
Extracting Concurrency from Objects: A Methodology

Panes K. Chrysanthis S. Raghuram Krithi Ramamritham

Department of Computer and Information Science

University of Massachusetts

Amherst, MA. 01003

e-mail: {panes, raghuram, krithi}@cs .umass.edu

Abstract

Whereas a number of semantics-based concurrency control

schemes for object- or~ented systems haue been proposed in

the literature, each scheme has approached the issue jrom

fairly narrow considerations. In this paper, we have made

an @Ort to di8coveT, jTom .l%st principles, the natuTe oj

concurrency semantics inherent in objects. Towards this

end, we identify the dimensions along which object and

opeTatzon semantics can be modeled. These dimensions

are then used to classify and unify existing semantic-based

concurrency control schemes. To formalize thig classifica-

tion, we pTopose a gTaph representation for objects that

can be derived .fTom the abstract specification o.f an object,

Based on thz8 Tepvesentatzon, which helps to identify the

semantic information inherent in an object, we propose

a methodology that shows how varioru semantic notions

applicable to concurrency control can be etiectively com-
bined to improve concurrency. In this process, we identijy

and exploit a new souTce of semantic information, namely,

the oTde?ing among component objects, to further enhance

concurrency. Lastly, we present a gcheme, based on this

methodology, foT deriving compatibility tables fo~ oper-a-

tions on objects.

1 Introduction

In order to capture the needs of emerging information.

intensive applications such as CAD/CAM, office information

systems, and stock trading databases, several extensions to

the traditional data and transaction models have been pro-

posed [14]. For example, instead of the read/write model

of data, an abstract data type model has been advocated

to capture the data in complex databases. Abstract data

types being a rich source of semantic information, allow the

design of type-specific concurrency control schemes which en-

hance concurrency within objects, i.e., instances of abstract

data types. These schemes exploit the semantic information

about the types and their operations. Several forms of type-

specific concurrency control techniques have been reported

This material is based upon work supported by the Na-
tional Science Foundation under grant DCR-8500332.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

a 1991 ACM 0-89791 -425 -2/91 /0005 /0108 . ..$1 .5o

in the literature [3, 8, 13, 15] and the improved performance

achieved by these schemes has already been demonstrated

[3].

Our goal in this paper is to examine whether there is a

systematic way to extract and exploit the concurrency in-

herent in an object. To address this issue, we consider the

following to be prerequisites: (1) A precise model for objects

that will bring out their concurrency semantics. (2) Given

this, a scheme for extracting information that can be used

for controlling concurrent access to these objects.

In Section 2, the issues related to semantic-based concur-

rency control are examined. In section 3, existing semantic

notions are presented and characterized in terms of the dif-

ferent semantic information classes identified in Section 2.

Section 4 presents a model that captures the abstract struc-

ture of an object and provides a way to specify the effect of

an operation on an object in terms of such an abstract struc-

ture. Using this, in Section 5, a methodology is developed

for deriving the compatibility table for objects. Section 6

concludes with a summary and future steps.

2 Semantics-Based Concurrency

Control

In a database modeled in terms of objects, i.e., instances of

abstract data types, transactions invoke operations defined

on the objects. Controlling the concurrent execution of these

transactions involves the control of execution of the opera-

tions invoked on the objects. Whether or not two operations,

invoked by different transactions, can be allowed to execute

concurrently depends on the effect of one operation on the

other, and the effect oj the operations on the object.

In this section, we elaborate upon these effects in order to

set the stage for a characterization of semantics-based con-

currency control schemes in subsequent sections. Through-

out this paper, we assume a traditional transaction model in

which transactions have the properties of seria~izabi~ity and

./ailure atomicity [6, 7, 4].

We will be using the QStack object described below to

illustrate various concepts discussed in the rest of the paper.

A QStack combines the properties of a stack and a queue.

The operations defined on a QStack are:

Enq(e): ok/nok or Push(e): ok/nok adds an element e

to the back of the QStack. It returns ok if QStack is not

full, nok (denoting overflow) otherwise.

Deqo: e/nok deletes an element e from the front of the

QStack. It returns e if QStack is not empty, nok (de-

noting empty) otherwise.

108

http://crossmark.crossref.org/dialog/?doi=10.1145%2F119995.115803&domain=pdf&date_stamp=1991-04-01

We prefer to use the more general terms observer and mod-

ifier, rather than read and write, to explicitly denote the fact

that a modifier may not “write” into the complete object and

an observer may only ‘iread” part of the object. Thus, as we

shall see in Section 4, it may be possible for two modifiers

or even a modifier and an observer to concurrently access an

object.

The above classification of operations forms the basis for

the methodology outlined in Section 5 for extracting concur-

rency from objects.

2.2 Effects of Operations on Objects

We now turn our attention to the effects of individual opera-

tions on objects. Broadly speaking, the concurrency seman-

tics of an object can be ext ratted from the following:

1. semantics of the operations,

2. operation input/output values,

3. organization of the object, and

4. object usage.

Operation semantics are the most commonly used seman-

tics in the context of concurrency control and are related to

the effects of an operation on the state of an object. As we

just saw, operations can be broadly classified as observers,

modifiers or modijier-obseruers. Reads and writes are simple

examples of observers and modifiers respectively.

lrzput/ovtput semantics refer to both the direction (in/out)

of information flow from an object, and to the interpretation

of input and output values of an operation. The information

into or out of an object occurs via the arguments of the op-

erations defined on the object and through the outcome and

results of the operations. For example, an operation with-

out arguments such as Deq on a QStack, does not support

information flow into the QStack although it supports infor-

mation flow out of QStack. Interpretation of input/output

values can be used to decide if two operations confllct. For

example, two Push operations which attempt to push the

same item onto a stack commute and thus, they do not con-

Klct even though, in general, two Push operations confllct.

Object organization semantics refer to the abstract organi-

zation of an object. We classify thk further as composition

semantics that pertain to what an object is composed of, and

as order semantics that refer to the relative ordering among

the component objects.

Usage semantics refer to how the object is used and what

is done with the information extracted out of an object by an

operation. In this paper, we don’t consider usage semantic

information, although such information can potentially be

exploit ed to enhance concurrence y within a given application.

We return to thk in the concluding section.

Several techniques have been proposed in the literature to

enhance concurrent access to objects. We review them in

Section 3 and show how they are designed to use operation

semantics, input/output semantics and object organization

semantics.

3 Characterization of Object-based

Concurrency Control Schemes

Commutativity is the traditional semantic notion used to de-

termine if two operations can be allowed to execute con-

currently (e. g., two reads commute), Commutativity does

not distinguish between abort-dependencies and commit-

dependencies. Two operations do not commute if either type

of dependency may result if they execute concurrently.

Several concurrency control schemes use input/output

data semantics, operation semantics, and object organiza-

tion semantics in determining commuting operations [1, 12].

In [15], commutativity is defined in terms of state machines

as forward commutativity, which is applicable only with in-

tentions lists based recovery, and backward commutatiuity,

which is applicable only with log based recovery, Multilevel

concurrency-control takes object organization semantics into

account [10].

An alternative method for defining confllcts is based on se-

rial dependency relations [8]. An operation 01 confllcts with

another operation 02 according to a serial dependency rela-

tion if 01 can invaEdate Oz by appearing earlier in a serial

sequence. Specifically, if there exist operation sequences hl

and hz such that hl .Oz .hz and 01 . hl . hz are legal sequences,

but 01 . hl .02. h2 is not, then 01 invalidates oz and 02 has

a serial dependency on 01. This criterion is feasible only if

intentions lists based recovery is used. The use of intentions

lists in thk scheme as a recovery mechanism avoids the oc-

currence of information flow or obsolescence - - the reason

for commit-dependency and abort-dependency formation --

between active transactions since the modifications of an ob-

ject by an operation are not effected until the operation com-

mits. For example, with intentions lists, if a Pop operation

follows a Push operation invoked by dMerent transactions

on a QStack, information flows from Push to Pop only when

the Pop commits. At the time of commitment, a transac-

tion is validated to determine if its commitment invalidates

the changes made by any committed transaction in case of

backward validation, or the effects of any in-progress (active)

transaction in case of forward validation.

Recoverability is another criterion which is used to define

confllcts among operations [3, 2]. An operation 01 is recover-

able relative to another operation oz, if oz returns the same

value whether or not 01 is executed immediately before oz.

Transactions invokhg 01 and oz are required to commit in

the order of invocation of these two operations. Since recov-

erability forces a (dynamically determined) order of commit-

ment for active transactions, in a sense it is stronger than

serial dependency which postpones the commit order till the

time of commitment of active transactions. Recoverability,

like commutativity, allows implementations that avoid cas-

cading aborts while also avoiding the delay in the processing

of many non-commutative operations. It assumes a flexible

recovery technique for handling the abortion of operations.

In both serial dependency and recoverability, aspects of in-

put/output data semantics relating to input and return val-

ues, and operation semantics are used. Both these definitions

are weaker notions than commutativity which requires equiv-

alence of states. In fact serial dependency and recoverability

can be shown to be equivalent semantic notions in the sense

109

PoP(): e/nok deletes an element e from the back of the

QStack. It returns e if QStack is not empty, nok (de-

noting empty or bottom) otherwise.

Topo: e/nok returns e, the element at the back of QStack,

if QStack is not empty, nok (denoting empty or bottom)

otherwise.

!?iizeo: n returns thenumber ofelementsnin the QStack.

Replace(el,e2): ok replaces all el elements (values) in

QStackwithe2. Italways returns ok.

XTOP(): ok/nok exchanges the first two elements in the

back of the QStack. It returns ok if two elements exist,

otherwise nok.

We refer to the “status”, such as ok or nok, returned by

an operation as the outcome of the operation. Other values

returned are referred to as its result. It is assumed that an

operation always produces a return-value, that is, it has an

outcome or a result or both.

2.1 Effects of Operations on Each Other

Operations defined on an object are considered as functions

from one object state to another object state. The result of

an operation on an object depends on the current state of the

object. For a given state s of an object, we use ~eturn(s, p)

to denote the return value, i.e., result or outcome, produced

by operation p, and state (s, p) to denote the state produced

after the execution of p.

Here we ask the question: What are the possible interac-

tions that can occur between two concurrent operations on a

given object, and what are the effects of these interactions on

the relationsKlp between these two operations? This relation

can cause dependencies to develop between the transactions

invoking the two operations, thus affecting their commit or

abort. The relationship between an operation and another

relative to state s depends on whether it is an observer of s

or a modifier of s, or both. Two operations interact only if

at least one of them is a modifier that changes the state of

the object.

Definition 1: An operation o is an observer in a state

s if state(s, o) = s.

Definition 2Z An operation o is a modijiev in a state s if

state(s, o) # s A’ds’, s’ # s,~etur-n(s’, o) = ~eturn(s, o).

Definition 3: An operation o is a modifier-observer

in state s if siaik(s, o) # s A %’, s’ # s,~etum(s’, o) #

7-etum(s, o).

These definitions classify the operations as observer (O,),

modifiers (M,) and modifier-observers (MO.) with respect to

a particular state s. Clearly an operation could be a mod-

ifier in one state and an observer in another. For example,

operation Push is a modifier-observer if successful and just

an observer if it is not.

Interactions between operations of different classes can

cause dependencies of cMferent types between the invoking

transactions. Given the above definitions, consider the cases

where an operation q follows an operation p. If p is a modi-

fier and q is an observer, or p is modifier and q is a modifier-

observer, or p is a modifier-observer and q is an observer, or

both p and q are modifier-observers, operation q observes the

effects of p. In these cases, to guarantee failure atomicity, the

transaction invoking q has to abort if for some reason the first

transaction aborts, since the information used by q would no

longer be valid. The second transaction can commit only if

the first transaction commits. Hence, in this case, the second

transaction is said to be abort-dependent (AD) on the first

transaction.

If p is an observer and q is a modifier, or p is an observer

and q is a modifier-observer, or p is a modifier-observer and

q is a modifier, or both p and q are modifiers, the outcome

and result of q are not affected by the effects of p. In these

cases, to ensure serializakdity, if both transactions commit,

the first should commit before the second. i.e., the second

transaction can commit, and hence, it can effect its changes,

only after the first transaction commits or abortsl. In this

case, the second transaction is said to be commit-dependent

(CD) on the first transaction.

Thus far, we have classified operations in a given state

s. Let us consider state-independent classification of op-

erations. To motivate thk classification observe that an

abort-dependency is stronger that a commit-dependency in

the sense that abort-dependency can prevent a transaction

from committing and thus force it to abort, whereas commit-

dependency can neither prevent a transaction from eventu-

ally committing nor force it to abort. (Note that abort-

dependency implies commit-dependency.) Because of this,

suppose an operation o is a modMer-observer in a state s,

there is potential for another operation to form an abort-

dependency on o; also, suppose o is a modifier in another

state s’ in which there is potential for another operation to

form a commit-dependency on o; o should be classified as

a mocliler-observer with respect to all states because abort-

dependency is stronger than commit-dependency. Here is a

state-indenpendent classification of operations:

Definition 4: An operation o is a modifier-observer

(MO), if 3s in which o is a modifier-observer.

Definition 5: An operation o is a modifier (M) if ,3s

in which o is a modifier-observer, and 3s in which o is a

modifier.

Definition 6: An operation o is an observer (0) if ~s

in which o is a modifier-observer, and $s in which o is a

modHier.

Here is a state-independent classification of the operations

of the QStack:

Operation Type I Operation Type

POP MO Deq MO

Pu;h MO I Siz; o
TOD o Replace M

XT~p MO -

Table 1

1This means that, in the event that p is aborted, p’s
changes have to be undone and possibly q’s, and the changes
of q must be reapplied.

110

that they allow the same set of valid histories given a par-

ticular recovery mechanism. We have proven elsewhere that

both these schemes have the same set of valid histories, and

we have shown how a serial dependency based compatibil-

ity table translates into a recoverability table and vise-versa.

The difference between these two semantic notions is in the

assumption of the underlying recovery mechanism.

Compatibility ofoperations based ontheformation ofsig-

nificant and insignificant dependencies between concurrent

operations is described in [13]. For example, two concurrent

read operations form an insignificant dependency and hence

can be allowed to execute concurrently. The classification

of dependencies as significant or insignificant is not explic-

itly uniform across types. Here a combination of operation,

input/output data, and object organization semantics is ex-

ploited.

Whereas each of these proposed semantics-based concur-

rency control schemes has attempted to exploit different as-

pects of objects and their operations, it is not clear if (be-

tween them) that have exhausted all possibilities. It will be

useful to know - given a particular object - what the po-

tential for concurrency is while executing operations on the

object. Thlsis the issue addressed in the next section. Specif-

ically, we develop amodelfor representing objects that brings

the concurrency properties ofan object andits operations to

the forefront.

4 The Object Model

The popular notion of an object is that it hides or encapsu-

lates implementation details, and presents only the logical or

abstract view of the objects, with a predefine set of meth-

ods or operations that are used to access the object. Even

while staying wit hin thk view, one can exploit another ab-

stract object characteristic, namely, the notion of ordering

among elementsz. Specifically, an object can be thought of

as containing a set of subobjects or components ordered in a

specific way. This potentially rich source of semantic infor-

mation can be used to extract more concurrency.

In thk section, we develop a characterization of objects

that helps identify the semantic information inherent to an

object. First we propose use of an object graph to represent

objects and their components. Using this graph, the locality

of effects of an operation is described. Locality of operations

forms the basis for deriving their concurrency properties.

4.1 Object Graph

Objects are instances of abstract data types whose state can

be observed and manipulated by a set of operations defined

on the object. The state can be viewed as an ordered set

of component objects. In this recursive view, the primitive

object has a simple data value. Hence thk view captures

both the notions of simple and complez objects, i.e., objects

composed of other objects.

Definition ‘?: An object ob is a 3-tuple (S, R, O) where

S is a set of objects or simple data values, R is a set of

‘Note that not all objects may contain components that
are ordered. However, as we will see, where available, such or-
dering information can be exploited to improve concurrency.

ordering rules, and O is a set of operations defined on

ob.

The object graph represents the logical organization (ab-

stract structure) of an object. This graph encodes the fact

that an object consists of component objects, where the or-

dering among components, represented by R, is made explicit

by encoding it as edges in the graph. The ordering edge

emanating from a component indicates the next component

that can be accessed following access to this component. A

component may be an object with or without further com-

ponents. Thk representation, which is an extension of the

graph model used in [I], can be constructed just from the

abstract specification of an object and the operations and

does not subsume any implementation detail. In particular,

we are dealing with the abstract operations for which it is

assumed that the implementation does not impose any con-

straints on extracting the concurrency inherent in an object.

Thus, in what follows, it is assumed that if the seman-

tics of two operations on an object allow the operations to

execute concurrently, the lower-level implementation of the

object will allow the exploitation of such concurrency. In case

an object has components which are themselves objects, then

concurrent access to that object (perhaps from operations in-

voked on the parent object) are controlled by the component

object. Such multilevel concurrency control issues pertaining

to complex objects [9] are studied in [11, 10, 21.

Definition 8: Let Gob({vob U Vo~}, {E.~~ U E~,~}) be

the object graph for object ob where:

v~b is the root of the object graph,

- V.b is a set of vertices, representing the components

of ob,

— EC~~ is a set of composed-of edges from v~b to every

vertex in Vob, representing the composition of ob,

and

– Eo,d is the set of ordering edges connecting vertices

in Vobl representing the ordering of the components

of Ob.

Definition 9: The subgraph G~b({Vob U V.b}, ~..~) of

Gob is called the composition graph of ob, and subgraph

G~~(V~b, E~~d) is called the ordering graph of ob.

Definition 10: The content of a vertex is defined re-

cursively as follows:

– If the vertex denotes an object without components,

then the content of the vertex is the content of the

object.

– If the object has components, the content of the ver-

tex is denoted by the composed of edges and content

of the vertices in the subtree rooted at the vertex.

For example, in Figure 1, object A is composed-of prim-

itive objects B and C and component object D which is

composed-of primitive objects E and F. Since D itself is an

object, A is a complex object. A B, AC, AD, DE and DF are

composed-of edges (the solid arrows). Thus, the composition

graph of A is G’({A, B, C, D}, {All, AC, AD}). The order-

ing edges of A are BC and CD (the dotted arrows). Thus,

111

A%ABc D

E ‘“”---;.F
.- ..-,

Figure 1: An object graph

the ordering graph of A is G“({B, C, D}, {BC, CD}). Note

that DE and DF are composed-of edges and EF and FE

are ordering edges of D and not of A.

The composition graph of an object together with the

composition graphs of component objects has a hierarchical

structure. At any level of the hierarchy, the ordering graph of

the object at that level may contain cycles. Since ordering is

meaningful only between components of an object, ordering

edges are restricted to lie at a single level, i.e., they do not

connect vertices at different levels.

4.2 Operations and Locality

An operation can possibly do one or more of the following:

1.

2.

3.

4.

5.

out
The

change the contents of vertices (for component objects,

by invoking operations on them),

insert or delete vertices and their related (composed-of

and ordering) edges,

change the structure by changing the ordering edges,

observe the contents of vertices, or

observe the structure or presence of vertices.

of these, item 5 might need some further explanation.

following example should clarify it. Consider the oper-

ation Size on the QStack object. The number of elements

on a QStack that Size returns equals the number of vertices

present in the structure of the QStack (see Figure 2). Thus,

Size observes the structure and counts the vertices present,

i.e., it observes the presence of the vertices.

To characterize the specific parts of the object graph af-

fected by or used by an operation, we define the locality of

an operation. Note that an operation on a complex object

may result in the invocation of a set of operations on the

component objects (see item 1 above).

Definition 11: The locality L. of an operation o is

a set of vertices inserted or deleted by o, vertices whose

existence has been observed by o, vertices whose content

has been changed or observed by o and vertices to/from

which ordering edges have been changed or observed.

Since operations can affect the structure of an object and

the contents of its components, the locality of an operation

o can be split into two sets L; and L: (LO = L: u L:),

not necessarily disjoint, denoting the structure and content

locality of o respectively.

Definition 12: The structure locality L; of an oper-

ation o is a subset of the locality of the operation Lo

(L: C Lo), containing the vertices in LO that are in-

serted or deleted, vertices to/from which ordering edges

are changed or observed, and vertices whose presence is

observed.

Definition 13: The content locality L: of an oper-

ation o is a subset of the locality of the operation Lo

(L: C Lo), containing the vertices in Lo that are in-

serted, deleted, or whose content is changed or observed.

Informally, whereas structure locality of an operation con-

siders all the vertices whose ezistence or ordering, may have

been noted by the operation, content locality considers all the

vertices whose contents may have been observed or affected

by the operation.

By considering insert, delete, and change operations

as modifiers, structure as well as content localities of

an operation can be further distinguished into stwctwe-

observation, structwe-modification, content-observation, and

content-modification localities.

Definition 14: The structure-observation locality L:

of an operation o is a subset of the structure locality

of the operation L: (L~O C L;), containing the vertices

in L: whose presence is observed, and ordering edges

to/from which are observed.

Definition 15: The structure-modification locality

L~m of an operation o is a subset of the structure lo-

cality of the operation L: (L~m C L:), containing the

vertices in L: that are inserted or deleted, or to/from

which ordering edges are changed.

Definition 16: The content-observation locaEty L%

of an operation o is a subset of the content locality of

the operation L: (L: C L%), containing the vertices in

L: whose content is observed.

Definition 17: The content-modification locality Ljm

of an operation o is a subset of the content locality of

the operation L: (L:* C L:), containing the vertices in

L: that are modified, i.e., inserted or deleted, or whose

content is changed.

The following examples should clarify these terms. The Re-

place operation on a QStack modifies the content but not

the structure of the QStack. The Top operation observes

both the content as well as the structure of the QStack. A

successful XTop mo{lfies the structure but not the content

of the QStack. That is because XTOP which affects the top

two elements of the QStack does not modify the content of

the elements or the composed of edges. It only reorders the

ordering edges.

It is possible for an operation to have more than one char-

act erization. For instance, XTop, as specified, is charac-

terized by a non-empty structure-modification locality and

empty content-modification locality. If XTOP were to swap

the contents the top two elements, then XTop would mod-

ify the content of the QStack but not the structure. In this

. . .
11/?

case, XTop would be characterized by a non-empty content-

modification locality and empty structure-modification local-

ity. In such cases, all characterizations need to be considered

in order to determine the one characterization that allows

the most concurrency.

Definition 18: VJ~’”pte for an object obis the set of

all the vertices with simple data values in the Klerarchl-

cal graph constructed by the composition graph of the

object G~~ together with the composition graphs G~ai of

its component objects ob; (oh; c V~b). Thus,

Vof-l’ = VP U(UiVO~~p~e), where: VpCVob, represent

the primitive compon~nts ofob.

Definition 19: Anoperation oon an object obis said

to be a global operation if Lo 2 VO’rnple. An operation

which is not global is said to be non-global.

That is, the locahty Lo of a global operation o defined on

ob always contains all the vertices with simple data values in

the object graph of ob.

Global operations can be classified as globahnodijiers and

g!oba!-obser’vers, or can be further refined as global-strwcture-

modiJ$er8, global- 8tructure-ob8ewer8, global-content- observer8

and global-content-modifiers according to the, locality type.

For instance, if for an operation o, L~ = VO~mpl’ then o is

said to be a global-content-observer. Replace is an example

of such an operation.

4.3 Relation of Locality to Dependencies

In the most general case, two operations defined on an object

confllct if the intersection of the localities of the two opera-

tions is not empty. We focus first on the state-independent

classification of operations and then we show how return-

value dependency and state-dependency semantics can be

factor in.

Finding the actual locality of an operation may require the

execution of the operation. However, in most cases the local-

ity of a non-global operation can be specified by a predicate.

Thus, whether the intersection of two localities is empty or

not can be determined by using the predicates characterizing

the localities without actually finding the vertices or edges

involved. (However, note that, in general, determining if the

sets identified by two arbitrary predicates intersect is unde-

cidable.) If it is not possible to specify such predicates, the

locality of an operation can be determined only after the op-

eration completes.

Typically, the input parameters to an operation determine

the locality of the operation. In addition, the ordering among

component objects can be very effectively used in construct-

ing predicates for specifying the localities of the operations.

To thk end, the notion of the set of references used by each

operation on an object is introduced. Thk set is a subset of

the composed-of edges E.o~ emanating from the root vertex

of the object graph and is generally maintained as part of

the object state.

For example, a QStack maintains two references, one is

the back pointer or stack pointer (denoted by b in Figure 2)

that points to the end of the QStack and is used by Enq,

Push, Pop, and Top operations, and the other is the front

pointer (denoted by ~ in Figure 2) that points to the front

of the queue and is used by the Deq operation. The stack

pointer, for instance, is the composed-of edge corresponding

to the last element on the QStack. The ordering edges de-

fine which composed-of edge should become the stack pointer

when a Pop operation is invoked (since the composed-of edge

representing the current stack pointer is deleted when Pop

executes).

Definition 20: Let T,,p be the set of references of oper-

ation op defined on object ob represented by the object

graph G.b({v.b U %b}, {~c~~ U Eor~}). The set of ref-

erences T.p is a subset of the composed-of edges -Eco-
(ToP c l?..~) and is defined with respect to oh’s order-

ing rules R (see definition 7).

These references can either be (indirectly) provided by the

agent invoking the operation (ezpiicit re~e?encing), or by the

object state itself that maintains a set of references to be used

by the operations (implicit re~e?encing). The two references

maintained by a QStack are implicit. An example of explicit

referencing occurs in the sea~ch(z) operation on a relation.

Here z is the argument that can be used to determine the

reference to the record being searched.

References can be deleted for example when a QStack be-

comes empty. A reference can also be modified. Modification

can be done without necessarily deleting the corresponding

composed-of edge by selecting a different composed-of edge

as the new reference. For example, a Push operation on a QS-

tack modifies the stack pointer by selecting the newly added

composed-of edge to be the new stack pointer but without

deleting the composed-of edge representing the current stack

pointer.

Definition 21: The input and output parameters of an

abstract operation on an object can be said to contain

three components: reference (T), input-data (i), return-

value(o).

Assertion 1: Transactions invoking two operations z

and y defined on the object ob do not form dependencies

if localities of z and y satisfy the following conditions:

Thk implies that operations restricted to the structure

of an object do not form dependencies with operations re-

stricted to the content of the object.

The intersection of different combhations of locafity types,

if it is not empty, may result in either a commit or an abort

dependency. In the following table, if the intersection of the

given sets is empty then no dependency (ND) is developed

between the cc.rrespondlng operations z and Y, otherwise an
abort-dependency (AD) or a commit-dependency (CD) is

developed. In all the compatibility tables, for better read-

ability, an ND is indicated by a blank entry. Here z is in

execution and y attempts to execute concurrently with z.

113

4.4

L: Lg L:m L:??t

~so AD
L:”

AD
L.% Cl~

CD
~:m

CD CD

Table 2

Assertion 2Z Given two operations x and y defined

on the object ob, z and y commute iff Vi s {c, s}, Vk, l E

{o, m}, -(k = OA 1 = o), Lj’ n.L~L = ~. ❑

Assertion 3: Given two operations z and y defined

on the object ob, y is recoverable relative to z iff Vi E

{c, s}, Vk,l E {o, m}, ~(k = o A 1 = o), (a) L~k ilL$ = #

or(b) L~kn L~ # rj and the corresponding entry in Table

2isa NDora CD. ❑

Putting it all together

We are now in a position to determine the compatibility table

associated wit h a given object.

In the traditional framework, a compatibility table is a

simple a binary relation with a yes entry for (o~, OJ) indl-

eating that the operations oj and o, are compatible, i.e., do

not conflict, or a no entry indicating that the two operations

are incompatible, i.e., conflict. In our terminology, an entry

could contain no-dependency (ND), abort-dependency (AD),

or commit-dependency (CD). That is, in our scheme a stan-

dard yes entry translates to a ND, whereas a standard no

entry is refined to either AD or CD. Note (see Section 2 for

the definitions of dependencies) that an AD entry is more re-

strictive (stronger) than a CD entry, and a CD entry is more

restrictive than a ND entry (AD> CD>ND). The general rule

to determine an entry in a table follows from the discussion

of the effects of an operation on another (see Section 2.1).

In thk scheme, the compatibility table is developed

through stepwise refinement of its entries. Each step uses

more semantic information to produce a compatibility table

that offers more potential for concurrency among operations.

We begin with the case where no semantic information is

used about the object and its operations, i.e., corresponds to

all operations being modh$er-observers (MO). This produces

a single entry compatibility table containing AD (X is the

operation in

Based on

execution and Y is the invoked operation).

J2cl
EIEEEl

Table 3

whether an operation is an observer (0), a mod-

ifier (M), or modifier-observer (MO), thk single “eritry table

can be replaced by the following table:

EiliiE3i :’
Table 4

These entries capture the eight types of potentially conflict-

ing interactions between two operations seen in Section 2.1.

T’rds is exactly the semantics that is captured by recoverabil-

it~ [and serial dependency].

BY making use of the order among dependencies

(AD> CD>ND), the entries associated with a modifier-

observer can be considered as a function that returns the

stronger dependency between the corresponding modifier

and observer entries. For example, the entry (O, MO) =

stronger((O,M), (O, O)) = stronger(AD,ND) = AD. Since the

MO entries can be easily generated in this way, we need to

further consider tables with only the O and M entries:

& :—
‘lable 5

Note that the above “weakening” was accomplished by using

a combination of semantics of both operations,

Object organization semantics, i.e., the composition and

structural (ordering) semantics of an object, is used to fur-

ther refine the AD and CD entries, An observer can either

be a content observer (CO) or a structure ob8erver (SO) or

both (CSO). Similarly, a modifier can be classified as content

modifie7 (CM), structure modifier (.S&f), or both (C’SM). It

is possible to eliminate the entries associated with CSM by

making use of the stronger function as explained above. Op-

erations restricted to the structure of an object can execute

concurrently with operations restricted to the content of the

object. For example, the operation Replace defined on a QS-

tack is a CM operation on the QStack and a successful XTop

is a SM operation on the QStack, and hence, Replace and

successful XTop operations commute. The Top operation on

the other hand is both SO and CO since it observes both the

ordering and the content of the first node. By thk refine-

ment, based on the entries in Table 2, the following three ta-

bles are obtained corresponding to the entries (O,M), (M, M),

and (M, O):

(M,M) II SM I CM I CSM

-
Table 7

(M,O) II SO I CO I CSO j

-
Table 8

The refinement thus far was based on a state-independent

characterization of operations. The input /outPut semantics

of operations and the locality of non-global operations can

be exploited to further weaken the remaining AD and CD

entries. Potentially, these are very rich sources of semantic

information that can be effectively used to further enhance

concurrency. This is illustrated in Section 5.

114

The operations can be classified as either global (G) or

non-global (L) and only the non-global operations need to be

refined further: The single dependency in an entry is replaced

with a set of mutually-consistent (dependency/condition)

pairs where each Condition is dependent on the predicate that

describes the locality of the operation (see Section 4.3). Dif-

ferent conditions test the emptiness of the intersection of dif-

ferent types of localities of two operations and may result in

different dependencies. By mutually-consistent (dependency,

condition) pairs, we mean that if the conditions associated

with two pairs involve the same type of localities where the

condition of the first pair exploits more semantics than the

one of the second pair, the dependency specified in the first

pair must be weaker than the one specified in the second

pair. Thus, for a given entry, the dependency chosen from

the set of (dependency, condition) pairs is the least restric-

tive (weakest) dependency among the dependencies whose

associated conditions ,hold.

Let us consider a Push operation followed by a Deq op-

eration. The entry (Deq,Push) of the compatibility table

of QStack contains the pair (CD, Pushowt = nok), since an

unsuccessful Push (returning nok) is only an observer, and

hence, Deq has a CD with this Push. As we will see in

the next section, the entry (Deq,Push) also contains the pair

(ND, .f #b) (Recall that f and b stand for the current front

and back pointer of the QStack), denoting that the inter-

section between the localities of operations Push and Deq is

empty. That is, for the state in which f # b, Push and Deq

commute. In the event of an unsuccessful Push, both condl-

tions become true, and hence, ND should be chosen, being

the weaker of ND and CD.

Based on the above dkcussion, a methodology presents it-

self that helps to generate the confllct resolution table for

an object methodically. This table is a n x n table, where

n is the number of operations defined on the object, with

AD, CD, or ND entries wKlch could be either conditional or

unconditional. Conditional entries are those that are based

on dynamic information such as the locality of a non-global

operation. The objective is to obtain an optimal table that

contains the minimal of AD or CD entries, with CD pre-

ferred over AD, and weaker conditional entries preferred over

stronger unconditional entries.

In the next section, we first discuss this methodology and

then apply it to the QStack example.

5 The Methodology

In the stage 1, in order to identify all the necessary informa-

tion, the object graph Gob of the object is constructed and

the references are identified. Then the behavior of each oper-

ation defined on the object is expressed in terms of operations

on Gob.

In the stage 2, using information gathered in the first stage,

for each operation, answers to the following questions are

sought .

DI; k it an observer, modifier or modijier-obserwev?

D2: Does it observe/modify content, structure, or both?

D3: Does it have an outcome, or result, or both? Does it

have input parameters?

DJ: Is its locality global or not?

D5: Does it employ explicit or implicit referencing, if im-

plicit, which are the references used?

DI and D2 involve state-independent semantics, D3 is re-

lated to input/output semantics, and D4 and D5 are state

dependent semantics.

In the stage 3, an initial compatibility table T.b of the ob-

ject is derived from Tables 5, 6, ?, and 8, collectively referred

to as template tables, using the first two dimensions, namely

DI and D2, of the characterization of the operations pro-

duced in stage 2. For each pair of operations (01, oz) where

each operation is either a modifier, an observer, or a modifier-

observer, potentially every one of these template tables can

specify a dependency. Specifically, for such a pair of opera-

tions the corresponding entry in Tob is determined from the

following tables:

● Table 5, if both operations can be characterized in terms

of D1.

● Tables 6, 7, and 8, if both operations can be character-

ized in terms of D2.

The final dependency for the pair of operations (o1, oz) is

taken to be the least restrictive dependency of the depen-

dencies specified by the appropriate template tables in each

dimension.

Since modifier-observer operations are considered to be a

composition of modifier and observer operations, two depen-

dencies will result, one for each component, along each di-

mension. The single dependency for modifier-observer along

each dimension is chosen, as explained above, to be the more

restrictive of the resulting two dependencies.

In the stage ~, the D3 dimension of the characterization

of operations is used to refine entries. Thk is achieved by

replacing the existing AD or CD dependency with a set of

(dependency, condition) pairs where the conditions are based

on the outcome and on input parameters, and the depen-

dency in at least one of the pairs is less restrictive than the

existing one.

In the stage 5, the final stage, using the dimensions D4

and D5 of the characterization of the operations, all non-

global operations are identified, and their locality predicate is

constructed in terms of their input parameters and/or their

references. For every pair (OI, 02) of non-global operations

their corresponding entry in the initial compatibtilty table is

added or replaced with a set of (dependency, condition) pairs,

where conditions are expressed in terms of the constructed

pretlcates.

We now generate the compatibility table for the QStack

as an example. For thk purpose, we focus on the following

operations defined on QStack: Push, Pop, Deq, !Xze, and

Top.

In stage 1, a graph representation for QStack is con-

structed, as shown in the Figure 2. The ordering edges

(dotted arrows) point towards the front of the QStack. QS-

tack maintains two implicit references ~ (front pointer) and

b (back pointer) that are the composed-of edges pointing to

the first and last element of QStack respectively. These ref-

erences are used by the operations to access the elements.

115

the (Deq, Push) entry, although both the operations have

n outcomes, only the outcome of the Push operation helps

&\
A

b f

o
B ------- C D

a

. D

Figure 2: Object graph for QStack

In stage 2, all the operations defined on QStack are char-

acterized along the dimensions D I-D5 as stated above. The

characterization of each operation is summarized in Table 9.

op. ohs/ Cent/ return- Loc- Ref-

mod Str value alit y erence

Pop MO CS resuit/nok L f

Push MO CS ok/nok L f

Deq MO CS result/nok L b

Size O s Tesult G

TOD O CS Tesult/nok L f

Table 9 ‘

The reason that Size is not associated with a reference is

that Size counts the composed-of edges in the object graph of

QStack and counting ofcomposed-of edges does not require

any specific order. Counting could start from any composed-

of edge, and hence, need not refer to f or b.

In stage 3, the entries for each pair of operations is de-

termined by consulting the tables presented in section 4.4.

For example, theentry for the operation pair (Deq, Push)3

is determined as follows:

1. Based on DI, Push and Deq are of type MO and MO

respectively, and hence the stronger of the entries we

get from Table 5 for (M, M), (M,O) and (O,M) is a AD.

2. According to D2, both these operations are of type

CS. The stronger of the entries from Table 6 and 7 for

(CSM,CSM), (CSM, CSO) and (CSO,CSM) is again a

AD.

The compatibility table for QStack obtained as a result of

stage 3 is as follows:

(0, , o,) 1] Prtsh I Pop] Deq I T’op I Size J

Push llADIAD\ADICD ICD

, 1

Table 10

In stage ~, based on D3, the outcome of the opera-

tions are used to refine the entries. Focusing again on

3Recall that (Deq, Push) entry corresponds to the situa-

tion that a Deq operation follows a Push operation on the
QStack.

in refining the existing dependency by replacing it with

the set of (dependency, condition) pairs: {(.4D, Pushotif =

ok), (CD, PushOvf = nok)}. This is because, when the out-

come is no.k, Push acts as an observer and not as a modifier-

observer. In a similar manner Table 12 can be constructed

for (Push, Push).

Push 1

] Deq II (CD, Push~~t = nok)],

I ‘(AD, Pushou, = okj]

Table 11

Pushz

(ND, Push~W,=Push~Ut = nok)

Pushy (CD, Push~U, = nokA Push~ti, = ok)

(CD,Push~U, = Push;W, = ok)

(AD, Push~., = okA Push~U, = nok)

Table 12

Now we can consider further refinements based on input

parameters. For example, if two Push operations attempt to

push the same element e, they commute.

Push=

(ND, Push;U, =Push~W, = nok) 1
(CD, Push~U, = nokA Push~w, = ok)

Pushy (CD,Push;., = Push~U, = Ok)
(AD, Push~W, = okA Push~U, = nok)

(ND,Push~n = Push~n = e)

Table 13

In stage 5, the entries corresponding to non-global opera-

tion pairs are refined further. Considering the example (Deq,

Push) pair, both Push and Deq are non-global, based on

D4. Therefore, as we show now, some of the correspond-

ing (dependency, condition) pairs of (Deq, Push) entry can

be replaced with pairs involving weaker dependencies and

conditions expressed in terms of locality predicates.

Based on D5, we can note that both Push and Deq employ

implicit referencing and use the references b and ~ respec-

tively. This means that the intersection of their localities

could be empty, in which case there will be no dependency

(ND). The intersection between the localities of Push and

Deq can be determined by a predicate constructed from the

references f and b that tests whether before the operations

are executed f and b refer to the same composed-of edge,-.
i.e., refer to the same component object. Hence the (de-

pendency,condition) pair having the AD in (Deq, Push) is

replaced, and the (Deq, Push) entry becomes:

Push J

m
Table 14

The entries for the remaining pairs can be refined by fol-

lowing the same procedure for stages 4 and 5.

To summarize the methodology just used, given an object,

the specific operations defined on the object are expressed in

terms of operations on the graph representation of the object.

116

The compatibility of each pair of operations is determined by

using the produced graph characterization of the operations

and the template tables. Subsequently, each entry may be re-

fined by considering input/output semanticsa ndbydefining

conditions in terms of locality predicates.

6 Conclusion

Whereas a number of semantics-based concurrency control

schemes for object-oriented systems have been proposed in

the literature, each scheme has approached the issue from

fairly narrow considerations. In this paper, we have ap-

proached the problem from first principles in an effort to

discover the underpinnings of, and hence classify, existing

schemes while giving a unified view to the nature of seman-

tics inherent in objects,

Inthk regard, we have classified the semantic information

available within an object in order to identify the specific

combinations that can possibly yield enhanced concurrency.

To formalize thk classification, we have proposed an object

model and its graph representation that can be derived from

abstract specification of an object. We have shown how the

model can be effectively used to identify the available seman-

tic information about an object.

Wehaveproposed a scheme that methodically exploits the

avadable semantic information. Thk shows how various se-

mantic notions applicable to concurrency control can be ef-

fectively combhed to achieve improved concurrency. In this

process, we have identified and exploited a new source of se-

mantic information, namely, the ordering among component

objects, to further enhance concurrency.

Wehave also classified thesemantic information into static

and dynamic information, depencihg on when it is available,

to facilitate easy design of compatibility tables. To determine

dynamic information such as the locality of an operation, we

have provided a framework or ground rules withh the pro-

posed object model, that can be effectively used to identify

further possibilities of improved concurrency. Lastly, and

perhaps of the most practical interest, we have presented a

methodology for deriving compatibility tables for operations

on objects. Note that no assumption regarding the underly-

ing optimistic or pessimistic concurrency control mechanism

as well as the recovery mechanism has been made in deriv-

ing the compatibility tables. When specific mechanisms are

considered, tables can be refined further.

In thk paper, we did not make use of usage semantics,

but this semantics is extensively utilized in various extended

transaction models that relax the requirements of serializabil-

ity and failure atomicity to achieve more concurrency. Just

as the present paper has attempted to unify object semantics,

the ACTA framework introduced in [5] provides a unifying

framework for all these transaction models. The notion of de-

pendencies among transactions serves as the thread common

to both these efforts. Hence, by using the results of this paper

in conjunction with the ACTA model, the semantic informa-

tion obtained from the relaxed correctness requirements of

an application can be used to further enhance concurrency.

References

[1] Badrinath, B. and Ramamritham, K. Synchronizing

Transactions on Objects. IEEE Transactions on Com-

puters, 37(5):541-547, May 1988.

[2] Badrinath, B. and Ramamritham, K. Performance Eval-

uation of Semantics-based Multilevel Concurrency Con-

trol Protocols. In Proceedings of the .4 CM SIGiWOD In-

ternational Conference on Management of Data, pages

163-172, Atlantic City, NJ, May 1990.

[3] Badrinath, B. and Ramarnritham, K. Semantics-based

concurrency control: Beyond Commutativity. (to appear

in) ACM Transactions on Database Systems, 1991.

[4] Bernstein, P. A., Hadzilacos, V., and Goodman, N. Con-

currency Control and Recovery in Database Systems.

Addison-Wesley, Reading, MA, 1987.

[5] Chrysanthis, P. K. and Ramamritham, K. ACTA: A

Framework for Specifying and Reasoning about Trans-

action Structure and Behavior. In Proceedings of the

ACM SIGMOD International Con.fer-ence on Manage-

ment of Data, pages 194-203, Atlantic City, NJ, May

1990.

[6] Eswaran, K., Gray, J., Lorie, R., and Traiger, I. The

notion of consistency and predicate locks in a database

system. Communications of the ACM, 19(11):624-633,

November 1976.

[7] Gray, J. The transaction concept: Vhtues and limita-

tions. In Proceedings O} the 7th VLDB Conference, pages

144-154, September 1981.

[8] Herlihy, M. P. and Weihl, W. Hybrid concurrency con-

trol for abstract data types. In proceedings oj the 7th

ACM symposium on Pr-inciples of Database Systems,

pages 201-210, March 1988.

[9] ~~~ikW6 Banerjee, J., Chou, H.-T., Garza, J., and
7 Composite object support in an Object-

Orient’ed database system. In Proceedings of Object-

O,iented Programming Systems, Languages, and Appli-

cations, pages 118-125, Orlando, Florida, October 1987.

[10] Martin, B. E. Modeling concurrent activities with

nested objects. In Proceedings of the 7th International

Conference on Distributed Computing Systems, pages

432-439, Berlin, Germany, September 1987.

[11] Moss, J. E. B., Griffeth, N., and Graham, M. Ab-

straction in recovery management. In Proceedings of

the ACM SIGiWOD international conference on man-

agement of data, pages 72–83, May 1986.

[12] Roesler, M. and Burkhard, W. Concurrency Control

Scheme for Shared Objects: A Peephole based on Se-

mantics. In Proceedings o} 7th ~ntenzutiond Confer-

ence on Distributed Computing Systems, pages 224–231,

September 1987.

[13] Schwarz, P.M. and Spector, A. Z. Synchronizing shared

abstract data types. ACM Transactions on Computer

Systems, 2(3):223-250, August 1984.

[14] Stonebraker, M. (Ed.), Readings in Database Systems.
Morgan Kaufmann, 1988.

[15] Weihl, W. Commutativity-Based concurrency control

for abstract data types. IEEE Transaction on Com-

puters, 37(12):1488–1505, December 1988.

117

