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In order to meet the requirements of new database applications while, at
the same time, continue to support existing applications, database systems need
to be able to cope with changing database schemas and maintain consistency be-
tween instances created under different schemas.

This paper presents an approach to schema evolution through changes to the
Entity-Relationship (ER) schema of a database. In order to facilitate changes to
the ER schema, we enhanced the basic constructs of ER diagrams with constructs
that specify versions of entity and relationship types, and relationships between
attributes in different versions. This approach has the advantages of being graphic-
oriented and closer to the designer’s perception of data rather than to the logical
database schema which describes how data are stored in the database. The under-
lying database structure is re-organized, if necessary, to accommodate new data
without changes affecting existing objects. In this way and through the construc-
tion of views, modifications of existing programs are avoided while all objects in
the database are accessible to all application programs, both new and old.

Keywords: Database Schema Evolution, Database Schema derivation, Entity-
Relationship model, Relational databases, Change Specification Language, Database
consistency.

1. INTRODUCTION

As a database is usually employed to capture changes over time, there is a
need to be able to reflect these same changes to the database, so that the require-
ments of new database applications can be facilitated. However, a database stores
information for a long time, and in general, it is neither easy nor practical to
frequently re-organize a large database. Furthermore, it is neither easy nor practical
to frequently modify complex application programs such as those found in data-
base systems [16). Thus, it becomes necessary to continue to support existing
application programs providing access to objects created under both the previous
and the new database schemas.
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Various approaches to the problem of changing database schemas and main-
taining consistency between instances created under diffeent schemas have been
proposed, particularly in the context of Object-Oriented databases [2, 4, 8, 18, 21,
22]. This paper discusses an alternative way to support schema evolution based
on the Entity-Relationship (ER) approach for data modeling (5, 19]. This is a
result of our effort to better understand the semantics of changes. We chose to
examine the semantics of changes in the context of the ER model for two reasons: .
first, because the ER model supports many types of relationships whereas Object-
Oriented models primarily support only one type of relationship, similar to the
“ISA” relationship in the ER model (6] and second, in order to avoid defining
yet another Object-Oriented model that would support more types of relation-
ships [4]. Instead, we are more interested in making the ER approach Object-
Oriented (15] and, hence, able to effectively support the mapping of an ER schema
into any object-oriented one. At the same time, our approach supports schema
evolution of current state-of-the-commercial-art database systems, that is, rela-
tional database systems.

A key idea in the proposed ER approach to schema evolution is the three-
level schema mapping. As indicated in Fig. 1, changes on an ER diagram repre-
senting the structure of entity and relationship types (i.e., database schema) are
specified using a high level specification language, called SPEER (for SPecification
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of Evolving Entities and Relationships). The specification of the changes on the
ER diagram are then mapped to a database implementation independent repre-
sentation called version derivation graphs (VDGs), which is subsequently mapped
into the structures of the underlying database [14]. Through this three-level map-
ping, our approach provides a uniform specification of changes to a database
schema independent of the underlying implementation database model.

When the schema of an entity or relationship type (or schema for short) is
changed, a new version of the schema is then created. With respect to the under-
lying database, each schema version is expressed as a (database) view. The view
constitutes the actual interface to the application programs for accessing the ob-
jects in the database. Thus, programs are grouped into classes according to the
schema version (or view) they they refer to. While the views of schema versions
never change, the underlying database structure is re-organized, if necssary, to
reflect the evolution of the schema, and thus, the invariance of the programs’
interface is preserved. In other words, through the construction of views, modifica-
tions of existing programs are avoided while all objects in the database are made
accessible to all application programs, both new and old. In this paper, we assume
that existing objects retain their representation whereas new data are represented
in complementary representations and are related to existing objects.

The rest of the paper is organized as follows. In the next section, we survey
the various object-oriented approaches to schema evolution. In Section 3, we pre-
sent the concepts of the ER data model, formally analyze and classify the relation-
ships of attributes between the schemas before and after a change, and discuss issues
in maintaining a consistent database manipulated through different schema versions.
In section 4, we introduce the SPEER language for expressing the relationships be-
tween the new and old schemas, and illustrate the specification of changes to ER
diagrams using several examples. Section 5 presents a methodology for mapping
the specification of the changes to a schema onto the corresponding VDGs, whereas
their transformation into an underlying database, assumed to be relational [9, 10]
is discussed in Section 6. The paper concludes with a summary and future work.

2. RELATED WORK

Although the ER data model has long been used for conceptual database
design, to the best of our knowledge, no work has been reported on schema evolu-
tion in the context of the ER model. On the contrary, much of the work on
schema evolution has been conducted in the context of object-oriented database
systems (OODBS). Generally speaking, approaches to schema evolution can be
divided into three categories, namely, schema modification, schema versioning
and schema derivation, based on the external representation of the structure of
the objects in the database (object schema) presented to application programs and
interactive users, and the internal representation of the objects used in the under-
lying database.

Schema modification approaches always support a single schema and a single
internal representation for each object (2, 11, 22]. In these approaches, there are
a set of rules for performing changes to an object schema and a set of checks
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for maintaining syntactically correct types and methods across schema versions.
In this way, all existing objects can be converted to conform to the new schema.
Because of this, the schema modification approach does not support the trans-
parency of change for existing application programs. The application programs
that use the old schema may need to be modified.

Schema versioning approaches support multiple schemas and multiple internal
object representations for an object [1, 18]. One version of an object corresponds
to one version of the schema. The instantiation of an object to a schema version
is performed at the time of the creation of the object. Objects created under dif-
ferent schema versions must also be accessible through any other schema version.
This is achieved through the use of functions that convert the representation of
objects from one schema version to another. There are different techniques for
the implementation of conversion functions. Ahlsen et al. proposed function com-
position for making changes to a schema transparent to application programs [1].
The relationships of attributes are specified on two consecutive schema versions.
Thus, the objects associated with schema version V; can be converted into ones
with any other schema version, ¥,, by composing the functions betwen V; and
Vi- Skarra and Zdonik proposed another approach to the conversion of objects
across schema versions based on exception handlers. When a schema versions, Vi
is changed, for all other schema versions, V;, a designer is expected to associate
exception handlers with each attribute (1) defined in V; but not defined in V; or vice
versa, and (2) whose type defined in V; is different from that defined in V; [18].

In the schema versioning approaches, objects belonging to a version of a
schema always stay in that version. Therefore, if a schema associated with the
initial schema is subsequently augmented, it will not be possible for the objects
associated with the initial schema to be updated by programs associated with a
later version without loss of information. For example, suppose the domain of
an attribute of objects associated with an early schema version is augmented in
a later one. If a program associated with the later schema version updates the
attribute of an object created by a program associated with the earlier schema
version, then there may be insufficient storage for the augmented attribute.

Schema derivation approaches support multiple schemas for an object and
a common internal object representation (3, 4, 7, 21]. Irrespective of whether
objects are created under different schema versions, they are converted to the
common representation. The instantiation of objects to a schema version is per-
formed at run-time. That is, the objects are presented to the programs as database
views on objects in the underlying database. A new schema version is derived
from the existing and/or other derived schemas, and may contain less information
(information capacity reducing), the same amount of information (information
capacity preserving), or more information (information capacity augmenting) than
do the old ones. The approach proposed by Tresch and School can support schema
evolution which results in information capacity reducing and information capacity
preserving without database reorganization [20]. Zdonik proposed an approach in
which an object is represented by multiple views. Each view, i.e., the layer of inter-
faces, corresponds to a schema version [21]. When a schema version is changed,
the objects created under the changed version are augmented, if necessary, by
appending extra storage to accommodate the new information, while the view for
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the new schema version is defined based both on the new properties of the schema
version and the properties defined in the view for the previous schema version.
Clamen’s approach represents an object associated with different schema versions
by means of multifacets 8, 7]. Each facet of objects corresponds to a version
of their schema. An object is represented as a disjoint union of each facet. The
relationships among facets is expressed in terms of relationships between attributes
viewed from different facets. Clamen classified the attribute relationships into
four groups: shared, derived, independent and dependent. An attribute is shared
when it is common to both versions. An attribute is derived when its value can
be derived directly from the attributes in the other version. An attribute is inde-
pendent when its value cannot be affected by, nor affect, other attributes. Finally,
an attribute is dependent when its value cannot be derived but is affected by other
attributes. The attribute relationships can be expressed using functions. Thus,
a change to an attribute viewed from a facet can be propagated to the cor-
responding attribute(s) in another facet by invoking the functions. Hence, object
consistency among facets can be maintained.

Bertino proposed a view definition language for schema evolution that pro-
vides constructs which allow attributes and methods to be added to a view cor-
responding to a new schema [3]). In this approach, views are organized as a
view derivation hierarchy which is different from the class hierarchy. Hence,
a view (or a new schema) and its base classes are not directly related. Along
similar lines, Bratsberg adopted the approach of separation of a database into
two parts, namely, infent and extent [4]. Intent represents the derivation hierarchy
among schema versions whereas extent represents the associations of objects with
schema versions. Since the organization of intent hierarchy is based on the order
of the creation of classes, this approach seems to introduce another data model
which is different from the Object-Oriented model in structuring superclasses
and subclasses. Although the existing derivation approaches presented above
allow any schema version of an object to evolve, it is not clear how object con-
sistency can be specified and maintained across schema versions derived from
different paths.

Our approach belongs to the family of schema derivation approaches
and, as such, supports multiple schema versions and a common internal object
representation, referred to as the complete object. However, by allowing linear
schema evolution, i.e., by allowing only the most recent schema to evolve,
and by considering eliminated and resumed attributes in the evolution history,
our approach effectively resolves the inconsistency problems along multiple deriva-
tion paths mentioned above.

3. EVOLUTION IN ENTITY-RELATIONSHIP DIAGRAMS

In this section, after reviewing the basic ER model, we discuss certain possible
changes to the ER diagram. We formally analyze the attribute relationships be-
tween two schema versions, and we explicitly express these relationships in terms
of functions. Finally, we present rules for maintenance of a consistent database
in the context of the ER model.
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3.1 The Entity-Relationship Model

The basic ER data model supports two semantic primitives, entities and rela-
tionships, between entities, in terms of which the structure of a database, i.e.,
the database schema, is described. An entity type is a set of entities having the
same properties or attributes. Similarly, a set of relationships among entities from
a number of entity types form a relationship type among these entity types. The
degree of a relationship indicates the number of entity types that participate in
the relationship whereas the cardinality of a relationship specifies the mapping
of the associated entity occurrences in the relationship.

Attributes are used to describe an entity or a relationship. Each attribute is
associated with a domain that defines the possible values for the attribute. A do-
main can be defined as a pair of fype and range of values, denoted by type[range).
The type can be any system supported data type such as integer, real or string.
Range is a constraint on a type. For example, in the case of an integer type, the
range can be the smallest and largest ineger values, represented by integer[lower ..
upper}). The range associated with a char type can be the set of allowable char-
acters, denoted by char{char, .. char,], and the range of a string type can be
represented by string[m], where m is the length of the string.

Each entity usually has an identifying or key attribute, whose value is distinct
from any other entity in the same entity type. The instances of a relationship
type can be identified by the key attribute of the entities involved in the relation-
ship and are called foreign attributes to the relationship.

An ER diagram is a graphical representaiton of a database schema consisting
of rectangular nodes representing entity types and diamond-shaped nodes con-
nected to rectangular nodes representing relationship types. The number of con-
nections of a relationship type to entity types indicates the degree of the relation-
ship type. The attributes of entity or relationship types are represented by circles.
The identifying attribute is indicated by a filled-in circle. Fig. 2 shows the rela-
tionship Madeby between entities Car and Maker using an ER diagram. For
simplicity of presentation, cardinalities of relationships are not considered here.

In what follows, we will use object to refer to an instance of an entity type
or a relationship type, and object schema or schema to refer to the description
of an entity type or the relationship type when they need not be distinguished.
Hence, an ER diagram (i.e., the ER database schema) consists of a set of schemas
which define the interface for application programs to create, update and access
objects in the database.

Makerld Address Year Carld Color
P71 T 7
Maker ‘ MadeBy Car

Fig. 2. A partial ER diagram for modeling cars.
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3.2 Structurally Consistent Changes to ER Diagrams
An ER diagram is structurally correct (or well formed) if and only if

e Each entity or relationship type is associated with a unique name.

e Each attribute of an entity or a relationship type is associated with a
unique name and a domain. Attributes of different entity or relationship
types may be associates with the same name.

e Fach entity type has an identifying attribute.

e Each connection (edge) connects an entity type to a relationship type. That
is, in an ER diagram, there are no dangling edges or edges connecting two
entity types or two relationship types.

e Each relationship type is connected to at least two entity types. That is,
the number of edges associated with a relationship type is equal to or
greater than two.

We expect that the initial ER diagram, which is the one created at the time
the database was first designed, is structurally correct. When a change to an ER
diagram is made, we require that the resulting diagram must also be structurally
correct. We considered the following possibilities of change.

1. A node and its associated edges may be added to an ER diagram, cor-
responding to the introduction of a new entity type or a new relationship
type.

2. A node and its associated edges may be removed from an ER diagram,
corresponding to the dropping of an existing entity type or relationship
type.

3. Edges may be added to, or removed from, an ER diagram, reflecting
changes in the relationships among the existing entity types in the database.

4. A node may be split into several nodes, and a number of nodes may be
merged into a single node as a result of aggregation and decomposition
of entity types, respectively.

5. Attributes may be added to, or dropped from, nodes, corresponding to
the gain and loss of attributes because of new properties of the objects
and requirements of the application programs.

6. The domain of attributes may be changed, expanded or reduced over time.

A close examination of the above possibilities shows that changes may in-
volve exisitng attributes. For example, when the attributes of a schema are changed,
the attributes of the new version of the schema may be common or derived from
the attributes of the old version of the schema. In other words, there exist rela-
tionships of attributes between the new and old schemas. These relationships re-
flect the semantics of changes on the old schema that result in the new schema.
In order to facilitate the maintenance of object consistency across the different
schema versions and efficient storage allocation, in the following section, we per-
form a detailed analysis of the relationships among the attributes of two schema
versions.
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Fig. 3. The classification of attributes.

3.3 Classification of Attribute Relationships

When a schema evolves, the relationships between the attributes of the old

and new schemas capture the semantics of installed changes. These relationships
provide crucial information for maintaining object consistency and reorganization
of the objects in the underlying database. For this reason, given two schema
versions, we classify the attributes of the two schemas based on the relationships
of their names, their values, and their domains. This classification refines the
one proposed in [7] (see Fig. 3).

e Common attributes: An attribute is said to be common to the two shcemas

if the names and domains of the attribute in the two schemas are identical.

Domain-changed attributes: An attribute is said to be domain-changed if
the names of the attribute in the two schemas are exactly the same but
its domain is different.

Renamed attributes: An attribute is said to be renamed if the attributes
in the two schemas have different names but exactly the same domains.

Resumed attributes: An attribute is said to be resumed if the attribute
was deleted from an earlier schema version but is added back to a later
schema version. A resumed attribute can be handled in the same way as
a common attribute.

Derived attributes: An attribute is said to be derived if the value of the
attribute can be derived from the values of other attributes not necessarily
of the same schema-version. Let B be an attribute derived from attributes
{A,, A,, ..., A}. The relationship can be represented by B = f({A4,, A4,,

Ad)-

Dependent atiributes: An attribute, say B, is said to be dependent if the
value of the attribute is affected by changes to the values of other attributes,




SCHEMA EVOLUTION FOR DATABASES 665

say {A,, Ay ..., A}, but the value of the dependent attribute cannot be
derived from the values of the same attributes {A4,, A,, ..., A;}.

e Independent attributes: An attribute is said to be independent if its value
neither affects, nor is affected by, the values of other attributes. If the
attribute is an attribute of the new schema, it is called a new attribute.
On the other hand, if the attribute is an attribute of the old schema, it
is called an eliminated attribute.

Derived and dependent attributes are further divided into four groups de-
pending on where they are defined. If {4,, 4,, ..., 4,} are attributes of the old
schema, and B is the attribute of the new schema, then attribute B is classified
into the forward group. If {A4,, A,, ..., A} are attributes of the new schema,
and B is the attribute of the old schema, then attribute B is in the reverse group.
If {4,, A, ..., A} can be attributes in the new schema or old schemas, and B
is an attribute of the new schema, then B is classified into the forward comple-
mentary group. However, if B is an attribute of the old schema, then B is in the
reverse complementary group.

The relationships of each group of attributes can be expressed by using a
general form of functions. There are four kinds of functions used in our framework.

Identity function. Let @ and b be attributes. If @ and b are identical, their rela-
tionship can be represented using an identity function (I) such that

: a = I(b), or simply, a = b.

Derivation function. Let a and b,, b,, ..., b, be attributes. If a can be derived
from only attributes b,, b,, ... b, then the relationship of @ to attributes
b,, by, ..., b, can be represented using a derivation function (F) such that
a = F(bl, b2, ceny bk)'

Prompt function. Let a and b,, b, ..., b, be attributes. If a depends on attributes
b,, b,, ..., b, but cannot be derived solely from b,, b,, ..., b, (e.g., it may
need additional information), then the relationship of a to attributes b,,
b, ..., b, can be represented using a prompt function (¥) such that a =
¥(b,, by, ..., by, ®), where ® represents the addition information. @ is possi-
bly an interactive query against the rest of the database that is not involved
in the particular schema evolution.

Default function. Let ¢ be an attribute. If the value of a of an object is un-
specified, but the value is required by a program, then the value can be ac-
quired by using a default function (default). The value is the so-called de-
JSault value. By assigning a default value to an unspecified attribute in a
previous schema, the needs of application programs associated with different
schema versions can be satisfied.

The specification of the attribute relaitonships between two consecutive schema
versions can be expressed in terms of these four kinds of functions. In order to
indicate the mapping direction of a function, functions are specified as forward
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or reverse: forward indicates that the mapping is from the old to the new schema
version, and reverse indicates that the mapping is from the new to the old schema
version.

Attribute relationships may exist between schema versions ¥; and Vi<l
For example, an attribute of ¥, can be resumed in another V; if there is no such
attribute in any schema version V; in between V; and V,. The resumed attribute
allows for capturing these types of relationships as relationships of two consecutive
schema versions.

The attribute relationships are mainly used to maintain consistent objects in
the database with respect to observers who view the database from different schema
versions. In the following sections, we present criteria for maintenance of data
consistency across schema versions and introduce the language for specifying
changes to ER diagrams.

3.4 Maintenance of Object Consistency Across Schema-Versions

Informally, a database is said to be consistent if two observers who view
the database through different schema versions see an object in ways that agree
with each other. In our framework based on ER schema evolution, we completely
avoid the modification of application programs by ensuring a consistent database
along three dimensions: object consistency, key consistency, and invariant program
views.

Object Consistency. The maintenance of object consistency can be accomplished
through the functions discussed in the previous section. Whenever the value
of an attribute of an object is updated, those attributes depending on the
updated attribute are also updated based on the specified functions. An
update of an attribute and the propagation of the update to the affected
attributes are executed as a transaction. We assume, here, that the semantics
of the functions and the procedures associated with the functions must be
correct in the sense that their results must meet the users’ expectations, and
satisfy the integrity constraints.

Key Consistency. The key consistency specifies the uniqueness of the objects across
the old and new schemas. That is, each object, irrespective of whether it
is created by the old or new schema, must be uniquely identified based on
the values of the key attributes defined in the old and new schema. The
maintenance of key consistency cannot be performed by the integrity con-
straints alone, because the key attribute may be different in the different
schema versions. Therefore, in our approach, we enforce the following con-
dition when a designer changes a key attribute: the mapping of key attributes
between the new and old schemas must be one-to-one.

Invariant Program Views. The invariant program views specify the semantics of
a database for the programs associated with a particular schema version.
However, the evolved database may not preserve the interpretation made by
the programs associated with the previous schema versions. For example,
consider the database schema in Fig. 2. Suppose that schema Car evolves
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Table 1. The addition of attribute Fuel to schema Car.

The old schema The new schema

Carld: string[20] Carld: string[20]

Color: string[12] Color: string[12]}
Fuel: integer(1..2]

due to the addition of attribute Fuel as shown in Table 1. Fuel’s possible
value is either leaded or unleaded. The cars belonging to the old schema
version burn leaded gas only. The cars belonging to the new schema version
burn either leaded or unleaded gas.

Assuming that the measurements for inspection of unleaded cars are different
from the leaded cars, if a program associated with the old schema version
is used to analyze car inspection records, then it should only access the cars
that burn leaded gas. Since all the cars associated with the old schema version
burn leaded gas, the semantics of the database is clear to the programs as-
sociated with that old schema version. They view the database as a set of
leaded cars. However, with the introduction of unleaded cars, the semantics
of the evolved database is no longer the same. In our framework, we provide
facilities to allow a designer to specify the conditions under which programs
retain a consistent view between the previous and the evolved databases.

In summary, the rules for maintenance of a consistent database for applica-
tion programs are as follows. The objects created under both schemas are con-
sistent with respect to the application programs associated with a schema version if:

1. Each attribute, irrespective of whether it is of the new or old schema,
must be classified into a group and associated with functions in ac-
cordance with its group. The functions are used to maintain object con-
sistency between the two consecutive schema versions.

2. Let Old(key) and New(key) be key attributes of the old and new schemas,
respectively. Their mapping must be one-to-one. That is, New(key) =
AOld(key), ®) AND Old(key) = f'(New(key), ®), where ® represents
additional information or empty.

3. Let Old(DB) and New(DB) be the databases corresponding to the old and
new schema, respectively. Let g be a function representing the view of
programs associated with a schema version. Then, the invariant view for
these programs can be expressed as:

g(0ld(DB)) = g'(New(DB)),

where g’ is a function used to construct the view through which the pro-
grams can preserve the same view to the database after evolution.
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4. SPECIFICATIONS OF CHANGES TO ER DIAGRAMS
4.1 A Language for Database Schema Evolution

In order to facilitate changes to ER diagrams, we have designed a language
for specification of changes to the ER diagrams called SPEER (SPecification of
Evolving Entities and Relationships). The language extends the constructs of ER
diagrams to allow a designer to specify the following relationships:

¢ the derivation path of a new schema;

¢ the relationships of attributes between the new schema and the old schema;
the participation of a new schema in relationship types (i.e., edges in ER
diagrams);

¢ the invariant views of programs to the database.

The derivation path indicates from where the new schema evolves. The at-
tribute relationships specify the effect of changes to an attribute on the others
and can be expressed using functions. A change to an edge between an entity
and a relationship type implies that the participation of the entity type in the
relationship type is either established or dropped. Consequently, the relationship
type needs to be developed by adding to or deleting from the relationship type
the key attribute of the affected entity type. The conditions for maintenance of
invariant program views ensure that the programs can access the evolved database
consistently. We summarize the change specification language for evolving entities
and relationships (in ER diagrams) in Fig. 4. The bold-typed words are terminals,
and the italic words are nonterminals. We will briefly describe each of the con-
structs below.

The derivation path of the new schema to the old schemas is specified using
the constrct

EVOLVE SCHEMA (Old(OldSchemas))) INTO {(New(NewSchema)).

Old(OldSchemas) is a set of schemas from where the new schema (New
(NewSchema)) evolves. The schema version OldSchemas includes all the attributes
of the old schema version and the eliminated attributes in the previous schema
versions. Functions Old() and New() indicate the sets of old or new versions of
a schema. The attributes of the new schema are listed in the Attributel.ist.

The specification of attribute relationships consists of two parts: the classifica-
tion group (GroupSpec) and function specification (FunctionSpec). The classi-
ficaiton group consists of the definition (AttributeDef) and the group (GroupDef)
of an attribute. The group of an attribute, irrespective of whether it is of the
new or old schema, must be specified. However, only the definitions of those
attributes in the new schema which do not exist in the old schemas need to be
specified. The relationships of one attribute to the others can be expressed in a
form of functions presented in Section 3.3. The specification of a function con-
sists of two parts: the function definition and its implementation. The mapping
direction is not explicitly specified in a function specification. The direction can
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EVOLVE SCHEMA (0ld(OldSchemas)) INTO (New(NewSchema)) AS
ATTRIBUTES {(AttributeList)}
CLASSIFICATION {(GroupSpec)}*
FUNCTIONS {(FunctionSpec)}*
[INVARIANT VIEWS {({AccessSpec))}*]
[ADD | DEFUNCT EDGES {(EdgeSpec)}*]
(GroupSpec) ::= {({AttributeDef) WITH (GroupDef)}); }
{(AttributeDef) = [(Atiribute Name) | (AttributeName): (type)[{rang)]]
{GroupDef) ::= [(Group) | (Group) [TO | FROM]{(OldSchemas)}]
{Group) ::= [COMMON | DOMAIN-CHANGED |
FORWARD-DERIVED | REVERSE-DERIVED |
FORWARD-COMPLEMENTARY-DERIVED |
REVERSE-COMPLEMENTARY-DERIVED |
FORWARD-DEPENDENT | REVERSE-DEPENDENT |
FORWARD-COMPLEMENTARY-DEPENDENT |
REVERSE-COMPLEMENTARY-DEPENDENT |
NEW | ELIMINATED | RESUMED)]

(FunctionSpec) ::= (FunctionDef)
[WITH IMPLEMENTATION { (FunctionBody)) }]
(FunctionDef) == ({AttributeName)=(FunctionName)({ArgumentList)));
(ArgumentList) = [(AttributeName) | (ProcName)]
(EdgeSpec) ::= (BETWEEN (EntityType) AND {RelationshipType)
{ParticipationSpec));
(ParticipationSpec) := PARTICIPATION [before | after]: (FunctionSpec)
(AccessSpec) ::= {(SchemaName) ACCESS WITH CONDITIONS
(Conditionld): (Condition}); }

Fig. 4. The specification of evolving ER diagrams.

be easily inferred from the schema version to which the attributes defined in the
co-domain and domain of the function belong. The addition or removal of an
_edge between an entity and a relationship type can be expressed in the specification
of an edge (EdgeSpec). This change also leads the changes to the foreign attributes
of a relationship type. The conditions for maintenance of invariant program views
to the evolved database can be expressed in the access specification (AccessSpec).
The access specification consists of a set of assertions that objects in the database
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Table 2. The augmentation of the domain of an attribute.

The old schema ‘ The new schema
Carld: string(20] Carld: string[20]
Color: string[12] Color: string[12]
MPG: integer(0 .. Max(short)] MPG: integer(0 .. Max(long)]

must satisfy. The key attribute of the new schema must also be specified if it is
different from the old one.

In the following sections, we will present examples using the SPEER language
to specify changes to ER diagrams. We assume that all the changes must satisfy
the constraints in maintaining structurally consistent ER diagrams and consistent
databases.

4.2 The Changes to the Domain of an Attribute

Let dom,,; and dom,,, be the old and new domains, respectively. There are
four cases of changes to the domain of an attribute: the domain is strictly augmented
(i.e., dom,, C dom,,,), the domain is strictly reduced (i.e., dom,,, C dom,,), the
domain is overlapping (i.e., dom,,, N dom,, # ¢), and the domain is disjoint
(i.e., dom,,, N dom,, = ¢). The mapping between the new and old domain is
expected to be specified using the proposed language. Let us use the example
shown in Fig. 2 to illustrate the augmentation of the domain of attribute MPG,
mileage per gallon, of schema Car from a short integer to a long integer. The
range of a short (long) integer is represented [0 .. max(short)] ([0 .. max(long)]).
All the other attributes remain unchanged. The attributes of the new and old
schemas are shown in Table 2.

Assuming that function f,, maps the domain of attribute MPG in the new
schema (New(MPG)) to that of attribute MPG in the old schema (Old(MPG)), and
that function f,, maps the domain of attribute Old(MPG) to that of New(MPG),
then the specification of the change can be expressed in SPEER as:

EVOLVE SCHEMA Old(Car) INTO New(Car) AS
ATTRIBUTES {MPG, Color, Carld};
CLASSIFICATION {
{Color, Carld} WITH COMMON;
{MPG: integer(0 .. max(long)]} WITH DOMAIN-CHANGED};
FUNCTIONS {
(New(MPG) = f,(Old(MPG);
WITH IMPLEMENTATION New(MPG) = Old(MPG));
(Old(MPG) = f,,(New(MPG);
WITH IMPLEMENTATION
if New(MPG) = max(short;, ez,
then Old(MPG) = max(shortu,,,) else Old(MPG) = New(MPG))}.
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Since the old schema cannot be seen by the new programs nor can it be
used for future evolution, we consider it as a defunct schema. The edges con-
necting the old schema and other schemas are also defunct, and are redirected
to the new schema. The defunct schemas and the new schema are mapped into
VDGs for storage allocation and construction of views for each schema version.

. 4.3 Addition or Deletion of Non-Key Attributes

Most of the changes to a relational database schema are either additions or
deletions of non-key attributes [17]. This is also expected to be the case for any
other type of database schema. This section presents how the proposed language
can be used to express the relationships for addition to, or removal of non-key
attributes from a corresponding ER schema.

Consider again the evolution of schema Car due to the addition of attribute
Fuel with data values leaded and unleaded, discussed in the previous section (see
Table 1). Since Fuel cannot be derived from or affected by any of the existing
attributes, it is a new, independent, attribute. The objects associated with the
old schema correspond to cars that burn leaded gas. This fact can be expressed
by a default function for conversion of objects in the old database to ones in the
new database. Because the new database consists of cars that burn leaded or un-
leaded gas, this may introduce inconsistent interpretation of the database for the
programs associated with the old schema. Hence, the designer is expected to ex-
press the access conditions of these programs to the new database. Let values
leaded and unleaded be represented by integers 1 and 2, respectively. The change
can be expressed as follows:

EVOLVE SCHEMA Old(Car) INTO New(Car) AS
ATTRIBUTES {Carld, Color, MPG, Fuel};
CLASSIFICATION {
({Carld, Color, MPG} WITH COMMON);
({Fuel: integer(1..2]} WITH NEW)}
FUNCTIONS {
(Fuel = defaulty WITH IMPLEMENTATION (Fuel = 1)};
INVARIANT VIEWS {
(Old(Car) ACCESS WITH CONDITIONS Ac,: (Fuel = 1))}.

Similarly to the addition of a non-key attribute to a schema, when a non-key
attribute is deleted, the default value of the attributes for the objects associated
with the new schema is expected to be specified. Thus, the programs associated
with the old schema can correctly access the evolved database.

4.4 Replacement of a Key Attribute of an Entity Type

Since the values of a key attribute are used to uniquely identify objects as-
sociated with an entity or a relationship type, our approach requires that changes
to a key attribute must satisfy the key consistency rule (see Section 3.4), which
requires that the mapping between the old and new keys must be one-to-one.
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If the key attribute is a foreign attribute of a relationship type, then the affected
relationship type must evolve, too. Let us use the example shown in Fig. 2 to
demonstrate how a change to a key attribute can be specified in SPEER. Suppose
the key attribute Carld of entity type Car is replaced by a new attribute VIN. The
mapping between Carld and VIN must be a one-to-one correspondence; otherwise,
the change must be rejected. The mapping can be implemented by a table lookup.
That is, given a value of Carld, we can find a unique value of VIN, and vice versa.
Thus, attributes Carld and VIN are dependent on each other. Let CarToVeh and
VehToCar be tables for mapping from the values of Carld to VIN, and from the
values of VIN and Carld, respectively. This conversion can be implemented as a
selection (0) on table CarToVeh (or VehToCar) based on a given Carld (or VIN),
and then followed by a projection (#) on the selected cars based on attribute VIN
(or Carld). The specification of the change to the key attribute of schema Car
can be expressed in SPEER as follows:

EVOLVE SCHEMA Old(Car) INTO New(Car) AS
ATTRIBUTES {Color, VIN};
CLASSIFICATION {

({Color} WITH COMMON);
({Carld} WITH DEPENDENT);
({ VIN: string(20)} WITH DEPENDENT)};
FUNCTIONS {
(VIN = f,,(Carld, CarToVeh)
WITH IMPLEMENTATION
VIN = Iy 0w = caia(CarToVeh)));
(Carld = f,,(VIN, VehToCar)
WITH IMPLEMENTATION
Carld = ey d0yin-ca VehToCar)))};
KEY ATTRIBUTE VIN;

The relationship type MadeBy must also evolve because the key attribute
of Car is a foreign attribute of MadeBy. The attribute relationships needed for
evolution of the relationship type MadeBy can be obtained from the specification
of the change to schema Car. This propagation of change can be handled in a
way similar to the above.

4.5 Addition or Deletion of Schemas and Edges

When adding a new schema to an ER diagram, the attributes of the schema
must be defined, and the edges for establishing relationships between the new
schema and the existing schemas must be specified. The addition of an edge
between an entity type and a relationship type implies that the relationship type
gains a foreign attribute which is the key attribute of the entity type. Similar to
the case of addition of an attribute to a schema, the default value of the foreign
attribute must be specified. That is, there should exist an implicit participation of
the entity type in the relationship type before the change. For example (refer to
Fig. 2), suppose a new entity type, named Dealer, and an edge between Dealer
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Makerld Address Year Carld Color
Maker | Car
Dealer
||
@ ©

Dealerld Name

Fig. 5. The addition of a node and an edge to a relationship type.

and relationship type MadeBy are to be added to the ER diagram. Although
there is no entity type Dealer shown in the ER diagram before the change, the
implicit participation of a dealer into relationship type MadeBy may be through
the maker who is a dealer. Thus, the specification of the addition of an edge
between Dealer and MadeBy can be expressed as follows. The specification of
Dealer is not shown here because a new schema can be created using the con-
structs of ER diagrams. The resultant ER diagram is shown in Fig. 5.

EVOLVE SCHEMA Old(MadeBy) INTO New(MadeBy) AS
ATTRIBUTES {Makerid, Dealerld, Year};
CLASSIFICATION {

({Dealerld: string(20]} WITH NEW)};
ADD EDGES {(BETWEEN Dealer AND MadeBy;
PARTICIPATION before: Dealerld = default
WITH IMPLEMENTATION
Dealerld(x) = Makerld(x))};
KEY ATTRIBUTE {Dealerld, Makerld}

When an edge between an entity type and a relationship type is deleted, the
role of the entity type participating in the relationship type may become implicit.
Similarly, the implicit participation can also be described using SPEER. In the .
next section, we present the specification for schema merging and schema splitting.

4.6 Merging and Splitting Entity Types

The above examples demonstrate the evolution of a single schema. In prac-
tice, a schema is often derived by merging two or more entity types, or by splitting
one entity type into several ones. Without loss of generality, we require that the
key attributes of the to-be-merged schemas be exactly the same. If the key at-
tributes are different, the designer can rename the key attributes with a common
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Companyld Name
Address Year Carld Color

177 '

Company Car

CompanyType

Fig. 6. Merging two entity types Dealer and Maker into Company.

name, and schema merging can then proceed. Schema splitting can also be handled
in way similar to schema merging.

Consider the ER diagram in Fig. 5. Suppose that a new entity type, Company,
is created by merging entity types Maker and Dealer (see Fig. 5 and 6). Since
their key attributes are different, they must be renamed with a common attribute
name, say Companyld. The new entity type, Company, inherits attributes
{Companyld, Name, Address} and owns an additional attribute, Company Type,
indicating the type of company. Attribute CompanyType is new to the schemas
Maker and Dealer. The default value for the attribute of the existing objects
depends on where the objects belong, and can be expressed as follows:

dealer  if Schema,,,(x) = Dealer
CompanyType(x) =
maker  if Schema,,,(x) = Maker.

Function schema,,(x) returns the name of the schema to which object x
belongs. Thus, programs that refer to the old schema may still access the ap-
propriate objects in the database described by the merged schema. For example,
the programs that refer to entity type Maker may only need to access the objects
whose value of CompanyType is equal to maker. The specification of merging
the two schemas Dealer and Maker is shown below.

EVOLVE SCHEMA Old({Dealer, Maker}) INTO New(Company) AS
ATTRIBUTES {Companyld, CompanyType, Name, Address};
CLASSIFICATION {

({Companyld} WITH COMMON TO {Dealer, Maker});

({Name} WITH COMMON TO {Dealer});

({Address} WITH COMMON TO {Maker});

({CompanyType: string[20]} WITH NEW TO {Dealer, Maker}}

FUNCTIONS {
((CompanyType(x) = default)
WITH IMPLEMENTATION

(if Schema,,,(x) = Dealer then CompanyType(x) = dealer
else CompanyType(x) = maker))};
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KEY ATTRIBUTE {Companyld};
ADD EDGES {(BETWEEN Company AND MadeBy)}
INVARIANT VIEWS {
(Maker ACCESS WITH CONDITIONS
(ac,: CompanyType = maker));
(Dealer ACCESS WITH CONDITIONS
(ac,: CompanyType = dealer))};

5. A CONCEPTUAL MODEL FOR OBJECT
REPRESENTATION

In order to support different implementation database models, instead of
translating the change specification presented in the previous section directly into
an underlying database model, our approach transforms it into a conceptual repre-
sentation called the version derivation graph (VDG), which is subsequently mapped
into an underlying database model.

A VDG consists of a set of nodes and a set of directed edges. Each node
corresponds to a schema version recording the attributes of the schema, the rela-
tionships of the attributes of the schema to the attributes of the previous and
following ones, and the conditions for maintaining the invariance of program
views. When a new schema version is specified in SPEER, a new node repre-
senting the new schema version is added in the corresponding VDG. The storage
requirements for the schema version can also be captured in the corresponding
VDG node. A directed edge represents the derivation path from schema version
Old(Schema) to New(Schema).

In considering the efficient maintenance of object consistency and use of
storage among schema versions, when the underlying database is re-organized
after a new schema version is created, objects are allocated additional storage for
only those attributes (the base attributes) that cannot share storage with attributes
of the old schema. Let E, be a schema version which is derived from schema
versions E,, E,, ..., E,, where n & {l..m}. Attribute ¢; € E, is said to be a
base attribute of E, if and only if one of the following conditions are satisfied:

e group(a) € {new, forward-dependent, forward-complementry-dependent}
® 3g, € E;Aj € {1, ..., m}, such that
a, = domain-changed(a,) A (dom__size(a)) C dom__size(a)),

where domain-changed(a,) returns the attributes that are derived from attribute
a and whose domain has been changed; dom__size(a) computes the storage requre-
ments for an attribute a. i
Since a VDG is designed to support schema derivation, it is geared to-
ward a single internal object representation. The schema of an object is con-
ceptually represented in the VDG as the union of base attributes of all the
versions of the schema (or the complete schema). The object is called a complete
object of the VDG. Let B; be a set of base attributes of schema versions E,
i € {1..n}. The complete schema of schemas {E,, E,, ..., E,} (S, can be ex-
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pressed as: S, = U7_,B,. In order to illustrate the representation of an object in
a VDG, let us consider again the change to the domain of an attribute specified
in Section 4.2. As indicated in Table 2, the old schema, Old(Car), consists of
attributes Carld, Color and Old(MPG), and the new schema consists of Carld, Color
and New(MPG). The New(MPG) has a larger domain than does OIld(MPG). Since
attributes Color and Carld are common to both schema versions, the new schema
can share storage for those attributes with the old schema. On the other hand,
attribute New(MPG) cannot share storage with attribute OId(MPG) because the
former has a larger domain than does the latter. Thus, the set of base attributes
of schema versions New(Car) and Old(Car) is {Carld, Color, Old(MPG), New(MPG)}.
This attribute set is also the complete schema of the VDG representing the car entity.

In order to indicate whether the objects created under a schema version
need additional storage, we use two kinds of nodes in a VDG: virtual and non-
virtual nodes.

A non-virtual node corresponds to a schema version which is either the initial one
or is augmented with attributes that cannot be derived from the old schema.
That is, a non-virtual node contains base attributes.

A virtual node corresponds to a schema which does not contain any base attribute.

Formally, let schema E, evolve from schemas E,, E,, ..., E,, in an ER diagram,
and let N, N,, N, ..., N, be the nodes in a VDG corresponding to E.E,E, ...,
E,, respectively. Let B, be a set of base attributes of schema E,.

IF 30, € E, A a;, € B,
then N, is a non-virtual node,
else N, is a virtual node.

Objects created under a new schema version that maps onto a non-virtual
node cannot be stored in the underlying database described by the old schema
versions. In other words, the underlying database needs to be re-organized. On
the other hand, the objects created from a schema that map onto virtual nodes
can be completely stored in the databases.

Let us use an example to show the construction of a VDG when a schema
in an ER diagram is changed. Consider once again the evolution of schema Car
presented in Section 4.2 (Fig. 7). Initially, each schema is represented by one
VDG consisting of only one single node representing the initial schema as shown
in Fig. 7(a). For example, node N;, corresponds to the initial schema Car. Since
it is an initial schema, node N;, is a non-virtual node (solid circle*). After the
domain of the attribute MPG is augmented, the VDG representing schema Car
can be reconstructed as follows. First, node N,, corresponding to the new schema
version is created. Because attribute New(MPG) is a base attribute defined in
the new schema, N, is a non-virtual node. Second, the derivation path between
schema versions Old(Car) and New(Car) (denoted by the parallel directed line

*Note that Fig. 7 does not contain any virtual node but if it did, the virtual node would have been
represented by a ‘‘dotted circle.”
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(b) The VDG representation after change @

Fig. 7. The representation of an ER diagram and its VDGs.

shown in Fig. 7(b)) is represented using a directed edge which goes from node
Nj, corresponding to Old(Car) to Nj, corresponding to New(Car) in the VDG.
Finally, the attribute relationships between the new and old schema versions and
the invariant of program views to the database are associated with nodes N, and
N,. The resultant VDG for schema Car is shown in Fig. 7(b). The derivation
path among schema versions specified in a specification allows the corresponding

VDG to be constructed incrementally. The algorithm for construction of a VDG
is described as follows:
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Algorithm Construction of the VDG of a schema.
Input:
(i.) A set of ER schema versions {E;|l < i < m} and the specification
describes a schema version E, which evolves from {E;|1 < i < m},
where n & }1..m}.
(ii.) A VDG consists of a set of nodes {N;]1 < i = m}. Each node N,
represents a schema version E;, 1 < i < m.
Output:
A VDG representing the ER diagram after schema evolution.
That is, the VDG includes the new schema version E, and the attribute rela-
tionships between E, and E,...E,,.

Procedures:

1. Create a node for schema E,, say N,, in the VDG, based on the definition
of base attributes.

2. Associate the definitions of attributes of schema E, with node N,

3. For each attribute b of E,
associate the forward, forward complementary or default function of the
attribute in the specification with node N,.

4. For each attribute b, € E;, 1 < j < m
associate the reverse, reverse complementary or default function of the
attribute in the specification with node N;.

5. For each schema E;, i € {1..m,n}
associate the conditions of E; for maintenance of invariant views for
programs with node N,.

6. For each schema E;, i € {l1..m} from which E, evolves
connect a derivation edge which goes from N, to N,.

The representation of changes to an ER diagram using VDGs provides in-
dependence from the underlying database model. A VDG can be mapped into
any implementation database model, for example, a relational, network, hierarchical,
or an object-oriented database. In the next section, we will demonstrate the trans-
formation of a VDG into a relational database model.

6. MAPPING A VDG INTO RELATIONAL DATABASES

In this section, we present an algorithm that maps a VDG into a relational
database schema and constructs views corresponding to different schema versions.
The relational database is ‘‘objectified’’ so that it can effectively support this
mapping as well as the construction and use of database views representing the
different schema versions. That is, we assume that each object, i.e., instance of
entity or relationship type, is associated with a systemwide unique and immutable
identifier (Oid) not visible to application programs.

To illustrate the mapping of a VDG into the relational database, let us use for
a last time the example discussed in Section 4.6, in which two schemas, Maker and

e

N

(Y
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Dealer, are merged together in the single schema Company. The schema Maker and
Dealer are initially mapped into corresponding VDGs containing a single non-virtual
node, say N, and N,, respectively. After the two schema are merged, the new
schema Company is also mapped into a non-virtual VDG node, say N, because in
addition to attributes Companyld, Name and Address, it owns the base attribute
CompanyType. Being a non-virtual node, N, is mapped into a relation, r;, whose
schema, T, contains all the attributes of Maker plus one extra attribute, the object
identifier (Oid): T,(Comanyld, Address, Oid). Similarly, the VDG node N, cor-
responding to Dealer is mapped into a relation, r,, with schema T,(Companyld,
Name, Oid). After the schema evolution, N, requires a new relation to store the
base attribute CompanyType. Hence, N, is mapped into a new relation, r;, with
schema T,({CompanyType, Oid}). Thus, objects created under schema Company
are fragmented and stored in relations r,, r,, and r;. The complete schema (S.) of
the VDG with nodes N,, N, and N, is the union of the base attributes of Maker,
Dealer and Company: S, = {Companyld, Name, Address, CompanyType}.

Each object schema, irrespective of whether it maps onto a virtual or non-
virtual VDG node, is expressed as a view on the complete objects stored in the
relations in the underlying database. Thus, the view of a schema version, S, is
basically defined as a selection of complete objects based on the access conditions
associated with S, followed by a projection on the attributes of S;. Let Expand()
be a procedure that converts an object associated with a particular schema version
to a complete object. The conversion of the base attributes and the attributes
viewed through the schema version make use of the functions specified using
SPEER. Let us illustrate step by step the construction of the views for schemas
Maker, Dealer and Company.

Step 1: Determine the complete schema of the VDG. As indicated above, the
complete schema (S.) of schema Car is S, = {Companyld, Name, Ad-
dress, CompanyType}.

Step 2: Determine the relations used to store the complete objects created by
each schema version. In this example, schema Maker is an initial schema
and is mapped into the schema of relation r,. Thus, the objects created
under Maker are stored into r,. Similarly, the objects created under
Dealer are stored into r,. However, the objects created under Company
must be stored into all three relations, r|, r, and r,.

Step 3: Identify the complete objects created under a specific schema version. The
objects created under a schema version may be stored in different rela-
tions. They can be identified by joining relations based on attribute Oid.
For example, the objects created under schema version Company (O¥) are
selected by joining r,, r, and r; on Oid. Since the objects created under
both Dealer and Company are stored in r,, we must separate them to
apply the corresponding Expand() procedure. The objects created under
version Dealer (OF) are selected by discarding the objects created under
Company from relation r,. Similarly, the objects created under Maker are
selected by removing the objects created under Company from relation r,.
The selection condition for identification of a set of the objects created
under a schema version can be derived as shown in the following table.
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schema(E) | the created objects

Company | OF = r; M gur; M gur

Dealer O = Ooiae@pgry-nggon(r)

Maker o = 00ide @y fr) - g o()

Step 4: Expand the objects created under a schema version to the complete
objects, and then screen the objects that cannot satisfy the specified
conditions out from the view of the programs. As indicated in the speci-
fication, the programs that refer to entity types Maker and Dealer can
access the objects with their attribute value CompanyType = Maker and
CompanyType = Dealer, respectively. Let View, represent the view for
schema E, If there are n schema versions, then the view of a schema
version can be defined uniformly as follows:

View; = HEi(aCondiriamEA(U:::'l' Expand(0}))),

where II stands for projection, ¢ for selection and Conditionsg, for the
conditions specified against E;,. Therefore, in the example, the view of
each schema version can be expressed as

s . =3

VIewMaker = H(Companyld. Address) (G(CompanyType= Maker) ( U ‘i= ! ExPa"d(Of )))
. _ i=3

Vi ewDealer - H(Companyld, Name) (U(Compan yType = Dealer) ( U ‘i= 1 ExP an d(of)))

. _ i=3
VlewCompany - H(Companyld, Address, Name)( U Ii=l Expand (07' ))-

Each view is stored in the corresponding VDG node, and it may need to be
reconstructed after each database re-organization.

In our approach, we can guarantee that the update against a view can be
correctly translated into the sequence of updates on the complete objects in the
underlying database based on the following reasons.

* The key attributes of different schema versions must be the same, or the
mapping among them must be one-to-one. Therefore, the complete ob-
jects stored in the underlying database can be uniquely identified by using
different key attributes.

* The objects viewed from a schema version (view objects) are always a
subset of the complete objects and can be mapped into the unique com-
plete objects in the underlying database.

* The functions used for representation of attribute relationships indicate
a unique way to translate the view update into the updates against the
underlying database.
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7. CONCLUSIONS

In this paper, we have presented an approach to schema evolution through
changes to the ER diagram representing the schema of a database. In order to
facilitate changes to the ER schema, we have proposed a specification for evolving
entities and relationships (SPEER). Specifically, SPEER is a high level language
for specifying the derivation relationships between schema versions, relationships
among attributes, and the conditions for maintaining consistent views of pro-
grams. We also developed a three-level schema methodology for mapping changes
to the ER diagram into the underlying database and constructing database views
for schema versions. Through the reconstruction of views afer database reorgani-
zation, changes to an ER diagram can be transparent to the application programs
while all objects in the database are accessible to all programs.

In this paper, we restricted our presentation in the context of the basic ER
model. However, our approach can be easily generalized to support schema evolu-
tion in the Enhanced ER model [19], in which the inheritance relationships (or
class hierarchy) may exist among object schemas [12].

Although SPEER is a powerful high level language as demonstrated by the
various examples in this paper, its textual form makes it less attractive and less
user friendly. For this reason, we have extended the constructs used in ER diagrams
and designed EVolutionary ER (EVER) diagrams, an icon-based language that
corresponds to SPEER [13]. We believe that through the manipulation of the
graphical icons of EVER diagrams, the specification of changes to an ER diagram
can be facilitated and made easy.

As part of our future work, we intend to build a prototype for the ex-
ploration of schema evolution in different database models, and also to experiment
with schema integration in an attempt to facilitate interoperability in a multi-
database system.
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