Transaction Processing in Mobile Computing Environment*

Panos K. Chrysanthis
Dept. of Computer Science
University of Pittsburgh
Pittsburgh, PA 15260

Abstract

Distributed systems are ezpected to support mobile
computations ezeculed over a computer network of
fized and mobile hosts. This paper ezamines the re-
quirements for structuring such mobile computations
that access shared data in e dalabase, argues that open-
nesting can better facilitate these requirements, and
proposes an Open-Nested Transaction model in a mo-
bile environment using the notion of Reporting Trans-
actions and Co-Transactions.

1 Introduction

The wide use of portable computers, in particu-
lar laptops and in a very short time of palmtops, in
conjunction with the availability of cellular communi-
cations requires that future computer systems involve
mobile computing. Mobile computing supports com-
putations executed over a computer network of fixed
and mobile hosts. As opposed to a fixed host, a mobile
host can connect to the computer network from differ-
ent locations at different times. In mobile computing,
it is necessary that a computation is not disrupted
while a mobile host is not connected. That is, the
part of the computation executing on a mobile host
might continue executing concurrently with the rest
of the computation while the mobile host is moving
and not connected to the network.

Infrastructure research on mobile computing has
focused on network protocols, e.g., [8, 1], and dis-
tributed file systems for mobile clients, e.g., [9]. This
research also includes handling of database queries in
mobile distributed environments [7]. In this, queries
process location information and are not transactional
in nature. In this paper, by contrast, we examine
transaction processing in a mobile distributed envi-
ronment as a means of supporting data consistency.
More specifically, we propose an open-nested trans-
action model useful in realizing database applications
in a mobile computing environment. An example of
such an application is the selling of insurance poli-
cies and processing of insurance claims by travelling
insurance agents. An insurance agent while interact-
ing with a client needs to both query and update the
company’s database and interact with other insurance
specialists using a portable computer. These special-

*This matcrial is based upon work supported by the National
Science Foundation under the grant IRI-9210588 and a grant
from the University of Pittsburgh.

0-8186-5250-0/93 $3.00 © 1993 IEEE

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 23:29:42 UTC from IEEE Xplore. Restrictions apply.

77

ists may also use a portable computer. Due to the
limitations in memory, computing power and battery
life in a portable computer, it is necessary that part
of the state of the computation on the portable com-
puter be maintained by a fixed host. In addition, it
is often necessary that part of the computation itself
be performed on a supporting host. Both of these
requirements can be facilitated through the notions
of Reporting Transactions and Co-Transaciions [4, 5]
which are two new types of transactions supported by
our Mobile Transaction model.

Here, we assume the mobile internetworking pro-
posed in [8] in which mobile hosts retain their network
connection while moving through the support of fixed
hosts, called the mobile support hosts. At any given
instance of time, a mobile host can directly communi-
cate with only one support mobile station, the one re-
sponsible for the logical or geographical area in which
the mobile host moves. The current location of a mo-
bile host can be found through paging, i.e., a multicast
message sent to a subset of fixed hosts [7].

In the next section, we discuss the limitations of
existing transaction models to support mobile trans-
action processing which motivated the proposal of the
mobile transaction models in Section 4. Section 3 in-
troduces the ACTA formalism used to precisely spec-
ify and reason about the various types of transactions.
Section 5 concludes the paper.

2 Limitations of Existing Transaction
Models

A computation that accesses shared data in a
database is commonly structured as an atomic trans-
action in order to preserve data consistency in the
presence of concurrency and failures. However, a mo-
bile computation that accesses shared data cannot be
structured using atomic transactions. This is because
atomic transactions are assumed to execute in isola-
tion that prevents them from splitting their compu-
tation and sharing their state and partial results. As
mentioned above, practical considerations unique to
mobile computing require computations on a mobile
host to be supported by a mobile support host for
both communication and computation purposes. This
means that a mobile computation needs to be struc-
tured as a set of transactions some of which execute
on mobile hosts while others execute on the mobile
support hosts.

In addition, mobile computations are expected to



be lengthy due first to the mobility of both data
sources and data consumers, and second to their in-
teractive nature, i.e., pause for input from the user.
Thus, another requirement of mobile computations
that atomic transactions cannot satisfy is the ability
to handle partial failures and provide different recov-
ery strategies, thus minimizing the effects of failures.

Nested transactions [10], where a (parent) trans-
action spawns (child) transactions, provide some more
flexibility than atomic transactions in supporting both
splitting of their computation and partial failures.
However, nested transactions do not share their par-
tial results while they execute. Nested transactions
support procedure-call semantics and commit in a
bottom-up manner through the root. That is, when
a child transaction commits, the objects modified by
it are made accessible to its parent transaction while
the effects on the objects are made permanent in a
database only when the root transaction commits.
This also means that the state of the mobile com-
putation must be retained until the root transaction
completes its execution. Consider the case in which
the root executes on the mobile host whereas the child
transactions execute on the mobile support hosts. If
subtransactions do not retain their state after com-
pleting their execution, then the state of the whole
computation needs to be maintained at all times on
the mobile host in spite of its limited resources. On
the other hand if subtransactions retain their state,
the state of the computation is spread among mobile
support nodes along the path of the mobile host mak-
ing atomic commitment expensive.

Open-nested transactions such as Sagas [6], Split
transactions [11] and Multitransactions [2] relax some
of the restrictions of nested transactions by support-
ing adaptive recovery, i.e., allowing their partial re-
sults be visible outside a transaction. This is be-
cause, in an open nested model, component transac-
tions may decide to commit or abort unilaterally. It
is interesting to note that most open-nested transac-
tion models have been proposed in the context of mul-
tidatabase systems. A mobile database environment
can be viewed as a special multidatabase system with
specific requirements. For example, the notion of local
autonomy in mobile environment is manifested in the
ability of the mobile hosts to continue to operate in
an independent fashion when they are disconnected.

Yet two specific requirements of transactions in mo-
bile environment cannot be satisfied by current open
transaction models. First, the ability of transactions
to share their partial results with each other while in
execution, and second to maintain part of the state ofa
mobile computation on a mobile support host in a way
that minimizes the communication delays between a
mobile host and mobile support hosts. Note that usu-
ally there is a limited number of paging communica-
tion channels and wireless communication links be-
tween mobile hosts and mobile support hosts. We ad-
dress both of these requirements by proposing an open
transaction model in Section 4 that support transac-
tions that, while in execution, shared their partial re-
sults, retain their state and can follow the transaction
executing on a mobile host by relocating from one mo-

bile support host to another along the path of the mo-
bile host.

3 The ACTA Formalism

ACTA was introduced in [3] to investigate the for-
mal specification, analysis, and synthesis of extended
transaction models. ACTA is a first-order logic based
formalism. It has five simple building blocks: His-
tory, dependencies between transactions, the view of
a transaction, the conflict set of a transaction, and
delegation.

During the course of their execution, transactions
invoke transaction management primitives, such as,
Begin, Commit, Spawn and Abort. We refer to these as
significant evenis. The semantics of a particular trans-
action model define the significant events of transac-
tions that adhere to that model. We use ¢; to denote
the significant event ¢ pertaining to t.

Transactions also invoke operations on objects. We
refer to these as object events and use p;[ob] to denote
the object event corresponding to the invocation of
the operation p on object ob by transaction t.

The concurrent execution of a set of transactions
T is represented by H, the Aistory of the significant
events and the object events invoked by the transac-
tions in the set 7. H also indicates the (partial) order
in which these events occur. This partial order is con-
sistent with the order of the events of each individual
transaction t in T. The predicate € — ¢’ is true if event
¢ precedes event ¢’ in history H. It is false, otherwise.
(Thus, € — €' implies that e € H and €’ € H.)

Each transaction ¢ in execution is associated with a
View; which is the subhistory visible to t at any given
point in time. In simplified terms, View; determines
the objects and the state of objects visible to t. A
view is a projection of the history where the projected
events satisfy some predicates, typically on the current
history H.. Hence, the partial ordering of events in
the view is preserved.

The occurrence of an event in a history can be con-
strained in one of three ways: (1) An event € can be
constrained to occur only afier another event €'; (2)
An event € can occur only if a condition ¢ is true;
and (3) a condition ¢ can require the occurrence of an
event e.

Correctness requirements imposed on concurrent
transactions executing on a database can be expressed
in terms of the properties of the resulting histories.
Here are two common types of properties. Further
examples can be found at the end of this section.
A Commit-Dependency of t; on %;, specified by
(Commit;; € H = (Commit,; € H = (Commit,, —
Commits;))), says that if both transactions ¢; and t;
commit then the commitment of t; precedes the com-
mitment of ;. An Abort-Dependency of t; on i,
specified by (Abortti € H = Abort;; € H), states that
if t; aborts then t; aborts.

Some of the dependencies between transactions
arise from their invocation of conflicting operations.
Two operations p and ¢ conflict in some object state,
denoted by conflict(p, g), iff their effects on the state of
the object or their return values are not independent

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 23:29:42 UTC from |IEEE Xplore. Restrictions apply.



of their execution order. For instance, suppose opera-
tion g is a Read of an object’s state and p is a Write
of the state. Suppose p precedes q in a history, i.e.,
operation g observes the effects of p. Then, if failure
atomicity is desired, then ¢, the transaction invoking
g, has to abort if t,, the transaction invoking p, aborts,
i.e., ty has an abort-dependency on t,. If the invoking
transactions must be executed serializably, ¢, has to
be serialized after t,.

Let us disCuss serialization orderings precisely. Let
C be a binary relation on transactioms: (t; C t;) if
t; must be serialized before t;. Thus, (t; C t;) if
Job 3p, g (conflict(p:;[0b], g¢;[0b]) A (pe;[0b] — g¢;[0b])).
Clearly, for a history to be serializable, the C relation
must be acyclic, i.e., At (t C* t) where C* is the tran-
sitive closure of C.

Depending on the semantics of a transaction and its
relationship to others, not all conflicts need produce
abort dependencies or serialization orderings. To cap-
ture this, with each transaction ¢ in progress ACTA
associates a con flictset;, the conflict set of transaction
t, to denote those operations in the current history
against which conflicts have to be considered when ¢
invokes an operation. The conflict set is thus a subset
of the operation events in the current history, where
.the events in the subset satisfy predicates on Hy.

Other dependencies between transactions arise
from the constraints imposed on the manner in which
extended transactions are required to be structured.
For instance, if transactions t; and t; are two alterna-
tive components of ¢, then exactly one of them must
commit if ¢ commits. If ¢t aborts, both t; and ¢;
abort. That is, each component has an abort de-
pendency on t ((t; AD t) A (t; AD t)). The first
requirement can be captured by imposing an ezclu-
sion dependency between the component transactions.
The exclusion dependency €D states that if transac-
tion ¢; commits t; aborts and if ¢; commits ¢; aborts
(Commit, € H = (t; €D t;)).

Delegation refers to the ability of a transaction
t. to delegate to another transaction t; the respon-
sibility for committing or aborting an operation op.
This 1s denoted by the event Delegate, [ts, op]. Once
this delegation occurs, it is as if ¢, performed op and
not t,. Hence, as a side effect, the dependencies in-
duced by operations performed on the delegated ob-
jects are redirected from the delegator to the delega-
tee. Delegate;,[t;, ops] delegates the set of operations
ops from t; to t;.

Via nested transactions, let us illustrate a simple
use of delegation. Inheritance in nested transactions
is an instance of delegation. Delegation from a child t.
to its parent t, occurs when ¢, commits. This is cap-
tured by the following requirement (Commit,, € H &
Delegate, [t,, AccessSet, | € H) where AccessSet,
contains all the operations ¢ is responsible for. That
is, all the operations that a child transaction is respon-
sible for are delegated when it commits.

Given the concept of delegation, it is no longer
the case that the transaction invoking an operation
is the same as the transaction that is responsible for
committing (or aborting) the operation. Specifically,

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 23:29:42 UTC from |IEEE Xplore. Restrictions apply.

79

once t; delegates p to t;, t; becomes the responsi-
ble transaction for p, or simply, ¢; is responsible for

p. This is denoted by ResponsibleTr(p). Note that
ResponsibleTr£p) can change as delegations occur and
so given H,,, for each operation p in it, there exists a
ResponsibleTr. If p was never delegated, this transac-
tion is the same as the one that invoked p. Otherwise,
this is the transaction to which p was most recently
delegated.

Delegation can be used not only in controlling the
visibility of objects, but also to specify the recovery
properties of a transaction model. For instance, if a
subset of the effects of a transaction should not be
obliterated when the transaction aborts while at the
same time they should not be made permanent, the
Abort event associated with the transaction can be de-
fined to delegate these effects to the appropriate trans-
action. In this way, the effects of the delegated oper-
ations performed by the delegator on objects are not
lost even if the delegator aborts. Instead, the delega-
tee has the responsibility for committing or aborting
these operations. Similarly, as the example of nested
transactions illustrated above, by means of delegation,
it is possible for a subset of the effects of committed
transactions not to be made permanent. This is the
simplest method for structuring non-compensatable
components in open-nested transactions [5].

4 The Mobile Transaction Model

As discussed above, open nesting of transactions
is more suitable for mobile transaction processing.
The mobile transaction model proposed here is an
open-nested transaction model that supports two ad-
ditional types of transactions, namely, reporting trans-
actions and co-transactions. Due to space limitation,
here we informally present the general mobile trans-
action model expressing only the high level properties
of reporting transactions and co-transactions in terms
of axioms. A formal specification of an open-nested
mo[d]el similar to the one presented here can be found
in [5].

4.1 Mobile Transactions

A mobile transaction is a set of relatively indepen-
dent (component) transactions which can interleave
in any way with other mobile transactions. A compo-
nent transaction can be further decomposed into other
component transactions, and thus mobile transactions
can support an arbitrary level of nesting.

For the sake of brevity, let us assume that s is a two-
level mobile transaction that has n component trans-
actions, 1, .., t,. Some of the components are compen-
satable; each such t; has a compensating transaction
comp_t; that semantically undoes the effects of ¢;, but
does not necessarily restore the database to the state
that existed when #; started executing.

Component transactions can commit without wait-
ing for any other component or s to commit. That
is, component transactions may decide to commit or
abort unilaterally. However, if s aborts, a compo-
nent transaction that has not yet committed will be
aborted.



Mobile transactions, components or otherwise, are
distinguished into four types:

e Atomic transactions: These are associated with
the significant events {Begin, Commit, Abort}
having the standard abort and commit proper-
ties. Compensatable and compensating trans-
actions are atomic transactions with structure-
induced inter-transaction dependencies.

A compensatable component of s is a component
of s which can commit its operations even before
s commits, but if s subsequently aborts, the com-
pensating transaction comp_t; of the committed
component ¢; must commit.

Compensating transactions need to observe a
state consistent with the effects of their corre-
sponding components and hence, compensating
transactions must execute (and commit) in the
reverse order of the commitment of their corre-
sponding components.

o Non-compensatable transactions: These are com-
ponent transactions that are not associated with
a compensating transaction. Non-compensatable
transactions can commit at any time, but since
they cannot be compensated, they are not allowed
to commit their effects on objects when they com-
mit. Non-compensatable transactions are struc-
tured as subtransactions (as in nested transac-
tions) which at commit time delegate all the op-
erations that they have invoked to s. Recall, Sec-
tion 3, that delegation refers to the ability of a
transaction to give over to another transaction
the responsibility for committing or aborting an
operation op.

e Reporting transactions: A reporting component
t; can share its partial results with s. That is, a
reporting component reports to s by delegating
some of its results at any point during its execu-
tion. Whether or not a reporting component del-
egates all the operations not previously reported
to s when it commits depends on whether or not
it is associated with a compensating transaction.

e Co-Transactions: These components are report-
ing transactions that behave like co-routines in
which control is passed from one transaction to
another at the time of sharing of the partial re-
sults. That is, co-transactions are suspended at
the time of delegation and they resume execution
where they were previously suspended. Thus,
as opposed to non-compensatable transactions,
co-transactions retain their state across execu-
tions; and as opposed to reporting transactions,
co-transactions cannot execute concurrently.

Similar to other open-nested transaction models
such as Multitransactions [2], compensatable and non-
compensatable components can be associated with
contingency transactions that are invoked in the event
of the abort of the component for which they are a
contingency, or structured as alternative transactions
(See Section 3).

Compensatable and non-compensatable compo-
nents can be further considered as vital transactions
in that s is allowed to commit only if its vital compo-
nents commit. If a vital transaction aborts, s will be
aborted. Transaction s can commit even if one of its
non-vital components aborts but s has to wait for the
non-vital components to commit or abort.

As opposed to the other types of component trans-
actions, reporting transactions and co-transactions are
strongly interrelated executing either in a parallel or in
a step-wise fashion and potentially exchanging a lot of
results. For this reason, reporting transactions and co-
transactions can relocate their execution from one host
to another so that their communication and mainte-
nance costs are minimized. Assume that a reporting
transaction or a co-transaction is to execute on a mo-
bile support host, whereas its corresponding transac-
tion executes on a mobile host. Then the first transac-
tion always executes on the mobile support host which
currently maintains the network connection of the as-
sociated mobile host. That is, a reporting transac-
tion or a co-transaction executing on a mobile sup-
port host moves along with the mobile host on which
its corresponding transaction executes. The details
and strategies of transaction relocation are currently
under investigation.

In the rest of the paper, we formally define report-
ing transactions and co-transactions by treating them
as two independent transaction models.

4.2 Correctness Criteria

A common characteristic of reporting transaction
and co-transaction models is that they support del-
egation between transactions. Assuming serializable
histories, delegation affects the serialization ordering
of transactions. The following definition of conflicts
takes into account the presence of delegation.

DEFINITION 4.1: Let Cy be a binary relation

on transactions, and t; and t; be transactions.

(t,' Cn tj),t.; # t; iff Job Ip,q I, ts
(conﬂict(pgm[ob],'qh[ob})} A (pt,, [0b] — g:. [0b]) A
gResponsibleTrEptm [0b]) = t;) A

Pe,, [08]) = t;))

This definition extends the definition of the C relation
in Section 3 to include the serialization orderings due
to the delegated objects. (To see that Cy is a gen-
eralization of C, consider the case in which delegation
does not occur. In the absence of delegation, t,, = 1;
and t, = t;.) In this way, by substituting Cy for C
in the definition of serializability, transactions are se-
rialized with respect to operations for which they are
responsible.

Failure atomicity is the property of transactions
that ensures that either all or none of a transaction’s
operations are performed. There is no need to revisit
the definition of failure atomicity in face of delegation.
Failure atomicity does not require the invoking trans-
action of an operation to be the transaction to either
commit or abort the operation. Note that the effects of
an operation on an object are not made permanent at
the time of the execution of the operation. They need

ResponsibleTr

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 23:29:42 UTC from |IEEE Xplore. Restrictions apply.



to be explicitly commitied or aborted. Thus, failure
atomicity allows the possibility for all the operations
invoked by a transaction and not delegated to another
transaction to be committed (aborted) by the invoking
transaction and for all the delegated operations to be
committed (aborted) by the delegatees. However, the
examination of a transaction’s failure semantics only
with respect to the objects that the transaction is re-
sponsible for leads to a definition of another failure
property which is weaker than failure atomicity.

DEFINITION 4.2: Transaction t is quasi failure
atomic if
1. 3Job Ip It; Commit,[p;[0b]] € H =
Vob' Vq Vt; (g:;[0b'] € AccessSet, =
Commit, g,;[0b']] € H)
2. Job Jp 3 Aborty[p:;[ob]] € H =
Vob' Vg Vt; (g¢;[ob'] € AccessSet, =
Abort,[q,,;[0b']] € H)

According to this definition, a transaction t is quasi
failure atomic if either “all” or “none” of the oper-
ations for which the transaction t is responsible are
committed. Recall that the AccessSet; contains all
the operations for which ¢ is responsible. (To recap,
a transaction is failure atomic if all the operations it
invokes are committed or none at all; a transaction
is quasi failure atomic if all operations that it is re-
sponsible for are committed or none at all.) Clearly,
in the absence of delegation quasi failure atomicity is
equivalent to failure atomicity.

4.3 Reporting Transactions

In this section, let us express the basic properties
of reporting transactions with a set of axioms using
the ACTA formalism. We will assume that all the ob-
jects in the database are atomic objects. An atomic
object imposes abort dependency and serialization or-
dering requirements on the transactions that invoke
operations on it.

A reporting transaction periodically reports to
other transactions by delegating some of its current
results. Thus, reporting transactions are associated
with the Report transaction primitive in addition to
the Begin, Commit and Abort primitives [Axiom 1}. Be-
gin is used to initiate a reporting transaction [Axiom
2] whereas Commit and Abort are used to terminate it
[Axiom 3].

DEFINITION 4.3: AXIOMATIC DEFINITION OF

REPORTING TRANSACTIONS

t, denotes a reporting transaction.

tp denotes a receiving transaction.

t denotes transaction.

SE; = {Begin, Report, Commit, Abort}

IE, = {Begin}

TE; = {Commit, Abort}

t satisfies the Fundamental Axioms I to IV

View, = Hg

ConflictSet, = Epygob] | t'# ¢,
Inprogress(py|ob]

Vob dp p[ob] € H = {ob is atomic)

Commit, € H = —(t Cy t)

BN DR wOE

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 23:29:42 UTC from |IEEE Xplore. Restrictions apply.

81

9. dob Jg It; Commit,{q,,[ob]] € H =
Commit, € H

10. Commit, € H = Yob Vg Vt; (g¢,[ob] €
AccessSet, = Commit,[q,,[ob]] € H)

11. Job g Jt; Aborty[q:;[ob]} € H = Abort, € H

12. Abort, € H => Vob Vq Vi; (g:.[ob] €
AccessSet, = Abort,[qq,[ob)] € H)

13. Report, [t3] € H <
Delegate, [t», ReportSet, ] € H

14. Report, [ty] € H => (to AD 1)

15. Report, [ts] € H =>

At,t # ty (Report, [t] — Report,_[t3])

Axiom 4 states that reporting transactions satisfy
the fundamental axioms. With respect to the signifi-
cant events of reporting transactions, the fundamental
axioms mean the following:

1. the Begin event can be invoked at most once by a
transaction
(Begin, € H = —(Begin, — Begin,)) [Axiom I],

2. only an initiated transaction can commit or abort
(Commit, € H = (Begin, —» Commit,), and
Abort; € H => (Begin, — Abort,)) [Axiom II},

3. a reporting transaction cannot be committed af-
ter it has been aborted
(Commit, € H = (Abort, ¢ H A —~(Commit, —
Commit,))), and vice versa
Abort; € H = (Commit, ¢ HA—(Abort, — Abort.)))
foiom III}, and

4. only a transaction in execution can report
(Report, € H = (Begin, — Report,) A ((Report, —
Commit,) V (Report, — Abort,))) [Axiom IV].

Axiom 5 specifies that a transaction sees the cur-
rent state of the objects in the database. Axiom 6
states that conflicts have to be considered against all
in-progress operations (i.e., operations that have nei-
ther committed nor aborted) performed by different
transactions. Axiom 7 specifies that all objects upon
which a reporting transaction invokes an operation are
atomic objects. That is, they detect conflicts and in-
duce the appropriate dependencies. Axiom 8 states
that a transaction can commit only if it is not part
of a cycle of Cyr relations developed through the invo-
cation of conflicting operations. Note that the atom-
icity property local to individual objects is not suffi-
cient to guarantee serializable execution of concurrent
transactions across all objects. Axiom 9 states that if
an operation is committed on an object, the invoking
transaction must commit, and Axiom 10 states that if
a transaction commits, all the operations invoked by
the transaction are committed.

Axioms 8, 9 and 10 define the semantics of the
Commit event of reporting transactions in terms of
the Commit operation defined on objects. Similarly,
Axioms 11 and 12 define the semantics of the Abort
event in terms of the Abort operation defined on ob-
jects. Axiom 11 states that if an operation is aborted
on an object, the invoking transaction must abort, and
Axiom 12 states that if a transaction aborts, all the
operations invoked by the transaction are aborted.

ReportSet,, contains the operations on the ob-
jects to be delegated [Axiom 13]. ReportSet,, C



AccessSet;,. Thus, reporting transactions may del-
egate some and not necessarily all of their operations
on objects at the time of a report.

An abort-dependency of the reporting transaction
on the receiving transaction is induced at the time of
the report [Axiom 14]. In this way, if the receiving
transaction aborts, the reporting transaction is also
aborted. Thus, the effects of the reporting transanc-
tion are made persistent in the database only when the
receiving transaction commits. Axiom 15 prevents a
transaction from reporting to more that one transac-
tion.

Based on the above axioms, the failure and order-
ing properties of reporting transactions can be shown.
For example, reporting transactions are quasi-failure
atomic. Their proof can be found in [4].

4.4 Co-Transactions

As in the case of reporting transactions, a trans-
action %, delegates its current results to its co-
transaction %, by invoking the Report transaction
primitive. However, co-transactions are suspended
at the time of delegation and they resume execution
where they were previously suspended. This is spec-
ified by Axiom 15 by stating that t,’s view becomes
empty at the time of the report. With an empty view,
t. can no longer access any object in the system. %,
will be able to resume execution when ¢, reports back
to t,. This is because, after the report, ¢,’s view will
be restored while t3’s is curtailed.

DEFINITION 4.4: AXIOMATIC DEFINITION OF
Co-TRANSACTIONS
t, denotes a transaction.

t, denotes the co-transaction of t,.

1..14. Axiom 1..14 of Definition 4.3
15  post(Report, [ts]) =

(View,, = ¢) A (View,, = H)
16  Joing, [ty] € H = (tp SCD t,)

Here SCD stands for strong commit dependency
whereby if t' commits, ¢ must commit:

(t” scp t'): (Commity € H = Commityn € H).

The termination semantics of co-transactions are
different from those of reporting transactions [Axioms
14 and 16]. In addition to the abort-dependency found
in reporting transactions that ensures the abortion of
the suspended transaction i, if its co-transaction t;
aborts, a strong commit dependency is induced be-
tween the co-transactions specifying that if the trans-
action t; commits, then its suspended co-transaction
tq is also committed. Thus, both commit or neither.

5 Conclusion

In this paper, we argued that open nesting of trans-
actions can better satisfy the requirements of mo-
bile database computations. However, because exist-
ing open-nested transactions fall short from meeting
these requirements, in this paper, we proposed an open
open-nested transaction model using the notion of re-
porting transactions and co-transactions that while
in execution, share their partial results, retain their

82

state, and can follow their associated transaction exe-
cuting on a mobile host by relocating from one mobile
support host to another along the path of the mobile
host.

References

[1] Acharya A. and B.R. Badrinath, “Delivering
Multicast Messages in Networks with Mobile
Hosts,” Proceedings of the 13th Int’l Conference
on Distributed Computing Systems, pp. 292-300,
1993.

Buchmann, A. et al. A Transaction Model for
Active Distributed Object Systems. In Elma-
garmid, A. K., editor, Datebase Transaction Mod-
els for Advanced Applications, pp. 123-158. Mor-
gan Kaufmann, 1992.

Chrysanthis, P. K. and Ramamritham, K. ACTA:
A Framework for Specifying and Reasoning about
Transaction Structure and Behavior. In Proceed-
ings of the ACM SIGMOD International Confer-
ence on Management of Data, pp. 194-203, May
1990.

Chrysanthis P. K, “ACTA, A Framework for
Modeling and Reasoning about Eztended Trans-
actions,” Ph.D. Thesis, Department of Com-
puter and Information Science, University of
Massachusetts, Amherst, 1991.

Chrysanthis P. K., and K. Ramamritham, “Syn-
thesis of Extended Transaction Models Using
ACTA,” CS Technical Report 93-05, University
of Pittsburgh, 1993.

Garcia-Molina, H. and Salem, K. SAGAS. In
Proceedings of the ACM SIGMOD International
Conference on Management of Data, pp. 249-
259, May 1987.

Imielinski T and B. R. Badrinath, “Querying in
Highly Mobile Distributed Environment,” Pro-
ceedings of 18th Conference on VLDB, pp. 41-52,
1992.

[2]

[3]

[8] Ioannidis J., D. Duchamp and G. Q. Maguire.
Ip-Based protocols for mobile internetworking.
Proceedings of ACM SIGCOMM Symposium on
Communication, Architectures and Protocols, pp.

235-245, 1991.

Kisler J. and M. Satyanarayanan, “Disconnected
operation in the Coda file system,” ACM Trans.
on Computer Systems, 10(1}, 1992.

Moss, J. E. B, Nested Transactions: An ap-
proach to reliable distributed computing. PhD the-
sis, Massachusetts Institute of Technology, Cam-
bridge, MA, April 1981.

Pu, C., Kaiser, G., and Hutchinson, N. Split-
Transactions for Open-Ended activities. In Pro-
ceedings of the Fourteenth International Con-
ference on Very Large Databases, pp. 26-37,
September 1988.

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 23:29:42 UTC from |IEEE Xplore. Restrictions apply.



