
A Logically Distributed Approa:h for Structuring Office Systems

Panayio tis K. Chrysanthis
David Stemple

Krithi Ramamrkham

Department of Computer and Information Science
University of Massachusetts

Amherst, MA 01003
2

Abstract

An object-oriented office model is presented. It rises the object taxonomy of Booth featuring object
classes based on calling patterns. Our model is motivated by that of Woo and Lochovsky, but has a
number of differences, especially in the definition of the object classes and in the treatment of nested
objects. An office application, setting a meeting among ofice workers, is defined in terms the office
model.

1 INTRODUCTION

Until recently, research on office systems has focused on modeling office work as a centralized environ-
ment, which could often support only a single office worker. This focus was mainly due to the influence of
database technology. Logically centralized databases were an attractive solution to the problem of locating
and managing the information necessary for office problem solving. However, since logically centralized
databases adopt the transaction-based model, they can only support phase-sequencing applications by
which we mean logically sequencing the execution of programs and allowing intercommunication between
these programs (transactions) only through committed data in the database. Applications within which
the various modules need to communicate during the course of their execution cannot be supported by
phase-sequencing the modules. Conseqently, office models based on a logically centralized database cannot
support complex, non-routine office work reguiring cooperation between different office workers. Cooper-
ation in processing information implies communication, and allows for inconsistency in the information
seen by the cooperators. Such temporary inconsistencies arising in cooperative problem solving, presents
a problem that needs to be addressed in any model of office work.

An alternative to logically centralized databases is the logically distributed approach. This approach
avoids centralizing the office knowledge but instead distributes it among knowledge bases which are al-
lowed to communicate. Communicating knowledge bases can capture the behavior of the manual office,
which is? after all, a group of specialized workers who perform their jobs concurrently and asynchronously
(independently) while interacting cooperatively to achieve a common task. Inconsistencies may develop as
a result of the communication or independence of the workers. It is the responsibility of the cooperating
office workers to take any necessary correcting actions to reconcile inconsistencies. Modeling cooperation,
inconsistencp, and reconciliation in a natural and efficient manner has been a goal that we have pursued in
defining the model presented in this paper, but, we do not deal directly with reconciliation in this paper.

Our motivation is to define an office model based on the logically distribu.ted approach, which while
being higher-level and hence easy to use! is also implementable and hence easy to realize. The proposed
office model represents office work using objects that model entities and activities of the manual office.
The model supports the whole spectrum of office work 19, 81 and uses the classification of objects presented
by [2]. It has its origins in the object-oriented office model of Woo and Lochovsky [16], but differs in the
definition of objects and their classes as well as in the treatment of nested objects. We show how the model
maps easily into an implementable form via the use of the interconnection and object sharing model of the
Gutenberg distributed operating system kernel [lo, 3, 121.

‘This material is based upon work supported in part by the N.S.F. under grants DC%8403097, and DCR-8500332.
‘E-mail address: panos@ccs3.cs.umass.edu, stemple@cs.umass.edu, krithi@nirvan.cs.umass.edu.

Q 1990 ACM 08979L358-2/9O/OCC14/001 I $1.50 Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy othenvise, or to republish, requires a fee and/
or specific permission.

11

http://crossmark.crossref.org/dialog/?doi=10.1145%2F91474.91482&domain=pdf&date_stamp=1990-03-01

Gutenberg is a port-based, object-oriented distributed operating system kernel designed and imple-
mented at the University of Massachusetts. Jt presents to its users an object virtual machine in which all
interactions among objects are structured along abstract data type lines. Its purpose is to facilitate the
development of systems made up of many distributed, cooperating modules.

In the following section, the office model is presented and related work is outlined. A quick overview of
the Gutenberg system is given in section 3. Section 4 discusses how the proposed office model is effectively
structured within the Gutenberg environment without compromising any of the model’s semantics. An
office application, namely the setting of meetings between office workers, is used to illustrate the idea.
Finally, section 5 concludes with a summary and future plans.

2 AN OFFICE MODEL

2.1 Overview of the Model

The proposed office model is object-oriented, allowing the representation of office work in the model to
conform to the structure of the manual office. Objects are instances of abstract data types that have a
state and are characterized by the operations that may be performed on them. The model uses objects to
represent both active and passive office entities that participate in the of&e activities. Report and payroll
programs are examples of the active entities in an office that carry out office tasks. Passive entities are
exemplified by file cabinets and calendars, though as we will see later, there are advantages to be gained
in modeling some passive entities as active objects.

Our office model incorporates an object type hierarchy. The root of the hierarchy is the class of Generic
Ofice Objecls which have the ability to communicate with any other object through explicit message
exchange. Messages do not have the same semantics as Smalltalk messages [7], i.e., they are not the means
by which a method is invoked on an object. On the contrary, during the execution of an operation on
an object, the invoker and the invokee may exchange any number of messages. The ability of objects to
communicate by passing messages allows for cooperative office work, such as making an appointment, or
locating an object that has certain information.

The rules for the behavior of an object reside in the specification of its operations, normally encoded in
a programming language. The model captures the behavior of objects using a mechanism that is basically
an abstraction of operation procedures, namely a set of behavior specification rules. These rules are part
of the state of objects and thus can be subject to change, allowing for dynamic change of behavior.

As we will see later, Generic Office Objects correspond to Gutenberg objects, and thus, are directly
implementable. This has the advantage that all the semantics of the application captured by the model
are preserved while moving from the design level down to the implementation.

The Generic Office Objects class is further divided into four subclasses based on the objects’ ability
to invoke and be invoked by other objects or by users: Actors, Agents, ActorAgents, and Servers. An
object’s calling pattern reflects the object’s functional capabilities, resource requirements, and position in
the modelled organization structure.

Actors are used to model the interfa.ce between the user and the various objects in the system. Actors
can be invoked by users but not, by any other object, and may invoke operations on any object of other
types. Consequently, communication between Actors and other objects must be initiated from the Actors’
sites. Actors are the primary initiators and monitors of the system’s performance of office work. They are
not simply user interface managers, such as window managers.

At the other extreme, Servers are only invocable by other objects; they may not invoke any other
object. They correspond to the passive entities of the office that serve as repositories of information. Of
course, the question of when to consider that an object calls another is sensitive to the level of abstraction
being discussed as well as to the context in which the components are being defined. For example, we will
want to consider an object a server in some contexts even though it may call operating system objects to
achieve some of its function. By structuring Servers as active databases [13] with alerters and triggers, it
is possible for passive office entities to demonstrate some form of ‘intelligence’, for example, in resolving
inconsistencies or triggering an automatic clerical task.

Agents serve to perform some operation (task) on behalf of another object and in turn may request
operations on other objects. Agents expand the one-to-one communication topology to arbitrary topologies

12

appropriate to given problem-solving activit,ies by interposing themselves between cooperating objects.
The one-to-one topology of the basic message passing facility, although efficient, is restrictive even in some
cases of exchange of information, as, for example, when it is not known where the needed information is
st,ored. Thus, Agents are the means of supporting the office problem-solving activity. Furthermore, Agents
facilitate the achieving of diRerent. views of stored information in the system.

ActorAgents are objects sharing the properties of both Actors and Agents. That is, they can be
invoked by both users and other objects, and they can invoke operations on other objects. ActorAgents as
opposed to a combination of Actors and Agents, can support communication between users in a straight
forward way. Also, they can support the interface between the user and non-routine tasks (see below).
Given that objects are activated on demand, they also have implications for the efficient management of
resources.

2.2 Modeling Office Activities

Jn our model, an office task is an activity that is initiated by either an Actor or ActorAgent and may
involve any number of Agents and Servers. If the Agents involved in an of&e task execute on behalf of a
single Actor or ActorAgent, then the ofice task is classified as a routine task. On the other hand, if the
Agents involved execute on behalf of more than one Actor, then the office task is known as a non-routine
task.

Routine tasks can usually be expressed procedurally and can perform their task without the help of
the user. Routine tasks correspond to the predefined transactions in logically centralized databases.

A typical example of a routine task is filling a form, such as a purchase-order. This task can be modeled
as follows: An Actor is used to model the procedure of filling a form; whereas a Server models the folder
where the forms are stored. A user fills out a form by selecting the appropriate Actor which communicates
with the appropriate Server to get a blank form, The Server passes to the Actor the rules for filling out the
form along with the form (schema). The Actor presents a spreadsheet-like interface to the user by using
the local behavior specification rules in conjunction with the received ones. That is, when the user fills out
a field of the form, the Actor uses this information to either derive and/or retrieve (possibly with the help
of Agents) from other Servers the necessary information that fills out as many empty fields as possible.
When the entire form is filled out, the Actor sends it back to the Server for storing. The Server certifies
the form before storing it. During the certification process, the Server looks for inconsistencies and for
potential application conflicts, and warns the Actor accordingly. An example of a potential application
conflict is the existence of a second form with the same values filled within a given time period.

Non-Routine Tasks are the office tasks that are not algorithmic enough to be expressed as a single
procedure and are required to synthesize their actions with the help of users and cooperation with other
0bject.s during their execution (synthesized transactions). A trivial example of a non-routine task is message
exchange or a conference among Actors with the help of one or more Agents. Budgeting [16] and scheduling
a meet.ing for a group of people are more complex, non-routine office tasks.

In the scheduling example, each office worker has his/her personal calendar for keeping his/her appoint-
ments. Calendars can be modeled as Servers. Worker’s schedulers can be modeled as ActorAgents. A user
makes an appointment with another user(s) by invoking the Scheduler ActorAgent. Then the ActorAgent
enters into negotiation with the other users’ ActorAgents to find an appropriate meeting time. During the
negot,iation, the cooperating ActorAgents consult the local calendar and seek the approva,l or help of the
user. We return to this example in section 4 where we discuss its implemcntaIinn wit bin Ihv (.:rtl(~rrbcrg
environment.

2.3 Relation to Woo and Lochovsky Model

The model of Woo and Lochovsky (W&L) supports four classes of object types, namely, Data Objects, Task
objects, Task Monitor Objects, and Agent Objects. Data Objects which store the inactive information, and
Task Objects which correspond to the office procedures, are associated with Task Monitor Objects which
control their execution with the help of the user and consultation rules. Task Monitor Objects correspond
to logical workstations in the office. Agent Objects facilitate the communication between objects residing
in different Task Monitor Objects.

13

There are several subtle difference between our model and this model. The first relates to the status
of nhjects. Specifically, in our model there is no notion of nested objects (object,s residing within other
objects), or of an object controlling the execution and access of another object. In t.he model of W&L, Task
and Data Objects reside within a Task Monitor Object which controls their execution and their access by
other objects inside or outside the domain of the Task Monitor Object.

In our model, all objects have the same status and independence except for that implied by the calling
pattern allowed by the object’s class. The reason for this is that in almost all office activities, there are
objects that participate in more than one office task or cooperation. In such cases, in W&L’s model,
it is not always clear under which Task Monitor Object the sharable object should reside. In our model,
objects accessible by more than one Actor or ActorAgent will typically be a Server or an Agent that accepts
requests from more than one object. Furthermore, an object itself can be made responsible for handling
any conflicts among concurrent requests; this responsibility does not need to be assigned to another object
as is the case in the W&L model using Task Monitor Objects.

Another difference between the two models is that in our model there is no not.ion of stateless objects
such as Task Objects. A stateless object of W&L is represented in our model in one of two ways. The first
is as an operation exported by a Server or an Agent, in which case the combination of Data Object and
its Task Object correspond to a Server or Agent. The second way of handling the W&L stateless object is
as internal procedure calls of an ActorAgent in which case the Task Monitor Object with the Task Object
corresponds to an ActorAgent,

A final difference between the two models under consideration is that we have extended the notion
of behavior specification rules which are similar to the W&L consultation rules, by allowing them to be
a property of Generic Office Object class, i.e., they are not limited to a specific object type class. Since
behavior specification rules are allowed to be changed dynamically, this allows for any object in the system
to change its behavior.

3 THE GUTENBERG OBJECT MODEL

The Gutenberg system evolved from a series of design decisions concerning the nature of communication
and protection in distributed systems. In Gutenberg, a distributed system is a group of objects that execute
asynchronously and concurrently, interacting cooperatively to perform a task. Objects are implemented
using processes (independently schedulable units of computation) which are hidden from each others’ views.
Processes are also referred to as the object managers. Managers synchronize operations on their objects
and are the only subjects able to directly manipulate the objects.

Gutenberg objects can communicate only through explicit message exchange over communication chan-
nels called ports. Objects do not share address spaces. Since objects are instances of abstract data types,
interprocess communication in Gutenberg is always in terms of requests for abstract data type operations.
While Gutenberg enforces an object-oriented view on all interprocess communication, it does not enforce
this view upon the programs running in a single process. The organization of intraprocess communication
depends on the programming language used to bui1.d the process program and can be object-oriented or
not.

Ports between object~s are established based on the need to provide or request a service. That is,
Gutenberg has adopted the client/server model for basic interprocess communication in which t.he user of
a port, called the client, sends a request for an operatinn to the port server. the c-d),jrct’y Tlla7litgcr. whidr
then performs the operation and may send back a rcplv. Objects can simultaw vp~~<l\ ll:% cli-rjt G atttl s~~rvrrs.

A port is est.ablished using functional c7ddressin.g. A client crea.tes a port by uamirtg t be service (1 Ile
operation) it would like to request using the port rather than identifying the server objw-t. The adi-antaqe
of this strategy is that it supports service transparency, allowing for dynamic object re-implementation
and/or relocation, an important property for distributed systems. The client object does not have to know
the identity of the server object, or whether that object executes on a local or remote machine. The server
object does not even have to be active prior to the creation of the port, Manager activation and deactivation
(process creation and destruction) in Gutenberg is a side-effect of port operations. There are no primitives
to activate or deactivate object managers explicitly. Furthermore, object manager interconnections can
be dynamically changed by transferring ports over other ports. In order to restrict the use of ports to

14

the func.tionality for which they have been created, a port is typed with respect to its directionality and
message contents.

The kernel enforces a port-based access contrd to objects. An object .,I can crcal~~ 2 port for requesting

an operation on an object B only if it has the capability to execute that operation. After port creation,
the only check that needs to be made when the object A requests access to the remote object B via this
port is whet,her that object A has the capability to access that port. This required check is done at the
node in which the object A executes and so it is a local check.

The capabilities for creat,ing ports are stored in the Inferconnection Schema, a persistent, distribmed
object, managed by the kernel. Thus, the Interconnection Schema expresses all the potential object intercon-
nections achievable by programs running under the kernel’s control. This means that the Interconnection
Schema represents the organization of applications runnable under t,he Gutenberg kernel at any given time.
Besides enforcing interconnection structure, the Interconnection Schema also supplies the kernel the infor-
mation needed to locate, and if necessary instantiate, the server of a port. It also contains the definitions
of object managers, that, is, components that provide access to the code that implements the operations of
objects, and the rules for activating the object managers. New managers are imroduced ir1t.o the syst,em
by storing their definitions in the lnterconnect.ion Schema.

The Interconnection Schema is not the only repository for capabilities in Gutenberg. There are also
transient capabilit,ies which persist only as long as an owning object is active, and these are stored in
lists associat,ed wit,h manager processes. At any time, each object manager in the system is associated
with a segment, of the Interconnection Schema, designated as its active directory, and wit.11 its transient.
capabilities stored in its capability list, abbreviated c-list. Each object manager is associated with a single
c-list which cannot be shared. Objects managed by t,he same manager can share their manager’s c-list.
Gutenberg supports dynamic access control by allowing objects to traverse the Interconnection Schema
acquiring new capabilities, or by transferring capabilities over ports.

One of the novel features of the Gutenberg system is the manner in which it keeps track of object
identities. Functional addressing implies that the identities of object managers are not usable in est,ablishing
connections between objects, and since in many cases an object’s identity in Gutenberg is the same as the
identity of its manager, object identification itself can be problematic. Thus, Gmenberg capabilit.ies are
unlike other systems’ capabilities that contain the identities of the objects on which they allow operations.
The reason for this difference is that Gutenberg capabilities are capabilities that allow operations on kernel
objects, namely the entities in the interconnection schema and ports. These capabi.lities are used to create
privileges for operating on user-defined objects such as those in our ofhce model. The identification of
user-defined objects is accomplished by using a capability unique to Gutenberg: the cooperation class (121.
Cooperation classes are generic capabilities that can be attached to distributed activities in order to provide
the basis for coordinating cooperation. Communication among objects/managers that have no means of
addressing each other explicitly is one of the major activities cooperation classes facilitate. This is the way
they will be exploited in implementing the office model in Gutenberg.

4 An Example

We now turn to the problem of implementing our office model using the facilil.ies of 1 he Gutenberg kernel.
We will address this problem by outlining the development of an application, namely: scltecluling meetings,

that features cooperation among asynclirc~noi~s~ autonomous ent,il,ies.

4.1 Outline of the Application

We model t,he scheduling activity by defining three main objects, one modeling a worker scheduling his/her
act,ivities, another modeling his/her calendar, and the third modeling the scheduler for a group of workers.
Ot,her objects that would be needed in this application are not presented; these include a registry (agent
or server) object that maintains the name of office workers. We first give an overview of these objects
and how t.hey interact to solve the problem of scheduling a meeting. After this, we give the specification
rules for two of the scheduler object’s operations. We then outline the mapping of the objects onto the
Gutenberg object model.

15

The first object is the scheduler that controls the task of scheduling a meeting for a worker. The
schednlcr is an ActorAgent since it is invoked by the user and by other objects. The operations of the
scheduler are

1. MakeAppointment. - the operation t.hat, is invoked by the user when a meeting needs to be scheduled,
2. RequestAppointment - the operat.ion t.hat is invoked by other schedulers that are trying to schedule
meetings for their users,
3. CancelAppointment - the operation t.hat cancels meetings, invoked by the scheduler’s user,
4. CallOffAppointment - the operation that cancels meetings, invoked by other schedulers.

Calendar objects are modeled as Servers and thus make no requests of other objects. Calendars allow
the following operations to be requested of them:

1. GetSlots - returns the free slots that meet the restrictions supplied with the request,
2. .ReserveSlot,s - sets a group of slots reserved (during a negotiation to settle on a time for a meeting),
3. FixSlots - sets slots as confirmed times for a meeting,
4. FreeSlots - frees slots from reserved or confirmed status,
5. FixPeriodicSlots - sets slots aside on a periodic basis (e.g., weekly),
6. FreePeriodicSlots - frees slots on a periodic basis,
7. TodaysMeetings - returns meetings for today,
8. NextMeeting - returns next meeting information.

The third object, the Scheduler for a group of workers is modeled as an Agent and has the same
interface as the Scheduler of a single worker.

A user initiates the task of scheduling a meet.ing by invoking the MakeAppointment operation of his/her
scheduler object with three input parameters: a set of users or a predicate which defines the users to be
contacted, a set of restrictions such as date, time, length, priority, deadline, etc., and the purpose/agenda
of the meeting. In the simplest case in which the appointment is between two users, the scheduler requests
free s1ot.s that meet the restrictions from the iniliator’s calendar, and requests an appointment from the
other user by making a RequestAppointment call to the other user’s scheduler. The requesting scheduler
initially sends its free slots along with the restrictions and the purpose of the meeting. Subsequently, the
responding scheduler requests free slots which meet the restrictions from its local calendar, and enters into
negotist.ion wit.h the caller. If a decision is reached, the users’ approva.1 is requested if needed, and the
meet,ing is confirmed by making the appropriate FixSlots request; otherwise, the help of the user is sought
or t.he appointment is canceled.

In t,he case in which a scheduler is invoked with a set. of users or a predicate, the scheduler, in turn,
invokes a group scheduler object, named MeetingAgent, to est,ablish the necessary communication and
coordinate the negotiation process.

At any given time, a user may initiate any number of tasks trying to make an appointment with another
user or a group of users, while at the same time other users may request an appointment with him/her.

Figures 1 and 2 give an object-oriented pseudo-code for the specification rules of the simplified versions
of Ma.keAppoint.ment a,nd Requesthppointment operations of the scheduler object. Iu this form of pseudo-
code, each statement has a stereotyped form, consisting mainly of an operation, a.n ohjecl- name ancl a list

of arguments. These are sepnrat.ed by prepositions that are appropriate to the oper~ticw names. e.g.. fv*rn.

to, with. The actual preposition used has no semantic significance. C)pera,tions havts results in general n11t1

these can be assigned to variables or may be referred to by the function, Result Of, ! Ilot I-akes I hc c-qwntinn

name as its argument.. The pseudo-code allows t.he specification of continuing receIltirj!l (.,l ~sulls ft~~ i\.
single operation by using a form of a guarded command [5]. The keyword Dynamic is used to specify an
asynchronous updating of a variable that has been updated in the body of an operation. The statement
containing the variable assignment is flagged with [Dynamic]. The manner of the continuing update is
specified after the body of an operation’s code by a statement containing the condition under which the
update takes place and the updat.e assignment. This technique is used in specifying operation behavior that
accommodates the reception of changing information that is typical in applications involving simultaneous,
competing negotiations, such as scheduling meetings.

16

Operation RakaAppointment(Whom, Restrictions, Purpose): Appointment;

If Not Singleton(Whom)
Then

GroupAppointment from ReetingAgent with (Whom, Restrictions, Purpose);
ReturnExit ResultOf(CroupAppointment);

Else
Slots <- GetSlots from XyCalendar with Restrictions; [Dynamic]
RequestAppointment from Whom with (User. Restrictions, Purpose, Slots):
Ilatch with (Slots, ResultOf(RequestAppointmant));
If Empty(ResultOf(Match))

Then ConsultUser;
Else

Reserved <- ReserveSlots in HyCalendar with ResultOf(Hatch):
If Reserved <> Success

Then ConsultUser:
Else

RequestAppointment from whom with Reserved;
If Empty(ResultOf(RequestAppointment))

Then ConsultUser;
Else

Appt <- FixSlots in tlycalendar
with HeadOf(ResultOf(RequestAppointment);

FreeSlots in RyCalendar with Difference(Reserved,(Appt)):
ReturnExit Appt;

Dynamic:
On New Result from G&Slots from IlyCalendar with Restrictions:

Slots <- ResultOf(GetSlots);

Figure 1: MakeAppointment Specification

Operation RequestAppaintment(Uhom, Restrictions, Purpose, When): Appointment;

Slots <- GetSlots from MyCalendar with Restrictions; [Dynamic]
Match with (Slots, When);
If Empty(ResultOf(Ratch))

Then ConsultUser:
Else

Return ResultOf(Match):
Match with (Slots, ResultOf(Hatch))
Reserved <- ReserveSlots in MyCalendar with ResultOf(!lstch);
If Reserved <> Success

Then ConsultUser;
Else

RequestAppointment from whom with Reserved;
If Empty(Reserved)

Then ConsultUser;
Else
Appt <- FixSlots in MyCalendar with HeadOf(ResultOf(RequestAppointment);
FreeSlots in MyCalendar with Difference(Reserved,<Appt));
ReturnExit Appt;

Dynamic:
On New Result from GetSlots from MyCalendar with Restrictions:

Slots <- ResultOf(GetSlots):

Figure 2: RequestAppointment Specification

17

OffLX
System Dir

GetSlots RequestAppt.

Symbols

I Directory 0 Operation Capability

hlanager Definitions oc ooperation Class

Capability link - Operation Capability link

Figure 3: Segment of the Interconnection Schema of the Scheduling Application

This is a sample Interconnection Schema of a basic Scheduling system. The Office System directory contains the

manager definitions of the Calendar and Schcdulcr objects crcotcd by the system developer. The directory of the

office users contains capabilities that the users can use to invoke operations on a scheduler object. The Scheduler

manager’s default active directory also contains capabilities allowing the Scheduler objects to invoke operations on

other Scheduler objects as well as on Calendar objects. The Calendar manager’s default directory is empty, as it

should be, since Calendar Objects as Servers cannot invoke operations on any other object.

4.2 Definition of the Application in Gutenberg

Now WT’~ will map this model onto Gutenberg facilities. Each office object is mapped onto a Gutenberg
object.. The Interconnection Schema shown in Figure 3 contains the interfaces that the scheduler and
calendar obiects present to their users. These interfaces are used to create ports to use in requesting the
objects’ operations and facilitating the negotiations. The pseudo-code in Figures 1 and 2 needs to be
translated into a programming language for inclusion in a manager definition along with the manager’s
default active directory and life2ype3. The default active directory becomes the active directory of any
object manager instantiated from this manager definition. The lifetype of an object manager indicates
whether all the object instances of the type are managed hv a single manager, or each ob.ject is managed
by a different, manager, corresponding to the Gutenberg lifetypes: Class Conservative and Conservative.

The kernel determines whether a newlv created port is to be connected to a new object manager
instantiated from a manager definition or to an already existing one,
manager and the cooperation class used at the port creation time.

from the lifetype of the object
In the case of Creative lifetype, a

new object manager is created for each new port created. This is useful in cases of shortlived objects
owned, in effect, bv the caller. Conservative lifetype, on the other extreme, creates a new object manager
from a manager definition only if no other object manager for the object type is running on the system.
Class-conservative allows new object managers to be instantiated selectively based on the cooperation class

‘known also as instantiation protoco1

18

capability supplied at port creation time. Class-conservative managers are the mechanism for implementing
most office objects that need an identity (the cooperation class) that can be shared among other objects.

The lifetype of the Scheduler and Calendar objects is Class-Conservative, whereas the Registry is
Conservative. By associating a cooperation class with each user in the system and using it to identify
him/her while making an appointment, the proper Sched.ulers and Calendars are invoked.

4.3 Discussion

The two main issues in implementing the Scheduler and Calendar objects in Gutenberg are how to map
these objects onto Gutenberg objects, and how to group, couple and uncouple them in an effective way
while preserving the semantics of the design. Both issues need to be addressed in any application and have
straightforward solutions within the Gutenberg environment.

Generic Office objects correspond to Gutenberg objects. The Gutenberg kernel does not interpret their
types except to consult their lifetype when their managers need to be instantiated. Gutenberg allows office
objects to be implemented in a way that it is most appropriate for the given application. For example, two
Servers providing database facilities in the system can be implemented using different database models.
Furthermore, it is possible to adopt type-specific concurrency control and recovery [II, 15,1], improving the
overall system performance. Existing tasks require simple interface modifications in order to be integrated
into the system, not re-implementation.

The second issue deals with object interconnections. In general, objects are accessible by any other
object. However, the organization structure (hierarchical or network) defines statically the object associa-
tions (who has the privilege to speak with whom). Gutenberg captures the organization structure in the
Interconnection Schema while at. the same time can capture any dynamic object associations by allowing
port redirection. Consider the following example: A worker searching for information on a company usually
calls the receptionist of the company who redirects the worker’s call to the employee in the company who
most probably will be in a position to give the information. That employee may immediately be able to
give out the information or the information may require an approval from someone else in the company. In
the latter case, the employee either further redirects the call to his/her supervisor, if the company policy
allows it, or he/she needs to get the approval and accordingly release the information. If the approval takes
some time, the employee could either ask the caller to call back or leave his/her telephone number. Any
of these scenarios can be modeled by Gutenberg communication mechanisms.

The declarative form of the Interconnection Schema facilitates further the open-ended nature of an
organization. That is, the Interconnection Schema can easily reflect changes to the structure of the organi-
zation. The arrival and departure of office workers correspond to changes to manager definitions; whereas
responsibility redist,ribution corresponds to redistribution of capabilities to create ports.

The grouping of office act.ivities into cooperations using the notion of cooperation class not only ensures
proper object association, but it also provides an elegant and efhcient way to capture the logical work-
stat.ions in the office and facilitate their changes. By associating segment,s of the Interconnection Schema
wit,h cooperat,ion classes and controlling their access using these cooperation cla.sses, the redistribution of
responsibilities involves a single capability, the cooperation class.

5 CONCLUSION

An object-oriented office model is presented. It uses the object, taxonomy of l3ooch ff‘at Ilring ol).iert classes
based on calling patterns. Our model is motivated by that of Woo and Lochovskv! but has a number of
differences, discussed in section 2.3, especially in the definition of the object classes awl in l,he treatnlcnt d
nested objects. An office application, setting a meeting among office workers, is defined in terms the office
model. We showed how it can be implemented in Gutenberg, an object-oriented distributed operating
system.

We are in the process of building office applications along the lines outlined in this paper. Our agenda
includes exploring the issues of inconsistencies arising during negotiations and their resolution through other
negotiations, achieving reliability using Gutenberg atomicity features 114, 41 that we have not dealt with in
this paper, and automatic or semi-automatic translation of the object-oriented specification language used

19

in the example into code for manager implementation on Gutenberg. Run-time code synthesis is another
area that we would like to study in order to explore further the power of typed port redirection in achieving
dynamic modification of behavior in office systems.

6 Refererlces

1. Badrinath, B. R., and, Ramamritham, K., ‘Semantic-Based Concurrency Control: Beyond Commu-
t,ative,’ Proceedings of the Third international Conference on Data Engineering, February 1987.

2. Booth G., ‘Object-Oriented Development, Transactions on Software Engineering, vol 12, no. 2,
February 1986.

3. Chrysanthis, P. K., Ramamritham, K., Stemple, D. W., Vinter, S. T., ‘The Gutenberg Operating
System Kernel,’ Proceedings of the First ACM/IEEE Fall Join Computer Conference, November,
1986.

4. Chrysanthis P. K., Ramamritham K., ‘Capturing the Structure and Behavior of Complex Transac-
tions,’ Proceedings of the Third Workshop on Large Grain Parallelism, SEI, Carnegie Mellon Univer-
sity, Pittsburgh, October 1989.

5. Dijkstra E., ‘Guarded Commands, Nondeterminancy and Formal Derivation of Programs,’ Commu-
nications of ACM, vol. 18, no.8, August 1975.

6. Ellis C. A., and Nut,t G. J., ‘Office Information Syst,ems and Computer Science,’ ACM Computing
Surveys, vol. 12, no.1, March 1980.

7. Goldberg, A., and Robson, D., ‘Smalltalk-80: The Language and its Implementation,’ Addison-
Wesley Edition, 1983.

8. Lochovsky F. H.,‘A knowledge-based approach to supporting office work,’ Data Engineering IEEE
Computer Society, vol. 16, no. 3, September 1983.

9. Panko, R. R., ‘38 offices: Analyzing needs in individual offices,’ A CM Tmnsactions on Ofice Infor-
mation Systems, vol. 2, no.3, July 1984.

10. Ramamritham, K., Briggs, D., Stemple, D. W., Vinter, S. T., ‘Privilege Transfer and Revocation in
a Port-Based System,’ IEEE Transactions on Software Engineering, vol. SE-12, no. 5, May 1986.

11. Schwarz, P., and Spector, A., ‘Synchronizing Shared Abstract Data Types,’ ACM Transactions on
Computer Systems, vol. 2, no. 3, August 1984.

12. St.emple, D. W., Vint.er, S., Ramamritham, K., ‘Functional Addressing in Gutenberg: Tnterprocess

Communication Without Process Identifiers,’ IEEE Tmnsactions on Software Engineerin,g, vol. SE-
12, no. 11, December 1986.

13. Stoncbraker, M., I-lnnsnn, E., Hong, Ct. TJ.. ‘Tlw &sign of the POSTCI?I;IS R~rlrq System,’ Pmcerdinp

of the Third International Confererzce on Duta Engineering, February 1987.

14. Vinter, S. T., Ramamritham, K., Stemple, Jl. W., ‘Recoverable Commlmicating Actions,’ Proceedings
of the fifth International Conference on Distribu.ted Computing Systems, May 1986.

15. Weihl W. E., ‘Specificat,ion and Implementation of atomic data types,’ Ph.D. Thesis, Tech. Rep.
MIT/LCS/TR-314, MIT Laboratoty for Computer Science, March 1984.

16. Woo, C. C., and, Lochovsky F. H., ‘Supporting Distributed Office Problem Solving in Organizations,’
ACM Transactions on Ofice Information Systems, vol. 4, no. 3, July 1986.

20

