Delegation in ACTA
to Control Sharing in Extended Transactions |

Panos K. Chrysanthis Krithi Ramamritham
Dept. of Computer Science Dept. of Computer Science
University of Pittsburgh University of Massachusetts
Pittsburgh, PA 15260 Ambherst, MA 01003
Abstract

ACTA is a comprehensive transaction framework that facilitates the formal description of prop-
erties of extended transaction models. Specifically, using ACTA, one can specify and reason
about (1) the effects of transactions on objects and (2) the interactions between transactions.
This paper focuses on one of the building blocks of ACTA, namely delegation. A transaction
t; can delegate to t; the responsibility for committing or aborting an operation op. Once this
delegation occurs, it is as if t; performed op and not t;. We discuss how the notion of delegation
is useful to capture the interactions that take place in extended transactions.

1 Introduction

ACTA was introduced in [2] to investigate the formal specification, analysis, and synthesis of extended
transaction models. Our goal in this paper is to provide a summary of the notion of delegation. Unlike
in traditional transactions, sometimes extended transactions require the flexibility of not having to
atomically commit all the operations invoked by a transaction. ACTA considers the commitment of
an operation as a significant event, in addition to the commitment of a transaction. By separating
transaction commitment from operation commitment, ACTA allows for a finer treatment of recovery
than is allowed with traditional transactions. Thus, it is possible for a transaction to abort and yet
for some of its operations to commit. Furthermore, while a transaction is executing, it may selectively
abort some of the operations it has performed and yet commit.

Delegation is a powerful concept and is very useful in the controlled commitment of operations. A
transaction ¢; can delegate to t; the responsibility for committing or aborting an operation op. Once
this delegation occurs, it is as if ¢; performed op and not t; and hence t; has the responsibility to
commit or abort op. Consider two transactions ¢; and t; where ¢; performs op; on an object ob and
then delegates op; to t;; t; then performs op; on ob and then commits. This commitment implies that
in the committed state, ob reflects the changes done by both op; and op; even if t; subsequently aborts.
Had t; so desired, it could have aborted op; unilaterally.

The fact that ¢; is able to observe the changes done by t; in deciding whether to commit or abort
the delegated operation op; exemplifies how delegation broadens the visibility of a delegatee. Thus,
through delegation, a transaction can selectively make tentative or partial results as well as hints, such
as, coordination information, accessible to other transactions.

fThis material is based upon work supported by the National Science Foundation under grants IRI-9109210 and
TRI-9210588 and a grant from University of Pittsburgh.

16



In the rest of this paper, after introducing the necessary underlying concepts, we give a detailed
description of delegation.

2 Events, History, and Properties of Histories

During the course of their execution, transactions invoke transaction management primitives, such as,
Begin, Commit, Spawn and Abort. We refer to these as significant events. The semantics of a particular
transaction model define the significant events of transactions that adhere to that model. We use ¢; to
denote the significant event e pertaining to t.

Transactions also invoke operations on objects. We refer to these as object events and use pi[ob] to
denote the object event corresponding to the invocation of the operation p on object 0b by transaction .

The concurrent execution of a set of transactions 7' is represented by H, the history [1] of the
significant events and the object events invoked by the transactions in the set 7. H also indicates the
(partial) order in which these events occur. This partial order is consistent with the order of the events
of each individual transaction ¢ in T. The predicate ¢ — €’ is true if event € precedes event € in history
H. Tt is false, otherwise. (Thus, € — €’ implies that e € H and ¢’ € H.)

Each transaction ¢ in execution is associated with a View; which is the subhistory visible to t at
any given point in time. In simplified terms, View; determines the objects and the state of objects
visible to t. A view is a projection of the history where the projected events satisfy some predicates,
typically on the current history H.. Hence, the partial ordering of events in the view is preserved.

The occurrence of an event in a history can be constrained in one of three ways: (1) An event e
can be constrained to occur only after another event €’; (2) An event e can occur only if a condition ¢
is true; and (3) a condition ¢ can require the occurrence of an event e.

Correctness requirements imposed on concurrent transactions executing on a database can be ex-
pressed in terms of the properties of the resulting histories. Here are two common types of properties.
Further examples can be found at the end of this section. A Commit-Dependency of ¢; on ;, specified
by (Commit;, € H = (Commit;, € H = (Commit;, — Commit,))), says that if both transactions ¢; and
t; commit then the commitment of ¢; precedes the commitment of ¢;. An Abort-Dependency of ¢; on
t;, specified by (Abort;, € H = Abort;, € H), states that if ¢; aborts then ¢; aborts.

Some of the dependencies between transactions arise from their invocation of conflicting operations.
Two operations p and ¢ conflict in some object state, denoted by conflict(p, q), iff their effects on the
state of the object or their return values are not independent of their execution order. For instance,
suppose operation ¢ is an observer of an object’s state and p is a (pure) modifier of the state, i.e., p does
not observe the state. (For a simple example, consider an object on which read and write are the only
operations supported. Read is an observer and write is a modifier.) Suppose p precedes ¢ in a history,
i.e., operation q observes the effects of p. Then, if failure atomicity is desired, then all the direct and
indirect effects of an aborting transaction must be nullified. So, ¢, the transaction invoking ¢, has to
abort if ¢, the transaction invoking p, aborts, i.e., t; has an abort-dependency on t,. Suppose instead
that ¢ is a modifier and p is an observer or a modifier. Then, operation ¢ makes p’s effects/observations
obsolete. If the invoking transactions must be executed serializably, ¢, has to be serialized after t,.

Let us discuss serialization orderings precisely. Let C be a binary relation on transactions: (¢; C t;)
if #; must be serialized before ¢;. Thus, (t; C t;) if 30b 3p, q (conflict(p,[0b], qi;[0b]) A (p¢, [0b] — qi;[0b])).
Clearly, for a history to be serializable, the C relation must be acyclic, i.e., At (¢t C* t) where C* is the
transitive closure of C.

Depending on the semantics of a transaction and its relationship to others, not all conflicts need
produce abort dependencies or serialization orderings. To capture this, with each transaction ¢ in
progress ACTA associates a conflictset;, the conflict set of transaction ¢, to denote those operations

17



in the current history against which conflicts have to be considered when t invokes an operation. The
conflict set is thus a subset of the operation events in the current history, where the events in the subset
satisfy predicates, again on H;.

Other dependencies between transactions arise from the constraints imposed on the manner in which
extended transactions are required to be structured. For instance, in the nested transaction model [5],
a (parent) transaction spawns (child) transactions. A parent can commit only after its children have
committed. That is, a parent has a commit dependency on its children. But, if the parent aborts, and
a child has not yet committed, the child is aborted. In this case, because of the (italicized) qualification
associated with this abort-dependency, we say that the child has a weak abort-dependency on its parent.
The commit dependency of the parent on the child and a weak abort-dependency of the child on the
parent are formed when a parent spawns a child.

3 Delegation

A transaction t; delegates to t; the responsibility for committing or aborting an operation p when it
invokes the event Delegatey, [t;,p]. Once this delegation occurs, it is as if t; performed p and not t;.
Hence, as a side effect, the dependencies induced by operations performed on the delegated objects are
redirected from the delegator to the delegatee. Delegatey,[tj, ops] delegates the set of operations ops
from t; to t;.

Via nested transactions, let us illustrate a simple use of delegation. Inheritance in nested transac-
tions is an instance of delegation. Delegation from a child t. to its parent ¢, occurs when ¢, commits.
This is captured by the following requirement (Commit;, € H <« Delegate, [tp, AccessSet;,] € H)
where AccessSet; contains all the operations ¢ is responsible for. That is, all the operations that a
child transaction is responsible for are delegated when it commits.

Given the concept of delegation, it is no longer the case that the transaction invoking an operation is
the same as the transaction that is responsible for committing (or aborting) the operation. Specifically,
once t; delegates p to t;, t; becomes the responsible transaction for p, or simply, ¢; is responsible for
p. This is denoted by ResponsibleTr(p). Note that ResponsibleTr(p) can change as delegations occur
and so given H, for each operation p in it, there exists a ResponsibleTr. If p was never delegated, this
transaction is the same as the one that invoked p. Otherwise, this is the transaction to which p was
most recently delegated.

Delegation has the following ramifications which are formally stated in [3]:

e ResponsibleT'r(py,[ob]) is t;, the event-invoker, unless t; delegates py,[ob] to another transaction,
say t;, at which point ResponsibleTr(py,[0b]) will become t;. If subsequently t; delegates py,[ob]
to another transaction, say ti, ResponsibleT'r(p,[ob]) becomes t.

e The precondition for the event Delegatey,[ty,py;[0b]] is that ResponsibleT'r(py,[ob]) is t;. The
postcondition will imply that ResponsibleTr(p,[ob]) is tg.

e A precondition for the event Abort;, [py,[0b]] (as well as for Commity, [p,[0b]]) is that
ResponsibleTr(py,[0b]) is t;.

e Delegation cannot occur in case the delegatee has already committed or aborted, and it has no
affect if the delegated operations have already been committed or aborted.

e Since once an operation is delegated it is as though the delegatee performed the operation. Thus,
delegation (1) brings the delegated operations into delegatee’s view if they were not already,
and (2) redirects the dependencies induced by delegated operations from the delegator to the
delegatee — dependencies are sort of responsibilities.

18



Delegation can be used not only in controlling the visibility of objects, but also to specify the
recovery properties of a transaction model. For instance, if a subset of the effects of a transaction
should not be obliterated when the transaction aborts while at the same time they should not be
made permanent, the Abort event associated with the transaction can be defined to delegate these
effects to the appropriate transaction. In this way, the effects of the delegated operations performed
by the delegator on objects are not lost even if the delegator aborts. Instead, the delegatee has
the responsibility for committing or aborting these operations. Similarly, as the example of nested
transactions illustrated above, by means of delegation, it is possible for a subset of the effects of
committed transactions not to be made permanent. This is the simplest method for structuring non-
compensatable components of extended transactions, e.g., open-nested transactions [4].

A transaction can delegate at any point during its execution, not just when it aborts or commits. For
instance, in Split Transactions [6], a transaction may split into two transactions, a splitting and a split
transaction, at any point during its execution. A splitting transaction ¢, may delegate to the split trans-
action t;, some of its operations at the time of the split (Split, [t;] € H < Delegatey, [ty,, DelegateSet] €
H). Here, it is interesting to note that a split transaction can affect objects in the database by com-
mitting and aborting the delegated operations even without invoking any operation on them.

Other transaction models using delegation include Reporting Transactions and Co-Transactions
described in [3]. A reporting transaction periodically reports to other transactions by delegating its
current results. This supports the construction of data-driven computations, e.g., pipeline-like or
star-like computations. Co-transactions behave like co-routines in which control is passed from one
transaction to the another transaction at the time of the delegation. As in the case of reporting trans-
actions, a transaction t, delegates its current results, contained in ReportSet;,, to its co-transaction t;
by invoking the Join event (Joing, [ty] € H < Delegatey, [ty,, ReportSet,,] € H).

In cooperative environments, transactions cooperate by having intersecting views, by allowing the
effects of their operations to be visible without producing conflicts, and by delegating responsibilities to
each other. By being able to capture these aspects of transactions, the ACTA framework is applicable
to cooperative environments.

References

[1] Bernstein, P. A., Hadzilacos, V., and Goodman, N. Concurrency Control and Recovery in Database
Systems. Addison-Wesley, Reading, MA, 1987.

[2] Chrysanthis, P. K. and Ramamritham, K. ACTA: A Framework for Specifying and Reasoning
about Transaction Structure and Behavior. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 194-203, Atlantic City, NJ, May 1990.

[3] Chrysanthis, P. K. ACTA, A Framework for Modeling and Reasoning about Extended Transactions.
PhD thesis, University of Massachusetts, Amherst, MA, September 1991.

[4] Chrysanthis, P. K. and Ramamritham, K. Synthesis of Extended Transaction Models using ACTA.
Submitted for publication, April 1992.

[5] Moss, J. E. B. Nested Transactions: An approach to reliable distributed computing. PhD thesis,
Massachusetts Institute of Technology, Cambridge, MA, April 1981.

[6] Pu, C., Kaiser, G., and Hutchinson, N. Split-Transactions for Open-Ended Activities. In Proceedings
of the Fourteenth International Conference on VLDB, pages 26-37, Los Angeles, CA, Sept. 1988.

19



