Check for
Updates

Extracting Concurrency from Objects: A Methodology

Panos K. Chrysanthis

S. Raghuram

Kritht Ramamritham

Department of Computer and Information Science
University of Massachusetts
Ambherst, MA. 01003

e-mail: {panos, raghuram, krithi}@cs.umass.edu

Abstract

Whereas a number of semantics-based concurrency control
schemes for object-oriented systems have been proposed in
the literature, each scheme has approached the issue from
fairly narrow considerations. In this paper, we have made
an effort to discover, from first principles, the nature of
concurrency semantics inherent in objects. Towards this
end, we identify the dimensions along which object and
operation semantics can be modeled. These dimensions
are then used to classify and unify existing semantic-based
concurrency control schemes. To formalize this classifica-
tion, we propose a graph representation for objects that
can be derived from the abstract specification of an object.
Based on this representation, which helps to identify the
semantic information inherent in an object, we propose
a methodology that shows how various semantic notions
applicable to concurrency control can be effectively com-
bined to improve concurrency. In this process, we identify
and ezploit a new source of semantic information, namely,
the ordering among component objects, to further enhance
concurrency. Lastly, we present a scheme, based on this
methodology, for deriving compatibility tables for opera-
tions on objects.

1 Introduction

In order to capture the needs of emerging information-
intensive applications such as CAD/CAM, office information
systems, and stock trading databases, several extensions to
the traditional data and transaction models have been pro-
posed [14]. For example, instead of the read/write model
of data, an abstract data type model has been advocated
to capture the data in complex databases. Absiract data
types being a rich source of semantic information, allow the
design of type-specific concurrency control schemes which en-
hance concurrency within objects, i.e., instances of abstract
data types. These schemes exploit the semantic information
about the types and their operations. Several forms of type-
specific concurrency control techniques have been reported

This material is based upon work supported by the Na-
tional Science Foundation under grant DCR-8500332.
Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
© 1991 ACM 0-89791-425-2/91/0005/0108...$1.50

108

in the literature [3, 8, 13, 15] and the improved performance
achieved by these schemes has already been demonstrated
(3].

Our goal in this paper is to examine whether there is a
systematic way to extract and exploit the concurrency in-
herent in an object. To address this issue, we consider the
following to be prerequisites: (1) A precise model for objects
that will bring out their concurrency semantics. (2) Given
this, a scheme for extracting information that can be used
for controlling concurrent access to these objects.

In Section 2, the issues related to semantic-based concur-
rency control are examined. In section 3, existing semantic
notions are presented and characterized in terms of the dif-
ferent semantic information classes identified in Section 2.
Section 4 presents a model that captures the abstract struc-
ture of an object and provides a way to specify the effect of
an operation on an object in terms of such an abstract struc-
ture. Using this, in Section 5, a methodology is developed
for deriving the compatibility table for objects. Section 6
concludes with a summary and future steps.

2 Semantics-Based Concurrency
Control

In a database modeled in terms of objects, i.e., instances of
abstract data types, transactions invoke operations defined
on the objects. Controlling the concurrent execution of these
transactions involves the control of execution of the opera-
tions invoked on the objects. Whether or not two operations,
invoked by different transactions, can be allowed to execute
concurrently depends on the effect of one operation on the
other, and the effect of the operations on the object.

In this section, we elaborate upon these effects in order to
set the stage for a characterization of semantics-based con-
currency control schemes in subsequent sections. Through-
out this paper, we assume a traditional transaction model in
which transactions have the properties of serializability and
failure atomicity [6, 7, 4].

We will be using the QStack object described below to
illustrate various concepts discussed in the rest of the paper.
A QStack combines the properties of a stack and a queue.
The operations defined on a QStack are:

Eng(e): ok/nok or Push(e): ok/nok adds an element e
to the back of the QStack. It returns ok if QStack is not
full, nok (denoting overflow) otherwise.

Deq(): e/nok deletes an element e from the front of the
QStack. It returns e if QStack is not empty, nok (de-
noting empty) otherwise.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F119995.115803&domain=pdf&date_stamp=1991-04-01

We prefer to use the more general terms observer and mod-
ifier, rather than read and write, to explicitly denote the fact
that a modifier may not “write” into the complete object and
an observer may only “read” part of the object. Thus, as we
shall see in Section 4, it may be possible for two modifiers
or even a modifier and an observer to concurrently access an
object.

The above classification of operations forms the basis for
the methodology outlined in Section 5 for extracting concur-
rency from objects.

2.2 Effects of Operations on Objects

We now turn our attention to the effects of individual opera-
tions on objects. Broadly speaking, the concurrency seman-
tics of an object can be extracted from the following:

. semantics of the operations,
. operation input/output values,
organization of the object, and

4. object usage.

Operation semantics are the most commonly used seman-
tics in the context of concurrency control and are related to
the effects of an operation on the state of an object. As we
Jjust saw, operations can be broadly classified as observers,
modifiers or modifier-observers. Reads and writes are simple
examples of observers and modifiers respectively.

Input/output semantics refer to both the direction {in/out)
of information flow from an object, and to the interpretation
of input and output values of an operation. The information
into or out of an object occurs via the arguments of the op-
erations defined on the object and through the outcome and
results of the operations. For example, an operation with-
out arguments such as Deq on a QStack, does not support
information flow into the QStack although it supports infor-
mation flow out of QStack. Interpretation of input/output
values can be used to decide if two operations conflict. For
example, two Push operations which attempt to push the
same item onto a stack commute and thus, they do not con-
flict even though, in general, two Push operations conflict.

Object organization semantics refer to the abstract organi-
zation of an object. We classify this further as composition
semantics that pertain to what an object is composed of, and
as order semantics that refer to the relative ordering among
the component objects.

Usage semantics refer to how the object is used and what
is done with the information extracted out of an object by an
operation. In this paper, we don’t consider usage semantic
information, although such information can potentially be
exploited to enhance concurrency within a given application.
We return to this in the concluding section.

Several techniques have been proposed in the literature to
enhance concurrent access to objects. We review them in
Section 3 and show how they are designed to use operation
semantics, input/output semantics and object organization
semantics.

109

3 Characterization of Object-based
Concurrency Control Schemes

Commutativityis the traditional semantic notion used to de-
termine if two operations can be allowed to execute con-
currently (e.g., two reads commute). Commutativity does
not distinguish between abort-dependencies and commit-
dependencies. Two operations do not commute if either type
of dependency may result if they execute concurrently.

Several concurrency control schemes use input/output
data semantics, operation semantics, and object organiza-
tion semantics in determining commuting operations [1, 12].
In [15], commutativity is defined in terms of state machines
as forward commutativity, which is applicable only with in-
tentions lists based recovery, and backward commutativity,
which is applicable only with log based recovery. Multilevel
concurrency-control takes object organization semantics into
account {10].

An alternative method for defining conflicts is based on se-
rial dependency relations [8]. An operation o; conflicts with
another operation oz according to a serial dependency rela-
tion if 0; can invalidate o, by appearing earlier in a serial
sequence. Specifically, if there exist operation sequences h;
and hs such that hy-0z-hy and o1 - k1 +hs are legal sequences,
but o1 + hy + 02 * hs is not, then o1 invalidates oz and o, has
a serial dependency on o0;. This criterion is feasible only if
intentions lists based recovery is used. The use of intentions
lists in this scheme as a recovery mechanism avoids the oc-
currence of information flow or obsolescence — ~ the reason
for commit-dependency and abort-dependency formation - ~
between active transactions since the modifications of an ob-
ject by an operation are not effected until the operation com-
mits. For example, with intentions lists, if a Pop operation
foliows a Push operation invoked by different transactions
on a QStack, information flows from Push to Pop only when
the Pop commits. At the time of commitment, a transac-
tion is validated to determine if its commitment invalidates
the changes made by any committed transaction in case of
backward validation, or the effects of any in-progress (active)
transaction in case of forward validation.

Recoverability is another criterion which is used to define
conflicts among operations{3, 2]. An operation oy is recover-
able relative to another operation oz, if 0; returns the same
value whether or not o; is executed immediately before o,.
Transactions invoking o; and o; are required to commit in
the order of invocation of these two operations. Since recov-
erability forces a (dynamically determined) order of commit-
ment for active transactions, in a sense it is stronger than
serial dependency which postpones the commit order till the
time of commitment of active transactions. Recoverability,
like commutativity, allows implementations that avoid cas-
cading aborts while also avoiding the delay in the processing
of many non-commutative operations. It assumes a flexible
recovery technique for handling the abortion of operations.

In both serial dependency and recoverability, aspects of in-
put/output data semantics relating to input and return val-
ues, and operation semantics are used. Both these definitions
are weaker notions than commutativity which requires equiv-
alence of states. In fact serial dependency and recoverability
can be shown to be equivalent semantic notions in the sense

Pop(): e/nok deletes an element e from the back of the
QStack. It returns e if QStack is not empty, nok (de-
noting empty or bottom) otherwise.

Top(): e/nok returns e, the element at the back of QStack,
if QStack is not empty, nok (denoting empty or bottom)
otherwise.

Size(): n returns the number of elements n in the QStack.

Replace(el,e2): ok replaces all el elements (values) in
QStack with e2. It always returns ok.

XTop(): ok/nok exchanges the first two elements in the
back of the QStack. It returns ok if two elements exist,
otherwise nok.

We refer to the “status”, such as ok or nok, returned by
an operation as the outcome of the operation. Other values
returned are referred to as its result. It is assumed that an
operation always produces a return-value, that is, it has an
outcome or a result or both.

2.1 Effects of Operations on Each Other

Operations defined on an object are considered as functions
from one object state to another object state. The result of
an operation on an object depends on the current state of the
object. For a given state s of an object, we use return(s,p)
to denote the return value, i.e., result or outcome, produced
by operation p, and state(s,p) to denote the state produced
after the execution of p.

Here we ask the question: What are the possible interac-
tions that can occur between two concurrent operations on a
given object, and what are the effects of these interactions on
the relationship between these two operations? This relation
can cause dependencies to develop between the transactions
invoking the two operations, thus affecting their commit or
abort. The relationship between an operation and another
relative to state s depends on whether it is an observer of s
or a modifier of s, or both. Two operations interact only if
at least one of them is a modifier that changes the state of
the object.

Definition 1: An operation o is an observerin a state
s if state(s,0) = s.

Definition 2: An operation ois a modifierin a state sif
state(s,0) # s AVs',s' # s, return(s’, o) = return(s,0).

Definition 3: An operation o is a modifier-observer
in state s if state(s,0) # s N 35", 5" # s,return(s’,0) #
return(s,o).

These definitions classify the operations as observer (O,),
modifiers (M,) and modifier-observers (MO,) with respect to
a particular state s. Clearly an operation could be a mod-
ifier in one state and an observer in another. For example,
operation Push is a modifier-observer if successful and just
an observer if it is not.

Interactions between operations of different classes can
cause dependencies of different types between the invoking
transactions. Given the above definitions, consider the cases

110

where an operation ¢ follows an operation p. If p is a modi-
fier and ¢ is an observer, or p is modifier and g is 2 modifier-
observer, or p is a2 modifier-observer and ¢ is an observer, or
both p and ¢ are modifier-observers, operation g observes the
effects of p. In these cases, to guarantee failure atomicity, the
transaction invoking g has to abort if for some reason the first
transaction aborts, since the information used by ¢ would no
longer be valid. The second transaction can commit only if
the first transaction commits. Hence, in this case, the second
transaction is said to be abort-dependent (AD) on the first
transaction.

If pis an observer and ¢ is a modifier, or p is an observer
and ¢ is a modifier-observer, or p is a modifier-observer and
¢ is a modifier, or both p and ¢ are modifiers, the outcome
and result of ¢ are not affected by the effects of p. In these
cases, to ensure serializability, if both transactions commit,
the first should commit before the second. i.e., the second
transaction can commit, and hence, it can effect its changes,
only after the first transaction commits or aborts®. In this
case, the second transaction is said to be commit-dependent
(CD) on the first transaction.

Thus far, we have classified operations in a given state
s. Let us consider state-independent classification of op-
erations. To motivate this classification observe that an
abort-dependency is stronger that a commit-dependency in
the sense that abort-dependency can prevent a transaction
from committing and thus force it to abort, whereas commit-
dependency can neither prevent a transaction from eventu-
ally committing nor force it to abort. (Note that abort-
dependency implies commit-dependency.) Because of this,
suppose an operation o is a modifier-observer in a state s,
there is potential for another operation to form an abort-
dependency on o; also, suppose o is a modifier in another
state s’ in which there is potential for another operation to
form a commit-dependency on o; o should be classified as
a modifier-observer with respect to all states because abort-
dependency is stronger than commit-dependency. Here is a
state-indenpendent classification of operations:

Definition 4: An operation o is a modifier-observer
(MO), if 3s in which o is a modifier-observer.

Definition 5: An operation o is a modifier (M) if Zs
in which o is a modifier-observer, and 3s in which ois a
modifier.

Definition 6: An operation o is an observer (O) if Zs
in which o is a modifier-observer, and Zs in which ois a
modifier.

Here is a state-independent classification of the operations
of the QStack:

Operation Type | Operation Type
Pop MO Deq MO
Push MO Size (0]
Top 0] Replace M
XTop MO
Table 1

!This means that, in the event that p is aborted, p’s
changes have to be undone and possibly ¢’s, and the changes
of ¢ must be reapplied.

that they allow the same set of valid histories given a par-
ticular recovery mechanism. We have proven elsewhere that
both these schemes have the same set of valid histories, and
we have shown how a serial dependency based compatibil-
1ty table translates into a recoverability table and vise-versa.
The difference between these two semantic notions is in the
assumption of the underlying recovery mechanism.

Compatibility of operations based on the formation of sig-
nificant and insignificant dependencies between concurrent
operations is described in [13]. For example, two concurrent
read operations form an insignificant dependency and hence
can be allowed to execute concurrently. The classification
of dependencies as significant or insignificant is not explic-
itly uniform across types. Here a combination of operation,
input/output data, and object organization semantics is ex-
ploited.

Whereas each of these proposed semantics-based concur-
rency control schemes has attempted to exploit different as-
pects of objects and their operations, it is not clear if (be-
tween them) that have exhausted all possibilities. It will be
useful to know ~ given a particular object ~ what the po-
tential for concurrency is while executing operations on the
object. Thisis the issue addressed in the next section. Specif-
ically, we develop a model for representing objects that brings
the concurrency properties of an object and its operations to
the forefront.

4 The Object Model

The popular notion of an object is that it hides or encapsu-
lates implementation details, and presents only the logical or
abstract view of the objects, with a predefined set of meth-
ods or operations that are used to access the object. Even
while staying within this view, one can exploit another ab-
stract object characteristic, namely, the notion of ordering
among elements®. Specifically, an object can be thought of
as containing a set of subobjects or components ordered in a
specific way. This potentially rich source of semantic infor-
mation can be used to extract more concurrency.

In this section, we develop a characterization of objects
that helps identify the semantic information inherent to an
object. First we propose use of an object graph to represent
objects and their components. Using this graph, the locality
of effects of an operation is described. Locality of operations
forms the basis for deriving their concurrency properties.

4.1 Object Graph

Objects are instances of abstract data types whose state can
be observed and manipulated by a set of operations defined
on the object. The state can be viewed as an ordered set
of component objects. In this recursive view, the primitive
object has a simple data value. Hence this view captures
both the notions of simple and complez objects, i.e., objects
composed of other objects.

Definition 7: An object obis a 3-tuple (S, R, O) where
S is a set of objects or simple data values, R is a set of

?Note that not all objects may contain components that
are ordered. However, as we will see, where available, such or-
dering information can be exploited to improve concurrency.

111

ordering rules, and O is a set of operations defined on
ob.

The object graph represents the logical organization (ab-
stract structure) of an object. This graph encodes the fact
that an object consists of component objects, where the or-
dering among components, represented by R, is made explicit
by encoding it as edges in the graph. The ordering edge
emanating from a component indicates the next component
that can be accessed following access to this component. A
component may be an object with or without further com-
ponents. This representation, which is an extension of the
graph model used in [1], can be constructed just from the
abstract specification of an object and the operations and
does not subsume any implementation detail. In particular,
we are dealing with the abstract operations for which it is
assumed that the implementation does not impose any con-
straints on extracting the concurrency inherent in an object.

Thus, in what follows, it is assumed that if the seman-
tics of two operations on an object allow the operations to
execute concurrently, the lower-level implementation of the
object will allow the exploitation of such concurrency. In case
an object has components which are themselves objects, then
concurrent access to that object (perhaps from operations in-
voked on the parent object) are controlied by the component
object. Such multilevel concurrency control issues pertaining
to complex objects [9] are studied in [11, 10, 2].

Definition 8: Let Gop({vop U Vob}, {Ecom U Eora}) be
the object graph for object ob where:
— wep is the root of the object graph,

Vob is a set of vertices, representing the components
of ob,

Ecom is a set of composed-of edges from vgp to every
vertex in V,p, representing the composition of ob,
and

E,.q is the set of ordering edges connecting vertices
in Vo, representing the ordering of the components
of ob.

Definition 9: The subgraph G/, ({vos U Vos}, Ecom) of
Gop is called the composition graph of ob, and subgraph
G:,,(Vob, E,r4) is called the ordering graph of ob.

Definition 10: The content of a vertex is defined re-

cursively as follows:

— If the vertex denotes an object without components,
then the content of the vertex is the content of the
object.

— If the object has components, the content of the ver-
texis denoted by the composed of edges and content
of the vertices in the subtree rooted at the vertex.

For example, in Figure 1, object A is composed-of prim-
itive objects B and C and component object D which is
composed-of primitive objects E and F. Since D itsclf is an
object, A is a complex object. AB, AC, AD, DE and DF are
composed-of edges (the solid arrows). Thus, the composition
graph of A is G'({A,B,C, D},{AB,AC,AD}). The order-
ing edges of A are BC and CD (the dotted arrows). Thus,

Figure 1: An object graph

the ordering graph of 4 is G ({B,C,D},{BC,CD}). Note
that DE and DF are composed-of edges and EF and FFE
are ordering edges of D and not of A.

The composition graph of an object together with the
composition graphs of component objects has a hierarchical
structure. At any level of the hierarchy, the ordering graph of
the object at that level may contain cycles. Since ordering is
meaningful only between components of an object, ordering
edges are restricted to lie at a single level, l.e., they do not
connect vertices at different levels.

4.2 Operations and Locality

An operation can possibly do one or more of the following:

1. change the contents of vertices (for component objects,
by invoking operations on them),

. insert or delete vertices and their related (composed-of
and ordering) edges,

. change the structure by changing the ordering edges,

4. observe the contents of vertices, or

5. observe the structure or presence of vertices.

Out of these, item 5 might need some further explanation.
The following example should clarify it. Consider the oper-
ation Size on the QStack object. The number of elements
on a QStack that Size returns equals the number of vertices
present in the structure of the QStack (see Figure 2). Thus,
Size observes the structure and counts the vertices present,
i.e., it observes the presence of the vertices.

To characterize the specific parts of the object graph af-
fected by or used by an operation, we define the locality of
an operation. Note that an operation on a complex object
may result in the invocation of a set of operations on the
component objects (see item 1 above).

Definition 11: The locality L, of an operation o is
a set of vertices inserted or deleted by o, vertices whose
existence has been observed by o, vertices whose content
has been changed or observed by o and vertices to/from
which ordering edges have been changed or observed.

Since operations can affect the structure of an object and
the contents of its components, the locality of an operation
o can be split into two sets L) and L (L, = LJ U L),
not necessarily disjoint, denoting the structure and content
locality of o respectively.

112

Definition 12: The structure locality L] of an oper-
ation o is a subset of the locality of the operation L,
(L C L,), containing the vertices in L, that are in-
serted or deleted, vertices to/from which ordering edges
are changed or observed, and vertices whose presence is
observed.

Definition 13: The content locality L, of an oper-
ation o is a subset of the locality of the operation L,
(Li C L), containing the vertices in L, that are in-
serted, deleted, or whose content is changed or observed.

Informally, whereas structure locality of an operation con-
siders all the vertices whose ezistence or ordering, may have
been noted by the operation, content locality considers all the
vertices whose contents may have been observed or affected
by the operation.

By considering insert, delete, and change operations
as modifiers, structure as well as content localities of
an operation can be further distinguished into structure-
observation, structure-modification, content-observation, and
content-modification localities.

Definition 14: The structure-observation locality L;°
of an operation o is a subset of the structure locality
of the operation L} (L3° C L), containing the vertices
in L) whose presence is observed, and ordering edges
to/from which are observed.

Definition 15: The structure-modification locality
L™ of an operation o is a subset of the structure lo-
cality of the operation L§ (L™ C L{), containing the
vertices in L) that are inserted or deleted, or to/from
which ordering edges are changed.

Definition 16: The conient-observation locality LS°
of an operation o is a subset of the content locality of
the operation L (L C L&), containing the vertices in
LS whose content is observed.

Definition 17: The content-modification locality L™
of an operation o is a subset of the content locality of
the operation L (L™ C LS), containing the vertices in
L{ that are modified, i.e., inserted or deleted, or whose
content is changed.

The following examples should clarify these terms. The Re-
place operation on a QStack modifies the content but not
the structure of the QStack. The Top operation observes
both the content as well as the structure of the QStack. A
successful XTop modifies the structure but not the content
of the QStack. That is because XTop which affects the top
two elements of the QStack does not modify the content of
the elements or the composed of edges. It only reorders the
ordering edges.

It is possible for an operation to have more than one char-
acterization. For instance, XTop, as specified, is charac-
terized by a non-empty structure-modification locality and
empty content-modification locality. If XTop were to swap
the contents the top two elements, then XTop would mod-
ify the content of the QStack but not the structure. In this

case, XTop would be characterized by a non-empty content-
modification locality and empty structure-modification local-
ity. In such cases, all characterizations need to be considered
in order to determine the one characterization that allows
the most concurrency.

Definition 18: Vo"b’"""le for an object ob is the set of
all the vertices with simple data values in the hierarchi-
cal graph constructed by the composition graph of the
object G:,,, together with the composition graphs G'a,,‘. of
its component objects ob; (0b; € Vo3). Thus,

yrmrte = v, U (U;Vo’b'imple), where: V, C Vo, represent
the primitive components of ob.

Definition 19: An operation o on an object ob is said
to be a global operation if L, D Va‘b""p'e. An operation
which is not global is said to be non-global.

That is, the locality L, of a global operation o defined on
ob always contains all the vertices with simple data values in
the object graph of ob.

Global operations can be classified as global-modifiers and
global-observers, or can be further refined as global-structure-
modifiers, global-structure-observers, global-content-observers
and global-content-modifiers according to the locality type.
For instance, if for an operation o, LE® = V;;mple then o is
said to be a global-content-observer. Replace is an example
of such an operation.

4.3 Relation of Locality to Dependencies

In the most general case, two operations defined on an object
conflict if the intersection of the localities of the two opera-
tions is not empty. We focus first on the state-independent
classification of operations and then we show how return-
value dependency and state-dependency semantics can be
factor in.

Finding the actual locality of an operation may require the
execution of the operation. However, in most cases the local-
ity of a non-global operation can be specified by a predicate.
Thus, whether the intersection of two localities is empty or
not can be determined by using the predicates characterizing
the localities without actually finding the vertices or edges
involved. (However, note that, in general, determining if the
sets identified by two arbitrary predicates intersect is unde-
cidable.) Ifit is not possible to specify such predicates, the
locality of an operation can be determined only after the op-
eration completes.

Typically, the input parameters to an operation determine
the locality of the operation. In addition, the ordering among
component objects can be very effectively used in construct-
ing predicates for specifying the localities of the operations.
To this end, the notion of the set of references used by each
operation on an object is introduced. This set is a subset of
the composed-of edges E.om emanating from the root vertex
of the object graph and is generally maintained as part of
the object state.

For example, a QStack maintains two references, one is
the back pointer or stack pointer (denoted by b in Figure 2)
that points to the end of the QStack and is used by Enq,
Push, Pop, and Top operations, and the other is the front
pointer (denoted by f in Figure 2) that points to the front

of the queue and is used by the Deq operation. The stack
pointer, for instance, is the composed-of edge corresponding
to the last element on the QStack. The ordering edges de-
fine which composed-of edge should become the stack pointer
when a Pop operation is invoked (since the composed-of edge
representing the current stack pointer is deleted when Pop
executes).

Definition 20: Let 7., be the set of references of oper-
ation op defined on object ob represented by the object
graph Gop({vop U Voo }s {Ecom U FEora}). The set of ref-
erences Top is a subset of the composed-of edges Ecom
(rop C Ecom) and is defined with respect to ob’s order-
ing rules R (see definition 7).

These references can either be (indirectly) provided by the
agent invoking the operation (ezplicit referencing), or by the
object state itself that maintains a set of references to be used
by the operations (implicit referencing). The two references
maintained by a QStack are implicit. An example of explicit
referencing occurs in the search(z) operation on a relation.
Here z is the argument that can be used to determine the
reference to the record being searched.

References can be deleted for example when a QStack be-
comes empty. A reference can also be modified. Modification
can be done without necessarily deleting the corresponding
composed-of edge by selecting a different composed-of edge
as the new reference. For example, a Push operation on a QS-
tack modifies the stack pointer by selecting the newly added
composed-of edge to be the new stack pointer but without
deleting the composed-of edge representing the current stack
pointer.

Definition 21: The input and output parameters of an
abstract operation on an object can be said to contain
three components: reference (r), input-data (%), return-
value(o).

Assertion 1: Transactions invoking two operations z
and y defined on the object ob do not form dependencies
if localities of z and y satisfy the following conditions:

LmnLY = Len L™ =L n L™ =
L AL = Lm ALy = LN L™ = ¢
]

This implies that operations restricted to the structure
of an object do not form dependencies with operations re-
stricted to the content of the object.

The intersection of different combinations of locality types,
if it is not empty, may result in either a commit or an abort
dependency. In the following table, if the intersection of the
given sets is empty then no dependency (ND)is developed
between the corresponding operations = and y, otherwise an
abort-dependency (AD) or a commit-dependency (CD) is
developed. In all the compatibility tables, for better read-
ability, an ND is indicated by a blank entry. Here z is in
execution and ¥ attempts to execute concurrently with z.

113

[ZZ L& I [I

Ly AD

Ly AD

L™ || CD CD

L™ CD CD
Table 2

Assertion 2: Given two operations z and y defined
on the object ob, z and ¥ commute iff Vi € {c,s},Vk,l €
{o,mly=(k=oAl=0),LF N LI =¢. a

Assertion 3: Given two operations z and y defined
on the object ob, y is recoverable relative to z iff Vi €
{e;s}, ¥k, 1€ {o,m}, ~(k=0Al=0), (a) LIF N LY = ¢
or (b) L;’“nL;’ # ¢ and the corresponding entry in Table
2is a ND or a CD.]

4.4 Putting it all together

We are now in a position to determine the compatibility table
associated with a given object.

In the traditional framework, a compatibility table is a
simple a binary relation with a yes entry for (0i,0;) indi-
cating that the operations o; and o, are compatible, i.e., do
not conflict, or a no entry indicating that the two operations
are incompatible, i.e., conflict. In our terminology, an entry
could contain no-dependency (ND), abori-dependency (AD),
or commit-dependency (CD). That is, in our scheme a stan-
dard yes entry translates to a ND, whereas a standard no
entry is refined to either AD or CD. Note (see Section 2 for
the definitions of dependencies) that an AD entry is more re-
strictive (stronger) than a CD entry, and a CD entry is more
restrictive than a ND entry (AD>CD>ND). The general rule
to determine an entry in a table follows from the discussion
of the effects of an operation on another (see Section 2.1).

In this scheme, the compatibility table is developed
through stepwise refinement of its entries. Fach step uses
meore semantic information to produce a compatibility table
that offers more potential for concurrency among operations.

We begin with the case where no semantic information is
used about the object and its operations, i.e., corresponds to
all operations being modifier-observers (MO). This produces
a single entry compatibility table containing AD (X is the
operation in execution and Y is the invoked operation).

(Y [AD]

Table 3

Based on whether an operation is an observer (0), a mod-
ifier (M), or modifier-observer (MO), this single entry table
can be replaced by the following table:

[O [M TMO]
AD | AD
M _||CD | CD | CD

MO || CD | AD | AD
Table 4

These entries capture the eight types of potentially conflict-
ing interactions between two operations seen in Section 2.1.
This is exactly the semantics that is captured by recoverabil-
ity [and serial dependency).

By making use of the order among dependencies
(AD>CD>ND), the entries associated with a modifier-
observer can be considered as a function that returns the
stronger dependency between the corresponding modifier
and observer entries. For example, the entry (O,MO) =
stronger((O,M),(0,0)) = stronger(AD,ND) = AD. Since the
MO entries can be easily generated in this way, we need to
further consider tables with only the O and M entries:

[O ™M

O AD
M| CD | CD
Table 5

Note that the above “weakening” was accomplished by using
a combination of semantics of both operations.

Object organization semantics, i.e., the composition and
structural (ordering) semantics of an object, is used to fur-
ther refine the AD and CD entries. An observer can either
be a content observer (CO) or a structure observer (§0) or
both (CS50). Similarly, a modifier can be classified as content
modifier (CM), structure modifier (SM), or both (CSM). It
is possible to eliminate the entries associated with CSM by
making use of the stronger function as explained above. Op-
erations restricted to the structure of an object can execute
concurrently with operations restricted to the content of the
object. For example, the operation Replace defined on a Qs-
tack is a CM operation on the QStack and a successful XTop
is a2 SM operation on the QStack, and hence, Replace and
successful XTop operations commute. The Top operation on
the other hand is both SO and CO since it observes both the
ordering and the content of the first node. By this refine-
ment, based on the entries in Table 2, the following three ta-
bles are obtained corresponding to the entries (O, M), (M,M),
and (M,0):

(oM) [SM [CM [CSM |

SO AD AD
CoO AD | AD
CSO || AD| AD | AD
Table 6
(MM) [SM [CM | CSM |
SM CD CD
CM CD | CD
CSM [[CD | CD | CD
Table 7
(M,0) [SO TCOC50 |
SM CcD CD
CM CD | CD
CSM ||CD | CD | CD
Table 8

The refinement thus far was based on a state-independent
characterization of operations. The input /output semantics
of operations and the locality of non-global operations can
be exploited to further weaken the remaining AD and CD
entries. Potentially, these are very rich sources of semantic
information that can be effectively used to further enhance
concurrency. This is illustrated in Section 5.

114

The operations can be classified as either global (G) or
non-global (L) and only the non-global operations need to be
refined further: The single dependency in an entry is replaced
with a set of mutually-consistent (dependency/condition)
pairs where each condition is dependent on the predicate that
describes the locality of the operation (see Section 4.3). Dif-
ferent conditions test the emptiness of the intersection of dif-
ferent types of localities of two operations and may result in
different dependencies. By mutually-consistent (dependency,
condition) pairs, we mean that if the conditions associated
with two pairs involve the same type of localities where the
condition of the first pair exploits more semantics than the
one of the second pair, the dependency specified in the first
pair must be weaker than the one specified in the second
pair. Thus, for a given entry, the dependency chosen from
the set of (dependency,condition) pairs is the least restric-
tive (weakest) dependency among the dependencies whose
associated conditions hold.

Let us consider a Push operation followed by a Deq op-
eration. The entry (Deq,Push) of the compatibility table
of QStack contains the pair (CD, Pushout = nok), since an
unsuccessful Push (returning nok) is only an observer, and
hence, Deq has a CD with this Push. As we will see in
the next section, the entry (Deq,Push) also contains the pair
(ND, f #b) (Recall that f and b stand for the current front
and back pointer of the QStack), denoting that the inter-
section between the localities of operations Push and Deq is
empty. That is, for the state in which f # b, Push and Deq
commute. In the event of an unsuccessful Push, both condi-
tions become true, and hence, ND should be chosen, being
the weaker of ND and CD.

Based on the above discussion, a methodology presents it-
self that helps to generate the conflict resolution table for
an object methodically. This table is a n x n table, where
n is the number of operations defined on the object, with
AD, CD, or ND entries which could be either conditional or
unconditional. Conditional entries are those that are based
on dynamic information such as the locality of a non-global
operation. The objective is to obtain an optimal table that
contains the minimal of AD or CD entries, with CD pre-
ferred over AD, and weaker conditional entries preferred over
stronger unconditional entries.

In the next section, we first discuss this methodology and
then apply it to the QStack example.

5 The Methodology

In the stage I, in order to identify all the necessary informa-
tion, the object graph Gop of the object is constructed and
the references are identified. Then the behavior of each oper-
ation defined on the object is expressed in terms of operations
on Ggp.

In the stage 2, using information gathered in the first stage,
for each operation, answers to the following questions are
sought.

D1: Is it an observer, modifier or modifier-observer?
D2: Does it observe/modify content, structure, or both?

D38: Does it have an outcome, or result, or both? Does it
have input parameters?

115

D4: Is its locality global or not?

D5: Does it employ ezxplicit or implicit referencing, if im-
plicit, which are the references used?

D1 and D2 involve state-independent semantics, D3 is re-
lated to input/output semantics, and D4 and D5 are state
dependent semantics.

In the stage 3, an initial compatibility table Ty of the ob-~
Jject is derived from Tables 5, 6, 7, and 8, collectively referred
to as template tables, using the first two dimensions, namely
D1 and D2, of the characterization of the operations pro-
duced in stage 2. For each pair of operations (o01,02) where
each operation is either a modifier, an observer, or a modifier-
observer, potentially every one of these template tables can
specify a dependency. Specifically, for such a pair of opera-
tions the corresponding entry in Top is determined from the
following tables:

o Table 5, if both operations can be characterized in terms
of D1.

o Tables 6, 7, and 8, if both operations can be character-
ized in terms of D2.

The final dependency for the pair of operations (o01,02) is
taken to be the least restrictive dependency of the depen-
dencies specified by the appropriate template tables in each
dimension.

Since modifier-observer operations are considered to be a
composition of modifier and observer operations, two depen-
dencies will result, one for each component, along each di-
mension. The single dependency for modifier-observer along
each dimension is chosen, as explained above, to be the more
restrictive of the resulting two dependencies.

In the stage 4, the D3 dimension of the characterization
of operations is used to refine entries. This is achieved by
replacing the existing AD or CD dependency with a set of
(dependency,condition) pairs where the conditions are based
on the outcome and on input parameters, and the depen-
dency in at least one of the pairs is less restrictive than the
existing one.

In the stage 5, the final stage, using the dimensions D4
and D5 of the characterization of the operations, all non-
global operations are identified, and their locality predicate is
constructed in terms of their input parameters and/or their
references. For every pair {01,02) of non-global operations
their corresponding entry in the initial compatibility table is
added or replaced with a set of (dependency,condition) pairs,
where conditions are expressed in terms of the constructed
predicates.

We now generate the compatibility table for the QStack
as an example. For this purpose, we focus on the following
operations defined on QStack: Push, Pop, Deq, Size, and
Top.

In stage 1, a graph representation for QStack is con-
structed, as shown in the Figure 2. The ordering edges
(dotted arrows) point towards the front of the QStack. QS-
tack maintains two implicit references f (front pointer) and
b (back pointer) that are the composed-of edges pointing to
the first and last element of QStack respectively. These ref-
erences are used by the operations to access the elements.

Figure 2: Object graph for QStack

In stage 2, all the operations defined on QStack are char-
acterized along the dimensions D1-D5 as stated above. The
characterization of each operation is summarized in Table 9.

Op. obs/ Cont/ return- Loc- Ref-
mod Str value ality erence

Pop MO CSs result/nok L f
Push MO Cs ok/nok L 7
Deq MO Cs result/nok L b
Size O S result G

Top 0 CS result/nok L f

Table 9

The reason that Size is not associated with a reference is
that Size counts the composed-of edges in the object graph of
QStack and counting of composed-of edges does not require
any specific order. Counting could start from any composed-
of edge, and hence, need not refer to f or b.

In stage 8, the entries for each pair of operations is de-
termined by consulting the tables presented in section 4.4.
For example, the entry for the operation pair (Degq, Push)3
is determined as follows:

1. Based on D1, Push and Deq are of type MO and MO
respectively, and hence the stronger of the entries we
get from Table 5 for (M,M), (M,0) and (O,M) is a AD.

. According to D2, both these operations are of type
CS. The stronger of the entries from Table 6 and 7 for
{CSM,CSM), (CSM, CSO) and (CSO,CSM) is again a
AD.

The compatibility table for QStack obtained as a result of
stage 3 is as follows:

{01,02) ” PushJ Popi Deqﬁop { SizeJ
Push AD AD | AD CD | CD
Pop AD | AD | AD | CD | CD
Deg AD | AD | AD | CD | CD
Top AD | AD | AD ND
Size AD | AD | AD ND

Table 10

In stage 4, based on D3, the outcome of the opera-
tions are used to refine the entries. Focusing again on
®*Recall that (Deq, Push) entry corresponds to the situa-

tion that a Deq operation follows a Push operation on the
QStack.

116

the (Deq, Push) entry, although both the operations have
outcomes, only the outcome of the Push operation helps
in refining the existing dependency by replacing it with
the set of (dependency,condition) pairs: {(AD, Pushoyr =
0k),(CD, Pushoys = nok)}. This is because, when the out-
come is nok, Push acts as an observer and not as a modifier-

observer. In a similar manner Table 12 can be constructed
for (Push,Push).

LDeq

H Push j

(CD,Pushou: = nok) |/
(AD,Pushyur = ok)

Table 11
| Push®]
(ND,Push?,,=Push?,, = nok)
Push? || (CD,PushZ,, = nokA Push? , = ok)
(CD,Push},; = Push},, = ok)
(AD,Push?,; = okA Push? , = nok)

Table 12

Now we can consider further refinements based on input
parameters. For example, if two Push operations attempt to
push the same element e, they commute.

4“ Push”®
(ND,Push?,,=Push? , = nok)
(CD,PushZ,, = nokA Push? , = ok)
{CD,Pushf,, = Push?,, = ok)
(AD,PushZ,, = okA Push? , = nok)
(ND,Push{, = Push? =)

Table 13

In stage 5, the entries corresponding to non-global opera-
tion pairs are refined further. Considering the example (Deg,
Push) pair, both Push and Deq are non-global, based on
D4. Therefore, as we show now, some of the correspond-
ing (dependency,condition) pairs of (Deq, Push) entry can
be replaced with pairs involving weaker dependencies and
conditions expressed in terms of locality predicates.

Based on D5, we can note that both Push and Deq employ
implicit referencing and use the references b and f respec-
tively. This means that the intersection of their localities
could be empty, in which case there will be no dependency
(ND). The intersection between the localities of Push and
Deq can be determined by a predicate constructed from the
references f and b that tests whether before the operations
are executed f and b refer to the same composed-of edge,
i.e., refer to the same component object. Hence the (de-
pendency,condition) pair having the AD in (Deq, Push) is
replaced, and the (Deq, Push) entry becomes:

H Push I
(CD,Pushou: = nok)
(AD,f =b)

(ND,f #b)
Table 14

Push?

Deq

The entries for the remaining pairs can be refined by fol-
lowing the same procedure for stages 4 and 5.

To summarize the methodology just used, given an object,
the specific operations defined on the object are expressed in
terms of operations on the graph representation of the object.

The compatibility of each pair of operations is determined by
using the produced graph characterization of the operations
and the template tables. Subsequently, each entry may be re-
fined by considering input/output semantics and by defining
conditions in terms of locality predicates.

6 Conclusion

Whereas a number of semantics-based concurrency control
schemes for object-oriented systems have been proposed in
the literature, each scheme has approached the issue from
fairly narrow considerations. In this paper, we have ap-
proached the problem from first principles in an effort to
discover the underpinnings of, and hence classify, existing
schemes while giving a unified view to the nature of seman-
tics inherent in objects.

In this regard, we have classified the semantic information
available within an object in order to identify the specific
combinations that can possibly yield enhanced concurrency.
To formalize this classification, we have proposed an object
model and its graph representation that can be derived from
abstract specification of an object. We have shown how the
model can be effectively used to identify the available seman-
tic information about an object.

We have proposed a scheme that methodically exploits the
available semantic information. This shows how various se-
mantic notions applicable to concurrency control can be ef-
fectively combined to achieve improved concurrency. In this
process, we have identified and exploited a new source of se-
mantic information, namely, the ordering among component
objects, to further enhance concurrency.

We have also classified the semantic information into static
and dynamic information, depending on when it is available,
to facilitate easy design of compatibility tables. To determine
dynamic information such as the locality of an operation, we
have provided a framework or ground rules within the pro-
posed object model, that can be effectively used to identify
further possibilities of improved concurrency. Lastly, and
perhaps of the most practical interest, we have presented a
methodology for deriving compatibility tables for operations
on objects. Note that no assumption regarding the underly-
ing optimistic or pessimistic concurrency control mechanism
as well as the recovery mechanism has been made in deriv-
ing the compatibility tables. When specific mechanisms are
considered, tables can be refined further.

In this paper, we did not make use of usage semantics,
but this semantics is extensively utilized in various extended
transaction models that relax the requirements of serializabil-
ity and failure atomicity to achieve more concurrency. Just
as the present paper has attempted to unify object semantics,
the ACTA framework introduced in [5] provides a unifying
framework for all these transaction models. The notion of de-
pendencies among transactions serves as the thread common
to both these efforts. Hence, by using the results of this paper
in conjunction with the ACTA model, the semantic informa-
tion obtained from the relaxed correctness requirements of
an application can be used to further enhance concurrency.

References

{1] Badrinath, B. and Ramamritham, K. Synchronizing

117

(11]

[12]

[13]

[14

flaae)

[15]

Transactions on Objects. JEEE Transactions on Com-
puters, 37(5):541-547, May 1988.

Badrinath, B. and Ramamritham, K. Performance Eval-
nation of Semantics-based Multilevel Concurrency Con-
trol Protocols. In Proceedings of the ACM SIGMOD In-
ternational Conference on Management of Data, pages
163172, Atlantic City, NJ, May 1990.

Badrinath, B. and Ramamritham, K. Semantics-based
concurrency control: Beyond Commutativity. (fo appear
in}) ACM Transactions on Database Systems, 1991.

Bernstein, P. A., Hadzilacos, V., and Goodman, N. Con-
currency Control and Recovery in Database Systems.

Addison-Wesley, Reading, MA, 1987.

Chrysanthis, P. K. and Ramamritham, K. ACTA: A
Framework for Specifying and Reasoning about Trans-
action Structure and Behavior. In Proceedings of the
ACM SIGMOD International Conference on Manage-
ment of Data, pages 194-203, Atlantic City, NJ, May
1990.

Eswaran, K., Gray, J., Lorie, R., and Traiger, I. The
notion of consistency and predicate locks in a database
system. Communications of the ACM, 19(11):624-633,
November 1976.

Gray, J. The transaction concept: Virtues and limita-
tions. In Proceedings of the 7th VLDB Conference, pages
144-154, September 1981.

Herlihy, M. P. and Weihl, W. Hybrid concurrency con-
trol for abstract data types. In Proceedings of the 7th
ACM symposium on Principles of Database Systems,
pages 201-210, March 1988.

Kim, W., Banerjee, J., Chou, H.-T., Garza, J., and
Woelk, D. Composite object support in an Object-
Oriented database system. In Proceedings of Object-
Oriented Programming Systems, Languages, and Appli-
cations, pages 118-125, Orlando, Florida, October 1987.

Martin, B. E. Modeling concurrent activities with
nested objects. In Proceedings of the 7th International
Conference on Distributed Computing Systems, pages
432-439, Berlin, Germany, September 1987.

Moss, J. E. B., Griffeth, N., and Graham, M. Ab-
straction in recovery management. In Proceedings of
the ACM SIGMOD international conference on man-
agement of data, pages 72-83, May 1986.

Roesler, M. and Burkhard, W. Concurrency Control
Scheme for Shared Objects: A Peephole based on Se-
mantics. In Proceedings of 7th International Confer-
ence on Distributed Computing Systems, pages 224-231,
September 1987.

Schwarz, P. M. and Spector, A. Z. Synchronizing shared
abstract data types. ACM Transactions on Computer
Systems, 2(3):223-250, August 1984,

Stonebraker, M. (Ed.). Readings in Database Systems.
Morgan Kaufmann, 1988.

Weihl, W. Commutativity-Based concurrency control
for abstract data types. IEEE Transactions on Com-
puters, 37(12):1488-1505, December 1988.

