
ACTA: The SAGA Continues

Panos K. Chrysanthis

Dept. of Computer Science

University of Pittsburgh

Pittsburgh, PA 15260

Krithi Ramamritham

Dept. of Computer Science

University of Massachusetts

Amherst, MA 01003

Abstract

ACTA is a comprehensive transaction framework that permits a trans-

action modeler to specify the e�ects of extended transactions on each other

and on objects in the database. ACTA allows the speci�cation of (1) the in-

teractions between transactions in terms of relationships between signi�cant

(transaction management) events, such as begin, commit, abort, delegate, split,

and join, pertaining to di�erent transactions and (2) transactions' e�ects on

objects' state and concurrency status (i.e., synchronization state).

Various extended traditional models have been proposed to deal with

applications that involve reactive (endless), open-ended (long-lived) and col-

laborative (interactive) activities. One such model is Sagas [GS87] A Saga is

a set of relatively independent (component) transactions T

1

, T

2

,..., T

n

which

can interleave in any way with component transactions of other Sagas. Com-

ponents can commit even before the Saga commits. However, if the Saga sub-

sequently aborts, e�ects of the committed components are nulli�ed through

the invocation of compensating transactions.

After giving a brief introduction to the modeling primitives of ACTA,

we illustrate their use by giving a complete formal characterization of Sagas.

Subsequently, the reasoning power of ACTA is shown by proving properties

of Sagas. Finally, the
exibility of ACTA is displayed through a series of

variations to the original model of Sagas, each variation coming out of changes

to the formal characterization of Sagas.

This is a reprint of Chapter 10 of \Transactions Models for Advanced Database

Applications," edited by A. K. Elmagarmid of Purdue University and published by

Morgan Kaufmann (1992)

This material is based upon work supported by the N.S.F. under grant CDA-8922572.

E-mail: panos@cs.pitt.edu, krithi@cs.umass.edu.

Panos K. Chrysanthis

Krithi Ramamritham

1

2 Chapter 10. ACTA: The SAGA Continues

10.1

Introduction

Transactions in database systems are de�ned in terms of several impor-

tant notions such as: visibility, referring to the ability of one transaction to see

the results of another transaction while it is executing; consistency, referring

to the correctness of the state of the database that a committed transaction

produces; recovery, referring to the ability, in the event of failure, to take the

database to some state that is considered correct; and permanence, referring

to the ability of a transaction to record its results in the database. The
exi-

bility of a given transaction model depends on the way these four notions are

combined.

Although powerful, the transaction model [EGLT76, Gra81] found in

traditional database systems is found lacking in functionality and performance

when used for applications that involve reactive (endless), open-ended (long-

lived) and collaborative (interactive) activities. Hence, various extensions

to the traditional model have been proposed, referred to herein as extended

transactions [Mos81, VRS86, BKK85, PKH88, KLS90, GGK

+

91, BHMC90,

FZ89, SZ89, Elm91]. Compared to the traditional transaction model, these

models associate \broader" interpretations with the four transaction notions

mentioned above to provide enhanced functionality while increasing the po-

tential for improved performance. Upon examining these ad hoc extensions

to the traditional transaction model, one is prompted to seek answers to the

following questions:

� What properties does a model possess vis a vis visibility, consistency, re-

covery, and permanence? (For example, traditional transactions guaran-

tee failure atomicity, serializability, and durability.) What added func-

tionality does a model provide?

� In what respects is a model similar to traditional transactions? In what

respects is it dissimilar? More generally, how does one transaction model

di�er from another? Can two models be used in conjunction?

In attempting to answer these questions, we found a need for a common frame-

work within which one can specify and reason about the nature of interactions

between transactions in a particular model. This motivated the development

of a comprehensive transaction framework, called ACTA

1

, which characterizes

the e�ects of transactions as per the taxonomy of Figure 10.1.

1

ACTA means actions in Latin.

10.2 The Formal ACTA Framework 3

Effects

Inter-Transaction
 Dependency

on Transactions on Objects

 View of
Transaction

 Delegation Conflict Set
 of Transaction

FIGURE 10.1

Dimensions of the ACTA Framework

After giving a brief introduction to the modeling primitives of ACTA,

we illustrate its use by giving a complete formal characterization of Sagas,

an extended transaction model developed to support long-lived activities. A

Saga is a set of relatively independent (component) transactions which can in-

terleave in any way with component transactions of other Sagas. Components

can commit even before the Saga commits. However, if the Saga subsequently

aborts, e�ects of the committed components are nulli�ed through the invoca-

tion of compensating transactions.

The reasoning power of ACTA is shown by proving properties of Sagas.

Finally, the
exibility of ACTA is displayed through a series of variations to

the original model of Sagas, each variation coming out of changes to the formal

characterization of Sagas. This will show the use of ACTA for \inventing" new

transaction models by methodically varying the de�nition of existing models.

10.2

The Formal ACTA Framework

This section attempts to provide a concise yet complete introduction to

ACTA. Subsection 10.2.1 provides some of the preliminary concepts underly-

ing the ACTA formalism.

ACTA allows the speci�cation of the e�ects of transactions on other

transactions and also their e�ect on objects. Inter-transaction dependencies,

4 Chapter 10. ACTA: The SAGA Continues

discussed in Subsection 10.2.2, form the basis for the former while visibility

of and con
icts between operations on objects, discussed in Subsection 10.2.3

form the basis for the latter.

We would like to point out that with the evolution of ACTA, some

aspects of ACTA introduced in earlier papers have changed. For example,

the notion of view set introduced in [CR90] has been replaced in the current

version by the notions of view and con
ict set (see Subsection 10.2.3).

10.2.1 Preliminaries

Objects Events

A database is the entity that contains all the shared objects in a sys-

tem. A transaction accesses and manipulates the objects in the database by

invoking operations speci�c to individual objects. The state of an object is

represented by its contents. Each object has a type, which de�nes a set of

operations that provide the only means to create, change and examine the

state of an object of that type. It is assumed that an operation always pro-

duces an output (return value), that is, it has an outcome (condition code)

or a result. The result of an operation on an object depends on the state of

the object. For a given state s of an object, we use return(s; p) to denote the

output produced by operation p, and state(s; p) to denote the state produced

after the execution of p.

DEFINITION

Invocation of an operation on an object is termed an object event. The

type of an object de�nes the operations and thus, the object events that

pertain to it. We use p

t

[ob] to denote the object event corresponding to

the invocation of the operation p on object ob by transaction t and OE

t

to denote the set of object events that can be invoked

2

by transaction t

(i.e., p

t

[ob] 2 OE

t

).

The e�ects of an operation on an object are not made permanent at the

time of the execution of the operation. They need to be explicitly committed

or aborted.

2

We will use \invoke an event" to mean \cause an event to occur." One of the meanings

of the word \invoke" is \to bring about."

10.2 The Formal ACTA Framework 5

DEFINITION

The e�ects of an operation p invoked by a transaction t on an object ob

are made permanent in the database when p

t

[ob] is committed.

DEFINITION

The e�ects of an operation p invoked by a transaction t on an object ob

are obliterated when the p

t

[ob] is aborted.

Depending on the semantics of the operations and on the object's recovery

properties, aborting an operation may force the abortion of other operations

as well.

Commit and Abort operations are de�ned on every object for every

operation. Invoked operations that have neither committed nor aborted are

termed in progress operations. Typically, an operation is committed only

if the invoking transaction commits and it is aborted only if the invoking

transaction aborts. However, it is conceivable that an extended transaction

may commit only a subset of its operations on an object while aborting the

rest. Furthermore, through delegation (see Subsection 10.2.3), a transaction

other than the event-invoker, i.e., the transaction that invoked an operation,

can be granted the responsibility to commit or abort the operation.

Signi�cant Events

In addition to the invocation of operations on objects, transactions in-

voke transaction management primitives. For example, atomic transactions

are associated with three transaction management primitives: Begin, Commit

and Abort. The speci�c primitives and their semantics depend on the speci�cs

of a transaction model. For instance, whereas the Commit by an atomic trans-

action implies that it is terminating successfully and that all of its e�ects on

the objects should be made permanent in the database, the Commit of a sub-

transaction of a nested transaction implies that all of its e�ects on the objects

should be made persistent and visible with respect to its parent and sibling

subtransactions

3

. Other transaction management primitives include Spawn,

found in the nested transaction model, and Split and Join, found in the split

transaction model [PKH88].

3

As shown in Subsection 10.2.3, in ACTA, the ability of a nested subtransaction to make

its e�ect visible to its parent is speci�ed by means of the notion of delegation.

6 Chapter 10. ACTA: The SAGA Continues

DEFINITION

Invocation of a transaction management primitive is termed a signi�cant

event. A transaction model de�nes the signi�cant events that pertain to

transactions adhering to that model. SE

t

denotes the set of signi�cant

events that is relevant to transaction t.

ACTA does not a priori assume a given set of signi�cant events nor

does it associate any semantics with the signi�cant events, but it provides the

means by which signi�cant events and their semantics can be speci�ed.

It is useful to distinguish, given the set of signi�cant events associated

with a transaction t, between events that are relevant to the initiation of t

and those that are relevant to the termination of t.

DEFINITION

Initiation events, denoted by IE

t

, is a set of signi�cant events that can

be invoked to initiate the execution of transaction t. IE

t

� SE

t

.

DEFINITION

Termination events, denoted by TE

t

, is a set of signi�cant events that

can be invoked to terminate the execution of transaction t. TE

t

� SE

t

.

For example, in the split transaction model, Begin and Split are transaction

initiation events whereas Commit, Abort and Join are transaction termination

events.

A transaction is in progress if it has been initiated by some initiation

event and it has not yet executed one of the termination events associated

with it. A transaction terminates when it executes a termination event.

Histories and Conditions on Event Occurrences

Fundamental to ACTA is the notion of history [BHG87] which repre-

sents the concurrent execution of a set of transactions T . ACTA captures

the e�ects of transactions on other transactions and also their e�ects on ob-

jects through constraints on histories. This leads to de�nitions of transaction

models in terms of a set of axioms which are either invariant assertions about

the histories generated by the transactions adhering to the particular model

10.2 The Formal ACTA Framework 7

or explicit preconditions or postconditions of operations or transaction man-

agement primitives. Also, the correctness properties of di�erent transaction

models can be expressed in terms of the properties of the histories produced

by these models.

DEFINITION

The execution of a transaction t is a partial order of events E

t

with

ordering relation <

t

where

1. E

t

� (OE

t

[SE

t

); and

2. <

t

denotes the temporal order in which the related events invoked

by t occur.

In words, E

t

contains events which are either object events allowed to be

invoked by t or signi�cant events related to t.

DEFINITION

A history H of the concurrent execution of a set of transactions T con-

tains all the events associated with the transactions in T and indicates

the (partial) order in which these events occur. H

ct

(the current history)

is used to denote the history of events that occur until a point in time.

The partial order of the operations in a history pertaining to T is consis-

tent with the partial order <

t

of the events associated with each individual

transaction t in T .

The occurrence of an event in a history can be a�ected in one of three

ways: (1) An event � can be constrained to occur only after another event �

0

;

(2) An event � can occur only if a condition c is true; and (3) a condition c

can require the occurrence of an event �.

DEFINITION

The predicate �! �

0

is true if event � precedes event �

0

in history H. It

is false, otherwise. (Thus, �! �

0

implies that � 2 H and �

0

2 H.)

8 Chapter 10. ACTA: The SAGA Continues

DEFINITION

(� 2 H)) Condition

H

, where) denotes implication, speci�es that

the event � can belong to history H only if Condition

H

is satis�ed. In

other words, Condition

H

is necessary for � to be in H. Condition

H

is

a predicate involving the events in H.

Consider (�

0

2 H)) (�! �

0

). This states that the event �

0

can belong to the

history H only if event � occurs before �

0

.

DEFINITION

Condition

H

) (� 2 H) speci�es that if Condition

H

holds, � should be

in the history H. In other words, Condition

H

is su�cient for � to be

in H.

Consider (�! �

0

)) (� 2 H). This states that if event � occurs before �

0

then

event � belongs to the history.

In specifying conditions over histories, we will �nd it useful to de-

�ne the projection of a history H according to a given criterion }, denoted

Projection(H;}). For instance, Projection(H; t), the projection of a history

H on a speci�c transaction t yields the order of events related to t, denoted by

H

t

; whereas Projection(H; ob), the projection of the history H on a speci�c

object ob yields the history of operation invocations on the object, denoted

by H

(ob)

.

10.2.2 E�ects of Transactions on Other

Transactions

Dependencies provide a convenient way to specify and reason about the

behavior of concurrent transactions and can be precisely expressed in terms

of the signi�cant events associated with the transactions.

DEFINITION

Dependency set, denoted by DepSet, is a set of inter-transaction depen-

dencies developed during the concurrent execution of a set of transactions

T . Thus, DepSet is relative to a history H. DepSet

ct

(the current de-

pendency set) is used to denote the set of dependencies until a point in

time and hence, it is relative to H

ct

.

10.2 The Formal ACTA Framework 9

In the rest of this section, after formally specifying di�erent types of

dependencies, we identify the source of these dependencies.

Types of Dependencies

Let t

i

and t

j

be two extended transactions and H be a �nite history

which contains all the events pertaining to t

i

and t

j

.

Commit Dependency (t

j

CD t

i

): if both transactions t

i

and t

j

commit then

the commitment of t

i

precedes the commitment of t

j

; i.e.,

(Commit

t

j

2 H)) ((Commit

t

i

2 H)) (Commit

t

i

! Commit

t

j

)):

Strong-Commit Dependency (t

j

SCD t

i

): if transaction t

i

commits then t

j

commits; i.e., (Commit

t

i

2 H)) (Commit

t

j

2 H):

Abort Dependency (t

j

AD t

i

): if t

i

aborts then t

j

aborts; i.e.,

(Abort

t

i

2 H)) (Abort

t

j

2 H):

Weak-Abort Dependency (t

j

WD t

i

): if t

i

aborts and t

j

has not yet com-

mitted, then t

j

aborts. In other words, if t

j

commits and t

i

aborts then

the commitment of t

j

precedes the abortion of t

i

in a history; i.e.,

(Abort

t

i

2 H)) (:(Commit

t

j

! Abort

t

i

)) (Abort

t

j

2 H)):

Termination Dependency (t

j

T D t

i

): t

j

cannot commit or abort until t

i

either commits or aborts; i.e., (�

0

2 H)) (�! �

0

)

where � 2 fCommit

t

i

;Abort

t

i

g, and �

0

2 fCommit

t

j

;Abort

t

j

g:

Exclusion Dependency (t

j

ED t

i

): if t

i

commits and t

j

has begun executing,

then t

j

aborts (both t

i

and t

j

cannot commit); i.e.,

(Commit

t

i

2 H)) ((Begin

t

j

2 H)) (Abort

t

j

2 H)):

Force-Commit-on-Abort Dependency (t

j

CMD t

i

): if t

i

aborts, t

j

commits;

i.e., (Abort

t

i

2 H)) (Commit

t

j

2 H):

Begin Dependency (t

j

BD t

i

): transaction t

j

cannot begin executing until

transaction t

i

has begun; i.e., (Begin

t

j

2 H)) (Begin

t

i

! Begin

t

j

):

Serial Dependency (t

j

SD t

i

): transaction t

j

cannot begin executing until t

i

either commits or aborts; i.e.,

(Begin

t

j

2 H)) (�! Begin

t

j

) where � 2 fCommit

t

i

;Abort

t

i

g:

Begin-on-Commit Dependency (t

j

BCD t

i

): transaction t

j

cannot begin ex-

ecuting until t

i

commits; i.e., (Begin

t

j

2 H)) (Commit

t

i

! Begin

t

j

):

10 Chapter 10. ACTA: The SAGA Continues

Begin-on-Abort Dependency (t

j

BAD t

i

): transaction t

j

cannot begin exe-

cuting until t

i

aborts; i.e., (Begin

t

j

2 H)) (Abort

t

i

! Begin

t

j

):

Weak-begin-on-Commit Dependency (t

j

WCD t

i

): if t

i

commits, t

j

can

begin executing after t

i

commits; i.e.,

(Begin

t

j

2 H)) ((Commit

t

i

2 H)) (Commit

t

i

! Begin

t

j

)):

The formal de�nitions of weak-abort dependency and abort dependency clearly

re
ect that weak-abort dependency is weaker than abort dependency. Weak-

abort dependency is useful, for example, in specifying and reasoning about

the properties of nested transactions [Mos81]. Begin-on-commit dependency,

begin-on-abort dependency and force-commit-on-abort dependency are useful

for compensating transactions [KLS90] and contingency transactions [BHMC90].

Begin-on-commit dependency and begin-on-abort dependency are special cases

of serial dependency. The important di�erence between exclusion dependency

and force-commit-on-abort dependency is that exclusion dependency allows

both transactions to abort whereas force-commit-on-abort dependency does

not.

We would like to note that this list of dependencies is not exhaustive.

Other dependencies that involve signi�cant events besides the Begin, Commit

and Abort events, can be de�ned. As we will see in Section 10.5.4, when new

signi�cant events are associated with extended transactions, new dependencies

may be speci�ed in a similar manner. In this sense, ACTA is an open-ended

framework.

Source of Dependencies

Dependencies between transactions may be a direct result of the struc-

tural properties of transactions, or may indirectly develop as a result of inter-

actions of transactions over shared objects. These are elaborated below.

Dependencies due to Structure

The structure of an extended transaction de�nes its component trans-

actions and the relationships between them. Dependencies can express these

relationships and thus, can specify the links in the structure. For example,

in hierarchically-structured nested transactions, the parent/child relationship

is established at the time the child is spawned. This is expressed by a child

transaction t

c

establishing a weak-abort dependency on its parent t

p

((t

c

WD

t

p

)) and a parent establishing a commit dependency on its child ((t

p

CD t

c

)).

10.2 The Formal ACTA Framework 11

Speci�cally, this is speci�ed in terms of the postcondition of the Spawn event

(post(Spawn

t

p

[t

c

])):

post(Spawn

t

p

[t

c

])) (((t

c

WD t

p

) 2 DepSet

ct

)^((t

p

CD t

c

) 2 DepSet

ct

)):

The weak-abort dependency guarantees the abortion of an uncommitted child

if its parent aborts. Note that this does not prevent the child from committing

and making its e�ects on objects visible to its parent and siblings. (In nested

transactions, when a child transaction commits, its e�ects are not made per-

manent in the database. They are just made visible to its parent. See [Chr91]

for a precise formal de�nition of nested transactions.) The commit depen-

dency of the parent on its child is preserved if (1) the parent does not commit

before its child terminates, or (2) the child aborts in case its parent commits

�rst. The weak-abort dependency together with the commit dependency says

that an orphan, i.e., a child transaction whose parent has terminated, will not

commit.

Other hierarchically-structured transactions may de�ne various relation-

ships between a parent and its child transactions. For example, in the trans-

action model proposed in [BHMC90, GGK

+

91] a parent can commit only if

its vital children commit, i.e., a parent transaction has an abort dependency

on its vital children t

v

(t

p

AD t

v

) (see Section 10.5.2). Child transactions

may also have di�erent dependencies with their parents if the transaction

model supports various spawning or coupling modes [DHL90]. Sibling trans-

actions may also be interrelated in several ways. For example, components of

a saga [GS87] can be paired according to a compensated-for/compensating re-

lationship [KLS90]. Relations between a compensated-for and compensating

transactions as well as those between them and the saga can be speci�ed via

begin-on-commit dependency BCD, begin-on-abort dependency BAD, force-

commit-on-abort dependency CMD and strong-commit dependency SCD (see

Figure 10.5). In a similar fashion dependencies that occur in the presence of

alternative transactions and contingency transactions [BHMC90] can also be

speci�ed (see Section 10.5.3).

Dependencies due to Behavior

Dependencies formed by the interactions of transactions over a shared

object are determined by the object's synchronization properties. Broadly

speaking, two operations con
ict if the order of their execution matters. For

example, in the traditional framework, a compatibility table [BHG87] of an

12 Chapter 10. ACTA: The SAGA Continues

object ob expresses simple relations between con
icting operations. A con
ict

relation has the form

(p

t

i

[ob]! q

t

j

[ob])) (t

j

D t

i

)

indicating that if transaction t

j

invokes an operation p and later a transac-

tion t

j

invokes an operation q on the same object ob, then t

j

should develop

a dependency of type D on t

i

. As we will see in the next section, ACTA

allows con
ict relations to be complex expressions involving di�erent types of

dependencies, operation arguments, and results, as well as operations on the

same or di�erent objects.

10.2.3 Objects and the E�ects of Transactions on

Objects

In order to better understand the e�ects of transactions on objects, we

need to �rst understand the e�ects of the operations invoked by the transac-

tions.

Con
icts between Operations and the Induced

Dependencies

A history H

(ob)

of operation invocations on an object ob, H

(ob)

= p

1

�

p

2

�:::�p

n

; indicates both the order of execution of the operations, (p

i

precedes

p

i+1

), as well as the functional composition of operations. Thus, a state s of

an object produced by a sequence of operations equals the state produced by

applying the history H

(ob)

corresponding to the sequence of operations on the

object's initial state s

0

(s = state(s

0

;H

(ob)

)). For brevity, we will use H

(ob)

to denote the state of an object produced by H

(ob)

, implicitly assuming initial

state s

0

.

DEFINITION

Two operations p and q con
ict in a state produced by H

(ob)

, denoted by

con
ict(H

(ob)

; p; q), i�

(state(H

(ob)

� p; q) 6= state(H

(ob)

� q; p)) _

(return(H

(ob)

; q) 6= (return(H

(ob)

� p; q)) _

(return(H

(ob)

; p) 6= (return(H

(ob)

� q; p)):

Two operations that do not con
ict are compatible.

10.2 The Formal ACTA Framework 13

Thus, two operations con
ict if their e�ects on the state of an object or

their return values are not independent of their execution order. Since state

changes are observed only via return values, the semantics of the return values

can be considered in dealing with con
icting operations.

DEFINITION

Given con
ict(H

(ob)

; p; q), return-value-independent(H

(ob)

; p; q) is true

if the return value of q is independent of whether p precedes q, i.e.,

return(H

(ob)

� p; q) = return(H

(ob)

; q); otherwise q is return-value de-

pendent on p (return-value-dependent(H

(ob)

; p; q)).

Given a history H in which p

t

i

[ob] and q

t

j

[ob] occur, the state of ob when

p

t

i

is executed is known from where p

t

i

occurs in the history. Hence, from

now on, we drop the �rst argument in con
ict, return-value-independent, and

return-value-dependent when it is implicit from the context.

Interactions between con
icting operations can cause dependencies of

di�erent types between the invoking transactions. The type of interactions

induced by con
icting operations depends on whether the e�ects of opera-

tions on objects are immediate or deferred. An operation has an immediate

e�ect on an object only if it changes the state of the object as it executes

and the new state is visible to subsequent operations. Thus, an operation p

operates on the (most recent) state of the object, i.e., the state produced by

the operation immediately preceding p. For example, e�ects are immediate in

objects which perform in-place updates and employ logs for recovery. E�ects

of operations are deferred if operations are not allowed to change the state of

an object as soon as they occur but, instead, the changes are e�ected only

upon commitment of the operations. In this case, operations performed by a

transaction are maintained in intentions lists.

In the rest of the paper, we will consider the situation when the e�ects

are immediate. In this case, when an operation q follows operation p and q

is return-value dependent on p, the transaction t

j

invoking the operation q

must abort q if for some reason the transaction t

i

aborts p.

(return-value-dependent(p; q) ^ (p

t

i

[ob]! q

t

j

[ob])))

((Abort

t

i

[p

t

i

[ob]] 2 H)) (Abort

t

j

[q

t

j

[ob]] 2 H)):

This dependency ensures the correct behavior of objects in the presence of

failure.

14 Chapter 10. ACTA: The SAGA Continues

Motivated by this, in ACTA, the concurrency properties of an object

are formally expressed in terms of con
ict relations of the form:

(p

t

i

[ob]! q

t

j

[ob])) Condition

H

,

where Condition

H

is typically a dependency relationship involving the trans-

actions t

i

and t

j

invoking con
icting operations p and q on an object ob.

Obviously, the absence of a con
ict relation between two operations de�ned

on an object indicates that the operations are compatible and do not induce

any dependency

4

.

This generality allows ACTA to encompass both object-speci�c and

transaction-speci�c semantic information. First consider some object-speci�c

semantics. Commutativity does not distinguish between return-value depen-

dent and independent con
icts. It treats both the same and uses abort de-

pendency for both:

(p

t

i

[ob]! q

t

j

[ob])) (t

j

AD t

i

).

Recoverability [BR90] avoids the unnecessary development of an abort depen-

dency for return-value independent con
icts. Thus, recoverability induces the

following con
ict relations:

return-value-independent(p; q) ^ (p

t

i

[ob]! q

t

j

[ob])) (t

j

CD t

i

);

return-value-dependent(p; q) ^ (p

t

i

[ob]! q

t

j

[ob])) (t

j

AD t

i

).

We introduce transaction-speci�c semantics through an example. Con-

sider a page object with the standard read and write operations, where read

and write operations con
ict. A read is return-value dependent on write,

whereas a write is return-value independent of a read or another write. In

addition, consider transactions which have the ability to reconcile potential

read-write con
icts: When a transaction t

i

reads a page x and another trans-

action t

j

subsequently writes x, t

i

and t

j

can commit in any order. However,

4

Clearly, when an invoked operation con
icts with an operation in progress, a dependency,

e.g., an abort or commit dependency, will be formed if the invoked operation is allowed

to execute. That is, this may induce an abortion or a speci�c commit ordering. One way

to avoid this is to force the invoking transaction to (a) wait until the con
icting operation

terminates (this is what the traditional \no" entry in a compatibility table means) or (b)

abort. In either case, con
ict relationships between operations imply that the transaction

management system must keep track of in-progress operations and of dependencies that

have been inducedby the con
ict. A commonlyused synchronizationmechanism for keeping

track of in-progress operations and dependencies is based on (logical) locks.

10.2 The Formal ACTA Framework 15

if t

j

commits before t

i

commits, t

i

must reread x in order to commit. This is

captured by the following con
ict relation:

(read

t

i

[x]! write

t

j

[x])) ((Commit

t

j

! Commit

t

i

)) (Commit

t

j

! read

t

i

[x]))):

This con
ict relation cannot be derived solely from the object-speci�c seman-

tics of the page. Clearly, transaction speci�c concurrency control might not

achieve serializability but still preserves consistency.

In the example, t

i

has to reread the page x when, subsequent to the �rst

read, the page is written and committed by t

j

. In general, t

i

may need to

invoke an operation on the same or a di�erent object. For instance, instead of

x, t

i

may have to read a scratch-pad object which t

i

and t

j

use to determine

and reconcile potential con
icts. Thus, ACTA allows the speci�cation of

operations that need to be controlled to produce correct histories as well as

the speci�cation of operations that have to occur in correct histories. These

correspond to con
icts and patterns in [Ska91].

The Condition

H

in a con
ict relation may include other signi�cant

events de�ned by the various transaction models. As an example, consider

the signi�cant event Notify, related to the notion of noti�cation useful in a

cooperative environment [FZ89]. For instance, the condition Notify

t

j

[(t

i

CD

t

j

)] will cause a commit dependency to be established from transaction t

i

to

t

j

as well as notify t

j

about the development of the commit dependency. Such

compound conditions can be used to de�ne a recoverability-based table in a

cooperative environment. Transaction t

j

can use the information about the

existence of the commit dependency to postpone the invocation of another

operation that causes a commit dependency of t

j

on t

i

, and thus postpone

the formation of a circular commit dependency.

The generality of the con
ict relations allows ACTA to capture dif-

ferent types of type-speci�c concurrency control discussed in the literature

[SS84, HW88, Wei88, BR90, CRR91], and even to tailor them for cooperative

environments.

16 Chapter 10. ACTA: The SAGA Continues

Controlling Object Visibility

Visibility and Con
icts

As de�ned earlier, visibility refers to the ability of one transaction to see

the e�ects of another transaction on objects while they are executing. ACTA

allows �ner control over the visibility of objects by associating two entities,

namely, view and con
ict set, with every transaction.

DEFINITION

The view of a transaction, denoted by V iew

t

, speci�es the state of objects

visible to transaction t at a point in time.

V iew

t

is formally speci�ed to be a subhistory derived by projecting events in

H

ct

:

V iew

t

= Projection(H

ct

;Predicate(t;H

ct

; DepSet

ct

)):

In other words, the subhistory is constructed by eliminating any events in H

ct

that do not satisfy the given Predicate. Predicate depends on t, events in

H

ct

and inter-transaction dependencies DepSet

ct

. For example, the view of a

subtransaction t

c

in the nested transaction model is de�ned to be the current

history, i.e., V iew

t

c

= H

ct

, allowing t

c

to view the most recent state of objects

in the database.

For a more elaborate example, suppose that a subtransaction t

c

is re-

stricted to operate only on those objects that have been accessed by its parent

t

p

and is allowed to notice the changes done to them by its parent. The view

of such a subtransaction t

c

is de�ned as following form.

V iew

t

c

= ProjectionfH

ct

; p

t

[ob]j(t = t

c

_ t = t

p

_

(CommittedTr(t) ^ 9q (q

t

p

[ob] 2 H

ct

)))g:

The predicate CommittedTr(t) is true if transaction t has committed. Thus,

t

c

can see the changes done by committed transactions on the objects accessed

by its parent.

DEFINITION

The con
ict set of a transaction t, denoted by ConflictSet

t

, contains

those in-progress operations with respect to which con
icts have to be

determined.

10.2 The Formal ACTA Framework 17

The composition of ConflictSet

t

is determined by the particular trans-

action model. It is speci�ed via a predicate which can involve events invoked

by t and any other transaction t

i

, events inH

ct

, and dependencies inDepSet

ct

:

ConflictSet

t

= fp

t

i

[ob] j Predicate(t; t

i

;H

ct

; DepSet

ct

)g:

A transaction t

j

can invoke an operation on an object without con
icting with

another transaction t

i

if the operations in progress performed by t

i

on the same

object are in the view of t

j

but are not included in the con
ict set of t

j

. Let

us illustrate this by considering nested transactions. In nested transactions,

a subtransaction t

c

can access without con
icts any object currently accessed

by one of its ancestors t

a

. This is captured by

ConflictSet

t

c

= fp

t

i

[ob] j t

i

6= t

c

; t

i

62 Ancestor(t

c

); Inprogress(p

t

i

[ob])g;

Ancestor(t

c

) is the set of ancestors of t

c

.

Inprogress(p

t

i

[ob]) is true with respect to current history H

ct

if p

t

i

[ob] has

been performed but has neither committed nor aborted yet; i.e.,

Inprogress(p

t

i

[ob])) ((p

t

i

[ob] 2 H

ct

) ^

((Commit

t

i

[p

t

i

[ob]] 62 H

ct

) ^ (Abort

t

i

[p

t

i

[ob]] 62 H

ct

))).

This states that any operation invoked by an ancestor of t

c

is not contained

in ConflictSet

t

c

. For this reason, a transaction t

c

can invoke an operation

that con
icts with another in progress, invoked by its ancestor t

a

, without

forming a dependency.

At any given time, the current history H

ct

and current dependency set

DepSet

ct

exist. The axiomatic de�nition of a transaction model speci�es the

V iew

t

and ConflictSet

t

of each transaction t in that model. These determine

if a new event can be invoked. Speci�cally, the preconditions of the event

derived from the axiomatic de�nition of its invoking transaction are evaluated

with respect to H

ct

and DepSet

ct

using the V iew

t

and ConflictSet

t

. If its

preconditions are satis�ed, the new event is invoked and appended to the H

ct

re
ecting its occurrence.

The axiomatic de�nitions also specify how the dependency set is modi-

�ed when a signi�cant event is invoked. As we saw earlier, if an event is an

object event, the operation semantics may also induce new dependencies to

be added to DepSet

ct

.

The degree of visibility allowed by a transaction model depends on the

width of the views of the transactions in the model and on the size of their

con
ict sets. By width we mean the length of the subhistory specifying the

view. A larger width makes more operations visible while a smaller size leads

18 Chapter 10. ACTA: The SAGA Continues

to fewer con
icts permitting more operations to be performed without con-

icting.

Delegation

DEFINITION

ResponsibleT r(p

t

i

[ob]) identi�es the transaction responsible for commit-

ting or aborting the operation p

t

i

[ob] with respect to the current history

H

ct

.

In general, a transaction may delegate some of its responsibilities to another

transaction. More precisely,

DEFINITION

Delegate

t

i

[t

j

; p

t

i

[ob]] denotes that t

i

delegates to t

j

the responsibility for

committing or aborting operation p

t

i

[ob].

More generally, Delegate

t

i

[t

j

; DelegateSet] denotes that t

i

delegates to

t

j

the responsibility for committing or aborting each operation p

t

i

[ob] in

the DelegateSet.

Delegation has the following rami�cations which are formally stated in [Chr91]:

� ResponsibleT r(p

t

i

[ob]) is t

i

, the event-invoker, unless t

i

delegates p

t

i

[ob]

to another transaction, say t

j

, at which point it will become t

j

. If

subsequently t

j

delegates p

t

i

[ob] to another transaction, say t

k

,

ResponsibleT r(p

t

i

[ob]) becomes t

k

.

� The precondition for the event Delegate

t

j

[t

k

; p

t

i

[ob]] is that

ResponsibleT r(p

t

i

[ob]) is t

j

. The postcondition will imply that

ResponsibleT r(p

t

i

[ob]) is t

k

.

� A precondition for the eventAbort

t

j

[p

t

i

[ob]] is thatResponsibleT r(p

t

i

[ob])

is t

j

. Similarly, a precondition for the event Commit

t

j

[p

t

i

[ob]] is that

ResponsibleT r(p

t

i

[ob]) is t

j

. Hence, from now on, unless essential, we

will drop the suscript, e.g., t

j

, associated with the operation abort and

commit events.

10.2 The Formal ACTA Framework 19

� Delegation cannot occur in the event that the delegatee has already

committed or aborted, and has no e�ect if the delegated operations

have already been committed or aborted.

� Delegation redirects the dependencies induced by delegated operations

from the delegator to the delegatee | dependencies are sort of respon-

sibilities.

Note that delegation broadens the visibility of the delegatee and is useful

in selectively making tentative or partial results as well as hints, such as,

coordination information, accessible to other transactions.

In controlling visibility, we will �nd it useful to associate each transaction

with an access set.

DEFINITION

AccessSet

t

= fp

t

i

[ob]jResponsibleTr(p

t

i

[ob]) = tg; i.e.,

AccessSet

t

contains all the operations for which t is responsible.

In nested transactions, when the root commits, its e�ects are made

permanent in the database, whereas when a subtransaction commits, via in-

heritance, its e�ects are made visible to its parent transaction. The notion of

inheritance used in nested transactions is an instance of delegation. Speci�-

cally, when a child transaction t

c

commits, t

c

delegates to its parent t

p

all the

operations that it is responsible for

(Commit

t

c

2 H), (Delegate

t

c

[t

p

;AccessSet

t

c

] 2 H).

Delegation need not occur only upon commit or abort but a transaction can

delegate any of the operations in its access set to another transaction at any

point during its execution. This is the case for Co-Transactions and Reporting

Transactions described in [CR91, Chr91].

Delegation can be used not only in controlling the visibility of objects,

but also to specify the recovery properties of a transaction model. For in-

stance, if a subset of the e�ects of a transaction should not be obliterated

when the transaction aborts while at the same time they should not be made

permanent, the Abort event associated with the transaction can be de�ned to

delegate these e�ects to the appropriate transaction. In this way, the e�ects

of the delegated operations performed by the delegator on objects are not lost

even if the delegator aborts. Instead, the delegatee has the responsibility for

committing or aborting these operations.

20 Chapter 10. ACTA: The SAGA Continues

In cooperative environments, transactions cooperate by having intersect-

ing views, by allowing the e�ects of other's operations to be visible without

producing con
icts, by delegating operations to each other, or by notifying

each other of their behavior. By being able to capture these aspects of trans-

actions, the ACTA framework is applicable to cooperative environments.

10.3

Characterization of Atomic Transactions

Since the building blocks for a Saga are atomic transactions, we now

give a formal characterization of atomic transactions.

Atomic transactions combine the properties of serializability and failure

atomicity. These properties ensure that concurrent transactions execute with-

out any interference as though they executed in some serial order, and that

either all or none of a transaction's operations are performed.

Let us �rst de�ne the correctness properties of objects within formal

ACTA, starting with the serializability correctness criterion.

DEFINITION

Let C be a binary relation on transactions, and t

i

and t

j

be transactions.

(t

i

Ct

j

); t

i

6= t

j

if

9ob 9p; q (con
ict(p

t

i

[ob]; q

t

j

[ob])^ (p

t

i

[ob]! q

t

j

[ob]))

DEFINITION

Let C

�

be the transitive-closure of C; i.e.,

(t

i

C

�

t

k

) if [(t

i

Ct

k

) _ 9t

j

(t

i

Ct

j

^ t

j

C

�

t

k

)]:

DEFINITION

A set of transactions T is (con
ict preserving) serializable i�

8t 2 T :(tC

�

t)

10.3 Characterization of Atomic Transactions 21

DEFINITION

An object ob behaves correctly i�

8t

i

; t

j

; t

i

6= t

j

; 8p; q

(return-value-dependent(p,q)^(p

t

i

[ob]! q

t

j

[ob])))

((Abort[p

t

i

[ob]] 2 H

(ob)

)) (Abort[q

t

j

[ob]] 2 H

(ob)

)):

This de�nition implies that for an object to behave correctly it must ensure

that when an operation aborts, any return-value dependent operation that

follows it must also be aborted. It is not necessary for it to exhibit serial

behavior, i.e., it is not necessary for the order in which the operations are

executed by di�erent transactions to be serializable. This de�nition ensures

the correct behavior of objects in the presence of failures assuming immediate

e�ects of operations on objects. Similarly, such dependencies can be de�ned

for deferred e�ects.

DEFINITION

An object ob behaves serializably i�

8t; t

i

8p (Commit

t

i

[p

t

[ob]] 2 H

(ob)

)) :(tC

�

t):

This de�nition states that the serializable behavior of an object is ensured by

preventing transactions from forming cyclic C relationships.

DEFINITION

An object ob is atomic if ob behaves correctly and serializably.

DEFINITION

Transaction t is failure atomic if

1. 9ob 9p (Commit

t

[p

t

[ob]] 2 H))

8ob

0

8q ((q

t

[ob

0

] 2 H)) (Commit

t

[q

t

[ob

0

]] 2 H)),

2. 9ob 9p (Abort

t

[p

t

[ob]] 2 H))

8ob

0

8q ((q

t

[ob

0

] 2 H)) (Abort

t

[q

t

[ob

0

]] 2 H)),

As mentioned earlier, failure atomicity implies that all or none of a

transaction's operations are executed. In the above de�nition, the \all" clause

is captured by condition 1 which states that if an operation invoked by a

22 Chapter 10. ACTA: The SAGA Continues

transaction t is committed on an object, all the operations invoked by t are

committed by t. The \none" clause is captured by condition 2 which states

that if an operation invoked by a transaction t is aborted on an object, all the

operations invoked by t are aborted by t.

In the same way that serializability and failure atomicity were expressed

above, other correctness properties of extended transactions such as quasi se-

rializability [DE89], predicatewise serializability [KS88] and quasi failure atom-

icity [Chr91], can be expressed in ACTA [Chr91].

Recall that each transaction model de�nes a set of signi�cant events that

transactions adhering to that model can invoke in addition to the invocation

of operations on objects. A transaction is always associated with a set of

initiation signi�cant events that can be invoked to initiate the execution of

the transaction, and a set of termination signi�cant events that can be invoked

to terminate the execution of the transaction. A set of Fundamental Axioms

which is applicable to all transaction models speci�es the relationship between

signi�cant events of the same or di�erent type, and between signi�cant events

and operations on objects.

DEFINITION

Fundamental Axioms of Transactions

Let t be a transaction and H

t

the projection of the history H

with respect to t.

I. 8� 2 IE

t

(� 2 H

t

))69� 2 IE

t

(�! �)

II. 8� 2 TE

t

9� 2 IE

t

(� 2 H

t

)) (�! �)

III. 8
 2 TE

t

(
 2 H

t

))69� 2 TE

t

(
 ! �)

IV. 8ob8p; (p

t

[ob] 2 H))

((9� 2 IE

t

(�! p

t

[ob]))^ (9
 2 TE

t

(p

t

[ob]!
)))

Axiom I prevents a transaction from being initiated by two di�erent events.

Axiom II states that if a transaction has terminated, it must have been pre-

viously initiated. Axiom III prevents a transaction from being terminated by

two di�erent termination events. The last axiom, Axiom IV, states that only

in-progress transactions can invoke operations on objects.

10.3 Characterization of Atomic Transactions 23

Now let us express in ACTA the basic properties of atomic transactions

with a set of axioms.

DEFINITION

Axiomatic Definition of Atomic Transactions

t denotes an atomic transaction.

1. SE

t

= fBegin, Commit, Abortg

2. IE

t

= fBeging

3. TE

t

= fCommit, Abortg

4. t satis�es the fundamental Axioms I to IV

5. V iew

t

= H

ct

6. ConflictSet

t

= fp

t

0

[ob] j t

0

6= t; Inprogress(p

t

0

[ob])g

7. 8ob 9p (p

t

[ob] 2 H)) (ob is atomic)

8. (Commit

t

2 H)) :(tC

�

t).

9. 9ob 9p (Commit

t

[p

t

[ob]] 2 H)) (Commit

t

2 H)

10. (Commit

t

2 H)) 8ob 8p ((p

t

[ob] 2 H)) (Commit

t

[p

t

[ob]] 2 H))

11. 9ob 9p (Abort

t

[p

t

[ob]] 2 H)) (Abort

t

2 H)

12. (Abort

t

2 H)) 8ob 8p ((p

t

[ob] 2 H)) (Abort

t

[p

t

[ob]] 2 H))

Axiom 1 states that atomic transactions are associated with the three

signi�cant events: Begin, Commit and Abort. Axiom 2 speci�es that Begin is

the initiation event for atomic transactions. Axiom 3 indicates that Commit

and Abort are the termination events associated with atomic transactions.

Axiom 4 states that atomic transactions satisfy the fundamental axioms.

With respect to the signi�cant events of atomic transactions, the fundamental

axioms mean the following:

1. the Begin event can be invoked at most once by a transaction

((Begin

t

2 H)) :(Begin

t

! Begin

t

)) [Axiom I],

2. only an initiated transaction can commit or abort

((Commit

t

2 H)) (Begin

t

! Commit

t

), and

(Abort

t

2 H)) (Begin

t

! Abort

t

)) [Axiom II], and

3. an atomic transaction cannot be committed after it has been aborted

((Commit

t

2 H)) ((Abort

t

62 H) ^ :(Commit

t

! Commit

t

))),

and vice versa

((Abort

t

2 H)) ((Commit

t

62 H) ^ :(Abort

t

! Abort

t

))) [Axiom III].

24 Chapter 10. ACTA: The SAGA Continues

Axiom 5 speci�es that a transaction sees the current state of the objects

in the database. Axiom 6 states that con
icts have to be considered against

all in-progress operations performed by di�erent transactions. Axiom 7 spec-

i�es that all objects upon which an atomic transaction invokes an operation

are atomic objects. That is, they detect con
icts and induce the appropriate

dependencies. Axiom 8 states that an atomic transaction can commit only

if it is not part of a cycle of C relations developed through the invocation

of con
icting operations. Note that the atomicity property local to individ-

ual objects is not su�cient to guarantee serializable execution of concurrent

transactions across all objects [Wei84]. Axiom 9 states that if an operation

is committed on an object, the invoking transaction must commit, and Ax-

iom 10 states that if a transaction commits, all the operations invoked by the

transaction are committed.

Axioms 8, 9 and 10 de�ne the semantics of the Commit event of atomic

transactions in terms of the Commit operation de�ned on objects. Similarly,

Axioms 11 and 12 de�ne the semantics of the Abort event in terms of the Abort

operation de�ned on objects. Axiom 11 states that if an operation is aborted

on an object, the invoking transaction must abort, and Axiom 12 states that if

a transaction aborts, all the operations invoked by the transaction are aborted.

Based on the above axioms, the failure atomicity and serializability prop-

erties of atomic transactions can be shown (see [Chr91]).

10.4

Characterization of Sagas

Sagas have been proposed as a transaction model for long lived activities.

A saga is a set of relatively independent (component) transactions T

1

, T

2

,...,

T

n

which can interleave in any way with component transactions of other

sagas. Component transactions within a saga execute in a prede�ned order

which, in the simplest case, is either sequential or parallel (no order).

Each component transaction T

i

(0 � i < n) is associated with a com-

pensating transaction CT

i

. A compensating transaction CT

i

undoes, from a

semantic point of view, any e�ects of T

i

, but does not necessarily restore the

database to the state that existed when T

i

began executing.

Both component and compensating transactions behave like atomic trans-

actions in the sense that they have the ACID

5

properties. However, their

5

ACID properties are Atomicity (or failure atomicity), Consistency, Isolation (or serializ-

ability) and Durability (or permanence).

10.4 Characterization of Sagas 25

behavior is constrained by certain dependencies. For example, a compensat-

ing transaction can commit only if its corresponding component transaction

commits but the saga to which it belongs aborts.

Component transactions can commit without waiting for any other com-

ponent transactions or the saga to commit. For this reason, sagas do not

require a commit protocol as opposed, for example, to nested transactions.

Due to their ACID properties, component transactions make their changes to

objects e�ective in the database at their commitment times. Thus, isolation

is limited to the component transaction level and sagas may view the par-

tial results of other sagas. This means that each component transaction does

not have to observe the same consistent database state produced by commit-

ted component transactions belonging to the same saga. Clearly, in sagas,

consistency is not based on serializable executions.

A saga commits, i.e., successfully terminates, if all its component trans-

actions commit in the prescribed order. Under sequential execution, the cor-

rect execution of a committed saga is:

T

1

T

2

:::

T

n

A saga is not failure atomic but neither can it execute partially. Thus,

when a saga aborts, it has to compensate for the committed components

by executing their corresponding compensating transactions. Compensating

transactions are executed in the reverse order of commitment of the com-

ponent transactions. Thus, in the sequential case, the correct execution of

an aborted saga after the commitment of its k

th

component transaction, T

k

(1 � k < n), is:

T

1

T

2

:::

T

k

CT

k

CT

k�1

:::

CT

1

Note that the commitment of T

n

implies the commitment of the whole saga

and hence, T

n

is not associated with a compensating transaction CT

n

.

Now, let us express the basic properties of sagas with a set of axioms.

Without loss of generality, let us focus on sagas whose components execute

sequentially. As it will become clear below, the axiomatic de�nitions of sagas

with di�erent execution orders di�er only in Axiom 18 which speci�es the

execution order. We will use pre(e) and post(e) to denote the preconditions

and postconditions of an operation or a transaction management primitive e

respectively.

26 Chapter 10. ACTA: The SAGA Continues

DEFINITION

Axiomatic Definition of Sagas

S denotes a saga with n component transactions.

T

i

denotes a component transaction.

CT

i

denotes a compensating transaction of T

i

.

t denotes either a T

i

or CT

i

.

1. SE

S

= fBegin, Commit, Abortg

2. IE

S

= fBeging

3. TE

S

= fCommit, Abortg

4. SE

t

= fBegin, Commit, Abortg

5. IE

t

= fBeging

6. TE

t

= fCommit, Abortg

7. t satis�es the fundamental Axioms I to IV

8. V iew

S

= �

9. V iew

t

= H

ct

10. ConflictSet

S

= �

11. ConflictSet

t

= fp

t

0

[ob] j t

0

6= t; Inprogress(p

t

0

[ob])g

12. 9ob 9p (Commit

t

[p

t

[ob]] 2 H)) (Commit

t

2 H)

13. (Commit

t

2 H)) 8ob 8p ((p

t

[ob] 2 H)) (Commit

t

[p

t

[ob]] 2 H))

14. 9ob 9p (Abort

t

[p

t

[ob]] 2 H)) (Abort

t

2 H)

15. (Abort

t

2 H)) 8ob 8p ((p

t

[ob] 2 H)) (Abort

t

[p

t

[ob]] 2 H))

16. 8ob 9p (p

t

[ob] 2 H)) (ob is atomic)

17. (Commit

t

2 H)) :(tC

�

t)

18. post(Begin

S

)) (((T

i

BCD T

i�1

) 2 DepSet

ct

) ^

((CT

j

WCD CT

j+1

) 2 DepSet

ct

) ^

((CT

n�1

BAD S) 2 DepSet

ct

))

where 1 < i � n, and 1 � j < n� 1

19. post(Begin

T

i

)) (((S AD T

i

) 2 DepSet

ct

) ^

((T

i

WD S) 2 DepSet

ct

) ^

((CT

i

BCD T

i

) 2 DepSet

ct

))

where 1 � i < n

20. post(Commit

T

i

)) (((CT

i

CMD S) 2 DepSet

ct

) ^

((CT

i

BAD S) 2 DepSet

ct

))

where 1 � i < n

21. post(Begin

T

n

)) ((S SCD T

n

) 2 DepSet

ct

)

A transaction structure which conforms to a saga transaction model

consists of three types of transactions, namely, saga transaction, component

10.4 Characterization of Sagas 27

transactions and compensating transactions. Axioms 1 and 4 state that each

type of transaction is associated with the signi�cant events Begin, Commit

and Abort. Axioms 7, 9 and 11{17 capture the fact that component and

compensating transactions have semantics similar to atomic transactions.

Saga transactions cannot directly operate on objects in the database

[Axiom 8] | saga transactions may execute local operations that do not

involve access to the database, e.g., test the outcome and return values of

their component transactions

6

| this is the reason for the presence of a saga

node, e.g., in Figure 10.3.

Axiom 18 speci�es the execution order of the component transactions

and their associated compensating transactions. A sequential (total) order

is speci�ed by establishing a begin-on-commit dependency BCD between ev-

ery pair of component transactions. In a similar way, partial orders may be

de�ned. Clearly, in the case of a parallel execution, Axiom 18 will be absent.

Axioms 19 speci�es the relationship between a saga transaction and

the component transactions. The composition relationship is captured by

an abort dependency AD of the saga transaction on each of the component

transactions and weak-abort dependencies WD of each component transaction

on the saga transaction. This is induced at the time a component transaction

begins its execution. The special relationship between a saga transaction

and the last component T

n

is captured by Axiom 21 in terms of a strong-

commit dependency SCD. A saga transaction's strong-commit dependency on

T

n

ensures that if T

n

commits, the whole saga commits.

Axioms 19 and 20 pair component and compensating transactions ac-

cording to a compensated-for/compensating relationship. This relationship is

re
ected by a begin-on-commit dependency BCD of the compensating transac-

tion on its associated component transaction [Axiom 19] and a force-commit-

on-abort dependency CMD and a begin-on-abort dependency BAD of the com-

pensating transaction on the saga transaction [Axiom 20]. If a component

transaction aborts and rolls back, there is no meaning for its compensating

transaction to execute. On the other hand, if a component transaction com-

mits, the compensating transaction gives the saga the ability to semantically

undo its e�ects by inducing force-commit-on-abort and begin-on-abort depen-

dencies between the compensating transaction and the saga transaction. The

correct execution order of the compensating transactions is ensured by the

weak-begin-on-commit dependency WCD between every pair of compensating

transactions [Axiom 18]. The begin-on-abort dependency BAD of CT

n�1

on

6

Saga transactions may also handle the interface to the environment, e.g., users.

28 Chapter 10. ACTA: The SAGA Continues

jt itjt SCD it() :

itjtCMDjt it) :(

itjtADjt it) :(

itjtWDjt it) :(

itjtBCDjt it) :(

SDjt it) :(itjt

jt itBADjt it) :(

ED itjt) :(itjt

itjtjt it) :(WCD

FIGURE 10.2

Dependencies relevant to Sagas

10.4 Characterization of Sagas 29

the saga transaction ensures that the compensating transactions do not exe-

cute prematurely and concurrently with the component transactions [Axiom

18]. By being the �rst on the chain of compensating transactions, CT

n�1

's

outcome need to be considered �rst for the rest of the compensating transac-

tions to execute.

Figure 10.2 shows the graph representation of the dependencies relevant

to sagas. Figures 10.3{10.7 show �ve snapshots of the evolution of the struc-

ture of a saga (dynamics of intra-dependencies): (a) after a saga transaction

has invoked begin, (b) when the �rst component transaction T

1

is in progress,

(c) after T

1

commits, (d) when the second component T

2

is in progress and

(e) when the last component T

n

is in progress and consequently before the

commitment of the saga. In these, a shaded node corresponds to a committed

transaction.

This axiomatic de�nition captures the intended behavior of sagas. We

now show some of the properties of the saga model using the axioms.

LEMMA 10.1 Commitment of a Saga

Let H be a history of a saga S with n component transactions.

(Commit

S

2 H)) 8i; 1 < i � n (Commit

T

i�1

! Commit

T

i

)

Informally, this lemma states the history in which all component transactions

commit in the required order.

PROOF

1. If S commits, T

i

(1 � i � n) must also have committed because of

the abort dependency of S on T

i

[Axiom 19] and the Fundamental

Axiom III which states that a transaction has to either commit or

abort [Axiom 7]:

8i; 1 � i � n; ((Abort

T

i

2 H)) (Abort

S

2 H)),

((Commit

S

2 H)) (Commit

T

i

2 H)).

2. Given T

i

's (1 < i � n) begin-on-commit dependency on T

i�1

[Axiom 18]:

8i; 1 < i � n ((Begin

T

i

2 H)) (Commit

T

i�1

! Begin

T

i

));

the Fundamental Axiom II:

8i; 1 < i � n ((Commit

T

i

2 H)) (Begin

T

i

! Commit

T

i

));

and the semantics of the precedence relation,

if T

i

commits, then T

i

commits after T

i�1

commits:

8i; 1 < i � n ((Commit

T

i

2 H)) (Commit

T

i�1

! Commit

T

i

))

30 Chapter 10. ACTA: The SAGA Continues

S

CTn−1CT2CT1

T1 T2 Tn−1 Tn

. . .

. . .

FIGURE 10.3

Structure of a just initiated Saga

S

CTn−1CT2CT1

T1 T2 Tn−1 Tn

. . .

. . .

FIGURE 10.4

Structure of a Saga when component T

1

in progress

10.4 Characterization of Sagas 31

T1

S

CTn−1CT2CT1

T2 Tn−1 Tn

. . .

. . .

FIGURE 10.5

Structure of a Saga after component T

1

commits

T1

S

CTn−1CT2CT1

T2 Tn−1 Tn

. . .

. . .

FIGURE 10.6

Structure of a Saga when component T

2

in progress

32 Chapter 10. ACTA: The SAGA Continues

T1

S

CTn−1CT2CT1

T2 Tn−1

Tn

. . .

FIGURE 10.7

Structure of a Saga when component T

n

in progress

3. Thus, from (1) and (2),

(Commit

S

2 H)) 8i; 1 < i � n (Commit

T

i�1

! Commit

T

i

)

LEMMA 10.2 Abortion of a Saga

Let H be a history of a saga S with n component transactions.

(Abort

S

2 H))

9k; 1 � k � n 8i; 1 < i < k � 1

(((Abort

t

k

2 H) ^ (Commit

T

i�1

! Commit

T

i

) ^

(Commit

T

k�1

! Commit

CT

k�1

) ^ (Commit

CT

i

! Commit

CT

i�1

)) _

9k; 1 � k � n 8i; 1 < i < k

((Commit

T

i�1

! Commit

T

i

) ^

(Commit

T

k

! Commit

CT

k

) ^ (Commit

CT

i

! Commit

CT

i�1

)))

Informally, this expresses the history in which for all committed components,

10.4 Characterization of Sagas 33

their compensating transactions commit in the required order. The �rst clause

corresponds to the case in which a saga aborts while one of its components

is in progress whereas the second clause corresponds to the case in which the

saga aborts in between the execution of two of its components, i.e., after one

of its components has committed and before the next one in order begins

executing.

PROOF

Let us �rst consider the simple case of k = 1.

Case 1: If S aborts and T

1

has begun but not yet committed, T

1

is

aborted due to the weak-abort dependency of T

1

on S [Axiom 19]. Since

CT

1

has a begin-on-commit dependency on T

1

[Axiom 19], CT

1

never

executes. This is the trivial case of an aborted saga:

(Abort

S

2 H)) (Abort

t

1

2 H)

Case 2:

1. If S aborts after T

1

commits and before T

2

begins, then CT

1

must

commit due to the force-commit-on-abort dependency of CT

1

on S

[Axiom 20]:

(Abort

S

2 H)) (Commit

CT

1

2 H).

2. Given the begin-on-commit dependency of CT

1

on T

1

, if CT

1

com-

mits, then T

1

must have also committed (see Step 2 of lemma 10.1):

(Commit

CT

1

2 H)) (Commit

T

1

! Commit

CT

1

)

Thus, from (1) and (2), (Abort

S

2 H)) (Commit

T

1

! Commit

CT

1

).

Now let us consider the general case of 1 < k � n.

Case 3:

3. If S aborts while T

k

is in progress, T

k

aborts, because of the weak-

abort dependency of T

k

on S. Consequently, CT

k

is never initiated

because of its begin-on-commit dependency on T

k+1

:

(Abort

S

2 H)) (Abort

T

k

2 H)).

This also follows, if T

k

aborts which causes S to abort due to its

abort dependency on T

k

.

4. If T

k

is in progress, T

j

(1 � j < k) has committed in the spec-

i�ed order because of the begin-on-commit dependency between

34 Chapter 10. ACTA: The SAGA Continues

the components:

8i; 1 < i � k� 1 (Commit

T

i�1

!Commit

T

i

.

5. Given that T

j

(1 � j < k) have committed, CT

j

has a force-commit-

on-abort dependency on S. If S aborts, CT

j

commits according to

force-commit-on-abort dependency:

(Abort

S

2 H)) 8j; 1 < j � k (Commit

CT

j

2 H).

6. Given the weak-begin-on-commit dependency of CT

j

on CT

j+1

[Ax-

iom 18], if both CT

j

and CT

j+1

commit, CT

j

commits after CT

j+1

has committed (similar to (2)):

(Commit

CT

j

2 H)) (Commit

CT

j+1

! Commit

CT

j

).

From (3), (4), (5) and (6),

(Abort

S

2 H)) 9k; 1 � k � n 8i; 1 < i < k � 1

((Abort

t

k

2 H) ^ (Commit

T

i�1

! Commit

T

i

) ^

(Commit

T

k�1

! Commit

CT

k�1

) ^ (Commit

CT

i

! Commit

CT

i�1

))

Case 4: The other general case in which S aborts after T

k

commits and

before T

k+1

begins is similar to Case 3 without the step (3).

THEOREM 10.1

The component transactions of a saga produce one of the following com-

mitted histories:

1. 8i; 1 < i � n (Commit

T

i�1

! Commit

T

i

)

2. 9k; 1 � k � n 8i; 1 < i < k ((Commit

T

i�1

! Commit

T

i

) ^

(Commit

T

k

! Commit

CT

k

) ^ (Commit

CT

i

! Commit

CT

i�1

))

PROOF

This theorem follows from lemmas 10.1 and 10.2 and the committed

projection of the history.

10.4.1 A Special Case of Sagas

A special case of sagas is a saga whose transaction structure does not

have a saga transaction. The �rst component transaction T

1

marks the be-

ginning of the saga as if it issues the Begin

S

signi�cant event, and the last

transaction T

n

commits the saga as if it issues the Commit

S

signi�cant event.

10.4 Characterization of Sagas 35

Here is the axiomatic de�nition of the special Sagas.

DEFINITION

t denotes either a T

i

, a component transaction, or a CT

i

, a compensating

transaction of T

i

.

1. SE

t

= fBegin, Commit, Abortg

2. IE

t

= fBeging

3. TE

t

= fCommit, Abortg

4. t satis�es the fundamental Axioms I to IV

5. V iew

t

= H

ct

6. ConflictSet

t

= fp

t

0

[ob] j t

0

6= t; Inprogress(p

t

0

[ob])g

7. 9ob 9p (Commit

t

[p

t

[ob]] 2 H)) (Commit

t

2 H)

8. (Commit

t

2 H)) 8ob 8p ((p

t

[ob] 2 H)) (Commit

t

[p

t

[ob]] 2 H))

9. 9ob 9p (Abort

t

[p

t

[ob]] 2 H)) (Abort

t

2 H)

10. (Abort

t

2 H)) 8ob 8p ((p

t

[ob] 2 H)) (Abort

t

[p

t

[ob]] 2 H))

11. 8ob 9p (p

t

[ob] 2 H)) (ob is atomic)

12. (Commit

t

2 H)) :(tC

�

t)

13. post(Begin

T

1

)) (((T

i

BCD T

i�1

) 2 DepSet

ct

) ^

((CT

j

WCD CT

j+1

) 2 DepSet

ct

)) ^

((CT

n�1

BAD T

n

) 2 DepSet

ct

)

where 1 < i � n and 1 � j < n� 1

14. post(Begin

T

i

)) ((CT

i

BCD T

i

) 2 DepSet

ct

), where 1 � i < n

15. post(Commit

T

i

)) (((CT

i

CMD T

i+1

) 2 DepSet

ct

) ^

((CT

i

CMD T

n

) 2 DepSet

ct

)

where 1 � i < n

Beyond the obvious di�erence arising from discarding the axioms re-

lated to the saga transaction type | Axioms 1{3, 8 and 21, the substantive

di�erences between this axiomatic de�nition and the original one are:

(a) The Begin

T

1

event replaces the Begin

S

event in all relevant axioms.

(b) Axiom 13 which replaces Axiom 18 of the original de�nition, substitutes

S with T

n

.

(c) Axiom 15 which corresponds to Axiom 20 of the original de�nition, in-

duces an additional force-commit-on-abort dependency CMD of the com-

pensating transaction CT

i

on the component transaction T

i+1

| the

component that executes after CT

i

's corresponding component transac-

tion T

i

.

36 Chapter 10. ACTA: The SAGA Continues

CTn−1CT2CT1

T1 T2 Tn−1 Tn

. . .

. . .

FIGURE 10.8

Structure of a special Saga before component T

1

commits

CTn−1CT2CT1

T2 Tn−1 Tn

. . .

. . .T1

FIGURE 10.9

Structure of a special Saga after component T

1

commits

10.5 Variations of the Sagas Model 37

These di�erences re
ect the fact that, in the special saga, T

1

and T

n

carry the

control role of the saga transaction, respectively, initiating and terminating

the saga.

Figures 10.8 and 10.9 show snapshots of the structure of the special saga

before and after the commitment of T

1

.

Using these axioms, it is not hard to show that lemmas and theorem

similar to lemmas 10.1 and 10.2 and theorem 10.1 hold for the special saga.

10.5

Variations of the Sagas Model

Since serializability and failure atomicity are not associated with a saga,

a saga has no notion of commitment control beyond transaction boundaries.

However, the commitment of a saga is dependent on the commitment of its

components. A failure of a component forces the whole saga to abort. In this

respect, sagas do not have the
exibility, e.g., of nested transactions, in being

able to retry an aborted component, or to try an alternative component, or

even to ignore a failed component.

In the following subsections, we show how sagas can be transformed to

exhibit these properties by changing the dependencies de�ned in the original

version of sagas. For the sake of brevity, we focus on the concepts and less

on the formal aspects of the transformed sagas model. Where appropriate,

we give the new (version of) axioms that formalize the properties of the new

model.

10.5.1 Sagas with no Special Relation with Last

Component

The original sagas call for a special relationship between a saga trans-

action and the last component transaction T

n

because if T

n

succeeds in com-

mitting then the saga commits as well. A saga thus lacks the
exibility of

aborting after its last component has committed. Aborting a saga is easy and

e�cient as long as the information needed by the compensating transactions

is available and easily accessible in the database. By committing a saga, this

information is removed from the system.

To provide sagas with this
exibility, available, for example, in nested

transactions, it is su�cient to treat the last component transaction as any

other component. This means, �rst of all, that T

n

needs to be associated with

38 Chapter 10. ACTA: The SAGA Continues

S

CTn−1CT2CT1

T1 T2 Tn−1 Tn

. . .

. . .

CTn

FIGURE 10.10

Structure of a Saga without special relation with T

n

a compensating transaction CT

n

. The axiomatic de�nition of such a saga

can be derived from the original axiomatic de�nition of sagas by dropping

the last axiom, Axiom 21, and modifying Axioms 18 and 20 to include T

n

.

Figure 10.10 shows the structure of such a saga resulting from the modi�ed

Axiom 18. This corresponds to Figure 10.3 that represents the structure of

the original saga.

10.5.2 Sagas with Vital Components

The relation between the saga and its component transactions is re
ected, as

stated by Axiom 19, by abort dependencies of the saga transaction on each

of the component transactions and weak-abort dependencies of each of the

component transactions on the saga.

Let us consider the case of a saga transaction that has no abort depen-

dency on the �rst component transaction T

1

(see Figure 10.11). Since the

abort dependencies of a saga transaction on the component transactions are

the only constraints on the completion of a saga, T

1

can abort without pre-

venting the saga from committing. In other words, the saga can ignore T

1

if

it aborts (see Figure 10.12. Dotted nodes correspond to aborted transactions

and transactions that cannot begin). This is not the case with the rest of the

component transactions. Thus, the semantics of the relationship between a

saga transaction and the component transactions changes with the removal

10.5 Variations of the Sagas Model 39

S

CTn−1CT2CT1

T1 T2 Tn−1 Tn

. . .

. . .

FIGURE 10.11

Structure of a Saga when non-vital component T

1

in progress

T1

S

CTn−1CT2CT1

T2 Tn−1 Tn

. . .

. . .

FIGURE 10.12

Structure of a Saga after non-vital component T

1

aborts

40 Chapter 10. ACTA: The SAGA Continues

of the abort dependency. Speci�cally, there can be two types of relationships

between sagas and its component transactions, namely, a vital relation and

a non-vital relation. Consequently, component transactions can be distin-

guished as vital and non-vital transactions. A saga can commit only if its

vital children commit. In the above case T

1

is not vital.

There is also a di�erent relationship between vital and non-vital com-

ponents which is captured by a serial dependency SD of a vital component on

a non-vital component. The relationship between vital components remains

the same as in the original saga captured by a begin-on-commit dependency.

The axiomatic de�nition of such a saga is the same as the original ax-

iomatic de�nition except for Axioms 18 and 19 which need to be replaced by:

1. V ITAL

S

= fT

1

g

2. post(Begin

S

))

(((T

i�1

2 V ITAL

S

)) ((T

i

BCD T

i�1

) 2 DepSet

ct

)) ^

(((T

i�1

62 V ITAL

S

)) ((T

i

SD T

i�1

) 2 DepSet

ct

)) ^

((CT

j

WCD CT

j+1

) 2 DepSet

ct

) ^

((CT

n�1

BAD T

n

) 2 DepSet

ct

))

where 1 < i � n, and 1 � j < n� 1

3. post(Begin

T

i

)) ((S AD T

i

) 2 DepSet

ct

)

where 1 � i < n and T

i

62 V ITAL

4. post(Begin

T

i

)) (((T

i

WD S) 2 DepSet

ct

) ^

((CT

i

BCD T

i

) 2 DepSet

ct

))

where 1 � i < n

and corresponds to the axiomatic de�nition of the transaction model proposed

in [BHMC90, GGK

+

91].

Using the above modi�ed set of axioms, the correct committed histories

of such a saga can be shown in a similar fashion as in Theorem 10.1.

THEOREM 10.2

The component transactions of a saga whose �rst component is a non-

vital transaction produce one of the following committed histories:

1. All component transactions commit in the required order:

8i; 1 < i � n (Commit

T

i�1

! Commit

T

i

)

2. All vital component transactions commit in the required order:

8i; 2 < i � n (Commit

T

i�1

! Commit

T

i

)

10.5 Variations of the Sagas Model 41

Tn−1 Tn

S

T2T1

T1.1 T1.2

. . .

. . .

CT1.1 CT1.2

CT1 CT2 CTn−1

FIGURE 10.13

Saga structure when nested saga component T

1

in-progress

3. For all committed components, their compensating transactions com-

mit in the required order:

9k; 1 � k � n 8i; 1 < i < k

((Commit

T

i�1

! Commit

T

i

) ^

(Commit

T

k

! Commit

CT

k

) ^ (Commit

CT

i

! Commit

CT

i�1

))

10.5.3 Sagas of Sagas

The need for a more
exible transaction model created the concept of

sagas. However, as we have already mentioned, sagas lack the
exibility to

retry an aborted component, or to try an alternative component or even to

ignore a failed component transaction. In the previous section, we saw that,

by distinguishing between vital and non-vital transactions, a saga is able to

42 Chapter 10. ACTA: The SAGA Continues

T2 Tn−1 Tn

S

T1

T1.1

. . .

. . .CT1 CT2

CT1.1

CTn−1

FIGURE 10.14

Saga structure after nested saga component T

1

commits

ignore a failed component. This was achieved fairly easily since the vitality of

a component was manifested by the presence of an abort dependency of the

saga transaction on the component transactions. Unfortunately, this is not

su�cient when alternative transactions [BHMC90, ELLR90] and contingency

transactions [BHMC90] are considered. For example, if two components exist

where one is an alternative of the other, then both of them have to commit in

order for the saga to commit. This contradicts the at-most-one semantics of

alternative transactions | both alternatives cannot commit. This observation

points to the concept of nested sagas

7

which are component transactions of

sagas (Figures 10.13 and 10.14).

Dependencies between a nested saga transaction and the components

of the nested saga are di�erent from those of a (top) saga transaction on its

7

Nested Sagas corresponds to a class of sagas with complex structure and hence, it is

di�erent from the nested saga model proposed in [GGK

+

91].

10.5 Variations of the Sagas Model 43

associated components. A nested saga is similar to a saga with non-vital

components in the sense that a nested saga can commit even if some of its

components abort. However, a nested saga has to abort if all of its component

abort. This is captured through a set-abort dependency of the nested saga

transaction on its associated component transactions:

Set-Abort Dependency (t

j

SAD ft

i

j1 � i � kg): if all t

i

(1 � i � k) abort

then t

j

aborts; i.e., (

V

1�i�k

(Abort

t

i

2 H))) (Abort

t

j

2 H):

In Figure 10.13, set-abort dependency corresponds to an arrow with multi-

ple heads. Set-abort dependency brings out the fact that dependencies may

involve more than two transactions.

Each component transaction of a nested saga has a weak-abort depen-

dency WD on the nested saga transaction. As in the original saga, the weak-

abort dependency ensures that if the nested saga aborts while its component

transactions are still executing, its component transactions are also aborted.

A nested saga with this structure can exhibit di�erent behaviors depend-

ing on the dependencies between its component transactions. In the simplest

case, where no dependencies exist between the component transactions, nested

sagas exhibit at-least-one semantics.

An exclusion dependency ED between the component transactions T

1:1

and T

1:2

of a nested saga T

1

, as in Figure 10.13, captures the properties of

alternative transactions. In particular, alternative transactions execute con-

currently while the exclusion dependency ensures the at-most-one semantics.

Note that due to the semantics of the exclusion dependency T

1:1

cannot

commit until T

1:2

aborts. This implies that T

1:2

is the preferable alternative.

A second exclusion dependency from T

1:2

to T

1:1

will make both alternatives

equally preferable.

Contingency transactions are a special case of alternative transactions

in that they cannot execute concurrently. The sequential order of execution

of contingency transactions is speci�ed by means of begin-on-abort dependen-

cies. Exclusion dependencies between the contingency transactions ensure the

at-most-one semantics.

By being a component of a saga, a nested saga must be associated with a

compensating transaction. In some special cases, a compensating transaction

may be su�cient to compensate for any alternative or contingency transac-

tion of a nested saga. It is often the case, however, that di�erent transac-

tions will need di�erent compensating transactions. For this reason, a nested

saga may be associated with a compensating saga whose components are the

44 Chapter 10. ACTA: The SAGA Continues

compensating transactions of the component transactions of the nested saga.

Begin-on-commit dependencies pair nested and compensating saga transac-

tions and their associated component transactions (see Figure 10.13) re
ecting

their compensated-for/compensating relationship. If a component transaction

aborts and rolls back, there is no meaning for its compensating transaction to

execute. On the other hand, if a component transaction commits, a strong-

commit dependency of a component transaction of a compensating saga on

the compensating saga transaction propagates the e�ects of the force-commit-

on-abort dependency of the compensating saga transaction on to the top saga

transaction.

10.5.4 Sagas with Non-Compensatable

Components

Sagas are built on the assumption that all their component transactions

can be compensated for. There are many cases of component transaction

that cannot be compensated for. There are even more cases of component

transactions whose e�ects on objects can be compensated, but they involve

real actions such as messages that cannot be semantically undone. In atomic

transactions such actions are deferred until the commit time of the trans-

action. Since in sagas component transactions commit independently this

approach is not directly applicable and hence sagas, as originally de�ned, are

not applicable in such situations.

There are three di�erent ways in which sagas can be extended to include

non-compensatable component transactions. Each method is suitable for dif-

ferent situations and allows di�erent levels of concurrency. The �rst method

is applicable for sagas whose non-compensatable components execute con-

currently. In such a situation, the weak-abort dependency of the component

transaction on the saga transaction can be replaced with an abort-dependency

coupling in this way the commitment of the saga with the commitment of the

non-compensatable transactions. Thus, real actions are deferred until the

saga commits.

Clearly, this method is not applicable for sequential executions because

a non-compensatable component transaction T will block the execution of

any component transaction which has a begin-on-commit dependency on T .

In the second method, a new signi�cant event, e.g., Finish, can be associated

with non-compensatable transactions and a new dependency can be de�ned

that relates the Begin and Finish events. (Recall that this is possible in ACTA

10.5 Variations of the Sagas Model 45

because ACTA is an open-ended framework allowing the introduction of new

dependency relations.) Finish can be invoked by a transaction to terminate its

access to shared objects in the database. However, Finish does not commit the

operations invoked by a transaction on the shared objects. Thus, Finish does

not replace Commit which is still needed to make the changes of a transaction

e�ective in the database.

De�ning begin-on-�nish dependency (t

j

BFD t

i

) is straight forward:

transaction t

j

cannot begin execution until transaction t

i

�nishes; i.e.,

(Begin

t

j

2 H)) (Finish

t

i

! Begin

t

j

).

Thus, in this second method, if a component transaction T

i

is non-

compensatable,

1. T

i+1

BFD T

i

,

2. (Finish

T

i

2 H))69p 6 9ob (Finish

T

i

! p

T

i

[ob])

3. T

i

can invoke Commit only after invoking Finish:

(Commit

T

i

2 H)) (Finish

T

i

! Commit

T

i

),

4. if the saga aborts, T

i

aborts after the components that execute

following T

i

have been compensated:

(Abort

S

2 H)) 8j; i � j � n (Commit

CT

j

! Abort

T

i

), and

5. the saga commits i� T

i

commits:

(Commit

S

2 H), (Commit

T

i

2 H).

The third method does not require any additional signi�cant events or

any new dependencies. It simply structures non-compensatable transactions

as subtransactions (a l�a nested transactions) which at commit time delegate all

the operations in their AccessSet, i.e., the operations that non-compensatable

transactions have performed, to the saga.

Thus, in this last method, if T

i

is a non-compensatable component of a

saga S:

(Commit

T

i

2 H), (Delegate

T

i

[S;AccessSet

T

i

] 2 H).

If the saga aborts, all the e�ects of the operations in its Access Set are rolled

back.

Subsection 10.5.1 through 10.5.4 discussed four di�erent extensions to

the original saga model and showed how their de�nitions are mutations of the

original de�nition. Of course, it is possible to conceive of a model for sagas

which combines two or more of these extensions. One can fairly easily develop

the axiomatic de�nitions for such combined models given our discussions here.

One such combination is a model similar to that of S{Transactions [VE91].

46 Chapter 10. ACTA: The SAGA Continues

10.6

Conclusions

This paper shows how ACTA captures the (extended) functionality of a

transaction model (1) by allowing the speci�cation of signi�cant events beyond

commit and abort, (2) by allowing the speci�cation of arbitrary transaction

structures in terms of dependencies involving any signi�cant event, (3) by

supporting �ner grain visibility for objects in the database by associating a

view and a con
ict set with each transaction and the notion of delegation,

(4) and by facilitating object-speci�c and transaction-speci�c semantic-based

concurrency control.

The application of ACTA to specify the properties of sagas revealed a

number of possible variations to the saga model that are of practical interest.

These involve (1) permitting a saga to commit even if a (non-vital) subset

of the components of a saga aborted; (2) considering the compensatability

of a saga component; (3) incorporating the notion of nested sagas within

the saga model; and (4) combining alternative and contingency transaction

model with the saga model. The ease with which it was possible to consider

these variations, once the original Sagas model was characterized, speaks to

the modeling capabilities of ACTA. Further, just as it was possible to show

the correctness properties of original sagas model, it is possible to specify

the correctness requirements of the extended Sagas and show the correctness

given the characterizations of these extensions.

Bibliography

[BHG87] Bernstein, P. A., Hadzilacos, V., and Goodman, N. Concur-

rency Control and Recovery in Database Systems. Addison-Wesley,

Reading, MA, 1987.

[BHMC90] Buchmann, A., Hornick, M., Markatos, E., and Chronaki, C.

Speci�cation of a Transaction Mechanism for a Distributed Ac-

tive Object System. In Proceedings of the OOPSLA/ECOOP 90

Workshop on Transactions and Objects, pages 1{9, 1990.

[BKK85] Bancilhon, F., Kim, W., and Korth, H. A model of CAD Trans-

actions. In Proceedings of the 11th International Conference on

VLDB, pages 25{33, 1985.

10.6 Bibliography 47

[BR90] Badrinath, B. and Ramamritham, K. Performance Evaluation

of Semantics-based Multilevel Concurrency Control Protocols. In

Proceedings of the ACM SIGMOD International Conference on

Management of Data, pages 163{172, 1990.

[Chr91] Chrysanthis, P. K. ACTA, A Framework for Modeling and Rea-

soning about Extended Transactions. PhD thesis, Department of

Computer and Information Science, University of Massachusetts,

Amherst, Massachusetts, 1991.

[CR90] Chrysanthis, P. K. and Ramamritham, K. ACTA: A Framework

for Specifying and Reasoning about Transaction Structure and Be-

havior. In Proceedings of the ACM SIGMOD International Con-

ference on Management of Data, pages 194{203, 1990.

[CR91] Chrysanthis, P. K. and Ramamritham, K. A Unifying Framework

for Transactions in Competitive and Cooperative Environments.

IEEE Bulletin on O�ce and Knowledge Engineering, 4(1):3{21,

1991.

[CR91b] Chrysanthis, P. K. and Ramamritham, K. A Formalism for Ex-

tended Transaction Models. Proceedings of the 17th International

Conference on VLDB, 1991.

[CRR91] Chrysanthis, P. K., Raghuram, S., and Ramamritham, K. Ex-

tracting Concurrency from Objects: A Methodology. In Pro-

ceedings of the 1991 ACM SIGMOD International Conference on

Management of Data, 1991.

[DE89] Du, W. and Elmagarmid, A. K. Quasi Serializability: a Correct-

ness Criterion for Global Concurrency Control in InterBase. In

Proceedings of the 15th International Conference on VLDB, pages

347{355, 1989.

[DHL90] Dayal, U., Hsu, M., and Ladin, R. Organizing Long-Running

Activities with Triggers and Transactions. In Proceedings of

the ACM SIGMOD International Conference on Management of

Data, pages 204{214, 1990.

[EGLT76] Eswaran, K., Gray, J., Lorie, R., and Traiger, I. The Notion of

Consistency and Predicate Locks in a Database System. Commu-

nications of the ACM, 19(11):624{633, 1976.

48 Chapter 10. ACTA: The SAGA Continues

[ELLR90] Elmagarmid, A., Leu, Y., Litwin, W., and Rusinkiewicz, M. A

Multidatabase Transaction Model for InterBase. In Proceedings

of the 16th International Conference on VLDB, pages 507{518,

1990.

[Elm91] Elmagarmid A. (Issue Editor). Special Issue on Unconventional

Transaction Management. Bulletin of the IEEE Technical Com-

mittee on Data Engineering, 14(1), 1991.

[FZ89] Fernandez, M. and Zdonik, S. Transaction Groups: A Model for

Controlling Cooperative Transactions. In Proceedings of the Work-

shop on Persistent Object Systems: Their Design, Implementation

and Use, pages 128{138, 1989.

[GGK

+

91] Garcia-Molina, H., Gawlick, D., Klein, J., Kleissner, K., and

Salem, K. Modeling Long-Running Activities as Nested Sagas.

Bulletin of the IEEE Technical Committee on Data Engineering,

14(1):14{18, 1991.

[Gra81] Gray, J. The Transaction Concept: Virtues and Limitations. In

Proceedings of the 7th International Conference on VLDB, pages

144{154, 1981.

[GS87] Garcia-Molina, H. and Salem, K. SAGAS. In Proceedings of

the ACM SIGMOD International Conference on Management of

Data, pages 249{259, 1987.

[HW88] Herlihy, M. P. and Weihl, W. Hybrid concurrency control for

abstract data types. In Proceedings of the 7th ACM symposium

on Principles of Database Systems, pages 201{210, 1988.

[KLS90] Korth, H. F., Levy, E., and Silberschatz, A. Compensating Trans-

actions: A New Recovery Paradigm. In Proceedings of the the 16th

VLDB Conference, pages 95{106, 1990.

[KS88] Korth, H. F. and Speegle, G. Formal Models of Correctness with-

out Serializability. In Proceedings of the ACM SIGMOD Interna-

tional Conference on Management of Data, pages 379{386, 1988.

[Mos81] Moss, J. E. B. Nested Transactions: An approach to reliable dis-

tributed computing. PhD thesis, Massachusetts Institute of Tech-

nology, 1981.

10.6 Bibliography 49

[PKH88] Pu, C., Kaiser, G., and Hutchinson, N. Split-Transactions for

Open-Ended activities. In Proceedings of the 14th International

Conference on VLDB, pages 26{37, 1988.

[Ska91] Skarra, A. Localized Correctness Speci�cations for Cooperating

Transactions in an Object-Oriented Database. IEEE Bulletin on

O�ce and Knowledge Engineering, 4(1):79{106, 1991.

[SS84] Schwarz, P. M. and Spector, A. Z. Synchronizing Shared Abstract

Data Types. ACM Transactions on Computer Systems, 2(3):223{

250, 1984.

[SZ89] Skarra, A. and Zdonik, S. Concurrency Control and Object-

Oriented Databases. In Object-Oriented Concepts, Databases, and

Applications, pages 395{421. ACM Press, 1989.

[VE91] Veijalaine, J. and Eliassen, F. The S{transaction Model. Bulletin

of the IEEE Technical Committee on Data Engineering, 14(1):55{

59, 1991.

[VRS86] Vinter, S., Ramamritham, K., and Stemple, D. Recoverable Ac-

tions in Gutenberg. In Proceedings of the 6th International Con-

ference on Distributed Computing Systems, pages 242{249, 1986.

[Wei84] Weihl, W. Speci�cation and Implementation of Atomic Data

Types. PhD thesis, Massachusetts Institute of Technology, 545

Technology Square, Cambridge, MA, 1984.

[Wei88] Weihl, W. Commutativity-Based concurrency control for abstract

data types. IEEE Transactions on Computers, 37(12):1488{1505,

1988.

