
ACTA: A Framework for Specifying and Reasoning
about Transaction Structure and Behavior

Panayaotas K Chrysanthzs Krztha Ramamntham

Department of Computer and Information Science
University of Massachusetts

Amherst MA 01003
e-rnsJ panosQccs3 cs umass edu, krlth&urvan cs umass edu

Abstract

Recently, a number of extensions to the tradItIonal
transaction model have been proposed to support new
mformatlon-mtenslve apphcatlons such as CAD/CAM
and software development However, these extended mod-
els capture only a subset of mteractlons that can be found
m such apphcatlons, and represent only some of the pomts
within the spectrum of mteractlons possible m competl-
tlve and cooperative environments

ACTd IS a formahzable framework developed for charac-
terlzmg the whole spectrum of mteractions The ACTA
framework 1s not yet another transactlon model, but 1s
Intended to unify the exlstmg models ACTA allows for
specifying the structureand the behauzorof transactions as
well as for reasonmg about the concurrency and recovery
properties of the transactions In ACTA, the semantics of
mteractlons are expressed m terms of transactions’ effects
on the commit and abort of other transactions and on ob-
Jects’ state and concurrency status (1 e , synchromeatlon
state) Its abhty to capture the semantics of previously
proposed transaction models 1s mdlcative of its general-
ity The reasoning capabtitles of this framework have also
been tested by usmg the framework to study the prop-

erties of a new model that 1s derived by comhnmg two
exlstmg transaction models

1 Introduction
The need to support cornpEer tnformatron systems emerges
from the demands of new and complex apphcatlons, such
as CAD/CAM, software development environments, obJect-
oriented databases, stock tradmg databases, and distributed
operating systems These systems are typically distributed
and obJect based, 1 e , designed m terms of an obJect-oriented
paradigm The abUy of transactions to mask the effects of
concurrency and fiulures makes them appropriate bullding
blocks for these complex systems Although powerful, the
transaction model found m traclltional database systems [S,
‘i’] 1s found lachng m functronalrty and eficrency when used

This material 1s based upon work supported by the Na-
tlonal Science Foundation under grant DCR-8500332

Penn~~~on to copy wthout fee all or part of 011s mated 10 granted pmvlded
that the copes arc not made or dlstnbuted for drect commerctal advantage, the
ACM qynght not,ce and the title of the pubbcatlon and ltll date appear, and
notice II gtven that cqymg IS by pam~s~n of the Assoc~atlon for Computmg
Machmely To copy othemse or to repubbsh requrea a fee and/or speaf~c
penawwn
0 1990 ACM 089791365 5/90/0005/0194 Sl SO

for these new apphcatlons Efficiency 1s of particular Impor-
tance consldermg the throughput demands placed on these
complex mformation systems In terms of functlonahty, tra-
dltlonal transactions were assumed to be short-lived and were
targeted for competitive environments Actlvlties m complex
information systems tend to access many obJects, involve
lengthy computations, and are interactive, 1 e , pause for m-
put from the user Even m those cases where activities w;th
such characterlstlcs can be modeled as tradltlonal transac-
tions, they degrade the system performance due to mcreased
data contention, thus f&g to meet the high throughput
demands Furthermore, endless and collaboratmg activities
which are often found m these systems, cannot be captured
by trachtlonal transactions due to serlahzablllty as the COI-

rectness requirement Therefore, the need to capture reac-
tive (endless), open-ended (long-kved) and collaborative (m-
teractlve) actlvitles found m the new apphcatlons suggests
the need for more cooperative models Broadly speakmg,
whether a system IS characterized as competltlve or coop-
erative depends on how rnterochons among actlvltles m the
system are viewed m competltlve environments, mteractlons
are curtded whereas they are promoted m cooperative en-
vlronments

In order to fill this need for more flexible transaction mod-
els, various extensions to the tradltlonal model have been
proposed, referred to herem as complez trunsachons, which
can support the lmplementatlon of efficient systems For ex-
ample, Nested Transactlons [ll] have been proposed m the
context of chstrlbuted languages to handle the problem of
partial fdures Nested Transactions support only hlerarchl-
cal computations slmllar to the ones that result from proce-
dure calls Recoverable Commumcatmg Actions [la] which
support arbitrary computation topologies, have been pro-
posed m the context of dlstrlbuted operating systems where
mteractlons are more complex Cooperative Transactions [3],
Spkt Transactlons [14] and Transaction Groups [6, 171 have
also been suggested for capturing the mteractions found m
the new appkcations Irrespective of how successful these ex-
tended transaction models are m supportmg the systems that
they were intended for, they merely represent points within
the spectrum of mteractions possible within competltlve and
cooperative environments Therefore, they can capture only
a subset of the mteractlons to be found m any complex m-
formation system

While It 1s tempting to develop new transaction models
that cover some of the remanmg points m the spectrum,
any such work will by necessity be ad hoc and not general
What wti be better 1s to study the nature of transactions

194

http://crossmark.crossref.org/dialog/?doi=10.1145%2F93597.98729&domain=pdf&date_stamp=1990-05-01

as such and develop a conceptual framework m which It w4l
be possible to specify the effects of complex transactlons and
then reason about their properties

We have developed such a comprehensive transaction
framework, called A CTd’ , for characterizing the whole spec-
trum of mteractlons In ACTA, the semantics of mteractlons
between transactlons are expressed m terms of transactlons’
effects on each other and on obJects that they access A
transactlon has two possible outcomes, namely, commit or
abort Consequently the effects of one transaction on other
transactions are classified as those on the abort of other trans-
actions and those on the commrtment of other transactions
The effects of a transactlon on the obJects that it accesses
are also categorized mto two classes The effects of a transac-
tion on the state of objects and the effects of a transaction on
the concurrency status, 1 e , synchromzatlon state, of obJects
(Henceforth, we refer to concurrency status as Just status)

ACTA allows for speclfymg the structure and the behautor
of transactlons as well as for reasoning about the concurrency
and recovery properties of the transactions Structure refers,
for example, to the nestmg structure of a transaction, and
behavror refers to the operations invoked by a transaction

The ACTA framework 1s not yet another transaction
model, but 1s intended to unify the exlstmg models Its abll-
lty to capture the semantics of previously proposed trans-
action models IS mdlcatlve of Its generahty The reasoning
capabtitles of this framework have also been tested by usmg
the framework to study the properties of a new transaction
model, called Nested-Spitt Transactrons, that 1s derived by
combmmg the Nested and Spht Transaction models

In Section 2, we examme the characteristics of complex
transactions In Sectlon 3, we present ACTA, our proposed
comprehensive transaction framework and discuss the mtu-
ltlon underlying the framework Section 4 dustrates the use
of the framework by applymg it to model four exlstmg trans-
actions models In the same section, the reasoning capa-
bhtles of the framework are demonstrated by studying the
properties of the Nested-Spht transaction model Sectlon 5
concludes mth a summary and discusses future steps

2 Complex Transactions: Definition
and Issues

Traditional transactions are based on the notlon of otomrctty
and thus are often referred to aa atomtc transachons Atom-
lclty 1s characterized by two properties fdure atomlclty and
senahzablhty Fahrlure atomacrtymeans that either all or none
of the transaction’s operations are performed Serralrzabzhty
means that concurrent transactlons execute without any m-
terference as though they were executed m some serial order
However, these properties combme several Important notions
such as

1 Vurbrltty, referrmg to the abUy of one transaction to
see the results of another transactlon whrie lt IS execut-
w

2 Permanence, referring to the abtity of a transaction to
record its results m the database

‘ACTA means actrons m Latm

Recovery, referring to the abhty, m the event of fafiure,
to take the database to some state that 1s considered
correct

Consratency, referring to the correctness of the state of
the database that a committed transactlon produces

The flexlbtity of a given transaction model depends on the
way these four notions are combined Thus, these notions
have to be revisited m order to understand the properties
of complex transactions and to decide on the mechanisms
for supportmg them For example, vlslblllty does not always
have to be curtded, permanence need not reqmre all the
results to be recorded m the database, recovery does not
imply the complete restoration of the state and consistency
does not necessarily require serlahsablhty

Complex transactions have properties which relate to the
above notions Generally, complex transactrons can be siud
to consist of either a set of operations on obJects or a set
of complex transactions Tlus recursive formulation lmphes
that a complex transaction may exhlblt a rich and complex
internal structure In contrast, tradltlonal transactions have
a flat single level structure In this sense, the base case m
this recursive defimtlon of complex transactions 1s slmllar to
a tradltlonal transaction The simplest example of complex
transactions IS Nested Transactions [ll]

Complex transactions are dlstmgulshable from the multc-
level transactions [12, 10, l] first m that then internal struc-
ture 1s expltcct and provided as a user fachty, and second m
that then component transactlons are not necessarily atomtc
Multdevel transactions have an tmplrcrt hierarchical mternal
structure which 1s a result of transactions mvokmg operations
on complex obJects Thus, the operations are decomposable
mto sub-operations Both operations and sub-operations are
consldered atomic That is, for the user, a multilevel trans-
action 1s nothing but a set of atomic operations slmllar to a
tradltlonal transaction, and nestmg 1s provided as a system
fachty

The way that component transactions are combined to
form complex transactions reflects the semantics of the apph-
catlons Such semantics can be explolted m designing trans-
actron ape& concurrency control and transactton speczjic
recovery The idea IS slmllar to the use of semantic mforma-
tlon about the obJects and their operations m designing type
specafic concurrency control to enhance concurrency within
obJects [2, 15, 9, 191

Transactron specs& concurrency control allows the defim-
tlon of new weaker notlons of conflicts among operations not
possible with the mformatlon avaJable only about obJects
and theu types For instance, operations invoked by two
transactions can be interleaved as if they commuted, If the
semantics of the apphcatlon allow the dependencies between
the transactlons to be ignored Clearly, transaction specific
concurrency control might not achieve senahzab&ty but still
preserves consistency This seems to be an attractive means
for increasing the performance m a complex mformatlon sys-
tem

Transactron ape& recovery can be designed along the
same hnes to exploit the semantics of the apphcatlon m order
to mmnmze the effects of transaction fdures Transaction
specific recovery reduces the cost of recovery by tolerating

195

Effects

on Transactions on Objects

A A
Commit Abort View Set & Aomss Sat

Dependency Dependency Specifca.Uon
Delegation

Spedflcatlon

of Stat0 of status

Figure 1 Dlmenslons of the ACTA framework

partial fa&res and by supportmg both forward and back-
ward recovery In the event of fs&re of transaction compo-
nents, the fouled portions can be Isolated, allowmg the rest
of the transaction to proceed Faded portions of a trans-
action can be retried, compensated by attempting another
alternative, or even ignored Furthermore, complex trans-
actions naturally support user-controlled checkpomtmg since
the boundaries of component transactions act as checkpoints

The above observations motivate us to address the follow-
mg questions m our research

l How do we capture the semanhcs of complex trunsoc-
tlons Q

l How can we reason about the concurrency and recovery
properties of complex transactrons Q

3.1 Effects of Transactions on other
Transactions

Dependencies provide a convenient way of specifymg and
reasonmg about the behavior of concurrent transactions [8,
151 By exammmg the possible effects of interacting transac-
tions on each other, it 1s possible to determine the dependen-
cies that may develop between the transactions There are
two possible dependencies that a transaction may develop
on any other transaction Commrt-dependency and abort-
dependency

Commit-dependency and abort-dependency are collec-
tlvely known as completzon dependencres and are defined as
follows

Commit-Dependency: If a transaction A develops a
commrt-dependency on another transaction B (denoted
by A u B), then transactlon A cannot commit until
transaction B either commits or aborts This does not
imply that if transaction B aborts, then transaction A
should abort

Abort-Dependency* If a transaction A develops an abort-
dependency on another transaction B (denoted’ by A
+ B), and if transaction B aborts, then transaction A
should also abort This neither lmphes that If transac-
tlon B comnnts, then transaction A should commit, nor
that if transaction A aborts, then transaction B should
abort

The ACTA framework described m the next section 1s our ml-
teal response to these questions As we shall see, this frame-
work allows us to capture transaction properties as related
to the dlmenslons of (I) vzsrbrltty, (EE) fadwe atomzcrty (re-
covery), (tn) permanence and (2~) consrstency

3 The ACTA Framework

The behavior of a transaction system 1s determined by the
behavior of its active components and the mteractions among
these components The active components m our framework
are transacttons, inherently parallel actlvlties, and the pas-
sive components are oblecrs, abstract entitles manipulated by
transactions

Transactions may produce unexpected results if they mter-
act mdiscrlmmately A correctness criterion for transactions
constrains these mteractlons to those that produce a result
contamed m a set of acceptable results In order to spec-
ify a correctness criterion that prevents some mteractions
from occurring while allowing others, we must be able to ex-
press these mteractlons Interactions among transactions are
reflected m the effects they cause and thus, we can express
them m terms of these effects We dlstmgmsh between trans-
actions’ effects on each other and transaction effects on the
objects that they access Tlus taxonomy of effects 1s captured
in figure 1

Commit-dependencies and abort-dependencies impose a
commit order which prevents transactions from prematurely
commlttmg, thereby preventing obJect mconnstencles, given
that transactions preserve the consistency of the database
when run m lsolatlon Depending on a transaction model
and its correctness notion, some dependency cycles may lead
to mconslstencles and hence, they are prohibited, whereas
other dependency cycles are accommodated In the latter
case, If two transactions form a circular dependency mvolv-
mg the same type of completion dependency, then both have
to commit or neither In the case that two transactions de-
velop a circular dependency involving dependencies of dlf-
ferent types, 1 e , one transaction has a commit-dependency
on another transaction which has an abort-dependency on
the first transaction, then the commitment of both transac-
tions must be synchronized This does not imply that both
transactions have to commit or neither as m the case above

These two types of effects as well as the formal means to
specify them are described m Section 3 1 and 3 2 respectively
The apphcation of ACTA to various transaction models, m
Section 4, should serve to clarify and dustrate the concepts
underlying ACTA

Completion dependencies between transactions may be a
direct result of the structural properties of the complex trans-
action formed by the interacting transactions, or may mdl-
rectly develop as a result of mteractlons of transactions over
shared objects It 1s often necessary for dependencies m-
duced by the structure of transactions to be quahfied either
to further strengthen them by attaching to them more re-
strlctions, or to restrict the scope of their apphcablllty bj
attaching condltlons As an example of the former, abort-
dependency can be restricted so that a transaction 1s not

*The specific direction of the arrows for commit and abort
dependencies IS chosen for readablhty reasons To reflect
the required order of transactions’ commitment, the arrows
should be drawn m the opposite chrectlon

196

allowed to develop an abort-dependency on more than one
other transactlon This stronger version of abort-dependency
1s called excluszve-abort-dependency (denoted %) and 1s use-
ful m controllmg the expansion of a complex transactlon As
an example of restrlctmg the scope of an abort-dependency,
consider weak-abort-dependency where an abort-dependency
between two transactions holds as long as both transactions
are executing Z’runsrtcve-abort-dependency (denoted by >)
1s defined by the transitive closure of abort-dependencies
A transaction A has a transitive-abort-dependency on every
member of the set of transactions formed by the transitive
closure of abort-dependencies starting from A Trunstttve-
commrt-dependency (denoted by L) IS slmllarly defined

Dependencies formed by the mteractlons over a shared
obJect are specified by the compattbzlzty table associated
with the obJect and encodes the obJect’s synchromzatlon
properties In the traditional framework, a compatlbll-
lty table 1s a simple a binary relation with a yes entry
for (0,, 0,) mdlcatmg that the operations 0, and 0, are
compatible, 1 e , do not con&$ or a no entry mdlcatmg
that the two operations are mcompatlble, 1 e , conflict In
our case, an entry (0,, 0,) could be a condztron mvolvmg
completion dependenaes, operation arguments and results
In particular, an entry could be No-dependency, 1 e , the
standard yes entry, Form-Abort-Dependency, Form-Commrt-
Dependency, Wart, 1 e , the standard no entry, Abort, Not&,
Allow-tf-Abort-Dependency-already-extsts, Allow-tf- Commzt-
Dependency-already-en&s, etc While the other entries are
self-explanatory, a Not&entry correspondmg to (0,, 0,) lm-
phes that transaction mvokmg 0, should be notified of 0,‘s
presence This generahty allows the framework to capture
different types of type-specific concurrency control discussed
m the literature [15, 9, 21

In general, m a complex transaction system, the comple-
tion of a transaction may not depend on a simple condltlon,
such as the completion of another transaction, but may de-
pend on a complex condltlon required to capture the mterac-
tlons among the transactions m the system Thus, m general,
the commit-dependency of a transaction A can be expressed
as A commzts + Condztzon, which states that if A commits,
then Condltlon 1s satisfied Slmllarly, the abort-dependency
of A can be expressed as Condztzon * A aborts, which
states that if Condltlon 1s satisfied, then A 1s aborted

3.2 Effects of Transactions on Objects

Each obJect 1s characterized by its state and its status The
state of an obJect 1s represented by Its contents The state
of an obJect changes when an operation invoked by a trans-
action modifies the contents of the obJect The status of
an obJect IS represented by the synchromzatlon mformation
associated with the obJect The status of an obJect changes
when a transaction performs an operation on the obJect Part
of the synchromzatlon mformatlon 1s the compatlb&ty table
that specifies the concurrency properties of the obJect, 1 e
the rules for accessing the obJect [15, 9, 21 In addition, our
extensions to the compatlb&ty table, discussed m the last
section, allows the speclficatlon of the formation of comple-
tlon dependencies when operations execute

Transactions’ effects on objects are captured by the mtro-
ductlon of two sets, the Vtew Set and the Access Set, and by

the concept of delegatzon
Transactions’ effects on objects can be restricted by hmlt-

mg the number of objects accessible to them For this reason,
every transaction IS associated with a set of obJects, called
Vzew Set, which contains all the obJects potentially accessl-
ble to the transaction Rules for composmg the View Set are
determined by the specific transaction model Examples are
given in Section 4

The effects of a transaction on obJects are condltlonal upon
the outcome of the transaction ObJects already accessed by
the transaction are contamed m another set, called Access
Set When an object m the View Set of a transactlon 1s
accessed by the transaction, the obJect becomes a member of
the transaction’s Access Set ObJects m Access Set continue
to be accessible to the transaction An obJect ob m the View
Set of a transaction ‘2’1 can be accessed by 2’1 only if the
concurrency control status of ob permits it For instance if
ob 1s m the Access Set of another transaction T2 and the
compatlbhty table for ob indicates that the operation that
TI uses to access ob 1s mcompatlble with the operation that
T2 used to access ob then Tl WLU not be allowed to access ob
and hence, ob does not become a member of the Access Set
of Tl In other words, status of an object with respect to a
transaction depends on whether the obJect 1s m the View Set
or Access Set of the transaction

When a transaction aborts, the state and the status of
all objects m the transaction’s Access Set are restored m
its View Set When a transaction commzts, the state of all
obJects m its Access Set 1s made persistent, 1 e , the changes
are effected, m the View Set, while the status 1s restored
m the View Set AccessSetT refers to the Access Set of a
transaction T, and VzewSetT refers to the View Set of T

A transaction may delegate the responslblllty for finahz-
mg its effects on some of the objects m its Access Set to
another transaction This 1s achieved by removing the del-
egated obJects from the Access Set of the first transaction
(delegator) and adding them to the Access Set of the second
transaction (delegatee) That IS, delegatEon represents the
ab&ty of a transaction to give up some of its obJect.s which
are then taken over by another transaction Delegation effec-
tively broadens the vlslblLty of the delegatee and it 1s useful
in selectively makmg tentative or partial results as well as
hints, such as, coordmatlon mformatlon, accessible to other
transactions

The notion of delegation defined thus far 1s related to one
of the two dunenslons of obJects, namely, the state, and thus
1s called delegatron of state There 1s another type of delega-
tion related to the status of objects This type of delegation
1s referred to as delegutaon of status Delegation of status as
opposed to delegation of state, lmphes that the changes done
by the delegating transaction to the delegated obJects are un-
done, before these obJects are added to the Access Set of the
delegatee Effectively, the delegation of status represents the
ablkty of one transaction to annul the changes and rehnqulsh
control of the vlslblllty of some of Its obJects to another trans-
action The notion of inheritance used m Nested Transac-
tions IS an instance of delegation Specifically, inheritance as
proposed m [ll] corresponds to the delegation of state when
the delegator commits, whereas m [13] corresponds to the del-
egation of status when the delegator aborts and delegation of

197

state when the delegator commits DelegateSet.t,t,(Tl, T2)
and DelegateSet,t,t,,(Tl, T2) refers to the set of obJects del-
egated by Tl to T2 Since delegation of state IS the common
form when we drop the subscript, we are referring to delega-
tion of state

Another form of delegation 1s ltmlted delegatron which
makes the changes to the delegated obJects persistent m the
View Set before adding them to the Access Set of the target
transaction

Delegation 1s not only used m controlhng the vlslbtity of
obJects, but delegation m conJunctlon with commit and abort
dependencies specifies the recovery properties of a transac-
tion model

In cooperative environments, transactions (components)
cooperate by having mtersectmg Access Sets and View Sets,
by delegating obJects to each other, or by notrjymg each other
of then behavior By being able to capture these aspects of
transactions, the ACTA framework 1s designed to be apph-
cable to cooperative environments

4 Modeling Different Transaction
Schemes

In this section, the semantics of four transaction models
are specified using the ACTA framework These are Nested
Transactions, Spht Transactions, Recoverable Commumcat-
mg Actions and Cooperative Transactions Because of space
hmltatlons, the characterlsatlon of Transaction Groups [6,
171 and Multi-Coloured Actions [16] are not included m this
paper Also, the properties of a new transaction model result-
mg from the combmatlon of Nested Transactions and Spht
Transactions are studied m order to demonstrate the useful-
ness of our framework m reasoning about the properties of
existing and future transaction models

Throughout this section, the set DB stands for the
database, the entity that has all the obJects m the system
The state of the obJects m DB reflects the most recently
committed state of the ob]ects

4.1 Nested Transactions

In the Nested Transaction model [ll], transactions are com-
posed of subtransactlons or child transactions designed to
locahze failures w&m a transaction and to exploit paral-
leksm within transactions A subtransactlon can be further
decomposed mto other subtransactlons, and thus, the trans-
action may expand m a hlerarchlcal manner Subtransac-
tlons execute atomically with respect to their parent and
their nblmgs, and can abort independently without causing
the abortion of the whole transaction However, if the par-
ent transactlon aborts, all its subtransactlons have to abort
The parent transaction cannot commit until all its subtrans-
actions have terminated

A subtransactlon can potentially access any obJect that
1s currently accessed by one of its ancestor transactions In
addition, any obJect m DB 1s also accessible to the subtrans-
action When a subtransactlon commits, its obJects are made
accessible to its parent transaction However, the effects on
the obJects are made persistent m DB only when the root
transaction commits

Here 1s the characterization of Nested Transactions m the

ACTA framework We use C to denote a child transaction
of a parent transaction P

s Dependency Speclficatlon
VCC5P
VCPUC

The abort-dependency of a child on its parent guaran-
tees the abortion of the child transaction m case its parent
aborts Furthermore, the exclusive-abort-dependency pro-
hlblts a child transaction from having more than one parent,
this ensures the hlerarchlcal structure of the nested transac-
tions

The commit-dependency of the parent on its children guar-
antees that the parent does not commit before all Its children
have terminated

l View Set Specification
t/C VeewSetc = (UAccessSetalC > A) u DB

In our notation, U ls an ordered unton More precisely,
lf c = A U B, then C contams all the elements of A and
B as m a set union However, if there 1s an element m A
duphcated m B, C contams the element from A We need
this for the followmg reason Suppose an obJect ob m DB
1s modified by P and 1s then accessed by Q Then only
the modified version of ob should be accessible to Q Note
that this notion of versions 1s different from obJect versions
mamtamed expkcltly for apphcatlon-dependent reasons We
propose to capture the latter by vlewmg such versions as
different ob.)ects Versions m the current sltuatlon exist only
until the root transaction terminates

The abiity of a subtransactlon to access any object cur-
rently accessed by one of its ancestor transactions 1s ex-
pressed by defining the View Set of the subtransaction m
terms of the Access Sets of its ancestor transactions The
transitive-abort-dependency uniquely specifies the ancestors
of a subtransactlon

s Delegation Speclficatlon3
Delegation occurs when C commits

VC DelegateSet.t,t,(C, P) = AccessSetc

The delegation speclficatlon states that, at commit, the
child transaction’s obJects are delegated to its parent trans-
action This effectively makes the effects of the commlttmg
child transaction selectively visible to its parent and to the
parent’s descendants (by the View Set speclficatlon above)

4.2 Split Transactions

In the Spht Transaction model [14], it 1s possible for a trans-
action A to spkt mto two transactions, B and C, where B 1s
the orlgmal transaction B and C transactions may be rn-
dependent, m which case they can commit or abort mdepen-
dently, or they may be serral, m which case B must commit
m order for the C to commit Whether B and C transactions
are independent or serial depends on the obJects accessible
to them

31n the case of [13] the delegation speclficatlon should
state m addition Delegation occurs when C aborts,
VC DelegateSetsr,t,,,(C, P) = AccessSetc

198

4.2.1 Independent Split Transactions

Here 1s the characterlzatlon of rndependent Spht Transac-
tlons m the ACTA framework

l Delegation Speaficatlon
Delegation occurs when A sphts

ACce88setB = AccelrsSetA - DelegateSet(A, C)
AccessSetc = DeEegateSet(A, C)

The mdependence of the two transactions 1s guaranteed
by having B and C operate on &SJOlnt sets of obJects Del-
egatlon leaves C the responnbtity of makmg persistent all
the changes made by A to delegated objects up to the spht

4.2.2 Serml Split Transactions

Now we characterize Set-4 Spht Transactions which have
more compkcated semantics than independent Spht Trans-
actlons

l Dependency Speaficatlon
C-LB

The abort-dependency guarantees that transactlon C
aborts If B aborts and that C’s commitment 1s delayed un-
tll B commits The exclusive-abort-dependency prevents C
from Joining (see below) a third transaction’ Note that this
does not prevent transactions B and C from Jommg

b View Set Specification
Spkt Transactions were proposed m the context of the
Read-Write database model Hence, the View and
Access sets of B and C can be specified m terms
of the set of obJects that they can read or write
(eg, VzewSetB = VzewWmteB u VrewReads, and
AccessSetB = ReadSetB U WrrteSetB)

ViewWriteB = ViewwriteA
VlewReadB = VlewReadA
ViewWritec = {z]zeWrcteSets A C-WrzteLast(z))

uDB
VlewReadc = {zjzoWrzteSetB A C-CanRead(

uDB

WrlteSetB contains the obJects that A has changed up to
the spkt and may change after the spkt when executing as
B That is, WriteSetB 1s a subset of the Access Set of A
The C-WrzteLast specifies the obJects that can be updated
last by C Slmllarly, CXanRead specifies the obJects that
C can read but they are not delegated to C

The VlewWrltec (ViewBead=) contams sll the obJects
that C can potentially write (read) after the spht In this
way, some of the changes to the objects up to the time of the
spht become visible to C Not delegating these objects to C
ensures that the changes to the obJects up to the spht are
not lost if C aborts5

‘This constraint can be removed if the jorn operation re-
quires that the Joint transactlon develops the same depen-
denaes as the Jommg transactlon

‘Furthermore, m this way, B can regam access to these ob-
Jects after the abortlon of C Note that this 1s not supported
by the original notion of Split Transactions [14], although It
might be appropriate for some appkcatlons

l Delegation Speaficatlon
This delegation occurs when A sphts

AccessSetB = AccessSetA - DelegateSet(A, C)
AcceasSetc = DelegateSet(A, C)

Any changes to obJects m DelegateSet up to the spht are left
to C to be made persistent to the database

l Delegation Speaficatlon
This lrmrted delegation occurs when B commits

DelegateSet(B, C) = AccessSetB n VtewSetc

B delegates hmlted responnb&ty of the obJects to C that
C could potentmlly access but C did not In this way, all the
changes to these obJects are made persistent to the database
while C still has access to these obJects

If B aborts then C 1s also aborted, given that C has an
abort-dependency on B AU the obJects acquired by both
transactions are restored to the system

By comparing the charactenzatlons of the independent
and serial spht transaction m ACTA, one can Infer that the
source of the abort-dependency m the case of se& spht
transactlons 1s due to the View Set Speaficatlon and m par-
ticular, to the mformatlon flow allowed by the View Set Spec-
lficatlon A closer study of the View Set Speaficatlon reveals
that m the case that C 1s not allowed to read any obJect
that 1s not delegated to It or 1s not m the database (1 e ,
VlewReadc = DB), the abort-dependency of C on B can
be substituted by a commit-dependency which avoids cascad-
mg aborts while still ensuring serial commitment of B and
C

4.23 Joint Transactions

In the Spht Transactlons model, it 1s also possible for two
transactlons to Join mto one This 1s called the lornt trans-
action The Joint transaction 1s either of the original ones
When the transactlons Join, they release their obJects to the
Joint transaction

The characterization of Joint Transactions m the ACTA
framework 1s straight forward

l Dependency Speaficatlon
A%B

l Delegation Speclficatlon
Delegation occurs when A commits

DelegateSet(A, B) = AccesllSetA

The abort-dependency effectively Joins transactions A and
B, and mdlcates that B u the Joint transaction which con-
tmues executing The exclusive-abort-dependency prevents
A from Joining a transaction other than B

The above characterlzatlon points to a variation of the
Jomt Transactions m which the delegation does not occur
when A commits That ls, A can continue Its execution and
can perlodlcally report its results to B by delegating more
obJects to B We can call these transactions as Reportang
Transacttons

199

4.3 Nested-Spht Transactions

In order to test the reasoning capabhtles of the framework,
we created a new model by combmmg the Nested and Spht
Transaction models presented m the previous two sections
The framework was then used to check whether this new
model retams the properties of the two orlgmal models

Note that, given a nested transaction, it 1s possible to
spht a leaf node, an internal node, or a root node The
spht nodes could execute independently or sermlly Figure
2 captures the effects for all possible combmatlons The
dependencies shown follow from the speclficatlons of depen-
dencles for nested and spht transactions In these figures a
dotted arrow denotes a commit-dependency and a soltd arrow
denotes an abort-dependency

When a node, say C (figure 2b), sphts mto two sub-
transactions, say Cl and C2, where Cl 1s the orlgmal sub-
transactlon C, the dependencies between subtransactlon C
and transaction A are assumed to hold between C2 and A
Smce both nested and spht transactions mvolve excluslve-
abort-dependencies (recall that exclusive-abort-dependency
prevents a transaction from having an abort dependency on
more than one other transaction), a node sphttmg may result
m a subtransactlon that has exclusive-abort-dependencies on
two other subtransactions (figure 2b, After the Serial Spht)
Such mconslstencles may be resolved by means of consistency
preserving rewrite rules In general, consistency preservmg
re-write rules are used to simplify the structure of a complex
transaction by ehmmatmg redundant dependencies Figure
2a shows four such rewrite rules of which re-wrrte 2 resolves
the mconslstency mentloned above

After applying the rewrite rules (m these cases only re-
write 2 1s apphcable), we examme the remammg dependen-
cies for each type of nested-spht transaction to see if the re-
sulting structure preserves the semantics of the Nested and
Spht transactions models We conclude that m only one case
the propertles of the two models are preserved This case
mvolves the splitting of the leaf node mto two mdependent
subtransactions In all other cases the model either estab-
kshes dependencies which destroy the structure of the nested
transactions or ehmmates some of the dependencies required
by the nested transactions For example, m figure 2b (After
Applying Re-write Rule), the exclusive-abort-dependency of
subtransaction C2 on subtransactlon A 1s ehmmated

Even If sphttmg of nodes 1s restrlcted only to the mde-
pendent sphttmg of leaf nodes, nested-spht transactions 1s a
useful new transaction model m a cooperative environment
Observe that an internal node becomes a leaf node any time
that it has no active child subtransactions That is, m nested-
spht transactions, a node may spht at any point after all Its
child subtransactions have terminated and before actlvatmg
any new subtransactions For example, m figure 2c (Imtml
Nested Structure), when subtransactlon D terminates, node
C can be spht mto two mdependent subtransactlons Cl and
C2 as m figure 2b (After the Independent Spht of C) Cl may
contmue the execution of C spawning new subtransactlons,
while C2 may commit delegating Its objects to A Smce all
the obJects accessible to A are potentially accessible to all of
Its descendants (by View Set Speclficatlon of nested transac-
tions), the obJects delegated to A by C2 are potentially ac-
cesslble to B This effectively achieves cooperation between

the original slbhngs C and B while they are still executmg
In nested transactions, two slbkngs cannot cooperate while
both slbhngs are active, since subtransactlons delegate their
obJects to their parent only at commit time Thus, nested-
spkt transactions support higher level of vlslbtity between
subtransactlons than nested transactions do

This exercise showed us the efficacy of the ACTA frame-
work m determmmg the properties of new transaction mod-
els, m this case, one derived by combmatmg exlstmg models

4.4 Recoverable Commumcatmg Actions

In the context of long and cooperative transactions, the Re-
coverable Communrcatzng Actrons (RCA) model has been
proposed to deal with the problem of non hlerarchlcal com-
putations [18] In this model, an action, the sender, 1s al-
lowed to communicate with another action, the recetver, by
exchanging obJects, resulting m an abort-dependency of the
receiver on the sender If the sender aborts then the receiver
must abort as a result of the dependency

By developmg abort-dependencies, RCAs form a recover-
able computatron, a self-contained task or activity which has
the semantics of an atomic update For this reason, actlons
belonging to the same recoverable computation require syn-
chronized commitment That is, even m the case of a sender
which has no dependencies on any other action, the sender
cannot commit independently However, partial fiulures are
tolerated smce an action may abort without aborting the ac-
tlon with which It has developed an abort-dependency In
short, a recoverable computation can dynamically expand
through the development of dependencies and shrmk due to
abortlon of actions

Here ls the characterlzatlon of RCAs m ACTA

l Dependency Speclficatlon
Recezver + sender
sender u Recezver

The circular dependency mvolvmg different completion de-
pendencies between sender and receiver guarantees the re-
quired synchromeed commitment of the sender and receiver
actions

The abort-dependency guarantees that the effects of
aborted actions are not reflected m the database Neither
the abort nor the commit dependencies prevent an action
from developing any new dependencies It 1s even possible
for an action to be both a sender and a receiver at the same
time In this manner, RCAs can produce non-kerarchlcal
structures

l View Set Specification
VtewSetRecetver = {rlRecezved(z)} U DB

Recetved(z) specifies that a sender transferred object I to
the receiver, where, z l AccessSet,,,de+

Given the complete characterlzatlon of Spht and RCA
models m ACTA, one can Immediately observe that the two
models involve different completion dependencies This dlf-
ference 1s sufficient to demonstrate that one model does not
subsume the other Another difference 1s that the notlon
of delegation does not exist m RCAs Just as m the case

200

hutid Nested Structnre After the Independent Splat of C

After the Sertal Spht of C After Applymg Re-Wnte Rule

a SemmUw-pmuwlng Re-Wrb Rulw
b Spilttlng Leaf a Node

buttal Nested Structu~ After the Independent Splat of C >

Itunal smlctwe After the Independent Spht of A

I’ 7
V

>
x

&2
x x >

,%,
x x

0 c

After the Senal Spltt of C Afbx Applytng Re-Wnte Rule After the Senai Split of A AtIer Applytug Re-Wnte Rule

c Splitting an lntarnal Node d. Splitting a Root Node

Figure 2 Sphttmg a Nested Transaction

201

of nested-spht transactions, usmg ACTA 1s easy to demon-
strate that m spite of these differences the two models are
compatible, m the sense that It 1s possible to combme and
use them

4.5 Cooperative Transactions

Cooperative Transactions [3] were proposed m the con-
text of CAD/CAM and design apphcatlons supported by
the chechn/checkout access date model In the Coopera-
tive Transaction model, transactions are decomposed into
subtransactlons, each with Its own semantics and types
The model supports three dlstmct types of subtransactlons
proJect transactions are decomposed mto cooperative trans-
actions, cooperuttve transactions are composed of a set of
subcontractor transactlons, and subcontractor transactlons
may either have a structure slmllar to cooperative transac-
tlons m which case the clzent cooperative transaction acts as
a local proJect transactlon, or have the structure of an atomic
transactlon called short transactlons

Cooperative transactions have a hlerarchlcal structure slm-
liar to nested transactlons, but they do not support obJect
mherltance m the same manner as m nested transactions In
cooperative transactions object flow 1s supported only be-
tween adjacent levels through mtermedlate semt-publac or
subcontractor databases This does not Imply that the trans-
actions are prevented from accessing obJects m the database
A semi-pubhc database 1s slmllar to a subset of an Access
Set m the ACTA framework

The characterleatlon of cooperative transactlons m the
ACTA framework 1s very close to the one for nested trans-
actions due to the slmllarltles m their structures A ProJect
transaction corresponds to the root or top transaction m the
nested transaction model

For short, we use coop to denote a cooperative transac-
tion and contractor to denote a subcontractor transaction
We also use subscripts to denote the components or children
transactions of a transactlon For example, short,, refers to
the fth child of the zth cooperative transaction wbch 1s of
type short

l Dependency Speclficatlon
Va Coop, -5 ProJect
Va Project - Coop,
Va, 3 Contractor,, : (claent) Coop,
Va, 3 (claent) Coop, u Contractor,,

Va,j Short,, 5 Coop,
Va,J Coop, u short,,

The hlerarchlcal structure of cooperative transactlons 1s

expressed using the universally quantified completion depen-
dencies

Cooperative transactlons also support sltuatlons m which
there 1s a partial ordering that constrams the acceptable
orderings of subcontractor and short transactlons execu-
tlons These sltuatlons can be easily expressed via commlt-
dependencies m ACTA For example, If the 3rd subcontractor
of the ath cooperative transaction should happen before the
4th one, these semantics can be specified as

ContTactoT,r -4 ContTactoT,J

l View Set Speclficatlon
VlewSetprOlect =DB

ViewSetc,, = {AccessSetp,03,,t(Coop 2 Project}
uDB

VieWSetSh& = {DesagnersSetc,,]Short 2 Coop}
uDB

ViewSetcontroetor = {ContractorsSet~,,, 1
Contractor 1+ Coop} u DB

AccessSetc,, = DesagnersSetc,,
U ContractorsSetc,,

Desagne?sSetc,, fl ContractorsSet~ooP = 4

ObJects m the DesignersSet can only be moved to Contrac-
torsSet and vice versa by the cooperative transactlon whose
Access Set 1s formed by these sets

The View Set defimtlons of the short and subcontractor
transactions specify that these transactlons can only access
obJects currently accessed by their parent transaction The
View Sets of the short and subcontractor transactions are
further constramed to be the DesignersSet and Contractors-
Set respectively That E., the View set of a short transaction
1s the DesIgnersSet, a subset of the Access Set of Its parent
cooperative transaction The View Set of a subcontractor
transactlon 1s the ContractorsSet, a subset of the Access Set
of its parent cooperative transaction

l Delegation Speclficatlon
Delegation occurs when a subtransactlon commits

Va DeleguteSet,tc,te(Coop,, Prolect) =
AccessSetcoopt

va,J DelegateSet,t&ShorL,, Coop,) =
AccessSetshort,,

va, 3 DelegateSet.t,t,(ContractoT,, , Coop,) =
AccesaSetcontractw,,

Delegation occurs when a subtransactlon aborts
Va DelegateSetstotu,(Coop,, Project) =

AccessSetc,,,
‘da,3 DelegateSet,t,tur(Short,, , Coop,) =

AccessSetshor~,3
va,J DeiegateSet.t,tus(ContraCtor,Jr Coop,) =

AccessSetc.,t+octm.,

As m the case of nested transactlons, the delegation speclfi-
cation states that at commit, the chdd (cooperative, short, or
subcontractor) transactlon’s obJects are delegated to Its par-
ent (proJect, or coope$atlve) transaction However, m the
case of short and subcontractor transactions the delegated
obJects are added to the respective DesIgnersSet and Con-
tractorsset (by the View Set speclficatlon above) This effec-
tlvely makes the effects of the commlttmg child transactlon
selectively vlslble to its parent, and forces the parent’s short
transactions to cooperate through the obJects contamed m
the Desagnezsset and the parent’s subcontractors to COOP-

crate through obJects m the ContractorsSets
In the case of abort, the chdd transaction’s obJects are

delegated to Its parent after the state changes done by the
child on the obJects are nulhfied

5 Conclusion
ACTA, the comprehensive transaction framework proposed
m ths paper, captures the spectrum of mteractlons among

202

transactions m competltlve and cooperative environments
Each point within the space of mteractlons 1s expressed m
terms of transactions’ effects on the commit and abort of
other transactions and on obJects’ state and concurrency sta-
tus (1 e , synchromzatlon state)

ACTA allows for speclfymg the structure and the behaw-
tar of transactions as well as for reasoning about the con-
currency and recovery properties of the transactions The
ACTA framework 1s not yet another transaction model, but
1s Intended to umfv the exlstmg models Its ability to capture
the semantics of previously proposed transaction models 1s
mdlcatlve of its generality The reasoning capab&les of this
framework have also been demonstrated by using the frame-
work to stud4 the properties of a new model that 1s derived
by combmmg the Nested and Split transaction models

We are currently mvestlgatmg an ACTA-based formal-
ism that will allow us to precisely characterize the correct-
ness properties of a set of transactions or a transaction
model Such a model wti, for example, allow us to deter-
mine whether or not the given model produces only senahz-
able computations, and if not, whether the computations are
consastency preservmg, i e , whether the mteractlons m the
computations do not conflict m such a manner as to produce
obJect mconslstencies

In order to explore the practical impact of being able to
develop new transactlon models using this framework, we
are also exammmg the development of a canonical model
for implementmg object managers and transactlon managers
to design type specific and transaction specific concurrency
control and recovery mechanisms

Overall, we beheve that our framework wti lead to a better
understandmg of the nature of mteractlons between trans-
actions and the effect of transactions m environments that
require transaction models that are not supported well by
the tradltlonal transaction model Further, with the pro-
posed framework, It should be possible to precisely specify
the type of mteractlons and effects allowable m a partlcu-
lar apphcatlon, and explore ways for achieving cooperation
The concurrency and recovery properties of transactions m
the given apphcatlon can then be studled using the reasoning
capabktles built mto the framework Finally, by mcludmg
an exammatlon of the lmplementatlon mechanisms required
to support complex transactions within Its purview, our work
also intends to provide answers concerning the increased com-
plexlty entded by the improved flexlbhty m constructmg
complex transaction models

References

El1

PI

[31

Badrmath, B Concurrency control m complex mfor-
matlon systems A semantics-based approach Phd the-
sis, Unlverlsty of Massachusetts, Amherst, MA , August
1989

Badrmath. B and Ramamrltham, K Semantics-based
concurrency control Beyond Commutatlvlty In Fourth
IEEE Conference on Data Enganeerang, pages 132-140,
February 1987

Bancllhon, F , Kim, W , and Korth, H A model of CAD
Transactions In Proceedangs of the 11 th rnternataonal
conference on VLDB, pages 25-33, Stockholm, August
1985

[41

[51

1’31

PI

b31

193

1101

bl

[121

[131

[141

[I51

[161

[171

hf31

[191

Chrvsanthls, P K and Ramamrltham, K Capturmer
the structure and the behavior of complex trans&lons-
In Proceedanos of the Thard Workshoo on Larae Graan
Parallelasm, “SEi, Carnegie Mellon bmvers&, Pltts-
burgh, October 1989

Eswaran, K , Gray, J , Lorle, R , and Tralger, I The
notion of consistency and predicate locks m a database
svstem Communacataons of the ACM, 19(11) 624-633,
November 1976

Fernandes, M and Zdomk, S Transaction groups A
model for controlhng cooperative transactions In Work-
shop an Persastent Object Systems Thear Desagn, Im-
plementataon and Use, pages 128-138, January 1989

Gray, J The transactlon concept Virtues and hmlta-
tlons In Proceedzngs of the 7th VLDB Conference, pages
144-154, September 1981

Gray, J N , Lorle, R A , Putzulo, G R , and Trager,
I L Granularity of locks and degrees of consistency m a
shared database In Proceedangs of the 1st anternataonal
conference on VLDB, pages 25-33, Frammgham, MA ,
September 1975

Herkhy, M P and Welhl, W Hybrid concurrency con-
trol for abstract data types In Praceedrngs of the 7th
ACM symposaum on Prancaples of Database Systems,
pages 201-210, March 1988

Martm, B E Scheduhnn protocols for nested ob-
Jects Technical Report Cg-0<4, Department of Com-
puter Science and Engmeermg, Umverslty of Cahforma,
San Diego, Cahforma, 1988

Moss, J E B Nested Transactions An approach to
rehable distributed comnutmn PhD thesis 260. Mas-
sachusetts Institute of LTechiology, CambrIdge; MA,
April 1981

Moss, J E B , Grlffeth, N , and Graham, M Ab-
straction m recovery management In Proceedangs of
the ACM SIGMOD anternataonal conference on man-
agement of data, pages 72-83, May 1986

Pu, C Replacataon and Nested Transanctlons an the
Eden Dtstrzbuted System PhD thesis, Umverslty of
Washmgton, 1986

Pu, C , Kaiser, G , and Hutchmson, N Spht-
Transactlons for Open-Ended actlvltles In Proceedangs
of the 14th anternataonal conference on VLDB, pages
26-37, Los Angeles, Cahforma, September 1988

Schwarz, P M and Spector, A Z Synchromzmg shared
abstract data types ACM Transactaons on Computer
Systems, 2(3) 223-250, August 1984

Shrlvastava, S K and Wheater, S M ObJects and
multi-coloured actions In Thtrd WorkshoD on Larae
Graan Paralellasm, SEI, Carnegie Mellon ‘Umversl<y,
Pittsburgh, October 1989

Skarra, A and Zdomk, S Concurrency Control and
ObJect-Oriented Databases In Object- Oraented Con-
cepts, Databases, and Applacataons, pages 395-421
ACM Press , 1989

Vmter, S , Ramamrltham, K , and Stemple, D Recov-
erable actions m gutenberg In Proceedangs of the Sazth
Internataonal conference on Dastrabuted Computang Sys-
tems, pages 242-249, May 1986

Wahl, W Commutatlvlty-Based concurrency control
for abstract data types IEEE Transactaons on Com-
puters, 37(12) 1488-1505, December 1988

203

