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Abstract

Recently, a number of extensions to the traditional transaction model have been proposed
to support new information-intensive applications such as CAD/CAM and software development.
However, these extended transaction models capture only a subset of interactions that can be found
in such applications, and represent only some of the points within the spectrum of interactions
possible in competitive and cooperative environments.

ACTA is a formalizable framework intended for characterizing the whole spectrum of interactions.
The ACTA framework is not yet another transaction model, but it consolidates the different transaction
models into a unified and versatile framework. ACTA allows for specifying the structure and the
behavior of transactions as well as for reasoning about the concurrency and recovery properties of
the transactions. In ACTA, the semantics of interactions are expressed in terms of transactions’
effects on each other and on the objects that they access. Its ability to capture the semantics of
previously proposed transaction models is indicative of its generality. The reasoning capabilities of
this framework have also been tested by using the framework to compare the properties of existing
transaction models and to derive new transaction models by manipulating the characterization of
existing models.
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1 Introduction

Broadly speaking, whether a system is characterized as competitive or cooperative depends on how

interactions among activities in the system are viewed: In competitive environments, interactions are

curtailed whereas they are promoted in cooperative environments. Traditional transaction mechanisms

[4, 11] were designed for competitive environments where transactions were assumed to be short-lived

and to execute without interference. Interactions among transactions due to the interleaving of their

execution are constrainted to occur according to the serializability requirement [7, 17].

Transaction models such as Nested Transactions [16] and Recoverable Communicating Actions

[24], were initially proposed as alternative transaction models for dealing with reliability in cooperative

distributed systems. These models are able to handle partial failures while exploiting the spatial and

functional distribution of the activities in the system.

The need for cooperative transactions models emerges from the demands of new information-

intensive applications such as office information systems, software development, stock trading

databases and CAD/CAM. Although powerful, the traditional transaction model is found lacking in

both efficiency and functionality when used in complex information systems which support these new

applications. Efficiency is of particular importance considering the throughput demands placed on

these complex information systems. Beyond being distributed, these systems are typically object

based [26]. Activities in complex information systems tend to access many objects, involve lengthy

computations, and are interactive, i.e., pause for input from the user. Even in those cases where

activities with such characteristics can be modeled as traditional transactions, they degrade the system

performance due to increased data contention, thus failing to meet the high throughput demands.

In terms of functionality, reactive (endless), open-ended (long-lived) and collaborative (interactive)

activities which are often found in these systems, cannot be captured by traditional transactions due

to serializability as the correctness requirement.

The characteristics of different applications call for different styles of cooperation. An application

may call for several styles of cooperation among its activities simultaneously. Various extensions to

the traditional transaction model have been proposed [16, 3, 18, 24, 10, 20, 8, 23, 22]. These, referred

to herein as complex transactions, can provide the basis for realizing different styles of cooperation.

Irrespective of how successful these extended transactions models are in supporting the systems

that they were intended for, they were designed with particular situations in mind and thus, they can

capture only a subset of the interactions to be found in any complex information system.

We have developed a comprehensive transaction framework, called ACTA, that consolidates

these different transaction models into a unified and versatile framework for characterizing the whole

spectrum of interactions. In ACTA, the semantics of interactions between transactions are expressed

in terms of transactions’ effects on each other and on the objects that they access. For example, a

transaction has two possible outcomes, namely, commit or abort. Consequently, a transaction can
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affect the abortion or the commitment of other transactions. Also, a transaction can affect the state of

objects as well as the concurrency status, i.e., synchronization state, of objects. (Henceforth, we refer

to concurrency status as just status).

ACTA provides (1) for specifying the effects due to the structure and the behavior of transactions

and (2) for reasoning about the concurrency and recovery properties of the transactions. Structure

refers, for example, to the nesting structure of a transaction, and behavior refers to the operations

invoked by a transaction. In this paper we focus on the specification part of our framework.

In Section 2, we examine the characteristics of complex transactions. In Section 3, we present

ACTA, our comprehensive transaction framework and discuss the intuition underlying the framework.

Section 4 demonstrates the expressiveness of the framework through the study of the properties of the

Joint Transaction model [20] and its variations. Section 5 concludes with a summary and discusses

future steps.

2 Characteristics of Complex Transactions

Traditional transactions [7, 11] are based on the notion of atomicity and thus are often referred

to as atomic transactions. Atomicity is characterized by two properties: failure atomicity and

serializability. Failure atomicity means that either all or none of the transaction’s operations are

performed. Serializability means that concurrent transactions execute without any interference as

though they were executed in some serial order. However, these properties combine several important

notions such as:

1. Visibility, referring to the ability of one transaction to see the results of another transaction while

it is executing.

2. Permanence, referring to the ability of a transaction to record its results in the database.

3. Recovery, referring to the ability, in the event of failure, to take the database to some state that

is considered correct.

4. Consistency, referring to the correctness of the state of the database that a committed transaction

produces.

The flexibility of a given transaction model depends on the way these four notions are combined.

Thus, these notions have to be revisited in order to understand the properties of complex transactions

and to decide on the mechanisms for supporting them. For example, visibility does not always have

to be curtailed, permanence need not require all the results to be recorded in the database, recovery

does not imply the complete restoration of the state, and consistency does not necessarily require

serializability. The ACTA framework described in the next section allows us to capture the properties

of transactions as related to these four notions.
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Generally, complex transactions can be said to consist of either a set of operations on objects

or a set of components, each of which is a complex transaction. Thus, the component transactions

are not necessarily atomic. This recursive formulation implies that a complex transaction may exhibit

a rich and complex internal structure. In contrast, traditional transactions have a flat single level

structure. In this sense, the base case in this recursive definition of complex transactions is similar to

a traditional transaction. A simple example of complex transactions is nested transactions. We will be

using nested transactions to clarify and illustrate various concepts in the rest of the paper, since this

is a well known transaction model and does not need any further introduction.

The internal structure of complex transactions is explicit and is provided as a user facility. The

way that component transactions are combined to form complex transactions reflects the semantics of

an application. Such semantics can be exploited in designing transaction specific concurrency control

and transaction specific recovery. The idea is similar to the use of semantic information about the

objects and their operations in designing type specific concurrency control to enhance concurrency

within objects [1, 21, 13, 25].

Transaction specific concurrency control allows the definition of new weaker notions of conflicts

among operations not possible with the information available only about objects and their types.

For instance, operations invoked by two transactions can be interleaved as if they commuted, if the

semantics of the application allow the dependencies between the transactions to be ignored. Clearly,

transaction specific concurrency control might not achieve serializability but still preserve consistency

[9, 15]. This seems to be an attractive means for increasing the performance in a complex information

system.

Transaction specific recovery can be designed along the same lines to exploit the semantics of

the application in order to minimize the effects of transaction failures. Transaction specific recovery

reduces the cost of recovery by tolerating partial failures and by supporting both forward and backward

recovery. In the event of failure of transaction components, the failed portions can be isolated,

allowing the rest of the transaction to proceed. Failed portions of a transaction can be retried,

compensated (annulling their effects), replaced by another contingent alternative, or even be ignored

[16, 10, 14]. Furthermore, complex transactions naturally support user-controlled checkpointing since

the boundaries of component transactions act as checkpoints.

In order to cooperate, two transactions must be aware of each other and must be able to share

partial results and coordination information. Visibility represents this ability of one transaction to see

the effects of another transaction while the latter is executing. It can be argued that this is true even

in competitive environments. For example, two-phase locking is based on the visibility of locks. If

locks were not visible, transactions would not be able to coordinate by requesting locks, acquiring

locks and releasing locks. However, in a competitive environment, in general, a user is not allowed to

utilize information about the state of the lock or any other information that might be visible due to the

implementation. In contrast, in a cooperative environment, visibility is an issue that the users must be
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Figure 1: Dimensions of the ACTA framework

aware of and they should be able to make use of it. In fact, we believe the degree of visibility is what

controls cooperation.

3 The ACTA Framework

The behavior of a transaction system is determined by the behavior of its active components and the

interactions among these components. The active components in our framework are transactions,

inherently parallel activities, and the passive components are objects, abstract entities manipulated

by transactions.

Transactions may produce unexpected results if they interact indiscriminately. A correctness

criterion for transactions constrains these interactions to those that produce a result contained in a set

of acceptable results. In order to specify a correctness criterion that prevents some interactions from

occurring while allowing others, we must be able to express these interactions. Interactions among

transactions are reflected in the effects they cause and thus, we can express them in terms of these

effects: We distinguish between transactions’ effects on each other and transaction effects on the

objects that they access. These two types of effects as well as a precise way to specify them are

described in Section 3.1 and 3.2 respectively.

In general, transactions affect each other and their changes to objects are made effective or

visible upon the occurrence of certain significant events. For instance, in the traditional transaction

model, significant events are begin-transaction, commit and abort. In addition to the above, the Nested

Transaction model has the spawn event which spawns a child transaction. In the Split Transaction

model, split and join are significant events. In ACTA, specification of transaction semantics with

respect to the events of significance to a model can be specified using the taxonomy of effects

captured in figure 1.

3.1 Effects of Transactions on other Transactions

Dependencies provide a convenient way for specifying and reasoning about the behavior of concurrent

transactions [12, 21]. By examining the possible effects of interacting transactions on each other, it is

possible to determine the dependencies that may develop between the transactions. Two important
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dependencies that a transaction may develop on any other transaction are commit-dependency

and abort-dependency which are related to the significant events of commit and abort. These

dependencies, collectively known as completion dependencies, are defined as follows:

Commit-Dependency: If a transaction A develops a commit-dependency on another transaction B

(denoted by A ; B), then transaction A cannot commit until transaction B either commits

or aborts. This does not imply that if transaction B aborts, then transaction A should abort.

Transitive-commit-dependency (denoted by �

;) is defined by the transitive closure of commit-

dependencies. A transaction A has a transitive-commit-dependency on every member of the set

of transactions formed by the transitive closure of commit-dependencies starting from A.

Considering a very simple example, if T1 reads an object x and then T2 writes x, serializability can be

preserved by T2 forming a commit-dependency on T1.

Abort-Dependency: If a transaction A develops an abort-dependency on another transaction B

(denoted1 by A ! B), and if transaction B aborts, then transaction A should also abort. This

neither implies that if transaction B commits, then transaction A should commit, nor that if

transaction A aborts, then transaction B should abort. Transitive-abort-dependency (denoted by
�

!) is defined by the transitive closure of abort-dependencies. A transaction A has a transitive-

abort-dependency on every member of the set of transactions formed by the transitive closure of

abort-dependencies starting from A.

Considering once again a simple example, if T3 writes x and then T4 reads x, serializability can be

preserved by T4 forming an abort-dependency on T3.

In general, in a complex transaction system, the completion of a transaction may not depend

on a simple condition, such as the completion of another transaction, but may depend on a complex

condition required to capture the interactions among the transactions in the system. Thus, in general,

the commit-dependency of a transaction A can be expressed as: A commits ) Condition, which

states that if A commits, then Condition is satisfied. Similarly, the abort-dependency of A can be

expressed as: Condition ) A aborts, which states that if Condition is satisfied, then A is aborted.

In general, the dependencies of any significant event that relates to transaction execution can be

expressed in a manner similar to that of commit and abort dependencies.

Commit-dependencies and abort-dependencies impose a commit order which prevents transac-

tions from prematurely committing, thereby preventing object inconsistencies, given that transactions

preserve the consistency of the database when run in isolation. Depending on a transaction model

and its correctness notion, some dependency cycles may lead to inconsistencies and hence, they are

prohibited, whereas other dependency cycles are accommodated. In the latter case, if two transactions

1The specific direction of the arrows for commit and abort dependencies is chosen for readability reasons. To reflect the
required order of transactions’ commitment, the arrows should be drawn in the opposite direction.
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form a circular dependency involving abort-dependencies, then both have to commit or neither. In

the case that two transactions develop a circular dependency involving only commit-dependencies,

then if both transactions commit, their commitment must be synchronized. That is, if one of the

transaction aborts the other transaction can still commit. Similarly, in the case that two transactions

develop a circular dependency involving dependencies of different types, i.e., one transaction has a

commit-dependency on another transaction which has an abort-dependency on the first transaction,

then the commitment of both transactions must be synchronized.

3.1.1 Source of dependencies

Dependencies between transactions may be a direct result of the structural properties of the complex

transaction formed by the interacting transactions, or may indirectly develop as a result of interactions

of transactions over shared objects.

Dependencies due to Structrure

The structure of a complex transaction defines its component transactions and the dependencies

between them. The dependencies are the links in the structure. For example, in hierarchically-

structured nested transactions, a child transaction C has an abort-dependency on its parent P that

guarantees the abortion of the child in case its parent aborts (C ! P ), while a commit-dependency

of the parent on its children ensures that the parent does not commit before all its children have

terminated (P ; C).

In order to completely specify the structure of a complex transaction, it is often necessary

to specify prohibited dependencies, i.e., dependencies that should be prevented from developing

between two transactions. For example, the hierarchical structure of nested transactions prohibits

a child from developing an abort-dependency on any transaction other than its parent. ACTA

uses dependency production rules for specifying both completion dependencies and prohibited

dependencies. A dependency production rule (production rule or production for short) consists of a

labeling specification and a dependency specification:

A ` B

B ` C

| {z }

labeling specification

(

C ; B

B ! C

)

| {z }

dependency specification

The labeling specification of this production denotes that a transaction currently labeled A can be

relabeled to B and another transaction currently labeled B can be relabeled to C (` is the relabel

symbol). The dependency specification denotes that relabeled transaction C should develop a

commit-dependency on relabeled transaction B and relabeled transaction B should develop an

abort dependency on relabeled transaction C. A production rule is applicable in the context where

transactions exist that satisfy the left hand side labels for all the labeling specifications. Once
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a production rule is applied, all the transactions involved are relabeled according to the labeling

specification and dependencies between the transactions are established according to the dependency

specification. It is possible for the dependency specification of a production to be empty. In such

a case, the labeling specification is used to specify the context in which the interaction between the

transactions can take place.

The dependencies that are allowed by the structure of a complex transaction are those

specified in the production rules that characterize the structure of the complex transaction. All other

dependencies not specified in the production rules are prohibited dependencies. For example, the

complete specification of the structure of nested transactions involves three production rules that

constitute the specification of the dependencies formed due to the spawn event used to generate a

child transaction. As already mentioned, spawn is a significant event of the Nested Transaction model.

Upon an invocation of the spawn event one of these production rules must be applied.

T ` P

T ` C

(

P ; C

C ! P

)

;

C ` P

T ` C

(

P ; C

C ! P

)

;

P ` P

T ` C

(

P ; C

C ! P

)

T is a generic (traditional) transaction. Initially, all transactions are labeled T but once they are

relabeled, they maintain that label until another relabeling, if any, occurs. For example, after the first

production is applied to two transactions, one of the transactions that was initially labeled T will have

the label P whereas the other one will have the label C.

The first production generates the root of the nested transaction and the first child of the root.

The second production is for expanding the nested transaction in depth by turning a child to a parent

and adding its child, whereas the third production is for expanding the nested transaction in breadth

by adding a new child to an existing parent. Note that none of the productions allow the simultaneous

relabeling of a parent as a child transaction (P ` C) and a child as a parent transaction (C ` P ).

Thus, the labeling rules prohibit a parent, including the root, from developing an abort-dependency on

any of its descendants. Similarly, a child is prevented from developing an abort-dependency on more

than one transaction since none of the specifications allows an abort-dependency between an existing

child and an existing parent in a production.

Beyond capturing the effects due to the static structure of complex transactions, the dependency

production rules can also specify the dynamics of the evolution of the structure of complex transac-

tions. The above specification of nested transactions defines that a nested transaction expands in a

top-down manner from the root to the leaves and hence conforms to the original Nested Transaction

model. Suppose a nested transaction can be allowed to expand both top-down and bottom-up. This

can be specified by adding new production rules that expand the nested transactions by turning the

current root to a child transaction whose parent becomes the new root. The production rules in the

above specification of nested transactions are modified to explicitly specify the root transaction by

labeling it as R. Here is the complete specification of this variation of nested transactions which is

similar to the notion of supertransactions [19].
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T ` R

T ` C

(

R; C

C ! R

)

This first production creates a nested transaction by
generating the root and its first child.

R ` P

T ` R

(

R; P

P ! R

)

This production expands a nested transaction up-
wards by making the current root the child of the new
root.

R ` R

T ` C

(

R; C

C ! R

)

This production expands a nested transaction in
breadth by adding a new child to the root.

R ` R

R ` P

(

R; P

P ! R

)

This production joins two nested transaction into one
by making the root of one nested transaction a child
of the root of the other.

C ` P

T ` C

(

P ; C

C ! P

)

This production expands a nested transaction in
depth by turning a child transaction to a parent and
adding its child.

P ` P

T ` C

(

P ; C

C ! P

)

This production expands a nested transaction in
breadth by adding a new child to en existing parent.

Dependencies due to Behavior

Dependencies formed by the interactions over a shared object are specified by the compatibility

table associated with the object which encodes the object’s synchronization properties. In the

traditional framework, a compatibility table is a simple binary relation with a yes entry for (O

i

; O

j

)

indicating that the operations O
i

and O

j

are compatible, or a no entry indicating that the two operations

are incompatible. Compatible operations do not conflict and can execute concurrently. In our

case, an entry (O

i

; O

j

) could be a condition involving completion dependencies, operation arguments

and results. This means that if transaction T

j

invokes an operation O

j

and later a transaction T

i

invokes the operation O

i

on the same object, then the condition must be satisfied in order for O
i

to

execute. For example, an entry could contain No-Dependency which corresponds to the standard

yes entry in the commutativity-based tables, or it could be Form-Commit-Dependency which can be

found in recoverability-based tables [2]. Other entries could be Wait, corresponding to the standard

no entry in commutativity-based tables of locking-based schemes, Abort, Form-Abort-Dependency,

Allow-if-Abort-Dependency-already-exists, Allow-if-Commit-Dependency-already-exists, etc.

Two other entries are Notify and Confirm. These entries are of particular importance because

they are related to the notion of notification useful in a cooperative environment [8]. A Notify entry

corresponding to (O

i

; O

j

) implies that transaction T

j

invoking O

j

should be notified of O
i

’s presence.

Notify can be one of many mutually-consistent conditions specified as a compatibility-table entry. This

allows a full set of notification facilities such as those in [8]. For instance, the two conditions Notify
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and Form-Commit-Dependency in (O

i

; O

j

) will cause a commit-dependency to be established from

transaction T

i

to T

j

as well as notify T

j

about the development of the commit-dependency. Such a

pair of conditions can be used to define a recoverability-based table in a cooperative environment.

Transaction T

j

can use the information about the existence of the commit-dependency to postpone the

invocation of another operation that causes a commit-dependency of T
j

on T

i

, and hence a circular

commit dependency.

Confirm can be one of many conditions that can be specified as a compatibility-table entry. In the

presence of Confirm, a condition cannot be satisfied unless it is accepted by the affected transactions.

For example, if entry (O

i

; O

j

) has Confirm and Form-Commit-Dependency both T

i

and T

j

should

confirm that they are agreeable to the formation of the dependency before a commit-dependency is

established from T

i

to T

j

. Otherwise O

j

is rejected. Note that confirmation is a stronger notion than

notification.

The generality of the entries of the compatibility table allows ACTA to capture different types of

type-specific concurrency control discussed in the literature [21, 13, 1], and even to tailor them for

cooperative environments.

3.2 Effects of Transactions on Objects

Transactions’ effects on objects are captured by the introduction of two sets, the View Set and the

Access Set, and by the concept of delegation.

3.2.1 View Set and Access Set

Each object is characterized by its state and its status. The state of an object is represented by

its contents. The state of an object changes when an operation invoked by a transaction modifies

the contents of the object. The status of an object is represented by the synchronization information

associated with the object. The status of an object changes when a transaction performs an operation

on the object.

Transactions’ effects on objects can be restricted by limiting the number of objects accessible

to them. For this reason, every transaction is associated with a set of objects, called View Set, which

contains all the objects potentially accessible to the transaction. Rules for composing the View Set

are determined by the specific transaction model.

The effects of a transaction on objects are conditional upon the outcome of the transaction.

Objects already accessed by the transaction are contained in another set, called Access Set. When

an object in the View Set of a transaction is accessed by the transaction or a new object is created

by the transaction, the object becomes a member of the transaction’s Access Set. As long as an

object remains in the Access Set of a transaction, it continues to be accessible to the transaction. An

object ob in the View Set of a transaction T1 can be accessed by T1 only if the concurrency control



11

status of ob permits it. As mentioned earlier, part of the synchronization information is contained in the

compatibility table. Let T1 access ob using Op1. Assume T2 has already accessed ob using Op2. If

the (Op1; Op2) entry is Wait, T1 will not be allowed to access ob and hence, ob cannot be added to the

Access Set of T1. In other words, status of an object with respect to a transaction depends on whether

the object is in the View Set or Access Set of the transaction and on the state of the compatibility table

of the object.

When a transaction aborts, the state and the status of all objects in the transaction’s Access Set

are restored in its View Set. When a transaction commits, the state of all objects in its Access Set

is made persistent, i.e., the changes are effected, in the View Set, while the status is restored in the

View Set. AccessSet

T

refers to the Access Set of a transaction T , and V iewSet

T

refers to the View

Set of T .

For example, in nested transactions, the ability of a subtransaction to access any object accessed

by one of its ancestor transactions is expressed by defining the View Set of the subtransaction in terms

of the Access Sets of its ancestor transactions: V iewSet
C

= f[AccessSet
A

jC

�

! Ag [DB, where DB

stands for the database, the entity that has all the objects in the system. The state of the objects in DB

reflects the most recently committed state of the objects. The transitive-abort-dependency uniquely

specifies the ancestors of a subtransaction.

In our notation, [ is an ordered union. Informally, if C = A[B, then C contains all the elements

of A and B as in a set union. However, if there is an element in A duplicated in B, C contains the

element from A. We need this for the following reason. Suppose an object ob in DB is modified by P

and is then accessed by Q. Then only the modified version of ob should be accessible to Q. Note that

this notion of versions is different from object versions maintained explicitly for application-dependent

reasons. We propose to capture the latter by viewing such versions as different objects. Versions in

the current situation exist only until the root transaction terminates.

3.2.2 Delegation

A transaction may delegate the responsibility for finalizing its effects on some of the objects in its

Access Set to another transaction. This is achieved by removing the delegated objects from the

Access Set of the first transaction (delegator) and adding them to the Access Set of the second

transaction (delegatee). That is, delegation represents the ability of a transaction to give up some

of its objects which are then taken over by another transaction. Delegation effectively broadens the

visibility of the delegatee and is useful in selectively making tentative or partial results as well as hints,

such as, coordination information, accessible to other transactions.

The notion of delegation defined thus far is related to one of the two dimensions of objects,

namely, the state, and thus is called delegation of state. There is another type of delegation related to

the status of objects. Delegation of status as opposed to delegation of state, implies that the changes
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done by the delegating transaction to the delegated objects are undone, before these objects are

added to the Access Set of the delegatee. Effectively, the delegation of status represents the ability

of one transaction to annul the changes and relinquish control of the visibility of some of its objects to

another transaction. DelegateSet

state

(T1; T2) and DelegateSet

status

(T1; T2) refers to the set of objects

delegated by T1 to T2. Since delegation of state is the common form when we drop the subscript, we

are referring to delegation of state.

The notion of inheritance used in nested transactions is an instance of delegation. Specifically,

inheritance as proposed in [16] corresponds to the delegation of state when the delegator commits

(DelegateSet

state

(C; P ) = AccessSet

C

, where C ! P ), whereas inheritance in [18] corresponds to the

delegation of status when the delegator aborts (DelegateSet

status

(C; P ) = AccessSet

C

, where C ! P )

and delegation of state when the delegator commits (DelegateSet

state

(C; P ) = AccessSet

C

, where

C ! P ). Delegation does not occur only upon commit or abort but a transaction can delegate any of

the objects in its Access Set to another transaction at any point during its execution (For examples

see Co-Transactions and Reporting Transactions in Section 4.3 and 4.4 respectively).

Another form of delegation is limited delegation which does not remove the delegated objects

from the Access Set of the delegator but makes them inaccessible to the delegator before adding

them to the Access Set of the delegatee. That is, unlike the delegation of state, with limited delegation

the effects of the delegator on the delegated objects are not discarded if the delegatee aborts.

Delegation is not only used in controlling the visibility of objects, but delegation in conjunction

with commit and abort dependencies specifies the recovery properties of a transaction model.

In cooperative environments, transactions (components) cooperate by having intersecting

Access Sets and View Sets, by delegating objects to each other, or by notifying each other of

their behavior. By being able to capture these aspects of transactions, the ACTA framework is

designed to be applicable to cooperative environments.

4 Reasoning about Transactions in ACTA

In the previous section, the semantics of nested transactions were specified using the ACTA framework.

In this section, in order to demonstrate the usefulness of our framework in reasoning about the

properties of existing and future transaction models, a number of new models are generated by

perturbing the characterization of an existing transaction model, namely, the Joint Transaction model.

The characterization of other previously proposed transactions models such as Split Transactions,

Recoverable Communicating Actions, Cooperative Transactions, Transaction Groups and Multi-

Coloured Actions can be found in [6]. The ability of the ACTA framework to capture the semantics of

these schemes is indicative of its generality. The properties of a new transaction model resulting from

the combination of nested transactions and Split Transactions were studied in [6].
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4.1 Joint Transactions

In the Split Transactions model [20], join is a significant completion event in addition to the standard

commit and abort events. That is, it is possible for a transaction instead of committing or aborting, to

join another transaction. The joining transaction releases its objects to the joint transaction.

When a transaction invokes a join, it completes. However, the effects of the joining transaction

are made persistent in the database only when the joint transaction commits. Otherwise they

are discarded. Thus, if the joint transaction aborts, the joining transaction is effectively aborted.

Transactions behave like traditional transactions while they execute.

In the ACTA framework, the characterization of joint transactions is as follows. The begin-

transaction event has the semantics of the begin-transaction event in the traditional transactions in

which the View Set of the transaction is set to be the DB.

� Begin-Transaction Specification

Sets the View Set to be the DB when the transaction begins:

V iewSet

T

= DB

Here is the complete specification of the join event. There are four types of join: (1) a

traditional transaction joins another traditional transaction, (2) a traditional transaction joins another

joint transaction, (3) a joint transaction joins another traditional transaction, and (4) a joint transaction

joins another joint transaction.

� Join Specification

– Dependency Specification

T ` B

T ` A

fg

This production joins two traditional transactions.

B ` A

T ` B

fg

This production joins a joint transaction B to a tradi-
tional transaction T .

B ` B

T ` A

fg

This production joins a traditional transaction T to a
joint transaction B.

B ` B

B ` A

fg

This production joins two joint transactions into a
single joint transaction.

– Delegation Specification

DelegateSet

state

(A;B) = AccessSet

A

The delegation specification states that, when join occurs, the joining transaction’s objects are

delegated to the joint transaction. This means the joining transaction’s effects are made permanent
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to the DB only if the joint transaction commits. Join is effectively a conditional successful completion

event. In this regard, a joining transaction behaves similar to child transaction of a nested transaction

when child transaction commits. Note that the relabeling specification of joint transactions defines a

structure similar to that of nested transactions (notice the similarity between the production rules for

joint transactions and the first four productions of the variation of nested transactions in Section 3).

Because of this, joint transactions can be said to be compatible with nested transactions in the sense

that joint transactions can be used to join nested transactions into a single nested transaction, known

as a supertransaction [19] by making their root transactions children of the supertransaction.

The commit event for joint transactions has the same semantics as the commit event in

traditional transactions in which commit makes the transaction’s effects on the objects in its Access

Set permanent in its View Set, i.e., permanent in the DB, and visible to all other transactions in the

system:

� Commit Specification

Changes are committed to DB when the transaction commits:

V iewSet

T

= AccessSet

T

[ V iewSet

T

(i.e., DB = AccessSet

T

[ DB)

Finally, the abort event also has the same semantics as the abort in traditional transactions.

� Abort Specification

Changes are discarded when the transaction aborts:

AccessSet

T

= �

V iewSet

T

= �

It can be shown that joint transactions are both serializable and failure atomic.

4.2 Chain Transactions

A special case of joint transactions is one that restricts the structure of joint transactions to a linear

chain of transactions. We can call these transactions Chain Transactions. A chain transaction is

formed initially by a traditional transaction joining another traditional transaction and subsequently

by the joint transaction joining another traditional transaction. The dependency specification of the

join event in chain transactions is given by the first two production rules of the join event in joint

transactions:
T ` B

T ` A

fg ;

T ` B

B ` A

fg

Chain transactions provide the control structure for realizing pipeline-like computations.
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4.3 Reporting Transactions

A variation of the Joint Transaction model is the transaction model in which join does not signify the

completion of the joining transaction. A joining transaction continues its execution and periodically

reports its results to the joint transaction by delegating more objects to the joint transaction. We can

call these transactions as Reporting Transactions. Reporting transactions must invoke either commit

or abort to complete their computation.

The semantics of the joint and report events in the Reporting Transaction model follow. The

other significant events are the same as in Joint Transaction model.

� Join Specification

– Dependency Specification
T ` B

T ` A

fA! Bg ;

B ` A

T ` B

fA! Bg ;

B ` B

T ` A

fA! Bg ;

B ` B

B ` A

fA! Bg

– Delegation Specification

DelegateSet

state

(A;B) = AccessSet

A

The abort-dependency effectively maintains the completion semantics of joining transactions

in the Joint Transaction model by guaranteeing the abortion of the joining transaction A when the

joint transaction B aborts. If no abort-dependency were established from joining transaction to joint

transaction, then reporting transactions would be neither serializable nor failure atomic. If the abort-

dependency were replaced by a commit-dependency of the joint transaction on the joining transaction,

it can be shown that reporting transactions would be commit-serializable [20]. Because the production

rules prevent A from joining a third transaction, A cannot report to any transaction other than B.

Reporting transactions support an additional significant event, called Report, which is used by

joining transactions in reporting.

� Report Specification

– Delegation Specification

DelegateSet

state

(A;B) = ReportSet where A! B and ReportSet � AccessSet

A

The abort-dependency constraining the delegation ensures that A is a transaction allowed to

report to B, since an abort-dependency should already exist from a joining (reporting) transaction A to

a joint transaction B.

Reporting transactions can be useful in structuring data-driven computations. Reporting

transactions can be restricted to a linear form in a manner similar to chain transactions, or allowed to

form more complex control structures.



16

4.4 Co-Transactions

The characterization of reporting transactions allows A to continue its execution but prevents B from

joining A. Suppose A is suspended when it joins B and also B is allowed to join A. A can be

suspended, if, at the join, its View Set becomes empty. We call this ViewSet Curtailment. A is

effectively suspended since after A delegates all the objects in its Access Set to B, due to ViewSet

curtailment, A can no longer access any object in the system. A will be able to resume execution

when B joins A. This is because after the join A’s Access Set will no longer be empty while B will be

suspended. We can call these transactions Co-Transactions because they behave like co-routines in

which control is passed from one transaction to the other transaction at the time of the delegation and

they resume execution where they were previously suspended. In the Co-Transaction model specified

below, View Set of the co-transaction that resumes execution is restored.

Clearly, in the Co-Transaction model, the join event is not a completion significant event and

co-transactions must invoke either commit or abort in order to complete their execution.

Here is the characterization of the join event of co-transactions in ACTA:

� Join Specification

– Dependency Specification
T ` B

T ` A

fA! Bg ;

A ` B

B ` A

fA! Bg

– ViewSet Specification

V iewSet

A

= �

V iewSet

B

= DB

– Delegation Specification

DelegateSet

state

(A;B) = AccessSet

A

Co-Transactions are useful in realizing applications that can be decomposed into interactive,

and potentially distributed, subtasks which cannot execute in parallel. For instance, co-transactions

can be used in setting a meeting between two persons by having one co-transaction executing per

person against the individual’s calendar database. Co-transactions can be easily modified to form

more complex control structures in order to produce more interesting styles of cooperation.

5 Conclusion

ACTA, the comprehensive transaction framework presented in this paper, captures the spectrum of

interactions among transactions in competitive and cooperative environments. Each point within the

space of interactions is expressed in terms of transactions’ effects on the commit and abort of other

transactions and on objects’ state and concurrency status (i.e., synchronization state).
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ACTA allows for specifying the structure and the behavior of transactions as well as for reasoning

about the concurrency and recovery properties of the transactions. The ACTA framework is not yet

another transaction model, but is intended to unify the existing models. Its ability to capture the

semantics of previously proposed transaction models is indicative of its generality. The reasoning

capabilities of this framework have also been demonstrated by using the framework to study the

properties of new transaction models that are derived by manipulating the Joint Transaction model.

We are currently investigating an ACTA-based formalism that will allow us to precisely char-

acterize the correctness properties of a set of transactions or a transaction model. Such a model

will, for example, allow us to determine whether or not the given model produces only serializable

computations, and if not, whether the computations are consistency preserving, i.e., whether the

interactions in the computations do not conflict in such a manner as to produce object inconsistencies.

The dependency production rules used in specifying the structure of complex transactions is a step

towards this effort.

In order to explore the practical impact of being able to develop new transaction models using

this framework, we are also examining the development of a canonical model for implementing object

managers and transaction managers to design type specific and transaction specific concurrency

control and recovery mechanisms. In this regard, the compatibility table can help an object manager

determine whether a transaction can be allowed to perform an operation on an object and if so, what

type of dependencies are formed and whether notification is to be performed. The production rules

can help the transaction manager determine whether a particular interaction between two transactions

is permitted. The Access and View Set related specifications can help the transaction manager

determine the visibility of objects to transactions and the changes to be effected when a transaction

commits or aborts. Thus, the specifications allowed by ACTA are useful not only in precisely stating

the semantics of a transaction model but also to construct the necessary transaction and object

management support.

Overall, we believe that our framework will lead to a better understanding of the nature

of interactions between transactions and the effect of transactions in environments that require

transaction models that are not supported well by the traditional transaction model. Further, with the

proposed framework, it is possible to precisely specify the type of interactions and effects allowable in

a particular application, and explore ways for achieving cooperation. The concurrency and recovery

properties of transactions in the given application can then be studied using the reasoning capabilities

built into the framework. Finally, by including an examination of the implementation mechanisms

required to support complex transactions within its purview, our work also intends to provide answers

concerning the increased complexity entailed by the improved flexibility in constructing complex

transaction models.
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