
An Entity-Relationship Approach to Schema Evolution 

C. T. Liu, S. K. Chang and Panos K. Chrysanthis* 
Department of Computer Science 

University of Pittsburgh, Pittsburgh, PA 15260 

Abstract 
A dynamically evolving information system sup- 

ports changes to its database schema in order to 
facilitate the needs of new application programs. 
This paper presents an approach to schema evolution 
through changes to the Entity-Relationship schema of 
a database. This approach has the advantage of be- 
ing closer to the designer’s perception of data, rather 
than to the logical database schema which describes 
how data are stored in  the database. The underlying 
database structure is re-organized, if necessary, to ac- 
commodate new data without the changes affecting ez- 
isting objects. In  this way and through the construc- 
tion of views, modifications of ezisting programs are 
avoided while all objects in the database are accessible 
to all application programs, both new and old. Thus, 
the invariance of the programs’ interface is preserved 
by the views. 

1 Introduction 
A dynamically evolving information system must 

support changes to  its database schema in order to 
facilitate the needs of new application programs. At 
the same time, it should be able to continue support- 
ing existing application programs providing access to 
objects created under the previous or new database 
schemas. An information system stores objects in its 
database for a long time and, in general, it is neither 
easy nor practical to  modify complex application pro- 

rams such as those found in these types of systems f 91. Thus, schema changes should be transparent to  
the application programs. 

Various approaches to the problem of changing 
schemas and maintaining consistency between in- 
stances created under different schemas have been pro- 
posed, particularly in the context of Object-Oriented 
databases [IO, 12, 2, 13, 41. This paper discusses an- 
other way to  support schema evolution based on the 
Entity-Relationship (ER) approach for data modeling 
[3] and is graphic oriented. 

In this ER-based approach, changes are specified 
on the ER diagram representing the ER database 
schema which is closer to the designer’s perception 
of data, rather than being directly specified on the 
database schema which describes how data are stored 
in the database. Changes to the ER diagram are 
subsequently mapped into changes to  the underlying 

~ 

‘This work ir partially supported by the National Science 
Foundation under grant IRI-9210588. 

database structure. The underlying database struc- 
ture is re-organized, if necessary, to accommodate new 
data without the changes affecting existing objects. 
That is, existing objects retain their representation 
whereas new data are represented in complementary 
representations and related to existing objects. Each 
version of an object schema is expressed as a view to 
the underlying database and thus, the invariance of 
the programs’ interface is preserved. In other words, 
through the construction of (database) views, mod- 
ifications of existing programs are avoided while all 
objects in the database are made accessible to all a p  
plication programs, both new and old. In addition 
to data independence, views are used in maintaining 
object consistency. 

In some respects, our approach combines aspects 
of the object-oriented type evolution approaches of 
Skarra and Zdonik [IO, 121 and it can be adopted 
in the same context via the use of the Extended ER 
model [ll]. However, in the rest of this paper, we 
introduce our approach in the context of the basic 
ER model and an “objectified” relational database 
model in which database instances are associated with 
a system-generated, systemwide unique object identi- 
fier (Oid). 

2 Evolution through the ER Diagram 
The basic ER data model supports two semantic 

primitives, entities and relationships between entities, 
in terms of which the structure of a database, i.e., 
the database schema, is described. An ER diagram 
is a graphical representation of a ER schema consist- 
ing of rectangular boxes representing entity types and 
diamond-shaped boxes connected to rectangular boxes 
representing relationship types (see Figure 1). An en- 
tity type is a set of entities having the same properties 
or attributes. Similarly, a set of relationships having 
the same attributes forms a relationship type. The 
connections of a relationship type with entity types 
indicate how the entities in the entities types are in- 
volved in the relationship. 

Attributes are used to  describe an entity or a rela- 
tionship. Each attribute is associated with a domain 
that defines the possible values for the attribute. Each 
entity usually has an identifying or key attribute whose 
value is distinct from any other entity in the same en- 
tity type. The instances of a relationship type can 
be identified by the identifiers of the entities involved 
in the relationship and are called foreign attributes to 
the relationship. In Figure 1 we show the attributes of 

575 
0-8186-4212-2f93 $03.00 0 1993 IEEE 

~- 



M k I d  

AdhC.5 

- 

entity or relationship types inside the nodes of the ER 
diagram, i.e., boxes and diamonds. The identifying 
attribute is underlined. 

We will refer to  an instance of an entity type or 
a relationship type as an object, and the description 
of an entity type or the relationship type as the object 
schema. Thus, an ER schema consists of a set of object 
schemas which provide the interface for application 
programs to create and access objects in the database. 

In order to support schema evolution through 
changes to  an ER diagram, we considered the following 
possibilities: (1) A node and its associated connections 
(edges) may be added to  an ER diagram correspond- 
ing to the introduction of a new object schema or a 
new relationship. (2) A node and its associated edges 
may be removed from an ER diagram corresponding 
to the dropping of an existing object schema or rela- 
tionship. (3) Edges may be added to  or removed from 
an ER diagram reflecting changes in the relationships 
among the existing entity types in the database. (4) 
A node may be split into several nodes and a number 
of nodes may be merged into a single node as a re- 
sult of aggregation and specialization of entity types 
respectively. ( 5 )  Attributes may be added to  or drop 
from nodes corresponding to the gain and lost of at- 
tributes because of new properties of the objects and 
requirements of the application programs. For exam- 
ple, attributes are added to or removed from nodes 
when ed es are added or removed in an ER diagram. 
Finally, r6) The domain of attributes may be changed, 
widen or reduce over time. 

A close examination of the above possibilities shows 
that in the last three cases, Cases 4 to 6, the changes 
may involve existing attributes. For example, when a 
node is split into two nodes, the attributes of the newly 
created nodes may be duplicated or derived from the 
attributes of the original node. In general, the de- 
pendencies between attributes are classified into four 
types: shared, independent, derived and dependent [4]. 
In the above example, a duplicated attribute is an in- 
stance of shared dependency. A dependent attribute 
cannot be derived from other attributes, but its value 
is affected by the modifications to the value of other 
attributes. An independent attribute can neither be 
derived from other attributes nor is its value affected 
by changes to the values of other attributes. To facili- 
tate the specification of these attributes, and in partic- 
ular, the derived and dependent ones, we extended the 
ER diagram (and consequently the ER model) so that 
one can express the relation~hips between attributes of 
different versions of the same object schema in the 
form of functions. As we will see in the next sections, 
these functions are used in the construction of views 

cola 

Figure 2: An Evolved ER diagram for modeling cars 

as well as the database re-organization. 
Furthermore, our approach does not really remove 

a node, an attribute or an edge from an ER diagram 
but treats them as defunct constructs and requires 
from the designer to specify, again in the form of a 
function, the way that the missing values of the af- 
fected attributes are generated. 

Functions in an ER diagram are denoted by an- 
notated directed double edges between nodes where 
the annotation captures the functions and the di- 
rection expresses the derivation relationship between 
nodes. Nodes representing different versions of an ob- 
ject schema are specified by being enclosed within a 
dotted box and all relationship edges being redirected 
to the enclosing dotted box. For instance in Figure 
2 which captures the evolution of the ER diagram in 
Figure 1, the object schema car is evolved by adding 
the attributes fuel whose value can be leaded or un- 
leaded, and rnpg (mileage rating) whose value is an 
integer. The edge associated with the default(fue1) 
and default(mpg functions specifies that the version 

ject schema). The two functions state that the missing 
value of the attributes fuel and mpg in objects created 
under the object schema carl are leaded and null re- 
spectively. 

car2 is derived I rom the version carl (the initial ob- 

3 Object Representation 
3.1 The Underlvine Database 

Y V  

The schema of the underlying database, here as- 
sumed to be relational, is derived from the ER dia- 
gram by using a mapping algorithm. The relational 
database is "objectified" so that it can effectively s u p  
port this mapping as well as the construction and use 
of database views representing the different versions 
of object schemas. That is, we assume that each ob- 
ject, i.e. instance of entity or relationship type, is 
associated with a systemwide unique and immutable 
identifier (Oid) not visible to  application programs. 

The mapping between an ER diagram and the cor- 
responding relational database schema is described by 
a version derivation graph (VDG). Changes to an ER 
diagram are first mapped onto the VDG and then into 
relations in the underlying database (See Figure 3 . 
N, and a set of directed edges, A. A node represents 
a version of an object schema and an edge represents 

A version derivation graph consists of a set of no d es, 

576 



I I 
I 
I ill I 

I I ER Schema 

I 
I 
I 

I I 
I I I Database: 
I Relationsand 

their schemas 
u 2 ,  T2 > 

V i 
a l .  T1> u 3 .  T3> 

Figure 3: Three Level Schema Mapping 

the derivation relationship between nodes. For exam- 
ple, the VDG in Figure 3 captures the derivation of a 
new schema represented by node N3 from two other 
schemas represented by nodes N1 and Nz.  

There are two kinds of nodes in VDG: virtual and 
non-virtual nodes. A non-virtual node corresponds to 
an object schema which is either the initial one or is 
derived from existing object schemas and enhanced 
with new attributes. A virtual node corresponds to 
a derived object schema from existing ones without 
additional attributes. Formally, if E l ,  E2 and E3 are 
the sets of attributes of object schemas corresponding 
to nodes N I ,  Nz and N3 of Figure 3 respectively, then 
N3 is a virtual node if E3 

Non-virtual nodes are associated with a relation in 
the underlying database. This is because objects cre- 
ated under a schema that maps onto a non-virtual 
node cannot be stored in the relations associated with 
the nodes from which the object schema is derived. 
On the other hand, the objects created from schemas 
mapped onto virtual nodes can be completely stored 
in the relations associated with the nodes from which 
is derived. 

Let us illustrate the derivation of the relation 
schema associated with a node Ni through an ex- 
ample. Assume that nodes NI and Nz in Figure 3 are 
non-virtual nodes corresponding to object schemas in 
the initial ER diagram. 

Since N I  and Nz are non-virtual nodes, they are 
associated with a relation in the underlying database. 
Being an initial object schema, El maps to a relation 
rl whose schema TI contains all attributes of El plus 
one extra attribute, the Oid. Similarly, Ez maps to 
a relation ~2 whose schema T2 contains all attributes 
of Ez plus an Oid. The mapping algorithm used in 
the case of initial object schemas is similar to the al- 
gorithms proposed by [11, 81 modified to generate and 
include object identifiers into the relation schemas. 

As mentioned above, the mapping of E3 into a re- 
lation depends on whether E3 maps into a virtual or 
non-virtual node: 

El U Ez. 

if E3 C_ E1 U E2 
then N3 is a virtual node, 
else 

If N3 is a virtual node, it shares all its attributes with 
either N1 or Nz. Since both N1 and Nz are associated 
with relations, N3 does not require additional space 
in the database to represent the attributes of E3 and 
therefore relation r3 is not created in the database. 
Instead, relation r3 (or equivalently object schema E3) 
is represented as a view on relations rl and rz. 

If N3 is a non-virtual node, then it has attributes 
that it does not share with either NI or Nz and hence 
it does require additional space to  represent them. For 
this reason, the database is re-organized by creating a 
new relation r3 with schema T3 to  represent the addi- 
tional attributes: 

N3 is a non-virtual node. 

r 3 : T 3 =  ( E 3 - ( E l U E z ) ) U O i d  

That is, T3 consists of an Oid and the attributes be- 
longing to the set difference between attributes of E3 
and the union of attributes of El and E2. In other 
words, T3 contains all the attributes of E3 shared with 
neither El nor Ez and an Oid. Thus, E3 is represented 
as a view on r l ,  rz and r3 and in one sense, r3 com- 
plements the representations of r1 and rz for objects 
created under the object schema E3. 

To summarize, the initial ER diagram is translated 
into a VDG consisting of non-virtual nodes represent- 
ing the initial object schemas and associated with their 
corresponding relations. The view of initial object 
schemas is the corresponding relation. When the ER 
schema evolves, the changes to ER schema are mapped 
into a set of new VDG nodes connected to existing 
VDG nodes according to  the derivation edges in the 
ER diagram, the corresponding relations are then cre- 
ated, if necessary, and finally the views of the different 
versions of object schemas are reconstructed. 
3.2 

Each object schema, irrespective of whether it maps 
into a virtual or non-virtual node in the VDG graph, 
is expressed as a view of the relations in the database. 
The basic idea underlying the construction of views 
for each version of an object schema is the notion of 
a complete object schema S, which is the union of all 
attributes of the different versions. All objects cre- 
ated under any version can be expanded into com- 
plete objects as if they had been created under the 
complete schema. In this way, the view associated 
with a version of an object schema Ei is defined as 
a selection of a subset of complete objects based on 
the constraints associated with the particular version 
followed by a projection over the attributes Ei. For 
example, the constraint for selecting objects under the 
object schema car1 is fuel = leaded. 

The conversion of an object from a version Ei to 
the complete S, is achieved through the Ezpand() o p  
eration which generates the values of those attributes 
in S, that are not attributes in Ei by using the func- 
tions specified at  the time of the evolution of the ER 
diagram, e.g., default(fie1) and default(mpg) in Figure 
2 and stored in the corresponding VDG node. Each 

Object Schemas as Database Views 



version of an object schema is associated with an Ez- 
pando operation. 

There are five steps in constructing views represent- 
ing versions of object schemas involving the traversal 
of the VDG which stores all the necessary informa- 
tion associated with each version. Let us illustrate 
these five steps by constructin the views for E l ,  E2 
and E3 in the above example fk'igure 3). We assume 
that E3 maps into a non-virtual node and hence it is 
associated with a relation r3. 

Step 1: The complete schema is constructed by 
building the union of attributes of E l ,  E2 and E3: 

Step 2: For each version Ei, we identify the relations 
involved in storing objects created under Ei. For ver- 
sion E1 the relation is r l .  For E2 is r2. For E3 all 
three relations r l ,  7-2 and r3. 
Step S: We derive the selection condition for the set 
of objects Of created under each version. Objects 
created under version E3 0; are selected by joining r l ,  
r2 and r3 on Oid. Since r2 E used to store the objects 
created under E2 and part of objects created under 
E3, objects created under version E2 0; are selected 
by discarding the objects created under version E3 
from relation r 2 .  Similarly, objects created under El 
are selected by removing the objects created under 
version E3 from relation r l .  
Step 4: Once we have identified the objects created 
under a version, we can expand each object to a com- 
plete object. Here, f 1  is used to expand objects in 0; 
and f a  to expand objects in 0;. Objects in 0; are 
complete objects and do not require any conversion. 
Step 5: Let re be the entire set of complete objects 
generated in step 4. Each view Viewi is defined uni- 
formly as follow: Viewi = IIE6(crc6(rc) , 
where II stands for projection, Q stan d s for selection 
and Ci specifies the constraints on Ei. 

Each view is stored in the corresponding VDG 
node and it may need to be reconstructed after each 
database re-organization. 

Because of the uniqueness of the Oids, there is al- 
ways a one-to-one correspondence of views to the re- 
lations in the underlying database. Thus, there is no 
problem of mapping updates on a view to updates on 
relations in the database involving a join. However, 
there is a problem with updates in the case of de- 
rived attributes in which there is no inverse function 
[I, 5, 61. In this case, the designer is expected to spec- 
ify the manner in which updates on derived attributes 
should be performed in the form of functions. 

4 Conclusion 

S c = E 1 U E 2 U E 3 .  

In this paper, we presented an approach to schema 
evolution through changes to the ER diagram repre- 
senting the schema of a database. In order to facili- 
tate changes to the ER schema we enhanced the ba- 
sic constructs of ER diagrams with constructs that 
specify versions of entity and relationship types, and 
relationships between attributes in different versions. 
We described a method for mapping changes to ER 

diagram into relations in the underlying database and 
for constructing database views expressing the various 
schema versions. Through views schema changes are 
made transparent to the application programs while 
all objects in the database are accessible to all pro- 
grams. 

This ER approach to schema evolution has the ad- 
vantages of being closer to the designer's perception 
of data as well as graphic oriented and hence easier to 
use. 

References 
F. Bancilhon and N. Spyratos. Update Semantics 
of Relational Views. ACM %ns. on Database 
Systems, 6(4), 1981. 
J. Banerjee, W. Kim, H. Kim, and H.F. Korth. 
Semantics and Implementation of Schema Evolu- 
tion in Object-Oriented Databases. In Proc. of 
ACM SIGMOD, 1987. 
P. Chen. The Entity Relationship Model - Toward 
a Unified View of Data. ACM Transactions on 
Database Systems, 1(1), March 1976. 
S. M. Clamen. Type Evolution and Instance 
Adaptation. Technical report, School of Com- 
puter Science, C.M.U., June 1992. 

S. S Cosmadakis and C. H. Papadimitriou. Up- 
dates of Relational Views. J .  ACM, 31(4), Oct. 
1984. 
A. M. Keller. Updating Relational Databases 
Through Views. PhD thesis, Department of Com- 
puter Science, Stanford University, 1985. 

W. Kim, E. Bertino, and J. F. Garza. Composite 
Objects Revisted. In Proc. of ACM SIGMOD, 
1989. 

V. M. Markowite and A. Shoshani. On the 
Correctness of Representing Extended Entity- 
Relationship Structures in the Relational Model. 
In Proceedings of ACM SIGMOD, 1989. 
M. E. Segal and 0. Frieder. On-the-Fly Pro- 
gram Modification: Systems for Dynamic Updat- 
ing. IEEE Software, March 1993. 
H. A. Skarra and S. B. Zdonik. Type Evolu- 
tion in an Object-Oriented Database. In Re- 
search in Object- Oriented Databases. Addison- 
Wesley, 1987. 
T.J. Teorey, D. Yang, and J.P Fry. A Logical De- 
sign Methodology for Relational Databases Using 
the Extended Entity-Relationship Model. ACM 
Computing Survey, 18(2), June. 1986. 

S. B. Zdonik. Object-Oriented Type Evolu- 
tion. In Advances in Database Programming Lan- 
guages. Addison-Wesley, 1990. 

R. Zicari. A Framework for Schema Updates In 
an Onject-Oriented Database System. In Proc. of 
Conference on Data Engineering, 1991. 

578 


