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Abstract 
Distributed systems are expected t o  support mobile 

computations ezecuted over a computer network of 
fixed and mobile hosts. This paper examines the re- 
quirements for structuring such mobile computations 
that access shared data i n  a database, argues that open- 
nesting can better facilitate these requirements, and 
proposes an Open-Nested Transaction model i n  a mo- 
bile environment using the notion of Reporting Trans- 
actions and CO- Transactions. 

1 Introduction 
The wide use of portable computers, in particu- 

lar laptops and in a very short time of palmtops, in 
conjunction with the availability of cellular communi- 
cations requires that future computer systems involve 
mobile computing. Mobile computing supports com- 
putations executed over a computer network of fixed 
and mobile hosts. As opposed to  a fixed host, a mobile 
host can connect to  the computer network from differ- 
ent locations a t  different times. In mobile computing, 
it is necessary that a computation is not disrupted 
while a mobile host is not connected. That is, the 
part of the computation executing on a mobile host 
might continue executing concurrently with the rest 
of the computation while the mobile host is moving 
and not connected to the network. 

Infrastructure research on mobile computing has 
focused on network protocols, e.g., [8, 11, and dis- 
tributed file systems for mobile clients, e.g., [9]. This 
research also includes handling of database queries in 
mobile distributed environments [7]. In this, queries 
process location information and are not transactional 
in nature. In this paper, by contrast, we examine 
transaction processing in a mobile distributed envi- 
ronment as a means of supporting data consistency. 
More specifically, we propose an open-nested trans- 
action model useful in realizing database applications 
in a mobile computing environment. An example of 
such an application is the selling of insurance poli- 
cies and processing of insurance claims by travelling 
insurance agents. An insurance agent while interact- 
ing with a client needs to both query and update the 
company's database and interact with other insurance 
specialists using a portable computer. These special- 
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ists may also use a portable computer. Due to the 
limitations in memory, computing power and battery 
life in a portable computer, it is necessary that part 
of the state of the computation on the portable com- 
puter be maintained by a fixed host. In addition, it 
is often necessary that part of the computation itself 
be performed on a supporting host. Both of these 
requirements can be facilitated through the notions 
of Reporting Transactions and CO- Transactions [4, 51 
which are two new types of transactions supported by 
our Mobile fiansaction model. 

Here, we assume the mobile internetworking pro- 
posed in [8] in which mobile hosts retain their network 
connection while moving through the support of fixed 
hosts, called the mobile support hosts. At any given 
instance of time, a mobile host can directly communi- 
cate with only one support mobile station, the one re- 
sponsible for the logical or geographical area in which 
the mobile host moves. The current location of a mo- 
bile host can be found through paging, i.e., a multicast 
message sent to  a subset of fixed hosts [7]. 

In the next section, we discuss the limitations of 
existing transaction models to  support mobile trans- 
action processing which motivated the proposal of the 
mobile transaction models in Section 4. Section 3 in- 
troduces the ACTA formalism used to  precisely spec- 
ify and reason about the various types of transactions. 
Section 5 concludes the paper. 

2 Limitations of Existing Transaction 
Models 

A computation that accesses shared data in a 
database is commonly structured as an atomic trans- 
action in order to  preserve data consistency in the 
presence of concurrency and failures. However, a mo- 
bile computation that accesses shared data cannot be 
structured using atomic transactions. This is because 
atomic transactions are assumed to execute in isola- 
tion that prevents them from splitting their compu- 
tation and sharing their state and partial results. As 
mentioned above, practical considerations unique to 
mobile computing require computations on a mobile 
host to be supported by a mobile support host for 
both communication and computation purposes. This 
means that a mobile computation needs to be struc- 
tured as a set of transactions some of which execute 
on mobile hosts while others execute on the mobile 
support hosts. 

In addition, mobile computations are expected to 
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be lengthy due first to  the mobility of both data 
sources and data consumers, and second to  their in- 
teractive nature, i.e., pause for input from the user. 
Thus, another requirement of mobile computations 
that atomic transactions cannot satisfy is the ability 
to handle partial failures and provide different recov- 
ery strategies, thus minimizing the effects of failures. 

Nested transactions [lo], where a (parent) trans- 
action spawns (child) transactions, provide some more 
flexibility than atomic transactions in supporting both 
splitting of their computation and partial failures. 
However, nested transactions do not share their par- 
tial results while they execute. Nested transactions 
support procedure-call semantics and commit in a 
bottom-up manner through the root. That is, when 
a child transaction commits, the objects modified by 
it are made accessible to  its parent transaction while 
the effects on the objects are made permanent in a 
database only when the root transaction commits. 
This also means that the state of the mobile com- 
putation must be retained until the root transaction 
completes its execution. Consider the case in which 
the root executes on the mobile host whereas the child 
transactions execute on the mobile support hosts. If 
subtransactions do not retain their state after com- 
pleting their execution, then the state of the whole 
computation needs to  be maintained at all times on 
the mobile host in spite of its limited resources. On 
the other hand if subtransactions retain their state, 
the state of the computation is spread among mobile 
support nodes along the path of the mobile host mak- 
ing atomic commitment expensive. 

Open-nested transactions such as Sagas 161 , Split 
transactions [ll] and Multitransactions [2] relax some 
of the restrictions of nested transactions by support- 
ing adaptive recovery, i.e., allowing their partial re- 
sults be visible outside a transaction. This is be- 
cause, in an open nested model, component transac- 
tions may decide to  commit or abort unilaterally. It 
is interesting to  note that most open-nested transac- 
tion models have been proposed in the context of mul- 
tidatabase systems. A mobile database environment 
can be viewed as a special multidatabase system with 
specific requirements. For example, the notion of local 
autonomy in mobile environment is manifested in the 
ability of the mobile hosts t o  continue to operate in 
an independent fashion when they are disconnected. 

Yet two specific requirements of transactions in mo- 
bile environment cannot be satisfied by current open 
transaction models. First, the ability of transactions 
to  share their partial results with each other while in 
execution, and second to  maintain part of the state of a 
mobile computation on a mobile support host in a way 
that minimizes the communication delays between a 
mobile host and mobile support hosts. Note that usu- 
ally there is a limited number of paging communica- 
tion channels and wireless communication links be- 
tween mobile hosts and mobile support hosts. We ad- 
dress both of these requirements by proposing an open 
transaction model in Section 4 that support transac- 
tions that, while in execution, shared their partial re- 
sults, retain their state and can follow the transaction 
executing on a mobile host by relocating from one mo- 

bile support host to  another along the path of the mo- 
bile host. 

3 The ACTA Formalism 
ACTA was introduced in [3] to  investigate the for- 

mal specification, analysis, and synthesis of extended 
transaction models. ACTA is a first-order logic based 
formalism. It has five simple building blocks: His- 
tory, dependencies between transactions, the view of 
a transaction, the conflict set of a transaction, and 
delegation. 

During the course of their execution, transactions 
invoke transaction management primitives, such as, 
Begin, Commit, Spawn and Abort. We refer to  these as 
significant events. The semantics of a particular trans- 
action model define the significant events of transac- 
tions that adhere to  that model. We use Et to denote 
the significant event E pertaining to  t. 

Transactions also invoke operations on objects. We 
refer to these as object events and use pt[ob] to  denote 
the object event corresponding to the invocation of 
the operation p on object ob by transaction t .  

The concurrent execution of a set of transactions 
T is represented by H ,  the history of the significant 
events and the object events invoked by the transac- 
tions in the set T. H also indicates the partial) order 

sistent with the order of the events of each individual 
transaction t in T. The predicate E -+ E’ is true if event 
E precedes event E’ in history H .  It is false, otherwise. 
(Thus, E ---f E’ implies that E E H and E’ E H.)  

Each transaction t in execution is associated with a 
Viewt  which is the subhistory visible to t a t  any given 
point in time. In simplified terms, Viewt determines 
the objects and the state of objects visible to  t. A 
view is a projection of the history where the projected 
events satisfy some predicates, typically on the current 
history H,t. Hence, the partial ordering of events in 
the view is preserved. 

The occurrence of an event in a history can be con- 
strained in one of three ways: (1) An event E can be 
constrained to occur only after another event E‘; (2) 
An event E can occur only if a condition c is true; 
and (3) a condition c can require the occurrence of an 
event E .  

Correctness requirements imposed on concurrent 
transactions executing on a database can be expressed 
in terms of the properties of the resulting histories. 
Here are two common types of properties. Further 
examples can be found at the end of this section. 
A Commit-Dependency of t j  on t; ,  specified by 
(Committj  E H =+ (Committ ,  E H =+ (Committi --t 

Commit t j ) ) ) ,  says that if both transactions t; and t j  
commit then the commitment of t ;  precedes the com- 
mitment of t . .  An Abort-Dependency of t j  on t;, 
specified by (Abortt, E H j Aborttj E H ) ,  states that 
if t; aborts then t j  aborts. 

Some of the dependencies between transactions 
arise from their invocation of conflicting operations. 
Two operations p and q conflict in some object state, 
denoted by confEict(p, q ) ,  iff their effects on the state of 
the object or their return values are not independent 

in which these events occur. This partia (I order is con- 
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of their execution order. For instance, suppose opera- 
tion q is a Read of an object's state and p is a Write 
of the state. Suppose p precedes q in a history, i.e., 
operation q observes the effects of p .  Then, if failure 
atomicity is desired, then t,, the transaction invoking 
q,  has to  abort if t,, the transaction invoking p ,  aborts, 
i.e., t ,  has an abort-dependency on t If the invoking 
transactions must be executed seriaEzably, t ,  has to 
be serialized after t,. 

Let us discuss serialization orderings precisely. Let 
C be a binary relation on transactions: (ti C t j )  if 
ti must be serialized before t i .  Thus, (ti C t j )  if 
j o b  3p1 Q ( c ~ n f E i c ~ ( p t ~ [ o b ] ,  qt j [0b])  A (pti[0b] + qt j [ob] ) ) .  
Clearly, for a history to  be serializable, the C relation 
must be acyclic, i.e., $? (t C' t )  where C* is the tran- 
sitive closure of C. 

Depending on the semantics of a transaction and its 
relationship to  others, not all conflicts need produce 
abort dependencies or serialization orderings. To cap- 
ture this, with each transaction t in progress ACTA 
associates a con f lictsett , the conflict set of transaction 
t, to denote those operations in the current history 
against which conflicts have to be considered when t 
invokes an operation. The conflict set is thus a subset 
of the operation events in the current history, where 
.the events in the subset satisfy predicates on H,t.  

Other dependencies between transactions arise 
from the constraints imposed on the manner in which 
extended transactions are required to  be structured. 
For instance, if transactions ti and t j  are two alterna- 
tive components o f t ,  then exactly one of them must 
commit if t commits. If t aborts, both ti and t j  
abort. That is, each component has an abort de- 
pendency on t ( t i  AV t )  A t j  AV i)). The first 
requirement can b e captured 6 y imposing an ezclu- 
sion dependency between the component transactions. 
The exclusion dependency &V states that if transac- 
tion t, commits t j  aborts and if t j  commits ti aborts 
( C o m m i t t  E H j ( t j  E D  t i ) ) .  

Delegation refers to  the ability of a transaction 
t ,  to delegate to  another transaction t b  the respon- 
sibility for committing or aborting an operation op. 
This is denoted by the event DeZegatet, [ t b ,  op] .  Once 
this delegation occurs, it is as if t b  performed op and 
not t,. Hence, as a side effect, the dependencies in- 
duced by operations performed on the delegated ob- 
jects are redirected from the delegator to the delega- 
tee. DeZegateti[tj,  ops] delegates the set of operations 
ops from t i  to  t j .  

Via nested transactions, let us illustrate a simple 
use of delegation. Inheritance in nested transactions 
is an instance of delegation. Delegation from a child t ,  
to its parent t, occurs when t ,  commits. This is cap- 
tured by the following requirement (Committc E H e 
Delegatetc [t,, AccessSet tc]  E H )  where Accessset t  
contains all the operations t is responsible for. That 
is, all the operations that a child transaction is respon- 
sible for are delegated when it commits. 

Given the concept of delegation, it is no longer 
the case that the transaction invoking an operation 
is the same as the transaction that is responsible for 
committing (or aborting) the operation. Specifically, 

once ti delegates p to  ti, ;ti becomes the responsi- 
ble transaction for p ,  or simply, t j  is responsible for 
p .  This is denoted by ResponsibleTr(p). Note that 
Responsible y) can change as delegations occur and 
so given H,t, or each operation p in it, there exists a 
Responsiblen. If p was never delegated, this transac- 
tion is the same as the one that invoked p .  Otherwise, 
this is the transaction to which p was most recently 
delegated. 

Delegation can be used not only in controlling the 
visibility of objects, but also to  specify the recovery 
properties of a transaction model. For instance, if a 
subset of the effects of a transaction should not be 
obliterated when the transaction aborts while at the 
same time they should not be made permanent, the 
Abort event associated with the transaction can be de- 
fined to delegate these effects to  the appropriate trans- 
action. In this way, the effects of the delegated oper- 
ations performed by the delegator on objects are not 
lost even if the delegator aborts. Instead, the delega- 
tee has the responsibility for committing or aborting 
these operations. Similarly, as the example of nested 
transactions illustrated above, by means of delegation, 
it is possible for a subset of the effects of committed 
transactions not to be made permanent. This is the 
simplest method for structuring non-compensatable 
components in open-nested transactions [5]. 

4 The Mobile Transaction Model 
As discussed above, open nesting of transactions 

is more suitable for mobile transaction processing. 
The mobile transaction model proposed here is an 
open-nested transaction model that supports two ad- 
ditional types of transactions, namely, reporting trans- 
actions and co-transactions. Due to space limitation, 
here we informally present the general mobile trans- 
action model expressing only the high level properties 
of reporting transactions and co-transactions in terms 
of axioms. A formal specification of an open-nested 
model similar to the one presented here can be found 
in [5 ] .  

4.1 Mobile Transactions 
A mobile transaction is a set of relatively indepen- 

dent (component) transactions which can interleave 
in any way with other mobile transactions. A compo- 
nent transaction can be further decomposed into other 
component transactions, and thus mobile transactions 
can support an arbitrary level of nesting. 

For the sake of brevity, let us assume that s is a two- 
level mobile transaction that has n component trans- 
actions, t l ,  .., t,. Some of the components are compFn- 
satable; each such t i  has a compensating transaction 
comp-t; that semantically undoes the effects of t i ,  but 
does not necessarily restore the database to  the state 
that existed when t ,  started executing. 

Component transactions can commit without wait- 
ing for any other component or s t? commit. That 
is, component transactions may decide to  commit or 
abort unilaterally. However, if s aborts, a compo- 
nent transaction that has not yet cornInilted will be 
aborted. 
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Mobile transactions, components or otherwise, are 

0 Atomic transactions: These are associated with 
the significant events {Begin, Commit, Abort} 
having the standard abort and commit proper- 
ties. Compensatable and compensating trans- 
actions are atomic transactions with structure- 
induced inter-transaction dependencies. 
A compensatable component of s is a component 
of s which can commit its operations even before 
s commits, but ifs  subsequently aborts, the com- 
pensating transaction comp-t; of the committed 
component ti must commit. 
Compensating transactions need to  observe a 
state consistent with the effects of their corre- 
sponding components and hence, compensating 
transactions must execute (and commit) in the 
reverse order of the commitment of their corre- 
sponding components. 

0 Non-compensatable transactions: These are com- 
ponent transactions that are not associated with 
a compensating transaction. Non-compensatable 
transactions can commit at any time, but since 
they cannot be compensated, they are not allowed 
to commit their effects on objects when they com- 
mit. Non-compensatable transactions are struc- 
tured as subtransactions (as in nested transac- 
tions) which at commit time delegate all the op- 
erations that they have invoked to s. Recall, Sec- 
tion 3, that delegation refers to  the ability of a 
transaction to give over to another transaction 
the responsibility for committing or aborting an 
operation op. 

0 Reporting transactions: A reporting component 
ti can share its partial results with s. That is, a 
reporting component reports to  s by delegating 
some of its results at any point during its execu- 
tion. Whether or not a reporting component del- 
egates all the operations not previously reported 
to  s when it commits depends on whether or not 
it is associated with a compensating transaction. 

0 CO-Transactions: These components are report- 
ing transactions that behave like co-routines in 
which control is passed from one transaction to 
another at the time of sharing of the partial re- 
sults. That is, co-transactions are suspended at  
the time of delegation and they resume execution 
where they were previously suspended. Thus, 
as opposed to  non-compensatable transactions, 
co-transactions retain their state across execu- 
tions; and as opposed to reporting transactions, 
co-transactions cannot execute concurrently. 

Similar to other open-nested transaction models 
such as Multitransactions [2], compensatable and non- 
compensatable components can be associated with 
contingency transactions that are invoked in the event 
of the abort of the component for which they are a 
contingency, or structured as alternative transactions 
(See Section 3). 

distinguished into four types: 
Compensatable and non-compensatable compo- 

nents can be further considered as vital transactions 
in that s is allowed to commit only if its vital compo- 
nents commit. If a vital transaction aborts, s will be 
aborted. Transaction s can commit even if one of its 
non-vital components aborts but s has to  wait for the 
non-vital components to  commit or abort. 

As opposed to  the other types of component trans- 
actions, reporting transactions and co-transactions are 
strongly interrelated executing either in a parallel or in 
a step-wise fashion and potentially exchanging a lot of 
results. For this reason, reporting transactions and co- 
transactions can relocate their execution from one host 
to another so that their communication and mainte- 
nance costs are minimized. Assume that a reporting 
transaction or a co-transaction is to  execute on a mo- 
bile support host, whereas its corresponding transac- 
tion executes on a mobile host, Then the first transac- 
tion always executes on the mobile support host which 
currently maintains the network connection of the as- 
sociated mobile host. That is, a reporting transac- 
tion or a co-transaction executing on a mobile sup- 
port host moves along with the mobile host on which 
its corresponding transaction executes. The details 
and strategies of transaction relocation are currently 
under investigation. 

In the rest of the paper, we formally define report- 
ing transactions and co-transactions by treating them 
as two independent transaction models. 
4.2 Correctness Criteria 

A common characteristic of reporting transaction 
and co-transaction models is that they support del- 
egation between transactions. Assuming serializable 
histories, delegation affects the serialization ordering 
of transactions. The following definition of conflicts 
takes into account the presence of delegation. 

DEFINITION 4.1: Let CN be a binary relation 
on transactions, and t, and t j  be transactions. 
(ti CN tt), t; # t j  iff 30b  3p, q 3tm, tn  

(cOnfEzct(P~_[obI, %[Ob A (Pt [ob1 + 4tmEObl) A 
ResponszbleTr pt,,,[o ) = ti A t ResponsibleTr I pt, [ob]) I = t j  T ) 

This definition extends the definition of the C relation 
in Section 3 to include the serialization orderings due 
to the delegated objects. (To see that CN is a gen- 
eralization of C, consider the case in which delegation 
does not occur. In the absence of delegation, t, = t, 
and tn = ti.) In this way, by substituting CN for C 
in the definition of serializability, transactions are se- 
rialized with respect to operations for which they are 
responsible. 

Failure atomicity is the property of transactions 
that ensures that either all or none of a transaction’s 
operations are performed. There is no need to  revisit 
the definition of failure atomicity in face of delegation. 
Failure atomicity does not require the invoking trans- 
action of an operation to be the transaction to either 
commit or abort the operation. Note that the effects of 
an operation on an object are not made permanent at  
the time of the execution of the operation. They need 
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to be explicitly committed or aborted. Thus, failure 
atomicity allows the possibility for all the operations 
invoked by a transaction and not delegated to another 
transaction to be committed (aborted) by the invoking 
transaction and for all the delegated operations to be 
committed (aborted) by the delegatees. However, the 
examination of a transaction’s failure semantics only 
with respect to the objects that the transaction is re- 
sponsible for leads to a definition of another failure 
property which is weaker than failure atomicity. 

DEFINITION 4.2: Transaction t is quasi failure 
atomic if 
1. 3ob 3 p  3ti C~mmittbtd[ob]] E H * 

Vob’ Vq V t j  (qtj[ob‘] E Accessse t t  + 
Cmmitt  [qtj [ob‘]] E H )  

2. 30b 3 p  3 A b ~ ~ t t [ p t , [ o b ] ]  E H 3 

AboTtt [qtj [ob’]] E H )  
Vob‘ Vq Vt j  (qt,[ob‘] E Accessse t t  3 

According to this definition, a transaction t is quasi 
failure atomic if either “all” or “none” of the oper- 
ations for which the transaction t is responsible are 
committed. Recall that the Accessse t t  contains all 
the operations for which t is responsible. (To recap, 
a transaction is failure atomic if all the operations it 
invokes are committed or none at all; a transaction 
is quasi failure atomic if all operations that it is re- 
sponsible for are committed or none at all.) Clearly, 
in the absence of delegation quasi failure atomicity is 
equivalent to failure atomicity. 
4.3 Reporting Transactions 

In this section, let us express the basic properties 
of reporting transactions with a set of axioms using 
the ACTA formalism. We will assume that all the ob- 
jects in the database are atomic objects. An atomic 
object imposes abort dependency and serialization or- 
dering requirements on the transactions that invoke 
operations on it. 

A reporting transaction periodically reports to 
other transactions by delegating some of its current 
results. Thus, reporting transactions are associated 
with the Report transaction primitive in addition to 
the Begin, Commit and Abort primitives [Axiom 11. Be- 
gin is used to initiate a reporting transaction [Axiom 
21 whereas Commit and Abort are used to terminate it 
[Axiom 31. 

DEFINITION 4.3: AXIOMATIC DEFINITION OF 
REPORTING TRANSACTIONS 
t ,  denotes a reporting transaction. 
t b  denotes a receiving transaction. 
t denotes transaction. 
1. 
2.  
3 .  
4. 
5 .  
6. 

7. 
8. 

SEt = Begin, Report, Commit, Abort} 
IEt = I Begin} 
TEt = {Commit,  Abort} 
t satisfies the Fundamental Axioms I to IV 
V i e w t  = HCt 

9. 3ob 3q 3ti Committ [qti [ob]] E H + 
Committ E H 

13. Reportt,[tb] E H e 
Delegateto [ t b ,  Repor tSe t tD]  E H 

14. Reportt&,] E H :$ (t ,  AV t b )  

15. Report,,[tb] E H -3 
$ 1  t # t b  (Report,,, [t] --t Reportto [ t b ] )  

Axiom 4 states that reporting transactions satisfy 
the fundamental axioms. With respect to the signifi- 
cant events of reporting transactions, the fundamental 
axioms mean the following: 
1. the Begin event can be invoked a t  most once by a 

transaction 
(Begin, E H + l(Begin, -+ Begin,)) [Axiom I ] ,  
only an initiated transaction can commit or abort 
(Commit, E H + (Begin, + Committ), and 
Abort, E H =+- (Begin, -t Abort,)) [Axiom 111, 
a reporting transaction cannot be committed af- 
ter it has been aborted 
(Commit* E H + (Abortt H A  i(Committ + 
Committ))), and vice versa 
Abortt E H + (Commit, 61 HAi(Abor t t  -i Abortt))) t A xiom 1111, and 

only a transaction in execution can report 
(Report, E H + (Begin, -+ Report,) A ((Report, -i 
Commit,) V (Report, -+ Abort,))) [Axiom IV] .  

Axiom 5 specifies that a transaction sees the cur- 
rent state of the objects in the database. Axiom 6 
states that conflicts have to be considered against all 
in-progress operations (i.e., operations that have nei- 
ther committed nor aborted performed by different 

which a reporting transaction invokes an operation are 
atomic objects. That is, they detect conflicts and in- 
duce the appropriate dependencies. Axiom 8 states 
that a transaction can commit only if it is not part 
of a cycle of CN relations developed through the invo- 
cation of conflicting operations. Note that the atom- 
icity property local to individual objects is not suffi- 
cient to guarantee serializable execution of concurrent 
transactions across all objects. Axiom 9 states that if 
an operation is committed on an object, the invoking 
transaction must commit, and Axiom 10 states that if 
a transaction commits, all the operations invoked by 
the transaction are committed. 

Axioms 8, 9 and 10 define the semantics of the 
Commit event of reporting transactions in terms of 
the Commit  operation defined on objects. Similarly, 
Axioms 11 and 12 define the semantics of the Abort 
event in terms of the Abort operation defined on ob- 
jects. Axiom 11 states that if an operation is aborted 
on an object, the invoking transaction must abort, and 
Axiom 12 states that if a transaction aborts, all the 
operations invoked by the transaction are aborted. 

Repor t se t t s  contains the operations on the ob- 
jects to be delegated [Axiom 131. ReportSettD 

2 .  

3. 

4. 

transactions. Axiom 7 speci 1 es that all objects upon 
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Accesssetto.  Thus, reporting transactions may del- 
egate some and not necessarily all of their operations 
on objects at the time of a report. 

An abort-dependency of the reporting transaction 
on the receiving transaction is induced at the time of 
the report [Axiom 141. In this way, if the receiving 
transaction aborts, the reporting transaction is also 
aborted. Thus, the effects of the reporting transanc- 
tion are made persistent in the database only when the 
receiving transaction commits. Axiom 15 prevents a 
transaction from reporting to  more that one transac- 
tion. 

Based on the above axioms, the failure and order- 
ing properties of reporting transactions can be shown. 
For example, reporting transactions are quasi-failure 
atomic. Their proof can be found in [4]. 

4.4 CO-Transactions 
As in the case of reporting transactions, a trans- 

action t ,  delegates its current results to  its co- 
transaction t b  by invoking the Report transaction 
primitive. However, co-transactions are suspended 
a t  the time of delegation and they resume execution 
where they were previously suspended. This is spec- 
ified by Axiom 15 by stating that tu’s view becomes 
empty a t  the time of the report. With an empty view, 
t ,  can no longer access any object in the system. t ,  
will be able to  resume execution when t b  reports back 
to  t,. This is because, after the report, t,’s view will 
be restored while tb ’s  is curtailed. 

DEFINITION 4.4: AXIOMATIC DEFINITION OF 
CO-TRANSACTIONS 
t ,  denotes a transaction. 
t b  denotes the co-transaction of t,. 
1..14. 
15 post(Reportta[tb]) 3 

Axiom 1..14 of Definition 4.3 

(ViewtQ = 4) A (V iewt ,  = Het) 
16 Joint=[tb] E H ( t b  Scz) t o )  

Here SC?) stands for strong commit dependency 
whereby if t’ commits, t” must commit: 

(t” SCD I?): (Committ, E H 3 Committ , ,  E H ) .  
The termination semantics of co-transactions are 

different from those of reporting transactions [Axioms 
14 and 161. In addition to the abort-dependency found 
in reporting transactions that ensures the abortion of 
the suspended transaction t ,  if its co-transaction t b  
aborts, a strong commit dependency is induced be- 
tween the co-transactions specifying that if the trans- 
action t b  commits, then its suspended co-transaction 
t ,  is also committed. Thus, both commit or neither. 

5 Conclusion 
In this paper, we argued that open nesting of trans- 

actions can better satisfy the requirements of mo- 
bile database computations. However, because exist- 
ing open-nested transactions fall short from meeting 
these requirements, in this paper, we proposed an open 
open-nested transaction model using the notion of re- 
porting transactions and co-transactions that while 
in execution, share their partial results, retain their 

state, and can follow their associated transaction exe- 
cuting on a mobile host by relocating from one mobile 
support host to  another along the path of the mobile 
host. 
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