Check for
Updates

ACTA: A Framework for Specifying and Reasoning
about Transaction Structure and Behavior

Panayiotis K Chrysanthis

Krithy Ramamritham

Department of Computer and Information Science
University of Massachusetts
Amherst MA 01003

e-mail panos@ccs3 cs umass edu, knthi@nirvan cs umass edu

Abstract

Recently, a number of extensions to the traditional
transaction model have been proposed to support new
information-intensive applications such as CAD/CAM
and software development However, these extended mod-
els capture only a subset of interactions that can be found
1n such apphcations, and represent only some of the points
within the spectrum of interactions possible in competi-
tive and cooperative environments

ACTA 15 a formahizable framework developed for charac-
terizing the whole spectrum of interactions The ACTA
framework 1s not yet another transaction model, but 1s
intended to unify the existing models ACTA allows for
specifying the structureand the behaviorof transactions as
well as for reasoning about the concurrency and recovery
properties of the transactions In ACTA, the semantics of
mteractions are expressed 1n terms of transactions’ effects
on the commit and abort of other transactions and on ob-
Jects’ state and concurrency status (1 e, synchromzation
state) Its abihity to capture the semantics of previously
proposed transaction models 1s indicative of 1ts general-
1ty The reasoning capabihities of this framework have also
been tested by using the framework to study the prop-
erties of a new mode] that 1s denived by combining two
existing transaction models

1 Introduction

The need to support complex information systems emerges
from the demands of new and complex applications, such
as CAD/CAM, software development environments, object-
oniented databases, stock trading databases, and distnibuted
operating systems These systems are typically distributed
and object based, 1 ¢, designed 1n terms of an object-onented
paradigm The ability of transactions to mask the effects of
concurrency and failures makes them appropriate building
blocks for these complex systems Although powerful, the
transaction model found 1n traditional database systems [5,
7] 1s found lacking 1n functionality and efficiency when used

This matenal 1s based upon work supported by the Na-
tional Science Foundation under grant DCR-8500332

Permission to copy without fee all or part of this materal 18 granted provided
that the copies are not made or distributed for direct commercial advantage, the
ACM copynght notice and the title of the publication and its date appear, and
notice i1s given that copying 1s by permission of the Association for Computing
Machinery To copy otherwise or to republish, requires a fee and/or specific
permission

© 1990 ACM 089791 365 5/90/0005/0194 $150

194

for these new apphcations Efficiency 1s of particular impor-
tance considering the throughput demands placed on these
complex mmformation systems In terms of functionahty, tra-
ditional transactions were assumed to be short-lived and were
targeted for competitive environments Activities in complex
mformation systems tend to access many objects, involve
lengthy computations, and are interactive, 1 e, pause for -
put from the user Even in those cases where activities with
such characternistics can be modeled as traditional transac-
tions, they degrade the system performance due to increased
data contention, thus failing to meet the high throughput
demands Furthermore, endless and collaborating activities
which are often found in these systems, cannot be captured
by traditional transactions due to seriahizability as the cor-
rectness requirement Therefore, the need to capture reac-
tive (endless), open-ended (long-lived) and collaborative (in-
teractive) activities found in the new applications suggests
the need for more cooperative models Broadly speaking,
whether a system 1s characterized as competitive or coop-
erative depends on how interactions among activities in the
system are viewed 1in competitive environments, interactions
are curtalled whereas they are promoted 1n cooperative en-
vironments

In order to fill this need for more flexible transaction mod-
els, various extensions to the traditional model have been
proposed, referred to herein as complex transactions, which
can support the implementation of efficient systems For ex-
ample, Nested Transactions [11] have been proposed in the
context of distributed languages to handle the problem of
partial failures Nested Transactions support only hierarchi-
cal computations sumilar to the ones that result from proce-
dure calls Recoverable Communicating Actions [18] which
support arbitrary computation topologies, have been pro-
posed 1n the context of distmbuted operating systems where
interactions are more complex Cooperative Transactions [3],
Split Transactions [14] and Transaction Groups [6, 17] have
also been suggested for capturing the interactions found 1n
the new applications Irrespective of how successful these ex-
tended transaction models are in supporting the systems that
they were intended for, they merely represent points within
the spectrum of interactions possible within competitive and
cooperative environments Therefore, they can capture only
a subset of the interactions to be found 1n any complex in-
formation system

While 1t 15 tempting to develop new transaction models
that cover some of the remaiming points in the spectrum,
any such work will by necessity be ad hoc and not general
What will be better 1s to study the nature of transactions

http://crossmark.crossref.org/dialog/?doi=10.1145%2F93597.98729&domain=pdf&date_stamp=1990-05-01

as such and develop a conceptual framework in which 1t wll
be possible to specify the effects of complex transactions and
then reason about their properties

We have developed such a comprehensive transaction
framework, called ACTA?, for characterizing the whole spec-
trum of interactions In ACTA, the semantics of interactions
between transactions are expressed in terms of transactions’
effects on each other and on objects that they access A
transaction has two possible outcomes, namely, commt or
abort Consequently the effects of one transaction on other
transactions are classified as those on the abort of other trans-
actions and those on the commatment of other transactions
The effects of a transaction on the objects that it accesses
are also categorized into two classes The effects of a transac-
tion on the state of objects and the effects of a transaction on
the concurrency status,1 e , synchronization state, of objects
(Henceforth, we refer to concurrency status as just status)

ACTA allows for specifvin

o
w2 AL adl S 200 SpeRlilyille

the structure and the hehamor

A0 JeTLCLUTe AU AL REROVIOT

of transactions as well as for reasoning about the concurrency
and recovery properties of the transactions Structure refers,
for example, to the nesting structure of a transaction, and
behavior refers to the operations invoked by a transaction

The ACTA framework 1s not yet another transaction
model, but 15 intended to umify the existing models Its abil-
1ty to capture the semantics of previously proposed trans-
action models 1s indicative of its generality The reasoning
capabilities of this framework have also been tested by using
the framework to study the properties of a new transaction
model, called Nested-Split Transactions, that 1s denved by
combining the Nested and Spht Transaction models

In Section 2, we examine the charactenstics of complex
transactions In Section 3, we present ACTA, our proposed
comprehensive transaction framework and discuss the intu-
1t1on underlying the framework Section 4 illustrates the use
of the framework by applying 1t to model four existing trans-
actions models In the same section, the reasoning capa-
bihties of the framework are demonstrated by studying the
properties of the Nested-Spht transaction model Section 5
concludes with 2 summary and discusses future steps

2 Complex Transactions: Definition
and Issues

Traditional transactions are based on the notion of atomicity
and thus are often referred to as atomic transactions Atom-
1c1ty 1s characterized by two properties failure atomcity and
seniahzabiity Failure atomicity means that either all or none
of the transaction’s operations are performed Serializability
means that concurrent transactions execute without any in-
terference as though they were executed in some senal order

However, these properties combine several important notions
such as

1 Visbilsty, referring to the abihity of one transaction to
see the results of another transaction while it 1s execut-
g

2 Permanence, refernng to the abihity of a transaction to
record 1ts results in the database

! ACTA means actions in Latin

195

3 Recovery, referning to the ability, in the event of failure,
to take the database to some state that i1s considered

correct
A Ve csatnanmns mafommcms b dhic mcce_mdencon AL alis odioda o8
= VUTSOLETIL Y, ITITILIUE WO LUC COLITCOLIESD Ul LIS dSwalC 0L
the database that a committed transaction produces

The flexibility of a given transaction model depends on the
way these four notions are combined Thus, these notions
have to be revisited 1n order to understand the properties
of complex transactions and to decide on the mechamsms
for supporting them For example, visibility does not always
have to be curtaled, permanence need not requre all the
results to be recorded in the database, recovery does not
unply the complete restoration of the state and consistency
does not necessarily require seniahzability

Complex transactions have properties which relate to the
above notions Generally, complez transactions can be said
to consist of either a set of operations on objecis or a set
of complex transactions This recursive formulation 1mphes
that a complex transaction may exhibit a rich and complex
internal structure In contrast, traditional transactions have
a flat single level structure In this sense, the base case 1n
this recursive definition of complex transactions 1s similar to
a traditional transaction The simplest example of complex
transactions 15 Nested Transactions [11]

Complex transactions are distingmishable from the mulis-
level transactions [12, 10, 1] first in that their internal struc-
ture 1s ezxplicit and provided as a user facihity, and second 1n
that their component transactions are not necessanly atomic
Multilevel transactions have an tmphcit hierarchical internal
structure which 1s a result of transactions invoking operations
on complex objects Thus, the operations are decomposable
into sub-operations Both operations and sub-operations are
considered atomic That 1s, for the user, a multilevel trans-
action 1s nothing but a set of atomic operations similar to a
traditional transaction, and nesting 1s provided as a system
facility

The way that component transactions are combined to
form complex transactions reflects the semantics of the apph-
cations Such semantics can be exploited in designing trans-
action specific concurrency control and transaciion specific
recovery The idea 1s symilar to the use of semantic informa-
tion about the objects and their operations in designing type
specific concurrency control to enhance concurrency within
objects [2, 15, 9, 19]

Transaction specific concurrency control allows the defimi-
tion of new weaker notions of conflicts among operations not
possible with the information available only about objects
and theirr types For instance, operations invoked by two
transactions can be interleaved as if they commuted, if the
semantics of the apphcation allow the dependencies between
the transactions to be ignored Clearly, transaction specific
concurrency control might not achieve senahzabihity but still
preserves consistency This seems to be an attractive means
for increasing the performance in a complex information sys-
tem

Transaction specific recovery can be designed along the
same lines to exploit the semantics of the application 1n order
to mimimize the effects of transaction faillures Transaction
specific recovery reduces the cost of recovery by tolerating

Effects
on Transactions on Objects
Commit Abort View Set & Access Set Delegation
Dependency Dependency Spedification Specification
of State of Status

Figure 1 Dimensions of the ACTA framework

partial failures and by supporting both forward and back-
ward recovery In the event of failure of transaction compo-
nents, the failed portions can be 1solated, allowing the rest
of the transaction to proceed Failed portions of a trans-
action can be retried, compensated by attempting another
alternative, or even ignored Furthermore, complex trans-
actions naturally support user-controlled checkpointing since
the boundanes of component transactions act as checkpoints

The above observations motivate us to address the follow-
g questions in our research

o How do we capture the semantics of complez transac-
tions?®

o How can we reason about the concurrency and recovery
properties of complex transactions?

The ACTA framework described 1n the next section 1s our -
tial response to these questions As we shall see, this frame-
work allows us to capture transaction properties as related
to the dimensions of (1) wsibilaty, (1) farlure atomucity (re-
covery), (u1) permanence and (1v) consistency

3 The ACTA Framework

The behavior of a transaction system is determined by the
behavior ofits active components and the interactions among
these components The active components 1n our framework
are transactions, inherently parallel activities, and the pas-
sive components are objects, abstract entities manipulated by
transactions

Transactions may produce unexpected results if they inter-
act indiscriminately A correctness criterion for transactions
constrains these interactions to those that produce a result
contained in a set of acceptable results In order to spec-
ify a correctness criterion that prevents some interactions
from occurrning while allowing others, we must be able to ex-
press these interactions Interactions among transactions are
reflected 1n the effects they cause and thus, we can express
them 1n terms of these effects We distinguish between trans-
actions’ effects on each other and transaction effects on the
objects that they access This taxonomy of effects 1s captured
i figure 1

These two types of effects as well as the formal means to
specify them are described in Section 3 1 and 3 2 respectively
The apphcation of ACTA to vanous transaction models, 1n
Section 4, should serve to clanify and illustrate the concepts
underlying ACTA

196

3.1 Effects of Transactions on other
Transactions

Dependencies provide a convement way of specifying and
reasoming about the behavior of concurrent transactions [8,
15] By examining the possible effects of interacting transac-
tions on each other, 1t 15 possible to determine the dependen-
cies that may develop between the transactions There are
two possible dependencies that a transaction may develop
on any other transaction Commat-dependency and abort-
dependency

Commit-dependency and abort-dependency are collec-
tively known as completion dependencies and are defined as
follows

Commit-Dependency: If a transaction A develops a
commat-dependency on another transaction B (denoted
by A ~ B), then transaction A cannot commit until
transaction B either commits or aborts This does not
mmply that if transaction B aborts, then transaction 4
should abort

Abort-Dependency* If a transaction A develops an abort-
dependency on another transaction B (denoted® by A
-+ B), and if transaction B aborts, then transaction 4
should also abort This neither imphes that if transac-
tion B commuts, then transaction A4 should commit, nor
that if transaction A aborts, then transaction B should
abort

Commit-dependencies and abort-dependencies impose a
commut order which prevents transactions from prematurely
commutting, thereby preventing object inconsistencies, given
that transactions preserve the consistency of the database
when run in 1solation Depending on a transaction model
and 1ts correctness notion, some dependency cycles may lead
to mmconsistencies and hence, they are prohibited, whereas
other dependency cycles are accommodated In the latter
case, If two transactions form a arcular dependency involv-
g the same type of completion dependency, then both have
to commit or neither In the case that two transactions de-
velop a arcular dependency involving dependencies of dif-
ferent types, 1 e, one transaction has a commit-dependency
on another transaction which has an abort-dependency on
the first transaction, then the commitment of both transac-
tions must be synchronmized This does not imply that both
transactions have to commt or neither as in the case above

Completion dependencies between transactions may be a
direct result of the structural properties of the complex trans-
action formed by the interacting transactions, or may indi-
rectly develop as a result of interactions of transactions over
shared objects It 1s often necessary for dependencies in-
duced by the structure of transactions to be qualified either
to further strengthen them by attaching to them more re-
strictions, or to restrict the scope of their apphcability by
attaching conditions As an example of the former, abort-
dependency can be restricted so that a transaction 1s not

2The specific direction of the arrows for commut and abort
dependencies 1s chosen for readabihty reasons To reflect
the required order of transactions’ commitment, the arrows
should be drawn 1n the opposite direction

allowed to develop an abort-dependency on more than one
other transaction This stronger version of abort-dependency
15 called ezclusive-abort-dependency (denoted =) and 1s use-
ful in controlling the expansion of a complex transaction As
an example of restricting the scope of an abort-dependency,
consider weak-abort-dependency where an abort-dependency
between two transactions holds as long as both transactions
are executing Transitive-abort-dependency (denoted by =)
15 defined by the tramsitive closure of abort-dependencies
A transaction A has a transitive-abort-dependency on every
member of the set of transactions formed by the transitive
closure of abort-dependencies starting from A Transstive-
commt-dependency (denoted by ~») 1s stmilarly defined

Dependencies formed by the interactions over a shared
object are specified by the compatibility table associated
with the object and encodes the object’s synchromization
properties In the traditional framework, a compatibil-
1ty table 15 a simple a binary relation with a yes entry
for (0,,0,) indicating that the operations O, and O, are
compatible, 1¢, do not conflict, or a no entry indicating
that the two operations are incompatible, 1 e, confict In
our case, an entry (0,,0;) could be a condition involving
completion dependencies, operation arguments and results
In particular, an entry could be No-dependency, 1¢, the
standard yes entry, Form-Abort- Dependency, Form-Commat-
Dependency, Wast,1 e , the standard no entry, Abort, Notify,
Allow-1f-Abort- Dependency-already-ezists, Allow-1f-Commat-
Dependency-already-exists, etc While the other entres are
self-explanatory, a Notify entry corresponding to (O,, 0,) 1m-
plies that transaction mvoking O, should be notified of O,’s
presence This generality allows the framework to capture
different types of type-specific concurrency control discussed
in the literature {15, 9, 2]

In general, in a complex transaction system, the comple-
tion of a transaction may not depend on a sumple condition,
such as the completion of another transaction, but may de-
pend on a complex condition required to capture the interac-
tions among the transactions in the system Thus, in general,
the commit-dependency of a transaction A can be expressed
as A commats = Condition, which states that if A commuts,
then Condition 1s satisfied Similarly, the abort-dependency
of A can be expressed as Condition = A aborts, which
states that if Condition 1s satisfied, then A 1s aborted

3.2 Effects of Transactions on Objects

Each object 1s characterized by its state and its status The
state of an object 1s represented by its contents The state
of an object changes when an operation invoked by a trans-
action modifies the contents of the object The status of
an object 1s represented by the synchromzation information
assoclated with the object The status of an object changes
when a transaction performs an operation on the object Part
of the synchromization information 1s the compatibility table
that specifies the concurrency properties of the object, 1 e
the rules for accessing the object [15, 9, 2] In addition, our
extensions to the compatibihty table, discussed in the last
section, allows the specification of the formation of comple-
tion dependencies when operations execute

Transactions’ effects on objects are captured by the intro-
duction of two sets, the View Set and the Access Set, and by

197

the concept of delegation

Transactions’ effects on objects can be restricted by Limit-
g the number of objects accessible to them For this reason,
every transaction 1s associated with a set of objects, called
View Set, which contains all the objects potentially accessi-
ble to the transaction Rules for composing the View Set are
determined by the specific transaction model Examples are
given 1m Section 4

The effects of a transaction on objects are conditional upon
the outcome of the transaction Objects already accessed by
the transaction are contained in another set, called Access
Set When an object in the View Set of a transaction 1s
accessed by the transaction, the object becomes 2 member of
the transaction’s Access Set Objects i1n Access Set continue
to be accessible to the transaction An object obin the View
Set of a transaction T} can be accessed by Ti only if the
concurrency control status of ob permits 1t For instance if
ob 1s 1n the Access Set of another transaction 7 and the
compatibihity table for ob indicates that the operation that
T uses to access ob 1s incompatible with the operation that
T> used to access ob then T} will not be allowed to access ob
and hence, ob does not become a member of the Access Set
of T In other words, status of an object with respect to a
transaction depends on whether the object 15 in the View Set
or Access Set of the transaction

When a transaction aborts, the state and the status of
all objects 1n the transaction’s Access Set are restored in
its View Set When a transaction commiats, the state of all
objects 1 1ts Access Set 1s made persistent, 1 e, the changes
are effected, in the View Set, while the status is restored
m the View Set AccessSetr refers to the Access Set of a
transaction T, and ViewSetr refers to the View Set of T

A transaction may delegate the responsibility for finahz-
ing its effects on some of the objects 1n 1ts Access Set to
another transaction This 1s achieved by removing the del-
egated objects from the Access Set of the first transaction
(delegator) and adding them to the Access Set of the second
transaction (delegatee) That 1s, delegation represents the
ability of a transaction to give up some of 1ts objects which
are then taken over by another transaction Delegation effec-
tively broadens the visibility of the delegatee and 1t 15 useful
1n selectively making tentative or partial results as well as
hints, such as, coordination information, accessible to other
transactions

The notion of delegation defined thus far 1s related to one
of the two dimensions of objects, namely, the state, and thus
1s called delegation of state There 15 another type of delega-
tion related to the status of objects This type of delegation
18 referred to as delegation of status Delegation of status as
opposed to delegation of state, imphes that the changes done
by the delegating transaction to the delegated objects are un-
done, before these objects are added to the Access Set of the
delegatee Effectively, the delegation of status represents the
abihty of one transaction to annul the changes and rehnqush
control of the nisibility of some of 1ts objects to another trans-
action The notion of inhenitance used in Nested Transac-
tions 1s an nstance of delegation Specifically, inheritance as
proposed 1n [11] corresponds to the delegation of state when
the delegator commits, whereas 1n [13] corresponds to the del-
egation of status when the delegator aborts and delegation of

state when the delegator commits DelegateSet,iare(T1,T2)
and DelegateSetsiqarns(T1, T2) refers to the set of objects del-
egated by T to T, Since delegation of state 1s the common
form when we drop the subscript, we are refernng to delega-
tion of state

Another form of delegation 1s limited delegation which
makes the changes to the delegated objects persistent in the
View Set before adding them to the Access Set of the target
transaction

Delegation 1s not only used in controlling the visibiity of

+h + A ahnart
objects, but delegation 1n conjunction with commit and abort

dependencies specifies the recovery properties of a transac-
tion model

In cooperative environments, transactions (components)
cooperate by having intersecting Access Sets and View Sets,
by delegating objects to each other, or by notifying each other
of their behavior By being able to capture these aspects of
transactions, the ACTA framework 1s designed to be apph-
cable to cooperative environments

4 Modeling Different Transaction
Schemes

In this section, the semantics of four transaction models
are specified using the ACTA framework These are Nested
Transactions, Spht Transactions, Recoverable Communicat-
g Actions and Cooperative Transactions Because of space
himitations, the characternization of Transaction Groups [6,
17) and Multi-Coloured Actions [16] are not included in this
paper Also, the properties of a new transaction model result-
ing from the combination of Nested Transactions and Spht
Transactions are studied in order to demonstrate the useful-
ness of our framework 1n reasoming about the properties of
existing and future transaction models

Throughout this section, the set DB stands for the
database, the entity that has all the objects in the system
The state of the objects in DB reflects the most recently
committed state of the objects

4.1 Nested Transactions

In the Nested Transaction model [11], transactions are com-
posed of subtransactions or child transactions designed to
localize failures within a transaction and to exploit paral-
lehsm within transactions A subtransaction can be further
decomposed into other subtransactions, and thus, the trans-
action may expand in a hierarchical manner Subtransac-
tions execute atomically with respect to their parent and
their siblings, and can abort independently without causing
the abortion of the whole transaction However, if the par-
ent transaction aborts, all 1ts subtransactions have to abort
The parent transaction cannot commit until all its subtrans-
actions have terminated

A subtransaction can potentially access any object that
1s currently accessed by one of its ancestor transactions In
addition, any object in DB 1s also accessible to the subtrans-
action When a subtransaction commats, 1ts objects are made
accessible to its parent transaction However, the effects on
the objects are made persistent in DB only when the root
transaction commits

Here 1s the characterization of Nested Transactions in the

198

ACTA framework We use C to denote a child transaction
of a parent transaction P

¢ Dependency Specification
veeLp
YVCP~C

The abort-dependency of a child on 1its parent guaran-
tees the abortion of the child transaction in case 1ts parent
aborts Furthermore, the exclusive-abort-dependency pro-
hibits a child transaction from having more than one parent,
this ensures the hierarchical structure of the nested transac-
tions

The commit-dependency of the parent on 1ts children guar-
antees that the parent does not commit before all 1ts children
have terminated

¢ View Set Speafication
VC ViewSetc = {UAccessSets|C S AYUDB

In our notation, U 15 an ordered union More precisely,
if C = AU B, then C contains all the elements of A and
B as 1n a set umion However, 1f there 1s an element in A4
duplicated 1n B, C contains the element from A We need
this for the following reason Suppose an object ob in DB
1s modified by P and 1s then accessed by @ Then only
the modified version of ob should be accessible to @ Note
that this notion of versions i1s different from object versions
maintained exphcitly for apphcation-dependent reasons We
propose to capture the latter by viewing such versions as
different objects Versions in the current situation exist only
until the root transaction terminates

The abihty of 2 subtransaction to access any object cur-
rently accessed by one of its ancestor transactions 1s ex-
pressed by defining the View Set of the subtransaction in
terms of the Access Sets of 1ts ancestor transactions The
transitive-abort-dependency uniquely specifies the ancestors
of a subtransaction

¢ Delegation Specification®
Delegation occurs when C commits
VC DelegateSet q1.(C, P) = AccessSetc

The delegation specification states that, at commit, the
child transaction’s objects are delegated to its parent trans-
action This effectively makes the effects of the committing
child transaction selectively visible to 1ts parent and to the
parent’s descendants (by the View Set specification above)

4.2 Split Transactions

In the Spht Transaction model [14], it 15 possible for a trans-
action A to sphit into two transactions, B and C, where B 1s
the oniginal transaction B and C transactions may be in-
dependent, in which case they can commuit or abort indepen-
dently, or they may be serial, 1n which case B must commt
in order for the C to commit Whether B and C transactions
are independent or seral depends on the objects accessible
to them

3In the case of [13] the delegation specification should
state m addition Delegation occurs when C aborts,
VC DelegateSetsiatus(C, P) = AccessSeic

4.2,1 Independent Split Transactions

Here 15 the charactenzation of independent Spht Transac-
tions 1n the ACTA framework

¢ Delegation Specaification
Delegation occurs when A splhts
AccessSetp = AccessSety — DelegateSet(A,C)
AccessSetc = DelegateSet(A, C)

The independence of the two transactions 1s guaranteed
by having B and C operate on disjoint sets of objects Del-
egation leaves C the responsibibity of making persistent all
the changes made by A4 to delegated objects up to the sphit

4.2.2 Serial Split Transactions

Now we charactenze Serial Spht Transactions which have
more complicated semantics than independent Spht Trans-
actions

¢ Dependency Speafication
c % B

The abort-dependency guarantees that transaction C
aborts if B aborts and that C’s commitment 1s delayed un-
til B commits The exclusive-abort-dependency prevents C
from jomning (see below) a third transaction® Note that thus
does not prevent transactions B and C from jomng

o View Set Speafication
Spht Transactions were proposed in the context of the
Read-Wnite database model Hence, the View and
Access sets of B and C can be speafied in terms
of the set of objects that they can read or wnte
(eg, ViewSetg = ViewWritep U ViewReadp, and
AccessSetp = ReadSetp U WriteSeip)
ViewWniteg = ViewWrite,
ViewReads = ViewRead s
ViewWntec = {z|zeWriteSetp A C.WriteLasi(z)}
U DB
ViewReade = {z|zeWriteSety A C.CanRead(z)}
uUDB

WriteSetp contains the objects that A has changed up to
the sphit and may change after the sphit when executing as
B That 15, WniteSetp 15 a subset of the Access Set of A
The C-WriteLast specifies the objects that can be updated
last by C Similarly, C.CanRead specifies the objects that
C can read but they are not delegated to C

The ViewWntec (ViewReadc) contamns all the objects
that C can potentially wnte (read) after the spht In this
way, some of the changes to the objects up to the time of the
split become visible to C Not delegating these objects to C
ensures that the changes to the objects up to the split are
not lost if C aborts®

*This constraint can be removed if the join operation re-
quires that the joint transaction develops the same depen-
dencies as the jouning transaction

5Furthermore, 1n this way, B can regain access to these ob-
Jects after the abortion of C Note that this 1s not supported
by the onginal notion of Spht Transactions [14], although 1t
might be appropriate for some apphcations

199

o Delegation Speafication
This delegation occurs when A sphts
AccessSetp = AccessSet, — DelegateSet(A, C)
AccessSetc = DelegateSet(A,C)

Any changes to objects in DelegateSet up to the sphit are left
to C to be made persistent to the database

¢ Delegation Specification
This lsmsted delegation occurs when B commuits
DelegateSet(B,C) = AccessSetp N ViewSetc

B delegates hmited responsibility of the objects to C that
C could potentially access but C did not In this way, all the
changes to these objects are made persistent to the database
while C still has access to these objects

If B aborts then C 1s also aborted, given that C has an
abort-dependency on B All the objects acquired by both
transactions are restored to the system

By comparing the characterizations of the independent
and senial spht transaction in ACTA, one can infer that the
source of the abort-dependency in the case of semal spht
transactions 1s due to the View Set Specification and in par-
ticular, to the information flow allowed by the View Set Spec-
fication A closer study of the View Set Speafication reveals
that in the case that C 1s not allowed to read any object
that 1s not delegated to it or 1s not in the database (1 e,
ViewReadc = DB), the abort-dependency of C on B can
be substituted by a commit-dependency which avoids cascad-
ing aborts while still ensunng senial commitment of B and

C

4.2.3 Joint Transactions

In the Spht Transactions model, it 1s also possible for two
transactions to join into one This 1s called the joint trans-
action The joint transaction 1s either of the onginal ones
When the transactions join, they release their objects to the
Joint transaction

The characterization of Joint Transactions in the ACTA
framework 1s straight forward

o Dependency Speafication
AL B

o Delegation Specification
Delegation occurs when 4 commuits
DelegateSei(A, B) = AccessSet,

The abort-dependency effectively joins transactions A and
B, and indicates that B 1s the Joint transaction which con-
tinues executing The exclusive-abort-dependency prevents
A from joiming 2 transaction other than B

The above characterization points to a vanation of the
Joint Transactions 1n which the delegation does not occur
when A commits That 15, A can continue 1ts execution and
can penodically report its results to B by delegating more
objects to B We can call these transactions as Reporting
Transactions

4.8 Nested-Split Transactions

In order to test the reasoning capabihties of the framework,
we created a new model by combining the Nested and Spht
Transaction models presented in the previous two sections
The framework was then used to check whether this new
model retains the properties of the two original models

Note that, given a nested transaction, 1t 1s possible to
split a leaf node, an internal node, or a root node The
sphit nodes could execute independently or senally Figure
2 captures the effects for all possible combinations The
dependencies shown follow from the specifications of depen-
dencies for nested and split transactions In these figures a
dotted arrow denotes a commit-dependency and a solid arrow
denotes an abort-dependency

When a node, say C (figure 2b), sphts into two sub-
transactions, say C1 and C2, where C1 1s the onginal sub-
transaction C, the dependencies between subtransaction C
and transaction A are assumed to hold between C2 and A4
Since both nested and sphit transactions involve exclusive-
abort-dependencies (recall that exclusive-abort-dependency
prevents a transaction from having an abort dependency on
more than one other transaction), a node sphitting may result
1n a subtransaction that has exclusive-abort-dependencies on
two other subtransactions {figure 2b, After the Semal Spht)
Such inconsistencies may be resolved by means of consistency
preserving rewrnite rules In general, consistency preserving
re-write rules are used to sumphfy the structure of a complex
transaction by elminating redundant dependencies Figure
2a shows four such rewrite rules of which re-write £ resolves
the inconsistency mentioned above

After applying the rewnte rules (in these cases only re-
wrnite 2 1s apphcable), we examine the remaining dependen-
cies for each type of nested-spht transaction to see if the re-
sulting structure preserves the semantics of the Nested and
Splhit transactions models We conclude that in only one case
the properties of the two models are preserved This case
mvolves the splitting of the leaf node into two independent
subtransactions In all other cases the model either estab-
hishes dependencies which destroy the structure of the nested
transactions or ehminates some of the dependencies requred
by the nested transactions For example, in figure 2b (After
Applying Re-write Rule), the exclusive-abort-dependency of
subtransaction C2 on subtransaction A4 1s ehminated

Even if sphtting of nodes 1s restricted only to the inde-
pendent splitting of leaf nodes, nested-sphit transactions 1s a
useful new transaction model in a cooperative environment
Observe that an internal node becomes a leaf node any time
that 1t has no active child subtransactions That 1s, 1n nested-
split transactions, a node may spht at any point after all its
child subtransactions have terminated and before activating
any new subtransactions For example, 1n figure 2¢ (Imtial
Nested Structure), when subtransaction D terminates, node
C can be spht into two independent subtransactions C1 and
C?2 asn figure 2b (After the Independent Split of C) C1 may
continue the execution of C spawning new subtransactions,
while C2 may commit delegating 1ts objects to A Since all
the objects accessible to A are potentially accessible to all of
1ts descendants (by View Set Specification of nested transac-
tions), the objects delegated to A by C2 are potentially ac-
cessible to B This effectively achieves cooperation between

200

the onginal sibings C and B while they are still executing
In nested transactions, two siblings cannot cooperate while
both siblings are active, since subtransactions delegate their
objects to their parent only at commit time Thus, nested-
split transactions support higher level of visibihity between
subtransactions than nested transactions do

This exercise showed us the efficacy of the ACTA frame-
work 1n determiming the properties of new transaction mod-
els, in this case, one dertved by combinating existing models

4.4 Recoverable Communicating Actions

In the context of long and cooperative transactions, the Re-
coverable Communicating Actions (RCA) model has been
proposed to deal with the problem of non hierarchical com-
putations [18] In this model, an action, the sender, 1s al-
lowed to communicate with another action, the receiver, by
exchanging objects, resulting in an abort-dependency of the
recewver on the sender If the sender aborts then the receiver
must abort as a result of the dependency

By developing abort-dependencies, RCAs form a recover-
able computation, a self-contained task or activity which has
the semantics of an atomic update For this reason, actions
belonging to the same recoverable computation require syn-
chronized commitment That 1s, even 1n the case of a sender
which has no dependencies on any other action, the sender
cannot commit independently However, partial failures are
tolerated since an action may abort without aborting the ac-
tion with which it has developed an abort-dependency In
short, a recoverable computation can dynamically expand
through the development of dependencies and shrink due to
abortion of actions

Here 1s the charactenzation of RCAs in ACTA

¢ Dependency Speafication
Recewver — Sender
Sender ~» Recewver

The circular dependency involving different completion de-
pendencies between sender and receiver guarantees the re-
quired synchronized commitment of the sender and receiver
actions

The abort-dependency guarantees that the effects of
aborted actions are not reflected in the database Neither
the abort nor the commit dependencies prevent an action
from developing any new dependencies It 1s even possible
for an action to be both a sender and a receiver at the same
time In this manner, RCAs can produce non-hierarchical
structures

o View Set Specification
ViewSetrecerver = {z|Recerved(z)} U DB

Recewed(z) specifies that a sender transferred object z to
the recerver, where, ¢ ¢ AccessSet ender

Given the complete characterization of Spht and RCA
models in ACTA, one can immediately observe that the two
models involve different completion dependencies This dif-
ference 1s sufficient to demonstrate that one model does not
subsume the other Another difference 1s that the notion
of delegation does not exist :n RCAs Just as in the case

(B re-write 1
o‘ D
o Cay
X X X
x LB re-write 2 o« ELiD @
o‘ . D oD
D Inmitia] Nested Structure After the Independent Sphit of C
CBD re-wrte3
> xXO
x re-write 4
Ca)

o—®> > &

<>
(O

a. Semantics-preserving Re-Write Rules

After the Sertal Split of C

After Applymg Re-Wnite Rule

b Splitting Leaf a Node

Initial Nested Structure After the Independent Spht of C

After the Independent Spht of A

After the Serial Sphit of C

After Applying Re-Wnte Rule After the Senal Split of A After Applying Re-Write Rule

c Splitting an internal Node d. Splitting a Root Node

Figure 2 Splitting a Nested Transaction

201

of nested-split transactions, using ACTA 1s easy to demon-
strate that in spite of these differences the two models are
compatible, 1n the sense that 1t 1s possible to combine and
use them

4.5 Cooperative Transactions

Cooperative Transactions [3] were proposed in the con-
text of CAD/CAM and design apphcations supported by
the checkin/checkout access date model In the Coopera-
tive Transaction model, transactions are decomposed into
subtransactions, each with its own semantics and types
The model supports three distinct types of subtransactions
project transactions are decomposed into cooperative trans-
actions, cooperative transactions are composed of a set of
subcontractor transactions, and subcontractor transactions
may either have a structure similar to cooperative transac-
tions 1n which case the client cooperative transaction acts as
a local project transaction, or have the structure of an atomic
transaction called short transactions

Cooperative transactions have a hierarchical structure sim-
llar to nested transactions, but they do not support object
mmhentance 1n the same manner as 1n nested transactions In
cooperative transactions object flow 1s supported only be-
tween adjacent levels through intermediate semi-public or
subcontractor databases This does not imply that the trans-
actions are prevented from accessing objects in the database
A semi-public database 1s similar to a subset of an Access
Set 1n the ACTA framework

The characterization of cooperative transactions in the
ACTA framework 1s very close to the one for nested trans-
actions due to the ssmilarities 1n their structures A Project
transaction corresponds to the root or top transaction in the
nested transaction model

For short, we use coop to denote a cooperative transac-
tion and contractor to denote a subcontractor transaction
We also use subscripts to denote the components or children
transactions of a transaction For example, short,, refers to
the 7th child of the ith cooperative transaction which 1s of
type short

¢ Dependency Speafication
V1 Coop, — Project
V1 Project ~ Coop,
V1,7 Contractor,, — (chent) Coop,
V1,3 {clent) Coop, ~» Contractor,,
V1,3 Short,, Z Coop,
Y1, 3 Coop, ~ short,,

The hierarchical structure of cooperative transactions is
expressed using the universally quantified completion depen-
dencies

Cooperative transactions also support situations i which
there 1s a partial ordering that constramns the acceptable
orderings of subcontractor and short transactions execu-
tions These sitnations can be easily expressed via commit-
dependencies n ACTA For example, 1f the 3rd subcontractor
of the 1th cooperative transaction should happen before the
4th one, these semantics can be specified as

Contractor,s ~ Contractor,s

202

o View Set Specification
ViewSetproject = DB
ViewSetcoop = {AccessSetproject|Coop = Project}
UDB
ViewSetshort = {DesignersSetcoop|Short % Coop}
UDB
ViewSet contracior = {ContractorsSetcoop |
Contractor = Coop} U DB

AccessSetcoop = DesignersSetcoop
U ContractorsSetcoop
DesignersSetcoop N ContractorsSetcosr = ¢

Objects 1n the DesignersSet can only be moved to Contrac-
torsSet and vice versa by the cooperative transaction whose
Access Set 1s formed by these sets

The View Set defimitions of the short and subcontractor
transactions specify that these transactions can only access
objects currently accessed by their parent transaction The
View Sets of the short and subcontractor transactions are
further constrained to be the DesignersSet and Contractors-
Set respectively That 1s, the View set of a short transaction
15 the DesignersSet, a subset of the Access Set of 1ts parent
cooperative transaction The View Set of a subcontractor
transaction 1s the ContractorsSet, a subset of the Access Set
of 1ts parent cooperative transaction

e Delegation Specification
Delegation occurs when a subtransaction commits
V2 DelegateSet ss01e(Coop,, Project) =
AccessSetcoop,
V1,3 DelegateSet,iare(Shortsy, Coop,) =
AccessSetsnort,,
V1,7 DelegateSetyiare(Contractor,;, Coop,) =
AccessSetcontractor,,
Delegation occurs when a subtransaction aborts
V1 DelegateSet iatus(Coop,, Project) =
AccessSetcoop,
V1,7 DelegateSet,iatus(Short,;, Coop,) =
AccessSetsport,,
V1,7 DelegateSet iarus(Contractor,;, Coop,) =
AccessSetcontractor,,

Asin the case of nested transactions, the delegation specifi-
cation states that at commut, the child (cooperative, short, or
subcontractor) transaction’s objects are delegated to 1its par-
ent (project, or coopex:atwe) transaction However, 1n the
case of short and subcontractor transactions the delegated
objects are added to the respective DesignersSet and Con-
tractorsset (by the View Set specification above) This effec-
tively makes the effects of the committing child transaction
selectively visible to 1ts parent, and forces the parent’s short
transactions to cooperate through the objects contained in
the DesignersSet and the parent’s subcontractors to coop-
erate through objects in the ConiractorsSets

In the case of abort, the child transaction’s objects are
delegated to its parent after the state changes done by the
child on the objects are nullified

5 Conclusion

ACTA, the comprehensive transaction framework proposed
in this paper, captures the spectrum of interactions among

transactions 1n competitive and cooperative environments
Each point within the space of interactions 1s expressed in
terms of transactions’ effects on the commt and abort of
other transactions and on objects’ state and concurrency sta-
tus (1 e, synchromzation state)

ACTA allows for specifying the structure and the behav-
1or of transactions as well as for reasoning about the con-
currency and recovery properties of the transactions The
ACTA framework 1s not yet another transaction model, but
1s intended to unifv the existing models Its ability to capture
the semantics of previously proposed transaction models 1s
indicative of 1ts generality The reasoning capabihties of this
framework have also been demonstrated by using the frame-
work to study the properties of 2 new model that 1s derived
by combining the Nested and Split transaction models

We are currently investigating an ACTA-based formal-
1sm that will allow us to preasely characterize the correct-
ness properties of a set of transactions or a transaction
model Such a2 model will, for example, allow us to deter-
mine whether or not the given model produces only senaliz-
able computations, and if not, whether the computations are
consistency preserving, 1 e , whether the interactions in the
computations do not conflict in such a manner as to produce
object inconsistencies

In order to explore the practical impact of being able to
develop new transaction models using this framework, we
are also examining the development of a canonical model
for implementing object managers and transaction managers
to design type specific and transaction specific concurrency
control and recovery mechanisms

Overall, we believe that our framework will lead to a better
understanding of the nature of interactions between trans-
actions and the effect of transactions in environments that
require transaction models that are not supported well by
the traditional transaction model Further, with the pro-
posed framework, 1t should be possible to precsely specify
the type of interactions and effects allowable in a particu-
lar applcation, and explore ways for achieving cooperation
The concurrency and recovery properties of transactions in
the given application can then be studied using the reasoning
capabilities built into the framework Finally, by including
an examination of the implementation mechamsms required
to support complex transactions within 1ts purview, our work
also intends to provide answers concerning the increased com-
plexity entailed by the improved flexability in constructing
complex transaction models

References

[1] Badnnath, B Concurrency control in complex mnfor-
mation systems A semantics-based approach Phd the-
s1s, Univeristy of Massachusetts, Amherst, MA , August
1989

Badrnnath, B and Ramamnitham, KX Semantics-based
concurrency control Beyond Commutativity In Fourth
IEEE Conference on Data Engineering, pages 132-140,
February 1987

Bancilhon, F , Kim, W, and Korth, H A model of CAD
Transactions In Proceedings of the 11th international
conference on VLDB, pages 25-33, Stockholm, August
1985

203

(4] Chrysanthis, P K and Ramammntham, K Capturing
the structure and the behavior of complex transactions
In Proceedings of the Third Workshop on Large Grain
Parallelism, SEI, Carnegie Mellon University, Pitts-
burgh, October 1989

Eswaran, K, Gray, J, Lone, R, and Traiger, I The
notion of consistency and predicate locks in a database
system Communications of the ACM, 19(11) 624-633,
November 1976

Fernandez, M and Zdomik, S Transaction groups A
model for controling cooperative transactions In Work-
shop on Persistent Object Systems Thewr Design, Im-
plementation and Use, pages 128-138, January 1989

Gray, J The transaction concept Virtues and hmita-
tions In Proceedings of the 7th VLD B Conference, pages
144-154, September 1981

Gray, J N, Lone, R A, Putzulo, G R, and Traiger,
I L Granulanty of locks and degrees of consistency 1in a
shared database In Proceedings of the 1st international
conference on VLDB, pages 25-33, Framingham, MA ,
September 1975

Herlhy, M P and Weihl, W Hybnd concurrency con-
trol for abstract data types In Proceedings of the Tth
ACM symposium on Principles of Database Systems,
pages 201-210, March 1988

Martin, B E Scheduling protocols for nested ob-
Jects Techmical Report CS-094, Department of Com-
puter Science and Engineening, University of Cahfornia,
San Diego, Califorma, 1988

Moss, J E B Nested Transactions An approach to
rehable distributed computing PhD thesis 260, Mas-
sachusetts Institute of Technology, Cambndge, MA,
Apnl 1981

Moss,] E B, Gunffeth, N, and Graham, M Ab-
straction in recovery management In Proceedings of
the ACM SIGMOD international conference on man-
agement of data, pages 72-83, May 1986

[11]

(12]

Pu, C Rephcation and Nested Transanctions in the
Eden Distributed System PhD thesis, University of
Washington, 1986

Pu, C, Kawser, G, and Hutchinson, N Split-
Transactions for Open-Ended activities In Proceedings
of the 14th international conference on VLDB, pages
26-37, Los Angeles, Califormia, September 1988

Schwarz, P M and Spector, A Z Synchromzing shared
abstract data types ACM Transactions on Computer
Systems, 2(3) 223~250, August 1984

Shrivastava, S K and Wheater, S M Objects and
multi-coloured actions In Third Workshop on Large
Grain Paralellism, SEI, Carnegie Mellon Umiversity,
Pittsburgh, October 1989

Skarra, A and Zdomk, S Concurrency Control and
Object-Omnented Databases In Object-Oriented Con-
cepts, Databases, and Applcations, pages 395-421
ACM Press , 1989

Vinter, S, Ramamntham, K , and Stemple, D Recov-
erable actions in gutenberg In Proceedings of the Sizth
International conference on Distributed Computing Sys-
tems, pages 242-249, May 1986

(17]

[18]

[19] Wethl, W Commutativity-Based concurrency control
for abstract data types IFEEE Transactions on Com-

puters, 37(12) 1488-1505, December 1988

