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Abstract

Whereas serializability captures database consistency requirements and

transaction correctness properties via a single notion, recent research has

attempted to come up with correctness criteria that view these two types of

requirements independently. In this paper, we develop a taxonomy of var-

ious correctness criteria that focus on database consistency requirements

and transaction correctness properties from the viewpoint of what the dif-

ferent dimensions of these two are. This taxonomy allows us to categorize

correctness criteria that have been proposed in the literature. To help

in this categorization, we have applied a uniform speci�cation technique,

based on ACTA, to express the various criteria. Such a categorization helps

shed light on the similarities and di�erences between di�erent criteria and

to place them in perspective.
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1 INTRODUCTION

database consistency requirements capture correctness from the perspective of ob-

jects in the database { as transactions perform operations on the objects. On the

other hand, transaction correctness properties capture correctness from the perspec-

tive of the structure and behavior of transactions. That is, they deal, for example,

with the results of transactions and the interactions between transactions. Serializ-

ability [Eswaran, 1976] captures database consistency requirements and transaction

correctness properties via a single notion: (1) The state of the database at the end

of a set of concurrent transactions is the same as the one resulting from some serial

execution of the same set of transactions; (2) The results of transactions and the in-

teractions among the set of transactions are the same as the results and interactions,

had the transactions executed one after another in this serial order. As applications

using databases become more complex, the correctness criteria that are acceptable

to the application become more complex and hence harder to capture using a single

correctness notion.

Recent research has attempted to come up with correctness criteria, or acceptability

criteria, that view these two types of requirements independently. An early example

is nested transactions [Moss, 1981], in which the database consistency requirements

are captured by requiring the serializability of independent (sub)transactions; ad-

ditional transaction structural properties specify the correctness of subtransactions

of individual nested transactions. The search for more 
exible correctness require-

ments is further motivated by the introduction of other transaction models that

extend the traditional atomic transaction model. (See [Elmagarmid, 1991] for a de-

scription of some of the extended transaction models.) These extensions came about

because the atomic transaction model in conjunction with serializability is found to

be very constraining when applied in advanced applications such as design databases

that function in distributed, cooperative, and heterogeneous environments.

Proposed correctness criteria range from the standard serializability notion to even-

tual consistency [Sheth, 1990]. Quasi-serializability [Du, 1989], predicatewise se-

rializability [Korth, 1988b], etc., are points that lie within this range. Eventual

consistency can be viewed as a \catch-all" term with di�erent connotations: For

example, requiring consistency \at a speci�c real-time", \within some time" or

\after a certain amount of change to some data", or enforcing consistency \after

a certain value of the data is reached", etc. Whereas serializability and its re-

laxations are, in general, application and transaction model independent criteria,

eventual consistency, as the examples above show, are application and transaction

model speci�c. It is not di�cult to see that these relaxed correctness requirements

are useful within a single database as well as in multi-database environments.

Whereas serializability works under the simple assumption that individual transac-

tions maintain the consistency of the database, proposed correctness criteria require

more from the transaction developers. In particular, a transaction may have to be

aware of the functionality of other transactions, especially in a cooperative environ-

ment. This makes transaction development as well as management more di�cult.

Our goal in this paper is to understand the conceptual similarities and di�erences

between di�erent correctness criteria without getting into the practical implications

of adopting them.



So, in this paper we examine database consistency constraints and transaction cor-

rectness properties from the viewpoint of what the di�erent dimensions of these two

types of correctness are. This taxonomy allows us to categorize existing proposals

thereby shedding some light on the similarities and di�erences between the propos-

als and to place them in perspective. The categorization also helps us determine

whether or not a correctness notion is transaction model speci�c or application

speci�c. We will see that even though some of the correctness notions were mo-

tivated by speci�c transaction models or speci�c applications, they have broader

applicability.

To help in this categorization, we apply a uniform speci�cation technique to express

the various correctness criteria that have been proposed. The technique is based

on the ACTA formalism [Chrysanthis, 1990, 1991] which heretofore has been used

for the speci�cation of and for reasoning about extended transactions. One of the

key ingredients of ACTA is the idea of constraining the occurrence of signi�cant

events associated with transactions, Begin, Abort, and Split, for example. These

constraints are expressed in terms of necessary and su�cient conditions for events

to occur. These, in turn, relate to the ordering of events and the validity of relevant

conditions. Such constraints can also facilitate the speci�cation of database consis-

tency requirements and transaction correctness properties. The ACTA formalism

is introduced in Section 3.

The rest of the paper is structured as follows: Subsection 2.1 provides a taxonomy

of database consistency requirements while 2.2 provides a taxonomy of transaction

correctness properties. A speci�cation of existing proposals as well as their catego-

rization (based on the taxonomy) is the subject of Section 4. Section 5 concludes

the paper with some discussions of the next step in this work.

2 A TAXONOMY OF CORRECTNESS CRITERIA

We study di�erent dimensions of the two aspects of correctness, namely, consistency

of database state and correctness of transactions, in order to develop a taxonomy

of correctness criteria. For concreteness, we give examples as the taxonomy is

developed.

2.1 DATABASE CONSISTENCY REQUIREMENTS

Database consistency requirements can be examined with respect to two issues with

further divisions of each as discussed below.

� Consistency Unit:

{ Complete Database:

All the objects in the database have to be consistent locally as well as

mutually consistent, i.e., they should satisfy all the database integrity

constraints typically speci�ed in the form of predicates on the state of the

objects. Semantics of the objects can be taken into account to improve

concurrent access to the objects while maintaining consistency [Chrysan-

this, 1991a].



Example: Traditional serializability (SR) applied to atomic transactions

[Bernstein, 1987].

{ Subsets of the objects in the database:

� Location-independent subsets:

The database is viewed as being made up of subsets of objects. The

subsets are not necessarily disjoint and are speci�ed as part of the

database de�nition. Each object in the database is expected to be

consistent locally but mutual consistency is required only for objects

that are within the same subset.

Example: Setwise serializability (SSR) applied to compound transac-

tions [Sha, 1985] and Predicatewise serializability (PSR) applied to

cooperative transactions [Korth, 1988].

� Location-dependent subsets:

Each subset corresponds to one of the sites of a (distributed / heteroge-

neous) database. In addition to mutual consistency among objects in a

subset (i.e., site), consistency among subsets is also required depending

on which parts of a database are accessed by a transaction.

Example: Quasi-serializability (QSR) [Du, 1989] and its generalization

[Mehrotra, 1991] applied to distributed transactions.

{ Individual Objects:

Each object in the database is expected to be consistent locally.

Example: Linearizability [Herlihy, 1987] applied to objects accessed by con-

current processes.

� Consistency Maintenance:

This is related to the issues of when a consistency requirement is expected to

hold and how consistency is restored if it does not hold.

{ When is a consistency requirement expected to hold?

� At activity boundaries: (An activity denotes a unit of work)

� When an operation completes:

When an operation on an object completes, the necessary consistency

speci�cations must hold.

Example: Concurrent processes accessing shared objects.

� When a set of operations completes:

When a set of operations performed by a transaction completes, the

necessary consistency is expected to hold.

Example: Semantic atomicity [Garcia-Molina, 1983] and multilevel

atomicity [Lynch, 1983]

� When a transaction completes:

Consistency is expected to hold upon a transaction's completion.

Example: Atomic transactions.

� When a set of transactions completes:

Consistency is expected to hold not when individual transactions

complete but when a set of transactions completes.

Example: Cooperative transactions [Korth, 1988b], sagas [Garcia-

Molina, 1987].

� At speci�c points of time:

Consistency is required only at/after speci�c points in time. This is an

example of temporal consistency [Sheth, 1990].



Example: A bank account is expected to be made consistent, with re-

spect to the debits and credits that occur on a given day, upon closing

of business.

� At speci�c states:

Objects may be required to be mutually consistent only when a certain

number of updates have been made to one of the objects or a state

satisfying a certain predicate is reached.

Example: A centralized database of a department store chain may re-

quire updates only upon the completion of 100 sales at a particular

store. Such requirements are referred to as spatial consistency in [Sheth,

1990].

{ If a consistency requirement does not hold at a point it is supposed to, how

is it restored?

� Impossible:

This applies when the consistency requirement must hold at activity

boundaries. The activity is allowed to complete only if the require-

ment holds, i.e., completion is delayed until consistency holds. If an

activity cannot complete successfully while maintaining consistency, it

is aborted or compensated.

Example: SR, PSR, QSR, and cooperative serializability (CoSR), ap-

plied to atomic, nested, and distributed transactions.

� Consistency is restored in a deferred manner:

This typically applies when consistency is expected in certain states or

at certain times. When it is applied to consistency that is expected at

an activity boundary, the activity is allowed to complete and restora-

tion is begun subsequently.

� Eventually:

Consistency between objects must be restored eventually.

Example: If mutual consistency is required between two objects and

one is changed by a transaction, another can be triggered to make

changes in the other object.

� By a certain time:

A deadline may be imposed on the time by which consistency is

restored.

Example: In real-time systems, the state of the controlled environ-

ment should be re
ected in the internal state of the controlling sys-

tem within a certain time so that appropriate and timely control can

be exercised.

2.2 TRANSACTION CORRECTNESS PROPERTIES

As was mentioned in the introduction, serializability su�ces as a correctness crite-

rion for traditional atomic transactions since once individual transactions are guar-

anteed to take one consistent database state to another consistent state, serializabil-

ity guarantees that a set of concurrent transactions when started in a consistent

state take the database to another consistent state. So the only transaction correct-

ness property of interest is: Each transaction when executed by itself must maintain

database consistency. From this it follows that, under serializability, the output of



a transaction re
ects a consistent database state. However, more elaborate correct-

ness properties have been proposed in the context of additional application require-

ments and newer transaction models. These transaction correctness properties can

be discussed with respect to three criteria:

� Correctness of transaction results:

{ Absolute:

The output of transactions must re
ect a consistent database state.

Example: SR applied to atomic transactions, QSR applied to distributed

transactions.

{ Relative:

Outputs of a transaction are considered correct even if they do not re
ect

a consistent state of the object, as long as they are within a certain bound

of the result that corresponds to the consistent state.

Example: Epsilon-serializability (ESR) [Pu, 1991] applied to Epsilon-

transactions, approximate query processing [Hou, 1989].

� Correctness of transaction structure:

Correctness depends on the (structural) relationship between transactions.

This is typically speci�ed in terms of prescribed and/or proscribed commit,

abort, begin, and other types of dependencies [Chrysanthis, 1991] between trans-

actions. Since structural properties are governed by a particular transaction

model, the speci�cations of the model express these requirements.

Example: Sagas [Garcia-Molina, 1987], multi-level serializability [Korth, 1990c].

� Correctness of data access related transaction behavior:

Transactions are required to perform operations on objects in a certain manner

to be considered correct. That is, these requirements are constraints on the

history of concurrent operations.

Example: To satisfy serializability, con
ict relationship between transactions {

as they access data concurrently { must be acyclic. Patterns [Skarra, 1991] are

more application speci�c correctness requirements that re
ect the (semantics

of) usage of the object.

� Correctness of temporal behavior of transactions:

Transactions have start time and completion time (deadline) constraints.

Example: Transactions in real-time systems.

The taxonomy just presented shows how the various correctness requirements can be

viewed from the perspectives of database consistency and transaction correctness.

It is perhaps clear that, from a database application designer's perspective, what is

required is to specify which leaves of the taxonomy correspond to his/her application

and then provide additional speci�cations required by the individual leaves. For

instance, if correctness depends on transactions' structural properties, additional

speci�cations will be needed to specify what these properties are. For example, if

transactions in an application behave according to the nested transaction model,

an axiomatic speci�cation of the nested transaction model [Chrysanthis, 1991] will

supplement the identi�cation of the fact that transactions have structure related

correctness requirements.



We revisit the correctness notions in Section 4.1 where serializability related correct-

ness notions are formally speci�ed and categorized along the di�erent dimensions

of the taxonomy. Sections 4.2 and 4.3 deal with the formal speci�cation of more

general correctness criteria that are not directly related to serializability but deal,

for example, with transaction structure and behavior, speci�c states of objects, or

speci�c times.

3 A QUICK INTRODUCTION TO THE ACTA

FORMALISM

ACTA is a �rst-order logic based formalism. As mentioned earlier, the idea of sig-

ni�cant events underlies ACTA's speci�cations. Section 3.1 discusses these events.

Speci�cations involve constraints on the occurrence of individual signi�cant events

as well as on the history of occurrence of these events. Hence the notion of history

and the necessary and su�cient conditions for the occurrence of signi�cant events

are introduced in Section 3.2. Finally, Section 3.3 shows how sharing of objects

leads to transaction inter-relationships which in turn induces certain dependencies

between concurrent transactions.

3.1 SIGNIFICANT EVENTS ASSOCIATED WITH

TRANSACTIONS

During the course of their execution, transactions invoke operations on objects.

Also, they invoke transaction management primitives. For example, atomic trans-

actions are associated with three transaction management primitives: Begin, Com-

mit and Abort. The speci�c primitives and their semantics depend on the speci�cs

of a transaction model [Chrysanthis, 1991]. For instance, whereas the Commit by

an atomic transaction implies that it is terminating successfully and that all of its

e�ects on the objects should be made permanent in the database, the Commit of

a subtransaction of a nested transaction implies that all of its e�ects on the ob-

jects should be made persistent and visible with respect to its parent and sibling

subtransactions. Other transaction management primitives include Spawn, found

in the nested transaction model [Moss, 1981], Split, found in the split transaction

model [Pu, 1988], and Join, a transaction termination event also found in the split

transaction model.

Definition 3.1: Invocation of a transaction management primitive is termed

a signi�cant event. A transaction model de�nes the signi�cant events that

transactions adhering to that model can invoke.

The set of events invoked by a transaction t is a partial order with ordering relation

<

t

where <

t

denotes the temporal order in which the related events occur.

ts(�) gives the time of occurrence of event � according to a globally synchronized

clock

1

. Clearly, ts(�) will be larger than ts(�) if � appears earlier in the partial

1

This is obviously as abstraction { the e�ects of realizing this by a set of closely syn-

chronized clocks on individual nodes in a distributed system will not be discussed here.



order. Further, no two signi�cant events that relate to the same transaction can

occur with the same ts value.

3.2 HISTORY, PROJECTION OF THE HISTORY, AND

CONSTRAINTS ON EVENT OCCURRENCES

The concurrent execution of a set of transactions T is represented by the history

[Bernstein, 1987] of the events invoked by the transactions in the set T and indicates

the (partial) order in which these events occur. The partial order of the operations

in a history is consistent with the partial order of the events of each individual

transaction t in T .

The projection of a history H is a subhistory that satis�es a given criterion. For

instance,

� The projection of a history H with respect to a speci�c transaction t yields a

subhistory with just the events invoked by t. This is denoted by H

t

.

� The projection of a history H with respect to a speci�c time interval [i, j] yields

the subhistory with the the events which occurred between i and j (inclusive)

and is denoted by H

[i;j]

.

When i = system initiation time, we drop the �rst element of the pair. Thus

H

j

= H

[system init time;j]

denotes all the events that occur until time j.

Consistency requirements imposed on concurrent transactions executing on a

database can be expressed in terms of the properties of the resulting histories.

The occurrence of an event in a history can be constrained in one of three ways:

(1) An event � can be constrained to occur only after another event �

0

; (2) An

event � can occur only if a condition c is true; and (3) a condition c can require the

occurrence of an event �.

Definition 3.2: The predicate � ! �

0

is true if event � precedes event �

0

in

history H. It is false, otherwise. (Thus, �! �

0

implies that � 2 H and �

0

2 H.)

Definition 3.3: (� 2 H) ) Condition

H

, where ) denotes implication,

speci�es that the event � can belong to history H only if Condition

H

is satis�ed.

In other words, Condition

H

is necessary for � to be in H. Condition

H

is a

predicate involving the events in H.

Consider (�

0

2 H) ) (� ! �

0

). This states that the event �

0

can belong to the

history H only if event � occurs before �

0

.

Definition 3.4: Condition

H

) (� 2 H) speci�es that if Condition

H

holds,

� should be in the history H. In other words, Condition

H

is su�cient for � to

be in H.

We now describe some common types of constraints.

1. (Commit

t

j

2 H) ) ((Commit

t

i

2 H) ) (Commit

t

i

! Commit

t

j

)). This says

that if both transactions t

i

and t

j

commit then the commitment of t

i

precedes



the commitment of t

j

. This Commit-Dependency is indicated by (t

j

CD t

i

).

In general, ((Commit

t

j

2 H) ) condition) speci�es that condition should hold

for t

j

to commit.

2. (Abort

t

i

2 H)) (Abort

t

j

2 H) i.e., if t

i

aborts then t

j

aborts, states the Abort-

Dependency of t

j

on t

i

(t

j

AD t

i

). In general, (condition ) (Abort

t

j

2 H))

speci�es that if condition holds t

j

aborts.

3. (Begin

t

j

2 H) ) (Begin

t

i

! Begin

t

j

) states that transaction t

j

cannot begin

executing until transaction t

i

has begun.

3.3 OBJECTS, OPERATIONS, AND CONFLICTS

A transaction accesses and manipulates the objects in the database by invoking

operations speci�c to individual objects. It is assumed that an operation always

produces an output (return value), that is, it has an outcome (condition code) or a

result. The result of an operation on an object depends on the current state of the

object. For a given state s of an object, we use return(s; p) to denote the output

produced by operation p, and state(s; p) to denote the state produced after the

execution of p.

Definition 3.5: Invocation of an operation on an object is termed an object

event. The type of an object de�nes the object events that pertain to it. We

use p

t

[ob] to denote the object event corresponding to the invocation of the

operation p on object ob by transaction t. Object events are also part of the

history H.

Definition 3.6: Let H

(ob)

denote the projection of the history with respect

to the operations on ob. Two operations p and q con
ict in a state produced

by H

(ob)

, denoted by con
ict(H

(ob)

; p; q), i�

(state(H

(ob)

� p; q) 6= state(H

(ob)

� q; p)) _

(return(H

(ob)

; q) 6= (return(H

(ob)

� p; q)) _

(return(H

(ob)

; p) 6= (return(H

(ob)

� q; p))

Two operations that do not con
ict are compatible.

(� denotes functional composition; H � p appends p to history H.) Thus, two

operations con
ict if their e�ects on the state of an object are not independent of

their execution order (�rst clause) or their return values are not independent of

their execution order (second and third clauses). From now on, we drop the �rst

parameter of con
ict, namely, H

(ob)

.

4 SPECIFICATION AND CATEGORIZATION OF

CORRECTNESS CRITERIA

In this section, we study various database consistency requirements and transac-

tion correctness properties that have been proposed and place them in perspective,

given the taxonomy of the previous section. Broadly speaking, Section 4.1 deals with



transaction model and application independent correctness criteria (even though, as

we will see, those who proposed them may have had a speci�c transaction model or

application in mind), Section 4.2 discusses transaction model dependent but appli-

cation independent criteria, and Section 4.3 examines transaction and application

dependent consistency requirements. (For a complete axiomatic semantics of the

various extended transaction models, the reader is referred to [Chrysanthis, 1991].)

4.1 TRANSACTION AND APPLICATION INDEPENDENT

CRITERIA

In general, transaction and application independent correctness criteria are exten-

sions to serializability. In this section, we �rst specify some of these extensions

using the formalism described in the previous section and then use the speci�ca-

tions to show how the di�erent extensions relate to each other. All of these criteria

are based on the notion of con
icts and their preservation in equivalent histories.

Thus, we do not discuss correctness criteria such as view serializability [Yannakakis,

1984] that are not as easy to realize.

Definition 4.7: Let R be a binary relation on a set of transactions T , t

i

,

t

k

2 T , t

i

6= t

k

. R

�

is the transitive-closure of R; i.e.,

(t

i

R

�

t

k

) if [(t

i

R t

k

) _ 9t

j

2 T ((t

i

R t

j

) ^ (t

j

R

�

t

k

))]:

4.1.1 Serializability

In traditional databases, serializability and, in particular, con
ict serializability, is

the well-accepted criterion for concurrency control.

Let C be a binary relation on transactions in T .

Let H be the history of events relating to committed transactions in T .

Definition 4.8: 8 t

i

; t

j

2 T; t

i

6= t

j

,

(t

i

C t

j

) if

9ob 9p; q (con
ict(p

t

i

[ob]; q

t

j

[ob])^ (p

t

i

[ob]! q

t

j

[ob])).

Definition 4.9: H is (con
ict) serializable i�

8t 2 T;:(t C

�

t):

To illustrate the practical implications of these de�nitions, note that the C relation

captures the fact that two transactions have invoked con
icting operations on the

same object and the order in which they have invoked the con
icting operations.

Consequently, the C relation captures direct con
icts between transactions in a

history as well as their serialization order. The fact that a serialization order is

acyclic is stated by requiring that there be no cycles in the C relation.

Note also that the above de�nitions do not involve any signi�cant events. This

re
ects the fact that serializability per se does not constrain the occurrence of any

signi�cant event, e.g., a Commit event to happen only after another Commit event.

(If the C relationship between transactions is acyclic, transactions in H can com-

mit in any order.) That is, the commit order of transactions is not necessarily the

same as their serialization order and hence, the commit order cannot be used to



induce the serialization order. However, a commit order induced by a C relation is

consistent with the serialization order. For example, consider the case of rigorous

histories [Breitbart, 1991] such as the ones produced by the strict two-phase locking

protocol [Eswaran, 1976]. In this case, if transactions t

i

and t

j

have a C relationship,

i.e., they have invoked con
icting operations, a commit dependency [Chrysanthis,

1991] forms between t

i

and t

j

. (Con
icting operations may also produce abort

dependencies between the invoking transactions; but an abort dependency implies

a commit dependency.) By requiring that the C relation be acyclic, commit de-

pendencies must also be acyclic. By inducing a commit dependency between every

pair of transactions invoking con
ict operations, the commit order speci�ed by the

commit dependencies is the same as the serialization order.

With respect to the taxonomy of Section 2, for serializability, the consistency unit

is the complete database, and consistency is required at transaction boundaries.

Absolute correctness of transaction results is expected. Atomic transactions and

top-level transactions of nested transactions, for example, behave according to the

serializability correctness criterion.

The semantics of the operations on the objects (for example, see [Badrinath,

1990][Herlihy, 1987][O'Neil, 1986]) can be used to de�ne the con
ict relationship

between operations. Furthermore, di�erent degrees of consistency [Gray, 1975] can

be ensured by ignoring some of the con
icts. The resulting inconsistencies can

be accommodated in applications that can cope with such inconsistencies or when

these are masked by the structuring of the objects used by the applications. The

former is the case in [Gray, 1975] and with ESR [Pu, 1991] (see [Ramamritham,

1991b] for a formal characterization of ESR). The latter is the case with abstract

serializability { used in the context of multi-level transactions [Beeri, 1989][Moss,

1986][Martin, 1988][Badrinath, 1990].

4.1.2 Predicatewise Serializability

Predicatewise serializability has been proposed in [Korth, 1988, 1988b] as the cor-

rectness criterion for concurrency control in databases in which consistency con-

straints are in a conjunctive normal form. In such cases, consistency constraints

can be maintained by requiring serializability only with respect to objects which

relate to a disjunctive clause.

Let P = (P

1

^ P

2

. . . ^ P

n

) be the database consistency constraint. Suppose the

disjunctive clause P

k

relates to objects in D

k

� DB, where DB is the database.

8k 2 f1 . . . ng, let C

k

be a binary relation on transactions in T .

Let H be the history of events relating to committed transactions in T .

Definition 4.10: 8k 2 f1 . . . ng; 8 t

i

; t

j

2 T; t

i

6= t

j

,

(t

i

C

k

t

j

), if

9ob 2 D

k

9p; q (con
ict(p

t

i

[ob]; q

t

j

[ob]) ^ (p

t

i

[ob]! q

t

j

[ob])).

Definition 4.11: H is predicatewise serializable i�

8t 2 T 8D

k

1 � k � n :(t C

�

k

t)

In [Sha, 1985], each D

k

is said to be an atomic data set. With respect to the



taxonomy, for predicatewise serializability, an atomic data set [Sha, 1985] forms a

consistency unit and consistency is required at transaction boundaries. Absolute

correctness of transaction results is expected. Compound transactions [Sha, 1985]

behave according to the predicatewise serializability correctness criterion.

4.1.3 Cooperative Serializability

We de�ne cooperative serializability (CoSR) with respect to a set of transactions

which maintain some consistency properties. Transactions form cooperative trans-

action sets. A cooperative transaction set could be formed by the components of an

extended transaction or transactions collaborating over some objects while main-

taining the consistency of the objects. In such cases, consistency can be maintained

if other transactions which do not belong to the set are serialized with respect to

all the transactions in the set. In other words, a set of cooperative transactions

becomes the unit of concurrency with respect to serializability.

Let T

c

be a set of cooperative transactions, T

c

� T .

Let C

c

be a binary relation on transactions in T .

Let H be the history of events relating to committed transactions in T .

Definition 4.12: 8 t
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j
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k

2 T; t

i

6= t

j
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i
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j

6= t

k

8T

c

� T
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i

C

c

t

j
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62 T

c
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j

62 T

c
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t

i

[ob]; q

t

j

[ob])^ (p

t

i

[ob]! q

t

j

[ob]))) _

(t

i

62 T

c

; t

j

2 T

c

; t

k

2 T

c
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ict(p

t

i

[ob]; q

t

k

[ob])^ (p

t

i
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t
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[ob])))_

(t

i

2 T

c

; t

j

62 T

c

; t

k

2 T

c

(con
ict(p

t

k

[ob]; q

t

j

[ob]) ^ (p

t

k

[ob]! q

t

j

[ob])))))

In this de�nition, the �rst clause expresses how a dependency between two transac-

tions which do not belong to the same set is directly established when they invoke

con
icting operations on a shared object. This is similar to the clause in the clas-

sical de�nition of (con
ict) serializability. The other two clauses re
ect the fact

that when a transaction establishes a dependency with another transaction, the

same dependency is established between all the transactions in their corresponding

cooperative transactions sets. These clauses can be viewed as expressions of the

development of dependencies between transaction sets.

Definition 4.13: H is cooperative serializable i�

8t 2 T :(t C

�

c

t)

With respect to the taxonomy of the previous section, for cooperative serializabil-

ity, the consistency unit is the complete database, consistency is required when

an ordinary transaction (not a member of a T

c

) completes or a set of cooperat-

ing transactions complete. Absolute correctness of transaction results is expected.

The correctness requirement expressed informally in [Martin, 1992] corresponds to

CoSR.

4.1.4 Quasi Serializability

Quasi Serializability has been proposed in [Du, 1989] as a correctness criterion

for maintaining transaction consistency in multidatabases, e.g., heterogeneous dis-

tributed databases. In these systems, transactions can either execute on a single



site (called local transactions), or can execute on multiple sites (called global trans-

actions).

In QSR, the correctness of the execution of a set of global and local transactions is

based on the notion of a quasi serial history which, unlike a serial history, speci�es

that only global transactions are executed serially. A history is quasi serial if (1)

all local histories are (con
ict) serializable, and (2) there exists a total order of

all global transactions g

m

and g

n

where g

m

precedes g

n

in the order and all g

m

's

operations precede g

n

's operations in all local histories in which they both appear.

A quasi serializable history is equivalent to a quasi serial history.

Let G be the set of global transactions and g

i

n

be a (sub)transaction of a global

transaction g

n

(g

n

2 G) executing all the operations of g

n

on site i

2

.

Let T

i

be the set of transactions, both local transactions and global

(sub)transactions, executing on site i. T = ([

i

T

i

).

Let H be the history of events relating to committed transactions in T .

Let R be a binary relation on a set of global transactions G.

Definition 4.14: 8 g
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; g

n

2 G; g

m

6= g

n

,

(g

m

R g

n

), if
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k

m
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k
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k

m
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k

n
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k
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p

= g

k

n
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0

]))

where C is the binary relation de�ned in De�nition 4.8.

The C relation captures the fact that two global transactions directly con
ict in

a local history when they invoke con
icting operations on a share object. Two

global transactions might also indirectly con
ict in a local history even if they don't

access any share objects. Indirect con
icts are introduced by other transactions

that directly con
ict with each other and with the global transactions. These,

indirect con
icts between two transactions, particularly those introduced by local

transactions, are captured by the second clause of the de�nition of R. Note that

this clause, and consequently R, is not equivalent to the transitive-closure of C

which does not place any restriction on the execution ordering of the con
icting

operations, but R � C

�

.

Definition 4.15: H is quasi serializable i�

1. 8i 8t 2 T

i

:(t C

�

t); and

2. 8g 2 G :(g R

�

g)

It should be pointed that since the R relation captures both direct and indirect

con
icts between two global transactions in a history, the serializable execution of

global transactions is in terms of both direct and indirect con
icts. Indirect con
icts

between local transactions induced by con
icts of global transactions that execute

2

That is, at most one (sub)transaction of a global transaction can execute on a partic-

ular site.



on multiple sites are not captured by either clause, the reason being that QSR

assumes no data dependency across sites.

With respect to the taxonomy of the previous section, for Quasi serializability, (site-

based) subsets of the database objects form the consistency units (i.e., objects in

each site form a subset) and consistency should hold when a transaction completes.

Absolute correctness of transactions' results is expected. Quasi serializability has

been proposed in the context of distributed (multi-database) transactions.

4.1.5 Relationship between di�erent Serializability-based Correctness

Criteria

Thus far in this section, we have speci�ed four serializability-based correctness cri-

teria using the ACTA formalism and classi�ed them with respect to our taxonomy

in Section 2. Here, we will use the formal de�nitions of the various criteria to relate

them to each other.

According to predicatewise serializability, each D

k

is associated with a C

k

and hence

con
icting transactions can be serialized di�erently with respect to di�erent D

k

.

This is contrary to serializability which permits only a single system-wide serial-

ization order involving con
icting transactions based on C. However, if D

k

is the

complete database, then C = C

k

, and consequently, predicatewise serializability is

equivalent to serializability.

In the case of cooperative serializability, transactions in di�erent cooperative trans-

action sets may be related by the C

c

relation (individual transactions not belonging

to any cooperative set can be viewed as singleton cooperative transaction sets).

Hence, if each cooperative transaction set has just one member, then C

c

= C and,

in this case, cooperative serializability is equivalent to serializability.

In the case of quasi-serializability, there are two distinct conditions under which

QSR is equivalent to serializability. These correspond to the situations in which

one of the two clauses of the de�nition of QSR is trivially true: (1) In the absence

of global transactions, transactions in T

i

are serialized based only on C. (2) In the

absence of local transactions, transactions in T

i

are serialized based only on R, i.e.,

here R = C. Indirect con
icts due to local transactions are not possible whereas

indirect con
icts due to global transactions are considered by C

�

.

Finally, we would like to point out that these di�erent correctness criteria can

be combined and/or adopted within a single database. For instance, it is easy to

picture how cooperative serializability can be used in conjunction with predicatewise

serializability and how cooperative serializability can be used in conjunction with

even quasi-serializability.

For such combinations of correctness criteria, their speci�cation can be derived from

the speci�cation of the individual correctness criteria. As an example, let us examine

one way that cooperative serializability can be combined with quasi-serializability

in order to support a multidatabase system in which component databases allow

local transactions to form cooperative groups. In this case, according to cooperative

serializability, global (sub)transactions as well as other local transactions that do

not belong to a cooperative set, are serialized with respect to all the transactions

in the set. The formal de�nition of this combined criterion is derived from the



de�nition of QSR [De�nitions 4.14 and 4.15] by replacing the binary relation C with

a binary relation similar to C

c

de�ned in the context of CoSR. Speci�cally:

Let T

i

be the set of transactions, both local transactions and global

(sub)transactions, executing on site i. T = ([

i

T

i

).

Let T

c

i

be a set of local cooperative transactions on site i, T

c

i

� T

i

.

Let C

c

i

be a binary relation on transactions in T

i

.

Let H be the history of events relating to transactions in T .
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Definition 4.17: H is local cooperative quasi serializable i�
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4.2 TRANSACTION MODEL DEPENDENT AND APPLICATION

INDEPENDENT CRITERIA

Transaction model dependent but application independent correctness criteria are

typically related to the structure of transactions that conform to a particular model.

(Note that speci�c transaction models may be more suited to speci�c applications.)

As was mentioned earlier, di�erent transaction models produce di�erent transac-

tion structures where the structure of an extended transaction de�nes its compo-

nent transactions and the relationships between them. Dependencies can express

these relationships and thus, can specify the links in the structure. For example,

in hierarchically-structured nested transactions, the parent/child relationship is es-

tablished at the time the child is spawned. This is expressed by a child transaction

t

c

establishing a weak-abort dependency (de�ned below) on its parent t

p

((t

c

WD

t

p

)) and by a parent establishing a commit dependency on its child ((t

p

CD t

c

)).

The weak-abort dependency guarantees the abortion of an uncommitted child if its

parent aborts whereas the commit dependency prevents a child from committing

after its parent has committed.

In [Chrysanthis, 1991] and [Chrysanthis, 1992] we gave axiomatic de�nitions of

di�erent transaction models in terms of dependencies that occur between trans-

actions that conform to a particular model. So we now formally specify some of

the dependencies that can occur in addition to the Commit Dependency, Abort

Dependency, and Begin Dependency speci�ed in Section 3.2.

Let t

i

and t

j

be two transactions and H be a �nite history which contains all the

events pertaining to t

i

and t

j

.

Weak-Abort Dependency (t

j

WD t

i

): if t

i

aborts and t

j

has not yet committed,



then t

j

aborts. In other words, if t

j

commits and t

i

aborts then the commitment

of t

j

precedes the abortion of t

i

in a history; i.e.,

(Abort

t

i

2 H)) (:(Commit

t

j

! Abort

t

i

)) (Abort

t

j

2 H)):

Strong-Commit Dependency (t

j

SCD t

i

): if transaction t

i

commits then t

j

com-

mits; i.e., (Commit

t

i

2 H)) (Commit

t

j

2 H):

Termination Dependency (t

j

T D t

i

): t

j

cannot commit or abort until t

i

either

commits or aborts; i.e., (�

0

2 H)) (�! �

0

)

where � 2 fCommit

t

i

;Abort

t

i

g, and �

0

2 fCommit

t

j

;Abort

t

j

g:

Exclusion Dependency (t

j

ED t

i

): if t

i

commits and t

j

has begun executing, then

t

j

aborts (both t

i

and t

j

cannot commit); i.e.,

(Commit

t

i

2 H)) ((Begin

t

j

2 H)) (Abort

t

j

2 H)):

Force-Commit-on-Abort Dependency (t

j

CAD t

i

): if t

i

aborts, t

j

commits; i.e.,

(Abort

t

i

2 H)) (Commit

t

j

2 H):

Serial Dependency (t

j

SD t

i

): transaction t

j

cannot begin executing until t

i

either

commits or aborts; i.e.,

(Begin

t

j

2 H)) (�! Begin

t

j

) where � 2 fCommit

t

i

;Abort

t

i

g:

Begin-on-Commit Dependency (t

j

BCD t

i

): transaction t

j

cannot begin execut-

ing until t

i

commits; i.e., (Begin

t

j

2 H)) (Commit

t

i

! Begin

t

j

):

Begin-on-Abort Dependency (t

j

BAD t

i

): transaction t

j

cannot begin executing

until t

i

aborts; i.e., (Begin

t

j

2 H)) (Abort

t

i

! Begin

t

j

):

Weak-begin-on-Commit Dependency (t

j

WCD t

i

): if t

i

commits, t

j

can begin

executing after t

i

commits; i.e.,

(Begin

t

j

2 H)) ((Commit

t

i

2 H)) (Commit

t

i

! Begin

t

j

)):

Let us look at further examples of structure-related transaction correctness proper-

ties. In the transaction model proposed in [Buchmann, 1990, Garcia-Molina, 1991]

a parent can commit only if its vital children commit, i.e., a parent transaction has

an abort dependency on its vital children t

v

(t

p

AD t

v

). Child transactions may

also have di�erent dependencies with their parents if the transaction model supports

various spawning or coupling modes [Dayal, 1990]. Sibling transactions may also

be interrelated in several ways. For example, components of a saga [Garcia-Molina,

1987] can be paired according to a compensated-for/compensating relationship [Ko-

rth, 1990]. Relations between a compensated-for and compensating transactions as

well as those between them and the saga can be speci�ed via begin-on-commit

dependency BCD, begin-on-abort dependency BAD, force-commit-on-abort depen-

dency CAD and strong-commit dependency SCD [Chrysanthis, 1992]. In a similar

fashion, dependencies that occur in the presence of alternative transactions and con-

tingency transactions [Buchmann, 1990] can also be speci�ed [Chrysanthis, 1992].

With respect to the taxonomy, an application that uses an extended transaction

model will have correctness requirements related to transactions' structure where

these requirements are speci�ed via axioms that express the dependencies that are

formed when transactions execute according to the given model.



4.3 TRANSACTION AND APPLICATION DEPENDENT

CRITERIA

We now focus on the required behavior of a transaction and hence on the require-

ments imposed by the application that employs that speci�c transaction. We dis-

tinguish between two types of behavior related properties:

1. Those that relate to constraints on a transaction's access to objects. Some of

these are mandated by the concurrency properties of the objects. For instance,

as discussed in Section 4.1, serializability demands acyclic C relationships. Here

we will discuss additional access requirements.

2. Those that relate to properties that deal with its other behavioral properties,

such as, when a transaction can/must begin and when it can/must end. Spatial

and temporal requirements are related to this type.

We elaborate upon the �rst type through an example. Consider a page object with

the standard read and write operations, where read and write operations con
ict. A

read's return-value is dependent on a previous write, whereas a write's return-value

is independent of a read or another write. In addition, consider transactions which

have the ability to reconcile potential read-write con
icts: When a transaction t

i

reads a page x and another transaction t

j

subsequently writes x, t

i

and t

j

can

commit in any order. However, if t

j

commits before t

i

commits, t

i

must reread x

in order to commit. This is captured by the following requirement:

(read

t

i

[x]! write

t

j

[x])) ((Commit

t

j

! Commit

t

i

)) (Commit

t

j

! read

t

i

[x]))):

In this example, t

i

has to reread the page x when, subsequent to the �rst read,

the page is written and committed by t

j

. In general, t

i

may need to invoke an

operation on the same or a di�erent object. For instance, instead of x, t

i

may

have to read a scratch-pad object which t

i

and t

j

use to determine and reconcile

potential con
icts. In general, the speci�cation of correct transaction behavior can

include the speci�cation of operations that need to be controlled to produce correct

histories as well as the speci�cation of operations that have to occur in correct

histories. These correspond to con
icts and patterns in [Skarra, 1991].

Let us now turn to other behavioral speci�cations, for example, those that con-

cern the beginning and termination of transactions. Consider the following simple

requirement which states that if condition is true then transaction t

j

must begin.

condition) (Begin

t

j

2 H)

condition can depend on the occurrence of an event, on the state of the database,

and on time. As we will see, the above requirement can be used for the 
exible

enforcement of consistency, to trigger the propagation of changes, to react to con-

sistency violations, and to notify changes. Thus, the above speci�cation can be

considered to be a speci�cation for the automatic triggering of situation-dependent

actions, e.g., for expressing the rules that govern the triggering of actions in an

active database [Dittrich, 1991].

Suppose condition is related to the occurrence of some signi�cant event within a

transaction t

i

. In this case, the additional structural relationships (for instance, the



di�erent coupling modes [Dayal, 1990]) between t

i

and t

j

can be speci�ed via the

dependencies discussed in Section 4.2.

If condition relates to the state of the database, what we have is related to spa-

tial consistency discussed in [Sheth, 1990]. For instance, consider the following

condition: \One hundred sales have occurred at this store since the master database

at the store's headquarters was last updated."

If condition relates to time, for instance, if condition is \time > 8pm", we have a

temporal consistency requirement.

Now let us consider situations where constraints are placed on the beginning of

transactions. For example, a transaction t

i

to compute daily interest can start after

midnight but only after the day's withdrawals and deposits have been re
ected in

the account (say by a transaction t

j

). This can be speci�ed as

(ts(Begin

t

i

) � 12am) ^ (t

i

BCD t

j

).

This is an example where a transaction has a time-based start-dependency as well

as a begin-on-commit dependency on another transaction.

Let us consider another example. If a deposit is made by time x then the transaction

that re
ects it in the account should not be started until time y. This is speci�ed

by

((Commit

t

i

2 H) ^ (ts(Commit

t

i

) < x))) ((Begin

t

j

2 H)) (ts(Begin

t

j

) > y)).

Through several examples, we now consider requirements and constraints associated

with the termination of transactions.

Sometimes, we may want to specify that some speci�c change of state (by one

transaction) triggers [Dayal, 1990] another transaction (that perhaps �xes the in-

consistency resulting from the �rst transaction). Clearly, this type of constraint is

related to deferred consistency restoration. This can occur, for example, if we had

two versions of a database, one which was complete and another (at perhaps a di�er-

ent site) which only contained data required at that site. The two are not required

to be consistent at all times but changes done to the complete database are required

to percolate to the other within a speci�ed delay. If the changes should be re
ected

within d units of time, we have the following \temporal commit dependency":

((Commit

t

i

2 H) ^ (ts(Commit

t

i

) = t))) (Commit

t

j

2 H

t+d

).

This says that if t

i

commits at time t, t

j

should commit by time t+ d. For another

example, consider the following:

(temperature � threshold ^ time = t)) (Commit

t

j

2 H

t+function(temperature)

)

Here t

j

could be a transaction that opens a valve to pass more coolant into the

reactor whose temperature is above threshold. The length of time available to com-

plete this transaction is a function of the current temperature. This is a form of

triggered transaction but with speci�c time constraints imposed on its completion

[Korth, 1990b]. Such time constrained activities occur in real-time databases [Ra-

mamritham, 1992].



In some situations, it may be desirable to specify an interval [l; u] such that t

j

does

not commit before l (the lower bound) but de�nitely commits before u (the upper

bound). For example, consider deposits into a bank account. During the day, if

a deposit is made before 3pm, it is just \logged" into a �le but is re
ected in the

appropriate account between 10pm and 4am that night. Such constraints take the

form

((Commit

t

i

2 H) ^ (ts(Commit

t

i

) < t))) (Commit

t

j

2 H

[l;u]

)

The above conditions imposed on the initiation and termination of transactions

can be viewed as generalizations of the preconditions and postconditions associated

with speci�c transactions [Korth, 1988b].

For a �nal example of behavior related speci�cations, consider the situation in which

it may be desirable to prevent a transaction t

i

from aborting after a time t. This

corresponds to the assumption that a transaction is implicitly committed if it has

not aborted by a certain time [Rusinkiewicz, 1990]. For example, no bets can be

canceled after a race is started and a lottery ticket cannot be refunded after a given

time.

(Abort

t

i

62 H

t

)) (Commit

t

i

2 H

t+1

)

Other examples of behavior related requirements appear in [Ramamritham, 1991].

5 CONCLUSIONS

In this paper, we have examined di�erent types of acceptability criteria and have at-

tempted to provide a taxonomy with respect to database consistency requirements

and transaction correctness properties. Given space limitations, we could exam-

ine, in detail, only a subset of the proposals that have been made to capture the

correctness properties applicable to extended transaction models as well as those

demanded by the newer database applications.

We have approached the problem of categorizing the di�erent proposals by formally

specifying them using the framework of ACTA. This allows us to clearly see where

one proposal di�ers from another and what its relationship with serializability is.

We believe this taxonomy to be a good starting point in our endeavor to classify

proposed correctness criteria and to compare and contrast them. It can be viewed as

a common framework with respect to which one can study where a new correctness

criterion �ts and how it relates to existing criteria. In this regard, we expect the

taxonomy to evolve as better understanding is gained about the correctness needs

of emerging database applications.

Let us now examine some of the other implications of this work. In the context of

a multi-database system, the speci�cations of database consistency and transaction

correctness can be viewed as requirements on the coordinator of the blackboxes

[Breitbart, 1990] that control individual databases. We would like to apply the

reasoning capabilities of the ACTA formalism to study the properties of mecha-

nisms, such as in [Sheth, 1991], for maintaining relaxed correctness properties of

interdependent data. In the same context, we would like to investigate ways in



which the ACTA primitives themselves can be used as part of these mechanisms

[Rusinkiewicz, 1991, Sheth, 1992]. Similarly, in the context of active databases, we

can see how the semantics of the rules that govern the triggering of actions can

be formally speci�ed. In addition, the relationships between the triggering action

and the triggered action can also be expressed precisely using dependencies. Just

as we were able to reason about extended transactions using ACTA [Chrysanthis,

1991], we see the formalization of di�erent aspects of active databases as the start-

ing point for addressing issues, such as, reasoning about the consequences of rule

�rings, changes to rules, and coupling modes.
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