An Entity-Relationship Approach to Schema Evolution

C. T. Liu, S. K. Chang and Panos K. Chrysanthis*
Department of Computer Science
University of Pittsburgh, Pittsburgh, PA 15260

Abstract

A dynamically evolving information system sup-
poris changes to its database schema in order to
facilitate the needs of new application programs.
This paper presents an approach to schema evolution
through changes to the Entity-Relationship schema of
a database. This approach has the advaniage of be-
ing closer to the designer’s perceplion of data, rather
than to the logical database schema which describes
how data are stored in the database. The underlying
database structure is re-organized, if necessary, to ac-
commodate new data without the changes affecting ez-
isting objects. In this way and through the consiruc-
tion of views, modifications of ezisting programs are
avoided while all objects in the database are accessible
to all application programs, both new and old. Thus,
the invariance of the programs’ interface is preserved
by the views.

1 Introduction

A dynamically evolving information system must
support changes to its database schema in order to
facilitate the needs of new application programs. At
the same time, it should be able to continue support-
ing existing application programs providing access to
objects created under the previous or new database
schemas. An information system stores objects in its
database for a long time and, in general, it is neither
easy nor practical to modify complex application pro-

rams such as those found in these types of systems
]. Thus, schema changes should be transparent to
the application programs.

Various approaches to the problem of changing
schemas and maintaining consistency between in-
stances created under different schemas have been pro-
posed, particularly in the context of Object-Oriented
databases [10, 12, 2, 13, 4]. This paper discusses an-
other way to support schema evolution based on the
Entity-Relationship (ER) approach for data modeling
[3] and is graphic oriented.

In this ER-based approach, changes are specified
on the ER diagram representing the ER database
schema which is closer to the designer’s perception
of data, rather than being directly specified on the
database schema which describes how data are stored
in the database. Changes to the ER diagram are
subsequently mapped into changes to the underlying

*This work is partially supported by the National Science
Foundation under grant IRI-9210588.

0-8186-4212-2/93 $03.00 © 1993 IEEE

575

database structure. The underlying database struc-
ture is re-organized, if necessary, to accommodate new
data without the changes affecting existing objects.
That is, existing objects retain their representation
whereas new data are represented in complementary
representations and related to existing objects. Each
version of an object schema is expressed as a view to
the underlying database and thus, the invariance of
the programs’ interface is preserved. In other words,
through the construction of (database) views, mod-
ifications of existing programs are avoided while all
objects in the database are made accessible to all ap-
plication programs, both new and old. In addition
to data independence, views are used in maintaining
object consistency.

In some respects, our approach combines aspects
of the object-oriented type evolution approaches of
Skarra and Zdonik [10, 12] and it can be adopted
in the same context via the use of the Extended ER
model [11]. However, in the rest of this paper, we
introduce our approach in the context of the basic
ER model and an “objectified” relational database
model in which database instances are associated with
a system-generated, systemwide unique object identi-

fier (Oid).

2 Evolution through the ER Diagram

The basic ER data model supports two semantic
primitives, entities and relationships between entities,
in terms of which the structure of a database, i.e.,
the database schema, is described. An ER diagram
is a graphical representation of a ER schema consist-
ing of rectangular boxes representing entity types and
diamond-shaped boxes connected to rectangular boxes
representing relationship types (see Figure 1). An en-
tity type is a set of entities having the same properties
or attributes. Similarly, a set of relationships having
the same attributes forms a relationship type. The
connections of a relationship type with entity types
indicate how the entities in the entities types are in-
volved in the relationship.

Attributes are used to describe an entity or a rela-
tionship. Each attribute is associated with a domain
that defines the possible values for the attribute. Each
entity usually has an identifying or key attribute whose
value is distinct from any other entity in the same en-
tity type. The instances of a relationship type can
be identified by the identifiers of the entities involved
in the relationship and are called foreign atiributes to
the relationship. In Figure 1 we show the attributes of

Makerld Carld

Address color

Maker MadeBy car

Figure 1: A partial ER diagram for modeling cars

entity or relationship types inside the nodes of the ER
diagram, i.e., boxes and diamonds. The identifying
attribute is underlined.

We will refer to an instance of an entity type or
a relationship type as an object, and the description
of an entity type or the relationship type as the object
schema. Thus, an ER schema consists of a set of object
schemas which provide the interface for application
programs to create and access objects in the database.

In order to support schema evolution through
changes to an ER diagram, we considered the following
possibilities: (1) A node and its associated connections
(edges) may be added to an ER diagram correspond-
ing to the introduction of a new object schema or a
new relationship. (2) A node and its associated edges
may be removed from an ER diagram corresponding
to the dropping of an existing object schema or rela-
tionship. &g Edges may be added to or removed from
an ER diagram reflecting changes in the relationships
among the existing entity types in the database. (4)
A node may be split into several nodes and a number
of nodes may be merged into a single node as a re-
sult of aggregation and specialization of entity types
respectively. (5) Attributes may be added to or drop
from nodes corresponding to the gain and lost of at-
tributes because of new properties of the objects and
requirements of the application programs. For exam-
ple, attributes are added to or removed from nodes
when edges are added or removed in an ER diagram.
Finally, (6) The domain of attributes may be changed,
widen or reduce over time.

A close examination of the above possibilities shows
that in the last three cases, Cases 4 to 6, the changes
may involve existing attributes. For example, when a
node is split into two nodes, the attributes of the newly
created nodes may be duplicated or derived from the
attributes of the original node. In general, the de-
pendencies between attributes are classified into four
types: shared, independent, derived and dependent [4].
In the above example, a duplicated attribute is an in-
stance of shared dependency. A dependent attribute
cannot be derived from other attributes, but its value
is affected by the modifications to the value of other
attributes. An independent attribute can neither be
derived from other attributes nor is its value affected
by changes to the values of other attributes. To facili-
tate the specification of these attributes, and in partic-
ular, the derived and dependent ones, we extended the
ER diagram (and consequently the ER model) so that
one can express the relationships between atiributes of
different versions of the same object schema in the
form of functions. As we will see in the next sections,
these functions are used in the construction of views

576

Maker MadeBy jmmmmmm e m— . —— ‘
Makerld Cadd Carl
Address color

defavlt(fuel) = lead
default(mpg) = pull

&

Figure 2: An Evolved ER diagram for modeling cars

as well as the database re-organization.

Furthermore, our approach does not really remove
a node, an attribute or an edge from an ER diagram
but treats them as defunct constructs and requires
from the designer to specify, again in the form of a
function, the way that the missing values of the af-
fected attributes are generated.

Functions in an ER diagram are denoted by an-
notated directed double edges between nodes where
the annotation captures the functions and the di-
rection expresses the derivation relationship between
nodes. Nodes representing different versions of an ob-
ject schema are specified by being enclosed within a
dotted box and all relationship edges being redirected
to the enclosing dotted box. For instance in Figure
2 which captures the evolution of the ER diagram in
Figure 1, the object schema car is evolved by adding
the attributes fuel whose value can be leaded or un-
leaded, and mpg (mileage rating) whose value is an
integer. The edge associated with the defauli(fuel)
and defauli(mpg) functions specifies that the version
car2 is derived from the version carl (the initial ob-
ject schema). The two functions state that the missing
value of the attributes fuel and mpg in objects created
under the object schema carl! are leaded and null re-
spectively.

3 Object Representation

3.1 The Underlying Database

The schema of the underlying database, here as-
sumed to be relational, is derived from the ER dia-
gram by using a mapping algorithm. The relational
database is “objectified” so that it can effectively sup-
port this mapping as well as the construction and use
of database views representing the different versions
of object schemas. That is, we assume that each ob-
ject, i.e. instance of entity or relationship type, is
associated with a systemwide unique and immutable
identifier (Oid) not visible to application programs.

The mapping between an ER diagram and the cor-
responding relational database schema is described by
a version derivation graph (VDG). Changes to an ER
diagram are first mapped onto the VDG and then into
relations in the underlying database (See Figure 3).

A version derivation graph consists of a set of nodes,
N, and a set of directed edges, A. A node represents
a version of an object schema and an edge represents

El Oy I | 2 E2
7 AN
! ' ! ER Schema
) v]
) 1
] 1
1)
' @)
]] 1
VDG

V ' \
Y ' \

1]

]

)

1
1 I \
i : !
, : 1 Database:
1 ' : Relations and
V V v their schemas

<«l,T1> <r3, T3> <2, T2>

Figure 3: Three Level Schema Mapping

the derivation relationship between nodes. For exam-
ple, the VDG in Figure 3 captures the derivation of a
new schema represented by node N3 from two other
schemas represented by nodes N; and Na.

There are two kinds of nodes in VDG: virtual and
non-virtual nodes. A non-virtual node corresponds to
an object schema which is either the initial one or is
derived from existing object schemas and enhanced
with new attributes. A virtual node corresponds to
a derived object schema from existing ones without
additional attributes. Formally, if E1, E; and Ej are
the sets of attributes of object schemas corresponding
to nodes N, N; and N3 of Figure 3 respectively, then
N3 is a virtual node if E3 C E; U E,.

Non-virtual nodes are associated with a relation in
the underlying database. This is because objects cre-
ated under a schema that maps onto a non-virtual
node cannot be stored in the relations associated with
the nodes from which the object schema is derived.
On the other hand, the objects created from schemas
mapped onto virtual nodes can be completely stored
in the relations associated with the nodes from which
is derived.

Let us illustrate the derivation of the relation
schema T; associated with a node N; through an ex-
ample. Assume that nodes N; and N; in Figure 3 are
non-virtual nodes corresponding to object schemas in
the initial ER diagram.

Since N; and N, are non-virtual nodes, they are
associated with a relation in the underlying database.
Being an initial object schema, E; maps to a relation
r; whose schema T} contains all attributes of E; plus
one extra attribute, the Oid. Similarly, E; maps to
a relation r; whose schema T3 contains all attributes
of E; plus an Oid. The mapping algorithm used in
the case of initial object schemas 1s similar to the al-
gorithms proposed by [11, 8] modified to generate and
include object identifiers into the relation schemas.

As mentioned above, the mapping of Ej3 into a re-

lation depends on whether E3 maps into a virtual or
non-virtual node:

577

if E;C E\UE,;
then Nj; is a virtual node,
else N3 is a non-virtual node.

If N3 is a virtual node, it shares all its attributes with
either N; or N. Since both N; and N, are associated
with relations, N3 does not require additional space
in the database to represent the attributes of E3 and
therefore relation r3 is not created in the database.
Instead, relation r3 (or equivalently object schema E3)
is represented as a view on relations r; and rs.

If N3 is a non-virtual node, then it has attributes
that it does not share with either N; or N; and hence
it does require additional space to represent them. For
this reason, the database is re-organized by creating a
new relation r3 with schema T3 to represent the addi-
tional attributes:

r3: T3 = (E3 - {E1 U Ez}) U O0id

That is, T3 consists of an Oid and the attributes be-
longing to the set difference between attributes of E3
and the union of attributes of E; and E;. In other
words, T3 contains all the attributes of E3 shared with
neither E; nor E; and an Oid. Thus, Ej is represented
as a view on r;, rz and r3 and in one sense, 13 com-
plements the representations of ry and r; for objects
created under the object schema Ej.

To summarize, the initial ER diagram is translated
into a VDG consisting of non-virtual nodes represent-
ing the initial object schemas and associated with their
corresponding relations. The view of initial object
schemas is the corresponding relation. When the ER
schema evolves, the changes to ER schema are mapped
into a set of new VDG nodes connected to existing
VDG nodes according to the derivation edges in the
ER diagram, the corresponding relations are then cre-
ated, if necessary, and finally the views of the different
versions of object schemas are reconstructed.

3.2 Object Schemas as Database Views

Each object schema, irrespective of whether it maps
into a virtual or non-virtual node in the VDG graph,
is expressed as a view of the relations in the database.
The basic idea underlying the construction of views
for each version of an object schema is the notion of
a complete object schema S, which is the union of all
attributes of the different versions. All objects cre-
ated under any version can be expanded into com-
plete objects as if they had been created under the
complete schema. In this way, the view associated
with a version of an object schema E; is defined as
a selection of a subset of complete objects based on
the constraints associated with the particular version
followed by a projection over the attributes E;. For
example, the constraint for selecting objects under the
object schema carl is fuel = leaded.

The conversion of an object from a version E; to
the complete S, is achieved through the Ezpand() op-
eration which generates the values of those attributes
in S, that are not attributes in E; by using the func-
tions specified at the time of the evolution of the ER
diagram, e.g., defauli(fuel) and default(mpg)in Figure
2 and stored in the corresponding VDG node. Each

version of an object schema is associated with an Fz-
pand() operation.

There are five steps in constructing views represent-
ing versions of object schemas involving the traversal
of the VDG which stores all the necessary informa-
tion associated with each version. Let us illustrate
these five steps by constructing the views for E,, E;
and Ej in the above example (Figure 3). We assume
that E3 maps into a non-virtual node and hence it is
associated with a relation rj.

Step 1: The complete schema is constructed by
building the union of attributes of E;, E; and Ej:
Se=E;UE;UE;.

Step 2: For each version E;, we identify the relations
involved in storing objects created under E;. For ver-
sion E; the relation is r;. For E; is r;. For Ej all
three relations rq, r; and rj.

Step 3: We derive the selection condition for the set
of objects O} created under each version. Objects
created under version E3 Oj are selected by joining r;,
r2 and r3 on Oid. Since r; is used to store the objects
created under E; and part of objects created under
Ej3, objects created under version E; O3 are selected
by discarding the objects created under version Ej
from relation 7. Similarly, objects created under E;
are selected by removing the objects created under
version Ej3 from relation r;.

Step 4: Once we have identified the objects created
under a version, we can expand each object to a com-
plete object. Here, f; is used to expand objects in O}
and f; to expand objects in Oj. Objects in O3 are
complete objects and do not require any conversion.

Step 5: Let r. be the entire set of complete objects
generated in step 4. Each view View; is defined uni-
formly as follow: View; = Hg‘(ac_.(rc)g,

where II stands for projection, o stands for selection
and C; specifies the constraints on F;.

Each view is stored in the corresponding VDG
node and it may need to be reconstructed after each
database re-organization.

Because of the uniqueness of the Oids, there is al-
ways a one-to-one correspondence of views to the re-
lations in the underlying database. Thus, there is no
problem of mapping updates on a view to updates on
relations in the database involving a join. However,
there is a problem with updates in the case of de-
rived attributes in which there is no inverse function
(1, 5, 6]. In this case, the designer is expected to spec-
ify the manner in which updates on derived attributes
should be performed in the form of functions.

4 Conclusion

In this paper, we presented an approach to schema
evolution through changes to the ER diagram repre-
senting the schema of a database. In order to facili-
tate changes to the ER schema we enhanced the ba-
sic constructs of ER diagrams with constructs that
specify versions of entity and relationship types, and
relationships between attributes in different versions.
We described a method for mapping changes to ER

578

diagram into relations in the underlying database and
for constructing database views expressing the various
schema versions. Through views schema changes are
made transparent to the application programs while
all objects in the database are accessible to all pro-
grams.

This ER approach to schema evolution has the ad-
vantages of being closer to the designer’s perception
of data as well as graphic oriented and hence easier to
use.

References
[1] F. Bancilhon and N. Spyratos. Update Semantics
of Relational Views. ACM Trans. on Database
Systems, 6(4), 1981.

[2] J. Banerjee, W. Kim, H. Kim, and H.F. Korth.
Semantics and Implementation of Schema Evolu-
tion in Object-Oriented Databases. In Proc. of
ACM SIGMOD, 1987.

[3] P. Chen. The Entity Relationship Model - Toward
a Unified View of Data. ACM Transaclions on
Database Systems, 1(1), March 1976.

(4] S. M. Clamen. Type Evolution and Instance
Adaptation. Technical report, School of Com-
puter Science, C.M.U., June 1992.

[5] S. S Cosmadakis and C. H. Papadimitriou. Up-
dates of Relational Views. J. ACM, 31(4), Oct.
1984.

A. M. Keller. Updating Relational Databases
Through Views. PhD thesis, Department of Com-
puter Science, Stanford University, 1985.

W. Kim, E. Bertino, and J. F. Garza. Composite
Objects Revisted. In Proc. of ACM SIGMOD,
1989.

V. M. Markowitz and A. Shoshani. On the
Correctness of Representing Extended Entity-
Relationship Structures in the Relational Model.
In Proceedings of ACM SIGMOD, 1989.

M. E. Segal and O. Frieder. On-the-Fly Pro-
gram Modification: Systems for Dynamic Updat-
ing. IEEE Software, March 1993.

H. A. Skarra and S. B. Zdonik. Type Evolu-
tion in an Object-Oriented Database. In Re-
search in Object-Oriented Databases. Addison-
Wesley, 1987.

T.J. Teorey, D. Yang, and J.P Fry. A Logical De-
sign Methodology for Relational Databases Using
the Extended Entity-Relationship Model. ACM
Computing Survey, 18(2), June. 1986.

S. B. Zdonik. Object-Oriented Type Evolu-
tion. In Advances in Database Programming Lan-
guages. Addison-Wesley, 1990.

[13] R. Zicari. A Framework for Schema Updates In
an Onject-Oriented Database System. In Proc. of
Conference on Data Engineering, 1991.

(6]

(7]

(8]

(9]

(10]

11]

(12]

