocols on autonomy, and

e identifying the tradeoffs between different types of autonomy.

1This material is based upon work supported by the National Science Foundation under grants IRI-9109210
and IRI-9210588 and a grant from University of Pittsburgh.

Global Transactions

¢

global TM
Agent_1 Local Agent_2 Agent_n
| Transactions | [
LDBS_1 ! \ I LDBS_2 I LDBS_n
5 5% e
™ ™ ™
DM DM DM

= = 45

Figure 1: A Multidatabase System Model

Because of its extensive treatment in the literature [BST90, WV90, SKS91, MR192], we have
chosen the standard two-phase commit protocol and its multidatabase variants to serve as a
detailed case study in our analysis. We also examine protocols designed to maintain consistency
in multidatabases. Our analysis shows that in addition to the autonomy of the transaction man-
agement component of the component databases, it is important to also consider the autonomy
of individual transactions; protocols entail tradeoffs between these two types of autonomy.

In this paper, we are focusing on what is usually termed ezecution autonomy [DES89,
VE91, SL90, SKS91, BGS92] which refers to the ability of a local DBMS to execute operations
and transaction management primitives submitted directly to it without any external inter-
ference. We give the term a broader connotation, by viewing execution autonomy from the
perspective of both the transactions and the transaction management system. Specifically, we
examine the implications of a particular protocol on the database operations that a transaction
can (or must) invoke and on the transaction management operations a database system can (or
must) invoke.

The rest of this paper is organized as follows. In Section 2, our model for transactions,
databases, and multidatabases is introduced. Sections 3 and 4 form the crux of the paper.
Section 3 deals with autonomy and correctness requirements while Section 4 discusses the
implications, tradeoffs as well as practical considerations when database protocols are examined
in the context of autonomy. Section 5 concludes the paper.

2 Databases, Multidatabases and Transactions

To set the stage to compare the autonomy implications of different database protocols, it
is important to first introduce the models assumed for the database systems, multidatabase
system, and the transactions.

As was mentioned earlier, an MDBS is built on top of a number of existing database
systems (Figure 1). These database systems, also referred to as nodes of the MDBS, are
traditional database systems that ensure serializability and failure atomicity.

Two types of transactions execute in an MDBS:

1. Local transactions that access data from only a single database and execute under the

control of the local DBMS.

2. Global transactions that access data from multiple databases and execute under the con-
trol of the MDBS.

Local transactions are submitted directly to the transaction manager (TM) of a local DBMS
and the MDBS is not aware of their existence. Neither is a local DBMS aware of the existence
of global transactions which are submitted directly to the MDBS. A global transaction G is
decomposed into several subtransactions g;, each of which executes on some DBMS.

Sitting above each local database system is an agent who is responsible for different
aspects of the execution of subtransactions and in particular, of the commit protocol needed
to atomically commit the subtransactions of a global transaction. These agents serve as the
interface between the coordinator of a global transaction, i.e., the global TM, and the local
database systems. The resulting splitting of control is a manifestation of the tension that exists
between autonomy and consistency requirements, and in a multidatabase system the tradeoffs
involved depend on how this split is achieved.

A transaction model defines the significant events associated with transactions that con-
form to that model. For instance, for the atomic transaction model, the model considered in
this paper, the set of significant events that are associated with a transaction, denoted by SE,
includes Begin, Commit, and Abort. A transaction also invokes operations on objects, resulting
in object events.

We assume that every (local) DBMS supports a set of transaction management events,
denoted by TME. Begin, Commit, Abort, and Restart belong to this set. The first three are
executed, respectively, in response to the inv(Begin), inv(Commit), and inv(Abort) events as-
sociated with transactions.

We will be using ACTA formalism [CR91], a first-order logic based formalism, to precisely
state transaction properties, correctness requirements, as well as the behavior of transaction
processing mechanisms. In ACTA, these three aspects of a database system can be expressed
as constraints on histories generated by the execution of transactions.

Using ACTA we can relate Commit, and inv(Commit,) as follows:

V¢ Commit, € H = (inv(Commit,) — Commit,).

(The predicate € — €' is true if event € precedes event €' in H. It is false, otherwise.) Thus,
the above statement states that for the event Commit, to be in the history H, i.e., for the
system to have committed transaction ¢, it is necessary that ¢ must have invoked the Commit
operation.

The Abort event can also be invoked by the local DBMS in response to internal events,
denoted by IE. The Restart event which may be invoked by a local deadlock detector when re-
solving deadlocks is an example of an internal event. Restartis a significant event corresponding
to the abort and subsequent restart of a transaction.

This is formally expressed as follows:

V¢ Abort, € H = ((inv(Abort,) — Aborty) vV Je € IE (e — Abort:)).

3 Specifying and Classifying Autonomy Requirements

Informally, autonomy represents the ability of the transactions and of the database system
to execute events without any curtailment — other than those necessary for maintaining the
consistency (and security) of the data. That is, this execution autonomy represents the ability
of a database system to decide about the events that pertain to (the transactions executed by) it.
Given that there are mainly two types of events in a database system, namely significant events
and events corresponding to operations on an object, autonomy can be specified and analyzed
along two dimensions: data access autonomy, which captures the aspects of the invocation
of object events by transactions, and traensaction management autonomy, which captures the
aspects of the invocation of significant events pertaining to the transactions executing under
the control of a database system.

Autonomy

/\

Data Access Transaction

/\ Management

Violation thru Violation thru Violation thru Violation thru
Proscription Prescription Proscription Prescription

Figure 2: Dimensions of Autonomy

Also, autonomy can be studied with respect to requirements and constraints imposed on
these events. There are two possible ways that autonomy can be violated: (1) by constraining
or proscribing the execution of an event and (2) by requiring or prescribing the execution of an
event. We refer to the former as autonomy violation through proscription and to the latter as
autonomy violation through prescription. (see Figure 2).

Protocol specifications typically take the following from:

Condition = requirement.

Condition is a predicate on the history H of events as well as the state of the database.
requirement is a predicate that relates to the proscription or prescription of events. Three
forms of requirement must be specifically mentioned.

ec H, €€, ec SE,¢ ¢ TME,,.

where TME, denotes the transaction management events supported by node n.
For instance, the following is a specification that violates autonomy of a node via pro-
scription, assuming that e € TME ;:

Condition = —(e € H).

Similarly,
Condition = (¢ — €)

prescribes that € be constrained to execute before ¢/. Suppose
protocol_specs = Vn (e € TME,)

and e is not normally required (see Section 2) to belong to TME of a node. Then the above
violates transaction management autonomy.
Based on the above, finer classification of execution autonomy can be defined as follows:

DEFINITION 3.1: A node n has transaction management autonomy with respect to transac-
tion t; iff it is not forced to or prevented from executing a significant event (i.e., transaction
management event) pertaining to ¢;. That is, autonomy violations through proscription or
prescription of events pertaining to ¢; do not occur on node n.

DEFINITION 3.2: A node n has transaction management autonomy iff it has transaction
management autonomy with respect to all transactions.

DEFINITION 3.3: A transaction t has data access autonomy with respect to node n iff it is
not forced to or prevented from executing an object event? (i.e., data access event) relating
to (data on) node n. That is, autonomy violations through proscription or prescription of
object events pertaining to (data on) node n do not occur.

2Here we are assuming that a transaction is allowed to access all the data items in a database. That is, we
are ignoring issues pertaining to security-related access control policies. These can be factored in by qualifying
this definition appropriately.

DEFINITION 3.4: A transactiont has data access autonomy if it has data access autonomy
with respect to all the nodes that it visits.

We are now in a position to define autonomy of a multidatabase system.

DEFINITION 3.5: A Multidatabase system has (execution) autonomy iff all its transactions
have data access autonomy and all its nodes have transaction management autonomy.

Even though design autonomy which is the ability of not having to made any changes
to the local DBMS in order to accommodate the MDBS system has been considered in the
literature to be as a separate form of autonomy, many violations of design autonomy can
be seen as instances of the violations of data access or transaction management autonomies.
Consider the prescription by a database protocol of a transaction management event that is not
usually supported by a node. This prescription is considered to be a violation of (node) design
autonomy but it is also a violation of transaction management autonomy given our previous
discussion. For another example, consider a transaction design which requires transactions to
predeclare the set of all the objects they expect to access. Invocation of object events on any
object outside this set is proscribed. The proscription of access to some objects leads to a
violation of transaction data access autonomy. This is shown formally below:

Vit Vp Vob (pi[ob] € H) = (ob € Predeclare(t)), i.e.,
((ob ¢ Predeclare(t)) = —(p:[ob] € H))

where Predeclare(t) is the set of objects that a transaction ¢ has predeclared.

It is not difficult to see that data access autonomy affects the data manager (DM)
components of database systems since they have to ensure that data access restrictions imposed
on transactions are followed. Whereas in a typical distributed database system transaction
manager (TM) components are responsible for transaction management, in a multidatabase
system, TMs on the individual database systems as well as the agent will be responsible. We
return to this effect of autonomy on database components in the next section when we evaluate
the effect of autonomy on database protocols.

We mentioned in the introduction the conflict between consistency requirements and
autonomy. Before we deal with these conflicts in Section 4, it is important to note that three
main approaches have emerged to address the issue of data consistency in MDBSs, each pre-
serving different aspects of local autonomy [RP92]. The first approach attempts to guarantee
multidatabase global serializability since serializability is a widely used correctness criterion
[DE89, WV90, Pu88, PV88, GRS91]. This approach also includes proposals for commit proto-
cols suitable for MDBSs [BST90, GRS91, SKS91]. The second approach replaces serializability
with other correctness criteria since serializability is considered very constraining when applied
to multidatabase environments. In most cases, these correctness criteria are relaxations of seri-
alizability, such as, quasi-serializability [DE89] and cooperative serializability [Ch91]. The third
approach re-defines or extends the traditional transaction model to a transaction model more
suitable for MDBSs with different correctness properties (See [Elm91] for a description of other
eztended transaction models proposed for different systems.) In this paper we confine ourselves
to the traditional transaction model and so study the interplay between correctness criteria and
autonomy in the context of this model. This is the subject of the next section.

4 Autonomy Implications of Database Protocols

In this section, we illustrate the implications for autonomy of database protocols by examining
atomic commitment protocols that ensure failure atomicity of global transactions. We analyze
the standard two-phase commit (2PC) protocol used in traditional distributed database systems
[BHG87] and a variation of this protocol, called emulated 2PC (E2PC) [SKS91, MR192], ex-
plicitly designed to meet the needs of autonomy requirements in multidatabases. In fact three
versions of E2PC are studied in order to show how correctness criteria can be traded off against
autonomy and how different types of autonomy can be traded off against each other.

4.1 Autonomy Implications of the 2PC Protocol

The 2PC protocol has two phases, the voting phase during which (the coordinator of) a global
transaction G requests subtransactions of the global transaction to enter the prepare to commit
state, and the decision phase during which the global transaction commits if all the subtrans-
actions are prepared to commit or aborts if any participant has decided to Abort. When a
(sub)transaction is in the prepare to commit state, it can neither commit nor abort until it
receives the final decision from the global transaction. This constraint is the essence of the 2PC
protocol which ensures the atomicity of a global transaction, preventing subtransactions from
unilaterally committing or aborting.

To investigate the autonomy properties of 2PC, we model each request by the coordi-
nator of the global transaction as a significant event associated with subtransactions and each
response as a significant event associated with the T"M's of each local database. Thus, global
transactions can invoke Begin, Prepare ToCommit, Commit and Abort, the events in SE,, below.
The PrepareToCommit and DecidedToAbort events are executed by the local databases where
the subtransactions execute, in addition to the Begin, Commit and Abort events as described
in Section 2. These events are in TMF,, for each node n.

DEFINITION 4.6: Axiomatic definition of 2PC
G denotes a global transaction with n subtransactions, g;, : = 1...n.
SE,, = {Begin, Commit, Abort, PrepareToCommit}
TME,, = {Begin, Commit, Abort, PrepareToCommit, DecidedToAbort }
1. Vg; € G (PrepareToCommit,, € H =
inv(PrepareToCommit,;) € H A DecidedToAbort,, ¢ H)
Vg; € G (DecidedToAbort,, € H = PrepareToCommit,, ¢ H)
Vg; € G (inv(Commit,,) € H = PrepareToCommity, € H)
Vg; € G (inv(Aborty,) € H) = dg; € G (DecidedToAbort,; € H)
. Yg; € G (Commity, € H = (inv(Commity;) - Commity,))
Vg; € G (Aborty, € H = (PrepareToCommit,, € H = (inv(Abort,,) — Abort,,)))

o g o

The first two axioms, Axiom 1 and 2, capture the voting phase of 2PC protocol whereas
the rest, Axioms 3 to 6, the decision phase.

Axiom 1 states that the TM of g; sends a Prepare ToCommitresponse, only if it receives a
Prepare ToCommit request from the coordinator G and it has not already sent Dectded ToAbort
response. (When the TM of g; sends the Prepare ToCommit response it guarantees that it is
prepared to commit if the coordinator commits the global transaction. When the PrepareTo-
Commit response is sent, g; is said to enter the prepare to commit state and stays in this state
until it is committed or aborted.) Axiom 2 states that the TM of a subtransaction sends a
DecidedToAbort message to the coordinator, only if it has not already sent a Prepare ToCommit
response. As opposed to Prepare ToCommit, a DecidedToAbort message is not required to be
a response to a Prepare ToCommit request; it can be sent before Prepare ToCommit in case a
subtransaction aborts before the 2PC protocol begins.

Axiom 3 states that the coordinator invokes inv(Commit) only if it receives Prepare To-
Commit responses from the TMs of all the subtransactions. Axiom 4 states that the coordinator
invokes inv(Abort), if the TM of even one subtransaction has sent a DecidedToAbort message.
Axiom 5 states that the commitment of a subtransaction g; can occur only after inv(Commit)
by the coordinator. The last axiom, Axiom 6, states that in case a subtransaction aborts, if its
TM had sent the Prepare ToCommit response (i.e., the subtransaction had entered the prepare
to commit state) then the subtransaction can abort only after inv(Abort) by the coordinator
occurs.

The constraint that a subtransaction cannot be committed or aborted while being in the
prepare to commit state is captured by the following lemma. The proof of this lemma using
the axiomatic definition of 2PC is given in the appendix.

LEMMA 1: Vg; € G PrepareToCommity, € H = —(6 —)
where 8 € {Commity,, Aborty,} and v € {inv(Commity,), inv(Aborty,)}

This lemma states the proscription of the commit and abort events of g; until the occurrence
of Commit invocation (inv(Commit)) or Abort invocation (inv(Abort) events, when g; is in
the prepare to commit state. The Commit event cannot be invoked by a local DBMS unless a
transaction invokes the inv(Commit) event.

V¢ Commit, € H = (inv(Commit,) — Commit,)

and hence, the proscription of the commit event does not constitute a violation of autonomy.
However, this is not the case with the Abort event since an abort can be caused by events other
than inv(Abort).

V¢ Abort, € H = (inv(Aborty) — Abort:) V e € IE (e; — Abort:).
Here are the implications of this lemma:

e The transaction management autonomy of a database is violated due to proscription of
the abort event under certain conditions. Consequently, 2PC violates the multidatabase
system’s execution autonomy.

e Each database, i.e., the nodes of the system, must support the prepare to commit state
as captured by the PrepareToCommit and DecidedToAbort events.

2PC = VYn({PrepareToCommit, DecidedToAbort} C TME,)

Such a prescription of what a database must support is beyond of what is expected from a
traditional database system (as assumed in Section 2) and is according to our definition,
a violation of transaction management autonomy through prescription.

Note, however, that if all databases provide for prepare to commit and we change our as-
sumptions in Section 2 accordingly, then no violation of transaction management autonomy
occurs.

4.2 Autonomy Implications of the Emulated 2PC Protocol

The Emulated 2PC (E2PC) protocol was designed explicitly with the above autonomy violations
of 2PC in mind. The E2PC protocol is based on the notion of redo transactions. In this,
operations on objects invoked by transactions are classified into Read and Write operations. The
idea is that the commitment of a global transaction can be decided just between the coordinator
and the (Multidatabase) agents, i.e., without the participation of the local databases. In
particular, this protocol obviates the need for a database to support the prepare to commit
state. If, after a subtransaction of a global transaction says that it is prepared to commit, the
subtransaction is aborted but the final decision is to commit the global transaction, the writes
of the aborted subtransaction are performed subsequently by a redo transaction. This implies
that (1) the state of the database against which the redo transaction executes should be the
same as the one seen by the aborted subtransaction and (2) the redo transaction should not
invalidate any other active or committed (sub)transaction.

A number of schemes have been proposed to cope with ensuring the consistency of a
database in the presence of redo transactions. In the rest of this section, we will discuss the
autonomy ramifications of three schemes.

e In the first two schemes, which we refer to as MSR-based E2PC, are based on a correctness
criterion called M-serializability [MRT92] rather than serializability.

e The third scheme, which we refer to as abort-based E2PC protocol, achieves consistency of
redo transactions by aborting all the (active) transactions that conflict with the aborted
subtransactions and hence, the redo of the subtransaction observes the same database
state as the one seen by the subtransaction. That is, it emulates an execution where the
subtransaction is not aborted but instead the other transactions suffer an internal abort
[SKS91].

We would like to note that for ease of discussion, throughout this section we assume that
all transactions perform updates, that is, there are no read-only transactions.

4.2.1 MSR-based E2PC

The MSR-based E2PC protocol is based on the notion of Multidatabase serializability (M-
serializability) [MR192]. The idea is that, since a redo transaction Redo(g;) is composed of the
write operations of its corresponding subtransaction g;, Redo(g;) depends on the read operations
of g; and hence, g; and Redo(g;) should be considered together as a pair in a history irrespective
of the abortion of g; in the history. That is, database consistency is preserved by serializing

all other transactions executing on the same node with respect to the object events invoked by
the pair {g;, Redo(g;)}.

Definition of M-serializability

In order to examine the autonomy properties of MSR-based 2PC protocol, we will for-
mally define M-serializability in terms of serialization ordering requirements induced by conflict-
ing operations invoked on the same object by different transactions. In general, two operations
conflict if their execution order matters.

Let T be the set of transactions executing at a node.

Let P; be a subtransaction,redo transaction pair, P; C T.

Let C, be a binary relation on transactions in T

Let H be the history of events relating to transactions in 7T'.

DEFINITION 4.7: Vi, tj, tx € T,t; # tj,t; #* tg,t; *t, VP CT
(t: Cp tj), if
Job 3p, q ((t:i & Pr,tj & Pr (conflict(pe, [0b], g¢,[0b]) A (pe;[0b] — g¢,[0b]))) v
(t: & Poytj € Pi,tx € Pr (conflict(pe,ob], qe,[0b]) A (pe.[0b] —+ gz, [0b]))) V
(ti € Pl’tj € Pty € Py (conﬂiCt(ptk[Ob]a qtj[]) A (ptk[Ob] — th[Ob])))))

In this definition, C, represents a serialization ordering requirement. The first clause expresses
how an ordering requirement between two transactions which do not belong to the same pair
is directly established when they invoke conflicting operations on a shared object. This is
similar to the clause found in the classical definition of conflict serializability. The other two
clauses reflect the fact that when a transaction establishes an ordering requirement with another
transaction, the same requirement is established between the transactions in their corresponding
pairs.

Let LT be the set of local transactions executing at a node, LT C T.

Let GT be the set of subtransactions of global transactions and

redo transactions executing at a node, GT C T.

DEFINITION 4.8: H is M-serializable iff
Ve (((t € LT) A (Commit, € H)) V (t € GT)) —(t Cy t)

where C} is the transitive closure of the relation C,. In words, a history H is M-Serializable if
and only if in H there does not exist a committed local transaction or a committed or aborted
subtransaction that is related to itself through C;. That is, C} is a partial order. As mentioned
above, aborted subtransactions have to be considered because for every subtransaction g; that
aborts, there is a pair {g;, Redo(g;)}, and it is with respect to such pairs that other transactions
are serialized.

The above specification of M-serializability reveals that a pair is an instance of two
cooperative transactions which maintain some consistency properties and M-serializability is a
form of Cooperative serializability (CoSR) [Ch91, RP92].

Specification of MSR-based E2PC

The specification of the MSR-based E2PC protocol, first of all, differs from the 2PC
protocol in Axiom 6 which defines the abort behavior of the subtransactions. (Notice that it
is Axiom 6 that causes the proscription of the Abort event in the 2PC protocol — this can be
seen in the proof of Lemma 1 in the Appendix.) Here, Redo(t) denotes the redo transaction
whose update (write) operations are the same as transaction ¢. In addition, it does not require

any new significant events to be supported by local databases. In the emulated 2PC protocol,
the Prepare ToCommit and DecidedToAbort events are supported by the agent that sits above
each local database system. ASE, denotes these events that the agent at node n responds to.

DEFINITION 4.9: Axiomatic definition of E2PC
G denotes a global transaction with n subtransactions, g;, ¢ = 1...n.
SE,, = {Begin, Commit, Abort, PrepareToCommit}
ASE,, = {PrepareToCommit, DecidedToAbort }
TME,, = {Begin, Commit, Abort }
1. Vg; € G (PrepareToCommit,, € H =
inv(PrepareToCommit,;) € H A DecidedToAbort,, ¢ H)
Vg; € G (DecidedToAbort,, € H = PrepareToCommit,, ¢ H)
Vg; € G (inv(Commit,,) € H = PrepareToCommity, € H)
Vg; € G (inv(Aborty,) € H) = dg; € G (DecidedToAbort,; € H)
. Yg; € G (Commity, € H = (inv(Commity;) - Commity,))
Vg: € G (Aborty, € H =
(inv(Aborty,) € H V (inv(Commit,,) € H = Commitredo(q;) € H)))

o g o

The above Axiom 6 states that if a subtransaction g; is aborted (by the local DBMS)
but commit decision has been reached, its corresponding redo transaction must be executed
and committed.

By involving only standard significant events, the above Axiom 6 does not violate node
transaction management autonomy through prescription of unsupported events. However, this
axiom is sufficient only if we have a way to achieve M-serializability. In order to guarantee M-
serializability, it is sufficient to control the serialization ordering of transactions so that cyclic
orderings are prevented, particularly those involving pairs of transactions. Two ways to control
ordering requirements is to place restrictions (1) on the objects accessed by transactions and
(2) on the object events invoked by transactions. We consider additional axioms for achieving
M-serializability by examining these possibilities.

The first scheme, termed MSR-E2PC (I), prevents subtransactions from accessing any
objects that are accessed by local transactions [BST90].

Let GT be the set of subtransactions at a node.

Let LT be the set of local transactions at a node.

Let L,y be the set of objects accessed only by local transactions at a node.

Let E,p be the set of objects accessed only by global transactions at a node.

a. Yob Vp (Lop N Eop = ¢) A
(Vi € LT ((0b & Los) = —(mi[ob] € H)) A
Vgi € GT ((ob & Eop) = —(pg.[0b] € H))

B. Vgi € GT ~(gi C} :)

Axiom « states the proscription of object events invoked by local transactions and sub-
transactions at a node. That is, local transactions and subtransactions operate on disjoint sets
of objects, Loy and Egp respectively. In this way, cyclic orderings due to subtransaction/redo-
transaction pairs will involve only subtransactions and hence, they can be handled at the MDBS
level [Axiom]. Other cyclic orderings involving individual (local) transactions are handled by
the local DBMSs since every DBMS ensures serializability (as assumed in Section 2).

In this case, MSR-based E2PC (I) protocol preserves a node’s transaction management
autonomy at the expense of transaction data access autonomy at the node. It violates both
local and global transaction data access autonomy since a subtransaction is proscribed from
invoking events on objects not in F,; and a local transaction is proscribed from invoking events
on objects not in Ly, [Axiom a].

The second scheme, termed MSR-E2PC (II), also ensures M-serializability but places less
restrictions on the objects accessed by the transactions. It prevents cyclic orderings through
restrictions placed on the object events invoked by the transactions. As mentioned above,
M-serializability classifies object events into Read and Write events.

Let GT be the set of subtransactions at a node.

Let LT be the set of local transactions at a node.

Let Loy be the set of objects accessed by local transactions at a node and which
global transactions can read.

Let G, be the set of objects accessed by global transactions at a node and which
local transactions can read.

Let E,p be the set of objects accessed only by global transactions at a node.

a. YobVp (Lob NGop N Eop = d)) A
(VI € LT ((pi[ob] € H) = ((0b € Lop) V ((0b € Gop) A (p = Read)))) A
Vgi € GT ((pg;[ob] € H) = ((0b € Gop U Egp) V ((0b € Lop) A (p = Read))))

b. Vi, t; € GT U LT ((Write, [ob] — Read;,[0b]) =
((Commit,, — Read;,[0b]) V (Abort;; — Read;,[ob])))

Axiom a gives the semantics of the Ly, G and E, object sets by stating the pro-
scription of object events invoked by local transactions and subtransactions at a node. The
effect of these proscriptions is that cyclic orderings due to read-write and write-read con-
flicts involving local transactions and subtransactions (e.g., (Write;[ob] — Readg;[0b]) and
(Writeg, [ob'] — Read;[ob]), where t is a local transaction) are prevented.

Axiom b is the condition for avoiding cascading aborts by requiring that for any two
transactions t; and %;, if ¢; reads an object previously written by #;, then £; reads the object
after #; has either committed or aborted.

This alternative is less restrictive than the previous one because it permits global and
local transactions to access common objects and hence, global and local transactions are allowed
to interact by invoking Read and Write events. While this alternative is less restrictive, its
specification reveals that it still violates transaction data access autonomy in more specific
ways. It violates transactions data access autonomy

e by proscribing certain object events that can be invoked by certain transactions [Axiom

al;

e by prescribing under which condition a Read event can occur [Axiom b].

4.2.2 Abort-based E2PC

The specification of the abort-based E2PC protocol has the same six axioms as the MSR-based
E2PC protocol [Definition 4.9], differing only in the way of ensuring the consistency of redo
transactions whose commitment is required by Axiom 6. In the abort-based E2PC protocol,
consistency of a redo transaction is achieved by placing restrictions on the significant events
associated with other locally executing transactions at the node where the redo transaction
executes.

Even though the abort-based E2PC protocol was developed independently of MSR-based
E2PC protocol, note that it also satisfies M-serializability and in this sense, it can be viewed
as a third MSR-based E2PC scheme.

Let [be a local or global subtransaction.

Vg; € G (Commitredo(y;) € H =
Vi € ConflictTr(g;)((Abort; — Begingedo(g;)) N (Commitreao(y;) — Restart;))

ConflictTr(g;) is a set of transactions which concurrently perform operations that conflict with
those of g;.

This axiom states that if g;’s redo transaction is executed, it is committed only after
all the locally executing transactions which conflict with g; are aborted. Any locally executing
transaction ¢ that conflicts with g; is restarted after Redo(g;) commits.

10

transaction management data access

2PC proscription of Abort none
prescription of PrepareT oCommit
prescription of DecidedToAbort

MSR-E2PC none proscription of object events
(1

MSR-E2PC none proscription of Read
(I1) proscription of Write

abort-E2PC proscription of Restart none

prescription of Commitredo
prescription of Abort

Table 1: Tradeoffs in Multidatabase 2PC Variants

The abort-based E2PC protocol neither prescribes nor proscribes any object event.
Hence, it does not violate transaction data access autonomy, but it violates a node’s trans-
action management autonomy in substantial ways by prescribing the abort of certain transac-
tions when a subtransaction is aborted while a commit decision has been reached for the global
transaction. Also, it constrains the restart of the aborted transactions.

By involving only the standard significant events pertaining to subtransactions and local
transactions, the above axiom does not require any additional significant events to be supported
by a database. Note, however, that the above axiom implies that the semantics of the Commit
event of redo transactions are different from the semantics of the standard Commit event
associated with the local transactions and subtransactions (as assumed in Section 2). Both of
these Commit events are expected to be supported by each local database system.

In summary, the implications of the above axiom for autonomy are similar to the impli-
cations of Lemma 1 in the context of the 2PC protocol:

e The transaction management autonomy of a database is violated due to prescription of
the abort event and proscription of the Restart event under certain conditions.

e Each node of the system, must support the special semantics associated with the com-
mitment of redo transactions as captured by the Commitgeao(t) event:

abort-based E2PC = Vn({Commilredo(t)} C TMES).

4.3 Discussion of the Tradeoffs involved in Dealing with problems of
2PC

Table 1 summarizes the findings of the previous subsections. Recall that MSR-E2PC (I) refers
to the first scheme that ensures M-serializability by preventing subtransactions from access-
ing objects that are accessed by local transactions and MSR-E2PC (II) refers to the second
scheme that ensures M-serializability which also permits interactions between local and global
transactions.

The table shows that some form of autonomy violation occurs for each of the commit
protocols. Thus, the choice of a specific protocol depends on practical considerations. As
discussed in Section 3, different forms of autonomy violations have implications for different
components of a local DBMS. For example, if the TM of a DBMS cannot be changed to support
additional transaction management events (for example to ensure atomic commitment via 2PC),
then one of the MSR-based E2PC protocols has to be considered.

Both MSR-based E2PC protocols violate data access autonomy which affects the DM,
and consequently, require modification of the DM if the DM does not support access control to
objects in the database. At the risk of database inconsistency, the access control problem can be

11

alleviated by assuming that transactions will be designed so that they observe any restrictions
imposed on their access to objects. This could be considered as not being very different from
the usual assumption made about transactions, that they are designed to obey the integrity
constraints on the database.

The abort-based E2PC protocol can be used if the TM supports customization of sig-
nificant events allowing us to tailor the semantics of the significant events for different types of
transactions.

5 Conclusions

Our characterization of autonomy has brought out a finer classification of execution autonomy
than discussed heretofore in the literature. We also showed that violations of what is usually
termed design autonomy often lead to violations of execution autonomy.

We have shown that it is possible to analyze the behavior of multidatabase protocols
with respect to their autonomy properties. Towards this end we have axiomatized the behavior
of variations of protocols designed to ensure global transaction atomicity. This helped us
to identify with the tradeoffs entailed by the different protocols. The identification of these
tradeoffs will help in choosing among alternative approaches to transaction management in
multidatabase systems.

We chose to study the two-phase commit protocol and its variations since they are per-
haps the most investigated of multidatabase protocols. But, just as we analyzed these protocols
designed to ensure failure atomicity, other multidatabase protocols designed to maintain data
consistency in MDBSs can be analyzed in terms of their autonomy properties. For example,
in the ticket scheme [GRS91], global serializability in a MDBS is achieved by forcing all sub-
transactions executing on a node to read and write a special object, called the ticket. Local
transactions cannot access the ticket. Hence, the ticket scheme violates data access autonomy
in a way similar to the E2PC protocols.

Another example is the notion of gquasi-serializability [DE89] which is a relaxation of
serializability. Quasi-serializability ensures data consistency provided that data dependencies
do not exist across nodes.

Vgi,9; € G,i# j Vob,ob' Va
—(Ready, [0b, a] = Writey, [0, fn(a)])

That is, the value that a subtransaction g; of a global transaction G executing on node j writes
to an object ob’' is not a function of a value a previously read by another subtransaction g; of
G executing on a node <.

Clearly, quasi-serializability violates data access autonomy. Checking for the data in-
dependence of subtransactions executing in different nodes requires program data dependency
analysis which is outside the functionality of any DBMS and hence, there is no way that a
DBMS can be changed to support it. However, since it involves only subtransactions of global
transactions, such a check can be done through off-line analysis similar to that needed for
MSR-E2PC or the ticket scheme.

We believe that the work presented in this paper is a necessary first step to understand
the various facets and implications of autonomy. In particular, we have shown that it is possible
to analyze the behavior of multidatabase protocols with respect to their autonomy properties.
Such an analysis brings out the practical tradeoffs involved in achieving integration.

References

[BHG87] Bernstein P. A., V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery
in Database Systems. Addison-Wesley, Reading, MA, 1987.

[BS88] Breitbart Y. and A. Silberschatz. Multidatabase Update Issues. In Proceedings of
the ACM SIGMOD International Conference on Management of Data, June 1988.

12

[BST90]

[BGS92]

[Ch91]

[CR91]

[DES89]

[Elm91]

[GRS91]

[MR+92]

[PV88]

[Pu88)

[RP92]

[RSK91]

[SL90]

[SKS91]

[WV90]

[VE91]

Breitbart Y., A. Silberschatz and G. Thompson. Reliable Transaction Management
in a Multidatabase System. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, 215-224, May 1990.

Breitbart Y., H. Garcia-Molina, and A. Silberschatz. Overview of Multidatabase
Transaction Management. VLDB Journal Vol.1, No.2, 1992.

Chrysanthis P. K. ACTA, A Framework for Modeling and Reasoning about Ezrtended
Transactions. Ph.D. Thesis. Department of Computer and Information Science, Uni-
versity of Massachusetts, Amherst, September 1991.

Chrysanthis, P. K. and Ramamritham, K. A Formalism for Extended Transaction
Models. In Proceedings of the seventeenth International Conference on Very Large
Databases, September 1991.

Du W. and A. K. Elmagarmid. Quasi Serializability: a Correctness Criterion for
Global Concurrency Control in InterBase. In Proceedings of the Fifteenth Interna-
tional Conference on Very Large Databases, pages 347-355, August 1989.

Elmagarmid A. K. (Editor). Database Transaction Models for Advanced Applications,
Morgan Kaufmann, 1992.

Georgakopoulos D., M. Rusinkiewicz and A. Sheth. On Serializability of Multi-
database Transactions through Forced Local Conflicts. In Proceedings of the IEEE
Seventh International Conference on Data Engineering, 1991.

Mehrotra S., R. Rastogi, Y. Breitbart, H. Korth, and A. Silberschatz. Ensuring
Transaction Atomicity in Multidatabase Systems. In Proceedings of the ACM Sym-
posium on Principles of Database Systems, June 1992.

Pons J. and J. Vilarem. Mixed Concurrency Control: Dealing with Heterogeneity
in Distributed Database Systems. In Proceedings of the Fourteenth International
Conference on Very Large Databases, August 1988.

Pu C. Superdatabases for Composition of Heterogeneous Databases. In Proceedings
of the IEEE Fourth International Conference on Data Engineering 1988.

Ramamritham K. and P. K. Chrysanthis. In Search of Acceptability Criteria:
Database Consistency Requirements and Transaction Correctness Properties. In
Distributed Object Management, Ozsu, Dayal, and Valduriez Ed., Morgan Kaufmann
Publishers, 1993.

Rusinkiewicz M., A. Sheth, and G. Karabatis, Specification of Dependencies for
the Management of Interdependent Data. IEEE Computer, 12(12):46-54, December
1991.

Sheth A. and J. Larson. Federated Database Systems for Managing Distributed,
Heterogeneous, and Autonomous Databases. ACM Computing Surveys, 22(3):183—
236, September 1990.

Soparkar N., H. Korth and A. Silberschatz. Failure—Resilient Transaction Manage-
ment in Multidatabases. IEEE Computer, 24(12):28-36, December 1991.

Wolski A. and J. Veijalainen. 2PC Agent Method: Achieving Serializability in Pres-
ence of Failures in a Heterogeneous Multidatabase. In Proceedings of PARBASE-90
Conference, February 1990.

Veijalaine J. and F. Eliassen. The S—transaction Model. Bulletin of the IEEE Tech-
nical Committee on Data Engineering, 14(1):55-59, March 1991.

13

A Proof of Lemma 1

In order to prove Lemma 1 (page 10), we use the proof rule:
(e—= €)= (e = ¢)
and the following lemma which follows directly from Axioms 3 and 4:

LEMMA 2:
—((inv(Aborty,) € H) A (inv(Commity,) € H))

Proof of Lemma 1: We will prove the lemma in four parts, each corresponding to a particular
combination of (3,7).

1. Yg; € G ((PrepareToCommity, € H) = —(Commity, — inv(Commitg,)))

Assume (PrepareToCommity, € H). Assume (Commit,, — inv(Commity,)).
(Commiity, — inv(Commity,)) implies that (Commity, € H) is true and according
to Axiom 5, (inv(Commity,) — Commit,,) is also true. However, (inv(Commity,) —
Commitg,) implies ~(Commity, — inv(Commity,)) which contradicts the assumption.

2. Vg; € G ((PrepareToCommity, € H) = —(Commity, — inv(Abortg,)))

Assume (PrepareToCommit,, € H). Assume (Commity,, — inv(Abortg,)).
(Commiity, — inv(Abortg,)) implies that both (Commit,, € H) and (inv(Aborty,) € H)
are true. From Axiom 5, (Commity, € H) implies (inv(Commity,) — Commit,,) which
in turn implies (inv(Commity,) € H). Thus, (inv(Commity,) € H) A (inv(Aborty,) € H)
which contradicts Lemma 2.

3. Vg; € G ((PrepareToCommity, € H) = —(Aborty, — inv(Commity,)))

Assume (PrepareToCommity, € H). Assume (Aborty, — inv(Commity,;)). (Aborty, —
inv(Commit,,)) implies that (Aborty, € H) and (inv(Commity,) € H). Since
(PrepareToCommity, € H) is true, (Abort,, € H) = (inv(Aborty,) — Aborty,),
according to Axiom 6. (inv(Aborty;,) — Aborty) = (inv(Aborty,) € H). Thus,
(inv(Commity,) € H) A (inv(Abortg,) € H) which contradicts Lemma 2.

4. Yg; € G ((PrepareToCommity, € H) = —(Aborty, — inv(Abortg,)))

Assume (PrepareToCommity, € H). This implies (Aborty,, € H) = (inv(Aborty,) —
Aborty,), according to Axiom 6. (inv(Aborty) — Aborty,) implies —(Abort;, —
inv(Aborty,)).

14

