
Finer Grained Concurrency for the Database Cache 

J. Eliot B. Moss 
Bruce Leban 

Panos K. Chrysanthis 

Department of Computer and Information Science 
University of Massachusetts 

Amherst, Massachusetts 01003 

Abstract. The database cache transaction recovery 
technique as proposed in [Elhard and Bayer 84] offers 
significant performance advantages for reliable database 
systems. However, the smallest granularity of locks it 
provides is the page. Here we present two schemes sup­
porting smaller granularity. The first scheme allows 
maximal concurrency consistent with physical two-phase 
locking, with the same per-transaction I/O cost as the 
original database cache scheme. The second scheme of­
fers the same concurrency as the first, but features re­
duced I/0 on commit, at the cost of some increase in 
recovery time. 

1 Introduction 

Recently a new database recovery technique, called the 
database cache, was proposed in [Elhard and Bayer 84]. 
The database cache simplifies database recovery man­
agement and boosts performance - strong advantages 
that make it attractive for use in practical database sys­
tems. However, its concurrency control scheme is two­
phase locking on pages, where the page size is deter­
mined by the I/O devices. Elhard and Bayer said in 
their paper that a smaller lock granularity would "com­
plicate the algorithms considerably". Here we show the 
opposite: that smaller lock granularity can be achieved 
simply and easily. 

After a brief summary of the original database cache 
algorithm, which we call EB for short, we present two 
new schemes. Both offer maximal transaction concur­
rency under restriction to algorithms using two-phase 
locking at a physical level. Scheme I retains the page 
oriented I/O of EB, and thus increases concurrency (by 
locking units smaller than a page) but does not reduce 
(or increase) the total I/O cost of a transaction. Scheme 
11 reduces the I/0 at commit time, by writing only the 
modified parts of pages. However Scheme 11 can require 
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Figure 1: Structure of the Database Cache 

additional reads when recovering, and additional writes 
when propagating changes into the database. 

2 The Database Cache 

As can be seen in Figure 1, the database cache algorithm 

uses three distinct storage areas: 

The Database: This is the physical database. It is a 
collection of pages that can be accessed randomly, 
and is reliable. 1 

The Cache: This is the main memory workspace for 
running transactions. It is indeed organized as a 
page-oriented cache of the database. Cache contents 
are lost in a system crash. 

The Safe: This is in essence the tail (most recent part) 
of the commit log. It is a reliable collection of pages, 
similar to the physical database. However, it is usu­
ally accessed sequentially for speed, and its size is 
more comparable to the cache size than to the size 
of the database. 

All activities in the database cache algorithm are in 
terms of pages. Database pages always reflect the work 
only of committed transactions; that is, no "dirty" pages 
are ever written to the database. Hence the database 

IThat is, we will not go into the details of archiving and media 
recovery. 
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never requires undo processing upon recovery. To guar­
antee this property, the cache is assumed to be large 
enough to hold the pages modified by any transaction. 
Elhard and Bayer discuss how to eliminate this restric­
tion for long (large) transactions. We will not consider 
such transactions here, since we believe it is no more 
difficult to deal with them in our schemes than ill EB. 

The cache contains two kinds of pages: originals and 
copies. An original page reflects the effects of all com­
mitted transactions and no active ones. A copy is a page 
being modified by an active transaction. When a trans­
action wishes to read a page, it acquires a read lock on 
it, and then accesses the (original) page via the cache. 
The read is easy to satisfy if the page is in the cache. If 
the page is not in the cache, a free cache slot is obtained 
(as described below) , and the page is fetched from the 
database. To update a page, a transaction first acquires 
a write lock on it. If the page is in the cache, the trans­
action makes a copy of it, and modifies only the copy. If 
the page is not in the cache, the transaction fetches it 
from the database, marking it as a copy rather than an 
original. However, for easier extension to our later algo­
rithms, our routines make both a copy and an original. 

Here is pseudo-code for the routines just described: 
PRead, PUpdate, Find, and Make Copy, as well as the 
helper routine FindOrig. Cache slots contain the fol­
lowing information: the page data (data), original vs. 
copy vs. free (status), the database page number (page), 
and two fields ( c hanged and safe) to be discussed later. 
Database pages contain only page data. We assume that 
there is a function Readers (Writers) to tell us the cur­
rent set of transaction holding read (writ,e) locks on a 
given page. By convention, we use t to indicate a trans­
action, d for a database page number, c for a cache slot 
index, and s for a safe page number. To simplify the 
presentation, we have assumed that transactions do not 
make multiple calls on PRead or PUpdate for the same 
page. All pseudo-code routines are to be executed atom­
ically, except at points where they explicitly wait for a 
condition to be satisfied, or block for I/O. 

PRead{t, d) 
wait until Writers {d ) = {}; 
Readers{ d) <- Readers{ d) U {t}; 
c <- Find{d); 
return c; 

PUpdate{t, d) 
wait until Readers{ d) C {t}; 

Readers{d) <- {t } ; 
Writers{d) <- {t}; 
c <- Find{d); 
c' <- MakeCopy (c) ; 
return c'; 

Find{d) 
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c <- FindOrig{d); 
if c "I nil then return C; 

(here we do the fetch) 
c <- FindFree() ; 
cache[c J . data <- DB[dJ; 
cachet c J . status <- original; 
caclle[c! . page <- d; 
cache[c J .changed <- false; 
cache(cJ .safe <- nil; 
return c; 

MakeCopy( c) 
c' <- FindFreeO ; 
cache[c' J . data <- cache[ cJ .data; 
cache [c' J .status <- copy; 
cache [c' J .page +- cache( c J . page; 
cache[ c' J .changed +- (anything) ; 
cache [c' j .safe <- nil; 
return c'; 

FindOrig{ d) 
C +- { c l cache[c J .status = original and 

cache[cJ . page = d}; 
(note: ICI :::; 1) 
if C "I 0 then return choose{ C); 
return nil; 

When a transaction commits, it releases its read locks, 
installs its modified copies as originals, writes these new 
originals to the safe (more details below) ' and releases its 
write locks. To abort, a transaction simply releases all its 
locks and discards its copy pages. Here are the routines 
for commit (TCommit, InstallCopy, and FindCopy) and 
abort (TAbort, DiscardCopy, and Makefree). 

TCommit(t ) 
(release read locks) 
D +- {dlt E Readers{ d) - Writers{ d) }; 
for each d E D do 

Readers{ d) +- Readers{ d) - {t}; 
(process modified pages) 
D <- {dlt E Writers{d)}; 

n +-IDI; 
i +- 0; 

for each d E D do 
c +- InstallCopy( d); 
i +- i + 1; 

WriteSafe{c, i = n); 
Writers{d) +- 0; 
Readers{d) +- 0; 

InstallCopy{ d) 
c +- FindOrig{d); 
c' +- FindCopy {d) ; 
cache[cJ . data +- cache [c' J . data; 
cache[cJ . safe <- nil; 
cache[cJ .changed <- true; 
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MakeFree (c'); 
return c; 

Find Copy (d) 
C � {c l cache[c].status = copy and 

cache[c].page = d}; 
(note: IC/:::; 1) 
if C f- {} then return choose( C); 
return nil; 

TAbort(t) 
(release read locks) 
D � {dlt E Readers( d) - Writers( d)}; 
for each d E D do 

Readers(d) � Readers(d) - {t}; 
(process modified pages) 
D � {dlt E Writers (d)} ; 
for each d E D do 

DiscardCopy(d); 
Writers(d) � {}; 
Readers(d) � {}; 

DiscardCopy(d) 
c � FindCopy(d); 
MakeFree( c); 

MakeFree(c) 
cache[c].status � free; 
cache[c].page � nil; 
cache/c].safe � nil; 

To free a cache slot, we choose some unlocked (orig­
inal) page in the cache as a replacement victim. If the 
victim has been modified since being fetched from the 
database , it is forced back to the database. So that we 
can detect such modifications, original pages are marked 

changed or unchanged, and this marker is initialized and 
updated appropriately. We will not discuss cache re­
placement policies; the choose routine is assumed to em­
body whatever policy is chosen by the designer. Here is 
the code for FindFree and Force. 

F indFreeO 
C � {cl cache[c].status = free }; 
if C f- {} then return choose( C); 
C � {cl cache [c].status = original and 

Readers(cache[c].page) = {} and 
Writers(cache[c].page) = {}}; 

(by assumption, C cannot be empty ) 
c � choose(C); 
if cache[c].changed then Force(c) ; 
MakeFree(c); 
return C; 

Force( c) 
d � cache [c].page; 

DB[d] � cache [c].data; 

cache[c].changed � false; 
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Let us now consider commit processing and recovery. 
As noted above, when a transaction commits, it writes 
to the safe, atomically, the new versions of the pages 
it modified. The safe is used as a circular buffer and 
contains in essence a tail of the commit log. In recovery 
we simply scan that tail in the order it was written, 
putting pages back into the cache slots from which they 
came. Having rebuilt the cache, we continue with normal 
processing. There is a small catch, though: before we 
overwrite a page on the safe, we must be sure it is not 
needed for crash recovery (restart-free in the terminology 
of Elhard and Bayer). 

Suppose we overwrite a particular page p at the be­
ginning of the safe. If there is another copy q of the page 

on the safe, then q is more recent than p, so we do not 
need p. If there are no other safe copies of p, and p is not 
still in the cache, then when p was replaced in the cache 
it was forced to the database; therefore we do not need 
the safe copy. The only situation left is a page with no 
other copies on the safe, but which is still in the cache. 
In this case we force the cache original to the database 
before overwriting the safe version. 

A second catch is that a crash might occur while writ­
ing pages to the safe. The pages produced by a given 

transaction, which we will call a commit group, must be 
written atomically. As in EB, we do this by specially 
marking the last page of a commit group. TCommit in­
dicates to Write Safe which page is last, and the recovery 
algorithms ignore pages on the safe not followed by one 
marked as last. 

In our code we assign log sequence numbers to pages 
as they are written. These numbers are strictly increas­
ing. The safe slot used for a given page is the sequence 
number modulo the size of the safe. The integer part of 
the result of dividing the sequence number by the safe 
size gives the round count (in the terminology of EB): 
the number of times that safe slot has been used. In 
EB it is shown that we need only record the low bit of 
the round with each page. We have used full sequence 
numbers in the pseudo-code, for clarity and simplicity. 

The data structures used in safe management are as 
follows. The safe begin pointer is the sequence number 
of the oldest page considered to be part of the safe. It 

is stored on the safe as safe. begin, and maintained in 
volatile memory as SafeBegin. SafeSeqNum is a volatile 
variable giving the sequence number of the newest page 
on the safe. It must be recalculated after a crash. This is 
done by searching backwards from the safe begin pointer 
until new pages are found. We continue that search un­

til we find a page marked as last, so as to implement 

atomic writing as previously described. Each safe slot 
contains page data (data)' the database page number 
for this data (page), the cache slot from which it was 
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written (cache)2, whether or the page is last in a com­
mit group (last), and the sequence number of the page 
{seq}. When a page is written to the safe, the cache slot 
is set to indicate the safe location. This is used later 
by FreeSafe to determine if the safe slot is restart-free. 
Again, EB provided a different, but equivalent, encoding 
of the same information. 

WriteSafe{c, last) 
SafeSeqNum f- SafeSeqNum + 1; 

Sf- SafeSeqNum mod SafeSize; 
FreeSafe{SafeSeqNum - SafeSize) ; 
safe[s] .data f- cache[c] .data; 
safe[ s ] .page f- cache[c] .page; 
safe[s ] .cache f- C; 

safe[ s ] .last f- last; 
safe[s] . seq f- SafeSeqNum; 
cache[ c].safe f- SafeSeqNum; 

FreeSafe{n} 
while SafeBegin < n do 

C f- {cl cache[c] . safe = SafeBegin and 
cache[c ] .changed}; 

for each c E C do 
(there will be at most one c) 
Force{c} ; 
cache[c].safe f- nil; 

SafeBegin f- SafeBegin + 1; 

safe. begin f- SafeBegin; 

Recover() 
for each c do MakeFree{c) ;  
SafeBegin f- safe. begin; 
SafeSeqNum f- SafeLast() ; 
for s' f- SafeBegin to SafeSeqNum do 

Sf-S' mod SafeSize; 
c f- safe[ s]. cache; 
cache[c] .data f- safe[s].data; 
cache[c] . status f- original; 

cache[c] .page f- safe[s].page; 
cache[c] .changed f- true; 
cache[c] . safe f- safe[s]. seq; 

SafeLast() 
s f- SafeBegin - 1; 

while safe[s mod SafeSize]. seq < SafeBegin do 
Sf- S - 1; 

while not safe[ s mod SafeSize] . Iast do 
Sf- S - 1; 

return S; 

To reduce delays at commit and in obtaining free cache 
slots, we could have a background process that chooses 
unlocked, changed, original pages according to some pol­
icy (e.g. , safe copy likely to be overwritten soon) and 

2This is not strictly necessary, and was not done in EB, but it 
simplifies recovery. 
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forces them to the database. It should also update the 
safe begin pointer to stay ahead of committing transac­
tions. The background process t.rades occasional unnec­
essary I/O for improved response time; its page choice 
policy would be important in controlling system over­
head. 

In summary, the salient properties of the database 
cache approach are: 

• It keeps the database and safe clean, avoiding global 
undo upon recovery. 

• It keeps the cache clean, avoiding I/0 upon trans­
action abort. 

• Commit processing is fast because it involves only 
sequential writes to the safe. 

• Recovery is fast because it requires only a sequential 
reading of the safe. 

3 Scheme I: A Technique Using 

Page-Oriented I/O 

We now describe our first scheme for finer grained lock­
ing. It retains the page oriented I/0 of EB, but substi­
tutes locking of smaller items, which we will call atoms. 
An atom is a sub component of a page; no atom spans 
more than one page and no two atoms overlap. Trans­
actions might request atoms in groups (e.g., a sequential 
range of atoms) ; however, to simplify the presentation, 
our code will consider requests only of individual atoms. 
An atom might be a bit, a byte, or a larger unit, as cho­
sen by the database designer. For example, one could 
make every byte be an individual atom, and support field 
and record locking by locking groups of atoms together. 
In that case, one would probably want to optimize the 
data structures for recording the atom locks, etc., to­
wards dealing with ranges. Alternatively, one could con­
sider each (physical) record to be an atom, in which case 
ranges might not be so interesting. At any rate, we are 
not specifying exactly how big atoms are, nor are we try­
ing to suggest optimal data structures (or any at all) for 
dealing with atom locks. Traditional techniques will ap­
ply without difficulty. Further, it would not be hard to 
incorporate hierarchical locking and fancier lock modes 
{e.g. , intention locks} . Since it would complicate the pre­
sentation, we do not consider such embellishment,s here. 

The changes to EB are as follows. When a transaction 
desires to read an atom, it first acquires a read lock on it, 
and then accesses the relevant page in the cache, fetching 
it from the database if necessary, just as in EB. Note, 
however, that a read request can access (the original of ) 
a page being modified by a different transaction, so long 
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as the atoms that the transactions access are different 
(which locking insures) . 

When a transaction desires to modify an atom, it ac­
quires a write lock on it, and fetches the page if it is not 
in the cache. It makes a copy of the page if it does not 
already have a copy, and works on the copy. Note that 
unlike EB, there will always be an original page for each 
copy. This design is the easiest to explainj we describe 
some alternatives at the end of this section. Similar to 
the read case, we can acquire write locks on, and mod­
ify, some atoms of a page, while another transaction is 
reading (or modifying) other atoms of the same page. 

When a transaction aborts, we simply release its locks 
and discard its copies. When a transaction commits, we 
first release its read locks. Then we copy its write locked 
atoms back to the original pages in cache, being careful 
not to disturb any other atoms in the originals. Finally 
we write the modified originals to the safe, release the 
write locks, and discard the copy pages. 

The installation of the modified atoms and writing of 
pages to the safe needs to be done as a single atomic 
action, to avoid including parts of another transaction's 
modifications if two transactions commit at about the 
same time. One way to achieve the required atomicity 
is to use a mutual exclusion lock. When a transaction 
is to commit, it acquires the lock, performs its commit 
actions, and then releases the lock. Note that this does 
not interfere with active transactions in any way, and 
that since access to the safe is sequential, we cannot 
do any better (provided the processor is fast enough to 
keep the disk busy throughout the commit phase) . There 
is no problem with concurrent access to original pages: 
transactions reading atoms will not be looking at the 
parts of the pages being modified, and ones modifying 
the pages (i. e. , making copies during installation of the 
committing transaction's changes) will not install back 
the parts of the pages we are changing. 

As in EB, original pages in the cache reflect the up­
dates of all committed transactions and none of the 
transactions in progress. The I/O to the safe and the 
database is exactly the same. To see this, simply note 
that a transaction writes to the safe exactly those pages 
containing atoms it modified. In EB it would have locked 
whole pages, but would do the same safe writes. Recov­
ery is unchanged from EB, as is safe management and 
cache replacement (if a page is considered to be locked 
when any of its atoms are locked) . Here is the code for 
the procedures that have changed. We use a to indi­
cate an atom number, and Page{a) to indicate its page 
number. 

ARead(t, a) 
(PRead changed to handle atoms) 
wait until Writers ( a) = {} j 
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Readers(a) +- Readers(a) u {t}j 
c +- FinddPage(a) ) j  
return Cj 

AUpdate(t, a) 
(PUpdate changed to handle atoms and 

per-transaction copies) 
wait until Readers(a) c {t}j 
Readers(a) +- {t}j 
Writers(a) +- {t}j 
C +- FindCopyr(Page(a), t)j 
if C 1= nil then return Cj 
C +- Findr(Page(a))j 
c' +- MakeCoPYI(c, t)j 
return c' j 

Findr (d) 
C +- FindOrig(d) j 
if c 1= nil then return Cj 
(here we do the fetch) 
c +- FindFreeO j 
cache[c].data +- DB[d]j 
cache[ c ]. status +- originalj 
cache[c].page +- dj 
cache[ c ].changed +- falsej 
cache[ c ].safe +- nilj 
cache[c].trans +- nilj (only change) 
Teturn Cj 

MakeCopyr(c, t) 
(changed for per-transaction copies) 
c' +- FindFreeOj 
cache[ c'].data +- cache[ c ].dataj 
cache[c'].status +- copYj 

cache[c/]. page +- cache[c].pagej 
cache[c/].changed +- (anything) j 
cache[ e / l .safe +- nil; 

cache[c'].trans +- tj (only change) 
return c'; 

FindCopYr(d, t) 
(changed for per-transaction copies) 
C +- {cl cache[e]. status = copy and 

cache[cl.trans = t and 
cache[cl.page = d}; 

if C 1= {} then return choose( C); 
return nilj 

TCommitI(t) 
(now handles atoms and per-transaction copies) 
A+- {alt E Readers(a) - Writers(a)}j 
for each a E A do 

Readers(a) +- Readers(a) - {t}j 
A+- {alt E Writers(a) }; 
D +- {Page(a)la EA}; 
n +-IDlj 
i +- 0; 
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for each d E D do 
A+- {alt E Writers(a) and Page(a) = d}; 
c +- InstallCoPYI(d, t, A); 
i +- i + 1; 

WriteSafe(c, i = n); 
for each a E A do 

Writers(a) +- 0; 
Readers(a) +- 0; 

InstallCoPYr(d, t, A) 
(Copy Atom copies individual atoms) 
c +- FindOrig(d); 
c' +- FindCopyr(d, t); 
for each a E A do CopyAtom(a,cl,c); 
cache[c].safe +- nil; 
cache[c].changed +- truej 
MakeFree(c')j 
return Cj 

TAbortl(t) 
(now handles atoms and per-transaction copies) 
A+- {alt E Readers(a) - Writers(a)}j 
for each a E A do 

Readers(a) +- Readers(a) - {t}j 
A+- {alt E Writers(a)}j 
for each a E A do 

Writers(a) +- OJ 
Readers(a) +- OJ 

D +- {Page(a)la E A}j 
for each dE D do DiscardCoPyr{d, t)j 

DiscardCoPyr(d, t) 
c +- FindCoPYr(d, t)j 
MakeFree(c)j 

Even as it stands, this simple extension may be use­
ful for increasing the concurrency of the database cache. 
The cost, lies in maintaining finer grained locks, and in 
maintaining n + 1 versions of pages under modification 
by n active transactions. It is natural to consider re­
ducing the I/0 to the safe at commit time, by writing 
only the modified parts of pages. As might be expected, 
this affects the algorithm in other ways, as we will see 
in the next section. We note in passing that EB, as well 
as our schemes, is easily adapted for use with optimistic 
concurrency control [Kung and Robinson 81]. 

In the code above, unlike EB, we will sometimes have 
an original page that is not strictly necessary. This hap­
pens when a transaction desires to modify a page not 
currently in the cache. In fact, if the whole page is 
locked, we can omit the original page just as in EB, with 
no other change to our algorithms. Let us now consider 
what happens if the whole page is not locked and we do 
not keep an original copy. Suppose transaction TI made 
the original request, and that transaction Tz requests 
some of the unlocked atoms. Further suppose that in 
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order to avoid fetching the page from the database, we 
give Tz a copy of T}'s copy. Now, if Tt aborts and Tz 
commits, we are in trouble: we cannot reconstruct the 
original value of the atoms locked by T1• Similarly, if Tz 
commits first, we cannot formulate the correct value to 
write to the safe. Solutions to these problems include: 

• Maintaining the original version, as presented. 

• Fetching the page from the database for Tz's re­
quest, rather than copying the copy. 

• Fetching the page from the database if T1 aborts, 
or if Tz commits first. 

• Giving Tz a copy of Tl 's copy, so that Tz can proceed 
immediately, but starting a fetch of the page from 
the database just in case Tz commits first or Tl 
aborts. 

Some of the above techniques require distinguishing 
copies from copies of copies. Any of the approaches 
might be reasonable, depending on the nature of the 
application. 

4 Scheme 11: A Technique Using 

Atom-Oriented I/O 

In Scheme I ,  when a transaction T commits, a full copy of 
every page containing atoms modified by T is written to 
the safe. Scheme 11 takes a different approach: only the 
modified atoms are written, not the entire page. This can 
significantly reduce the commit I/0. For example, sup­
pose transaction T updates three records that happen to 
lie on different pages. Under Scheme I, three pages must 
be written to the safe when T commits. However, if the 
records are small, they might all fit in one page. Scheme 
11 will write just one page. 

Let us consider commit processing in more detail. In 
Scheme I, we simply write the new value of each modi­
fied page to the safe. The last page is specially marked 
so that we can tell if there is a crash while writing. For 
Scheme 11, we write a sequence of variable size records, 
containing modified atoms. Each record contains the 
atom data, the identity of the atom, and the cache page 
from which it came. We are not concerned with the de­
tails of the encoding of this information, only with what 
information can be recovered. For atomicity in writ­
ing each transaction's commit data, we write a commit 
group as a set of pages, padding out the last page if nec­
essary. The last page of each group is marked, as before. 
We will also find it convenient to mark the first page, 
so that we can identify entire commit groups. This is 
useful because once any page of a commit group is over­
written (e.g., the first one), the rest of the group may be 
difficult, if not impossible, to decipher. 
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Recovery is different under Scheme 11. We read the 
complete commit groups (those having both a start and 
end page), in the order they were written to the safe, 
and install the atoms into the cache. As we do so, for 
each page we keep track of which atoms have been filled 
in from the safe, and which are unknown. Once we have 
processed all the commit groups, we scan the cache, and 
for each page that has remaining unknown atoms, we 
fetch the page from the database and fill in the unknown 
atoms. We can schedule the database reads in any order 
we like, so we can reduce the I/O latency. 

As in EB and Scheme I, we may need to force pages 
to the database before overwriting an old commit seg­
ment on the safe. Suppose we are about to overwrite the 
first page of the commit segment for transaction T. The 
simplest scheme is to force every cache resident page 
that was modified by T. (Note that pages not in the 
cache must have been replaced, so they have already 
been forced to the database.) 

Doing forces is a little more tricky in Scheme 11 than 
before, however. The reason is that the safe may not con­
tain enough information to reconstruct the whole page. 
Hence, if we crash while writing the page to the database, 
we cannot recover the contents of the missing atoms. 
Hence, we must write at least the atoms not on the safe, 
if not the whole page, somewhere, before writing to the 
database. We can use an intentions list, separate from 
the safe, to hold the values of the pages being forced. 
First we write all the pages to the intentions list, and 
then write them to the database. The recovery proce­
dure will redo any saved intentions. This is a simple ap­
proach, and should not add significantly to restart time 
because the intentions list will not contain many pages. 

On the other hand, rather than using an intentions 
list, we can just make sure there is a full copy of page p 

on the safe before forcing p to the database. There are 
three ways to make this guarantee: 

• Whenever p is modified and does not have a full 
copy on the safe, the modifying transaction writes 
a full copy to the safe instead of just the modified 
atoms. This approach simplifies safe management, 
a.s compa.red with the alternatives presented below. 
However, it may increase the commit time of the 
transaction writing the full copy. The significance 
of this increase depends on the capabilities of the 
disk hardware and software, etc. 

• We can wait until the commit segment containing 
the first modification to p is about to be overwritten, 
and write a full copy to the safe then. This approach 
requires keeping track of how much space is left on 
the safe and insuring that we can always make the 
necessary number of full copies in the worst case. 
Determining the absolute minimum space required 
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is possible but complex. A simpler method is to keep 
room for all cache resident changed pages that do 
not have a full copy on the safe. Delaying full copies 
until the last moment can also hold up committing 
transactions. 

• We can make a full copy sometime between the two 
extremes of the previous methods. We can wait un­
til we are getting close to overwriting the first com­
mit segment, but make the full copy when the I/O 
channel to the safe is otherwise idle. This method 
reduces interference between safe mana'gement and 
committing transactions. 

To manage any of these schemes we need to know 
whether any given cache page has a full copy on the 
safe, and if so, where that copy is (so we will know when 
it is about to be overwritten). To do this, we use the 
safe field of the cache entry to indicate whether and 
where the page has a full copy on the safe. The code 
of Scheme I manages this field properly. Note that writ­
ing some atoms from a page will not cause safe to be 
changed. However, as a special case, if a transaction 
modifies a whole page, we can write the whole page to 
the safe, and set safe appropriately, rather than writing 
it as atoms (our code does not show this). 

Below we present code for the simplest implementa­
tion of Scheme 11: make a full copy of a page whenever 
the page is modified and has no full copy on the safe. We 
assume that there are routines to manage the buffering 
of modified atom information: WriteStart, WriteAtom, 

and WriteEnd. Full copies are written separately, before 
the atom data of a transaction. For simplicity, we have 
assumed that there is always some atom data, so that 
we do not have to consider whether to flag a full copy 
page as the last one of a commit group. This would be 
easy to incorporate into an actual system, however. 

Recovery is subtle in Scheme 11. We can establish the 
end of the safe as before, but setting up SafeBegin is 
tricky, since safe.begin may be in the middle of atom 
pages. However, atoms can be ignored until a full copy 
of their page is found. Such a full copy either exists 
(making the atoms redundant) or does not (the page 
was forced to the database, also making the atoms re­
dundant). So we simply skip any atom data at the be­
ginning, as well as atoms occurring before a full copy of 
their page. 

TCommitII (t) 
A <--- {alt E Readers(a) - Writers(a)}; 
for each a E A do 

Readers( a) <--- Readers( a) - {t}; 
WriteStart(); (sets up atom buffering) 
A <--- {alt E Writers(a)}; 
D <--- {Page(a)la EA}; 
n <--- IDI; 
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i +- OJ 

for each d E D do 
A+- {a lt E Writers(a) and Page(a) = d}; 
c +- InstallCopYI(d, t, A); 
if cache[ c ]. safe = nil then 

WriteSafe( c); 
else 

for each a E A do WriteAtom{c, a ) ; 

(note: all atoms buffered until the end) 
for each a E A do 

Writers(a) +- OJ 
Readers{a) +- OJ 

WriteEndOj (finish writing) 

WriteEndO 
n +- (number of pages needed)j 
FreeSafe(SafeSeqNum + n - SafeSize); 
(write out buffered atom information); 
(each page still has .seq and . last); 

RecoverIIO 
for each c do MakeFree(c)j 
SafeBegin +- SafeFirstII 0; 
SafeSeqNum +- SafeLastOj 
s' +- SafeBegin; 
while s' ::; SafeSeqNum do 

s +- s' mod SafeSizej 
if safer s] is a full copy page then 

c +- safe[s].cachej 

else 

SafeFirstu 0 

cache[ c ].data +- safer s ].dataj 
cache[ c ]. status +- original; 
cache[c].page +- safe[s].page; 

cache[c].changed +- truej 
cache[c].safe +- safe[s].seqj 
s' +- s' + 1; 

s' +- next page after the commit groupj 
for each atom a E the commit group do 

c +- FindOrig(Page{a))j 
if c i= nil then 

copy atom data into cache[c]; 

s +- safe. begin; 
while safe[s mod SafeSize] is an atom page do 

s +- s + 1; 

return Sj 

5 Conclusions and Directions for 

Further Research 

We have presented two schemes that provide finer 
grained concurrency control for the database cache. The 
most obvious direction to take now is to implement these 
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schemes and see how they work. There are several as­
pects that might be explored: 

• The replacement policy for the cache and the advis­
ability of, and algorithms for, a background process 
to free cache slots and force pages to the database. 

• Comparison of EB, Scheme I, and Scheme 11 along 
the lines of the performance studies reported by EI­
hard and Bayer. 

• Investigation of alternatives regarding the creation 
of originals in the cache when a page not in the 
cache is locked for writing. 

• Consideration of the various safe management (forc­
ing) policies possible for Scheme 11. 

• Testing the effects of different atom sizes on the per­
formance and behavior of the system. 

• Comparison of any of the schemes with their corre­
sponding version using optimistic concurrency con­
trol instead of two-phase locking. 

While we leave a number of questions unanswered, we 
have shown with Scheme I that fine grained concurrency 
control for the database cache is not difficult to devise, 
should not be complicated to implement, and will offer 
improved concurrency. Whether Scheme 11 offers real 
advantages over Scheme I remains to be seen. While 
finer grained physical locking can improve concurrency, 
greater gains might be made by taking the semantics 
of higher level operations into account, as suggested in 
[Schwarz and Spector 84, Weihl and Liskov 85]. 
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