
The Gutenberg Operating System Kernel
1

Panayiotis Chrysanthis, Krithi Ramamritham, David Stemple, and Stephen Vinter ’

Department of Computer and Information Science

University of Massachusetts Amherst MA. 01003

ABSTRACT

The Gutenberg system is a port-based, object-oriented operating
system kernel designed to facilitate the design and structuring
of distributed systems. This is achieved by providing primitives
for controlling process interconnections and thereby controlling
access to shared resources. Only shared resources are viewed as
protected objects. Processes communicate with each other and
access protected objects through the use of ports. Each port
is associated with an abstract data type operation and can be
created by a process only if the process possesses the privilege to
execute that operation. Capabilities to create ports for request-
ing operations are contained in the capability directory which is
a kernel object. At any time, each process is associated with a
single subdirectory of the capability directory designated as its
active directory.

This paper describes the design philosophy and the struc-

ture of the Gutenberg kernel. First, it discusses the principles
and motivations behind the Gutenberg design. Then, it presents
the structure, contents and operations of kernel objects and dis-
cusses their use in structuring access to protected user-defined
objects. Also discussed are the salient aspects of the distributed
Gutenberg kernel. A brief comparison with other related sys-
tems is given.

1 INTRODUCTION

Modern distributed operating systems must be designed to fa-
cilitate structuring distributed computations in an understand-
able and reliable manner that is suitable for validation. Experi-
ence in programming languages and in controlling complexity of
large software systems has shown that the strongly typed object
paradigm and its associated information hiding can be used to
produce manageable and understandable systems. In large dis-
tributed systems, lack of a corresponding clean, well-structured
interprocess communication paradigm leads to more complexity
than is required by the nature of the distribution alone. This
points to the need for an efficient mechanism which structures
all interprocess communications along the abstract data type
lines.

‘This material is based upon work supported in part by the National
Science Foundation under grants DCR-8403097, and DCR-8500332.

*Stephen T. Vinter’s current address is: BBN Laboratories, Cambridge,
M&3%

This paper deals with the design of such a mechanism, the
distributed Gutenberg kernel [11,12,7,8]. The Gutenberg Op-
erating System Kernel, currently being developed at the Uni-
versity of Massachusetts, takes a unique approach to interpro-
cess communication, provides multiple programming language
support, and attempts to minimize overheads. The following
three salient features of Gutenberg provide for the controlled
establishment of communication connections which serves the
goal of understandability and verifiability, and should contribute
to its better performance compared to previous communication
schemes:

the adoption of port-based communication, whereby inter-
process communication is solely by means of ports, queue-
like objects which are managed by the kernel.

the adoption of non-uniform object-orientation, whereby
only interprocess communication, but not module inter-
connections within a process, are structured and controlled
by means of capabilities; and

the use of a capability directory, which expresses all po-
tential process interconnections in the system and is a
distributed persistent object, maintained and manipulated
only by the kernel.

Principles underlying the Gutenberg Kernel. The
Gutenberg system evolved from the following series of design
decisions concerning the nature of communication and protec-
tion in the system.

Limit the responsibilities of the kernel. Operating systems
that support the definition and protection of arbitrary objects
traditionally have had performance problems because of the
maintenance of protection domains and the overhead of dynamic
access checks, e.g. Hydra 116) and iMAX [4]. We hoped to re-
strict the overheads of the kernel by taking a non-uniform ob-
ject orientation, in which only resources shared by different pro-
cesses need to be structured as objects at the operating system
level. We believe that conventional mechanisms for protecting
unshared data (e.g., local variables) are adequate and desirable,
from both a downward compatibility and an efficiency viewpoint.
Conventional memory protection mechanisms (e.g. page tables)
ensure that the local data of processes are not accessible to other
processes. Gutenberg depends on programming languages to
provide static type-checking for self-protection. Thus, although
local data are not necessarily object-oriented (depending on the
programming language), shared data are required to be object-
oriented. An underlying assumption in Gutenberg is that the
granularity of objects is medium to large, a size adequate to
amortize the cost of the interprocess communication required to
access the object.

Programming language independence. There should be no
requirement that a specific programming language or that only

1159

object-oriented languages run under the Gutenberg system ker-
nel. In fact, non-object-oriented languages can achieve an ob-
ject oriented view of other processes through the use of kernel
primitives Ill]. The system is designed to support applications
implemented in any programming language.

Resources are directly manipulated only by their managers.
Managers are processes that synchronize the operations on an
object (i.e., a shared resource). A process managing an ob-
ject is the only subject able to directly manipulate the object.
The process performs the operations, in part, by invoking kernel
primitives for manipulating kernel objects.

Object sharing is via interprocess communication. Processes
do not share address spaces. They can interact only through
interprocess communication using explicit message passing. An
operation can be performed on the object only as a result of a
request from another process via interprocess communication.
Processes are provided with communication primitives allowing
both synchronous and asynchronous communication.

Interprocess communication connections are established us-
ing junctional addressing [12). Processes use communication
channels called ports to request operations on objects. A port
can be used to request an operation only if it was created for
that purpose. Ports are created by indicating the function of
the port (viz., to request an operation), not by identifying a
particular process.

The kernel controls access to shared objects by controlling
interprocess communication. An operation may be requested
only by transmitting the operation request over a port to the
object’s manager. By limiting the use of ports and constraining
their use to request a specific operation on a specific object,
access to the object is controlled.

Details of the implementation of the communication mech-
anism are hidden jrom the processes using it. Ports are them-
selves objects with a small set of operations defined on them.
They are managed by the kernel. The representation of ports
and details of message transmission and reception are hidden
from communicating processes.
-.

Privileges persist in a single kernel-managed structure.
Gutenberg recognizes that privileges need to persist in the sys-
tem independent of the execution of processes. Rather than
allowing privileges to be placed on secondary storage in user ob-
jects (hidden from the view of the kernel), privileges that are not
dependent on the existence of a process are stored in a kernel
managed structure called the capability directory. This direc-
tory is shared by the processes in the system. Being physically
distributed, it can be designed to ensure availability and reliable
access despite communication and node failures. However, since
it is logically unified, i.e., appears as a single globally address-
able entity, the physical distribution will be transparent to its
accessors. Transient capabilities of a process, i.e., capabilities
that exist only as long as the process is active, are kept in the
process’ c-list.

The above design principles made it possible to use Guten-
berg as the basis for a distributed operating system for the fol-
lowing reasons. The use of resource managers is a common ap-
proach to structuring software in distributed systems. Second,
the logical separation of process address spaces in Gutenberg
corresponds to the physical realization of processes in a dis-
tributed system. Third, the close association of communication
and protection contributes to decentralized access authorization.

The rest of the paper is structured as follows: Section 2 in-
troduces the structure and the contents of the kernel objects.
User-defined objects, type creation, and manager instantiation
are the subject of section 3. Issues related to the dynamic con-
trol of interprocess communication are also discussed in section
3. The distributed kernel is examined in section 4. Section 5
contains a brief comparison of Gutenberg with related systems.
We conclude with a section summarizing our approach and fu-
ture work.

2 GUTENBERG KERNEL OBJECTS

The Gutenberg kernel itself is structured as a set of cooperative
abstract data type managers. Furthermore, the kernel is viewed
by the processes as an abstract data type manager of kernel
objects with the kernel primitives as the corresponding abstract
data type operations. There are four types of kernel objects:
processes, ports, capability directory and transient capabilities.

2.1 Processes

A process is an independently schedulable unit of computation
with the ability to communicate with other processes. Each pro-
cess is represented by a unique process control block, abbreviated
PCB, which resides within the kernel address space.

Processes can communicate only through explicit message
exchanges over communication channels called ports. As a re-
sult, processes do not share address spaces, eliminating the need
for synchronization in memory access and generalizing the pro-
cess interactions in a distributed system.

2.2 Ports

A port is a kernel object that processes manipulate by invoking
kernel primitives. It is a communication channel between a pair
of processes in one-to-one topology connecting just ane pair of
processes at a time. Typically, one process has the privilege to
place messages on the port, which behaves as a queue of mes-
sages awaiting delivery. The other has the privilege to remove
messages. This communication can be either synchronous or
asynchronous.

The basic interprocess communication of the Gutenberg sys-
tem is based on the client/server model, in which the creator of
a port, called the client, communicates with the port server, the
manager of some shared object, for the purpose of requesting
an operation on the object. A port is established with func-
tional addressing: A client creates a port by naming the service
it would like to request using the port rather than by identi-
fying the server process. As a result, the server process does
not have to be in existence prior to the creation of the port.
The advantage of this strategy is that it allows the dynamic
creation of server processes. In fact, in Gutenberg, process cre-
ation and destruction are byproducts of port operations. There
are no primitives for process creation and destruction: processes
are hidden from the programmers, the lowest level of abstraction
being the leoel of operations on the ports.

Therefore, the only way a process can request an operation
on a shared Dbject is to create a port and execute a kernel
primitive on that port. The possible kernel primitives on ports
that a client is entitled to, include SEND, RECEIVE, and SEND-
RECEIVE (to receive the result of an operation based on the
parameters sent).

In order to restrict the use of ports to the functionality for
which they have been created, a port is typed as either a Send,
Receive, or Send-Receive port. This typing specifies the direc-
tionality of the port and the kernel primitives used by the client
to transmit messages through it. Consequently, it specifies the
kernel primitives that the server of the port may use. Figure 1
shows the -port primitives used by clients and servers for each
port type. Send and Receive ports are unidirectional. Send-
Receive ports are bidirectional, allowing the port’s client to send
a message and receive a response from the port’s server.

Port typing also determines the format of messages that may
be placed in the port and the object operation associated with
this, which identifies the operation that will be requested via the
port. Each port is represented by a unique channel control block,
abbreviated CCB, which resides within the kernel address space.
CCB contains the port type along with information about the

1160

__-__
Port Type Client Primitives Server Primitives

SEND RECEIVE

S REVOKE REFUSE

”
SR REVOKE SEND

EXAMINE REFUSE
EXAMINE

Figure 1: Port primitives used by clients and servers for each
port type

status of the client and server processes and the owner of the
port. Ownership represents the privilege to destroy the port.
The creator of a port becomes the initial owner of the port.
As part of the sharing mechanism supported by the Gutenberg
system, a process may transfer part of its privileges, including
port privileges, to another, over ports.

Here is a short summary of the functionality of port primi-
tives

CREATE-PORT (only a client primitive) creates a port of a
specific type. The type is specified via a parameter to the
call.

DESTROY-PORT (only a client primitive) destroys a port.
The caller must be the owner of the port. The port-id is
specified via a parameter to the call.

SEND puts a message on a port. The system has two kinds of
SEND primitives: acknowledge-SEND and no-acknowledge-
SEND. If the SEND is an acknowledge-SEND, the sending
process is informed when its correspondent over the port
receives the message. The sender can choose to block until
the receipt of the acknowledgement.

RECEIVE requests the next message from the port.. The caller
elects via a parameter to the call, to either block, if there
is no message on the port, or execute concurrently with
the servicing of the request.

SEND-RECEIVE (only a client primitive) puts information,
termed request details, on a port for the server to use in
satisfying the request. When the server responds to the
request by executing a SEND, the server’s reply is returned
to the client as in RECEIVE. The caller may block until the
server replies, or execute concurrently with the servicing
of the request.

ACCEPT-REQUEST (only a server primitive) is used to ob-
tain access to newly created ports and to query a set of
existing ports to see if new messages have arrived. The
caller may block until the kernel replies, or execute con-
currently with the servicing of the request.

GETDETAILS gets request details from a port. The caller
(the port’s server) may block if there is no pending SEND-
RECEIVE, and thus no request details, on the port, or
it may execute concurrently with the satisfaction of its
request.

EXAMINE examines messages on the port without removing
them.

REFUSE rejects a client’s request for service as unsatisfiable
and notifies the requester by setting a status.

REVOKE revokes privileges sent as part of request, details by
a SEND-RECEIVE or in a SEND message up to receipt of
the message ‘.

The choice of these primitives during system design was
based on the desire to keep their number and complexity to
a minimum while providing users a set, of primitives for building
systems of communicating processes in arbitrary topologies with
reasonable ease. Thus, we have added to the basic SEND and
RECEIVE primitives the bidirectional SEND-RECEIVE and its
receiving reciprocal GETDETAILS in order to allow such func-
tions as reading a record with a given key (the key being sent
as request details) or a remote procedure call (the procedure’s
parameters being sent as request details) to be implemented
by a single primitive. However, it should be noted that the
asynchronous mode makes the SEND-RECEIVE operation more
robust, and flexible than a remote procedure call semantics.

2.3 Capability Directory

Gutenberg controls the creation and use of ports through the use
of capabilities. All capabilities for accessing potentially sharable
objects are maintained in a logically unified structure called the
capability directory. Thus, the capability directory expresses
all potential process interconnections in the system. This is
similar to the UNIX file directory [lo] which provides uniform
treatment of files, devices and interprocess communication. The
capability directory is a stable structure in that its existence does
not depend on the existence of any process. It is also shared

since more than one process may concurrently access the same
segment of the directory. It should be noted that no portion of
the directory is owned by any process at any time.

2.3.1 Capability Directory Nodes

Capabilities within the capability directory are further organized
into groups called the capability directory nodes, abbreviated
cd-nodes. They are identified by both a system-wide unique
name created by and visible only to the kernel, and by user-
specified names. In general, cd-nodes contain other information
along with capabilities. Cd-nodes are linked to other cd-nodes
through capabilities. The same cd-node may be linked to sev-
eral cd-nodes under possibly different user-specified names. All
capabilities pointing to a cd-node have equal status. That is, cd-
nodes are unique and are not contained within other cd-nodes.
A cd-node exists independently of any other cd-node and disap-
pears along with the last capability link to it, if it is not explicitly
destroyed. In this way the capability directory is structured as
a graph in which nodes (each node corresponds to a cd-node)
are connected by edges corresponding to capabilities. Figure 2
shows a sample capability directory.

The capability directory may contain two kinds of cd-nodes:
subdirectories and manager definitions (see figure 3). Note that
an asterisk next to attribute names used in the figures desig-
nates that the attribute cannot be modified by the users but is
maintained by the kernel.

A subdirectory is a list of capabilities. It is merely an organi-
zational unit of the capability directory, similar to a file directory
in a file system. At any time, every process in the system is as-
sociated with a single subdirectory in the capability directory
designated as its active directory. The active directory of a pro-
cess is the set of capabilities from the capability directory that
a process may use or exercise.

3A scheme for revoking transferred capabilities anytime after the transfer

is discussed in 18).

1161

subdirectory cd-node

mam.~er capability

subdirectory capability

0 operalion capability

0 coopration clw capabibty

- operation capabdity/mana~er link

Figure 2: Example of Capability Directory Segment
This is a sample capability directory of a basic mail system.
The Mail Maintenance Directory which contains the Mail Sys-
tem Manager Definition is created by the creator of the system
and stored in the System Maintenance Directory. The two oper-
ations defined on the Mail System, namely the Mail and Read,
are contained in the login process subdirectory. Each user gets
capabilities for these operations during the login procedure. In
the default subdirectory of the Mail System, operations on the
File Manager exist that permit access to files.

The active directory of a process is one component of a pro-
cess protection domain. The other component is its current set
of transient capabilities; this is discussed later. A process may
dynamically switch from one protection domain to another by
changing to a new active directory or changing the contents of
its current active directory, if it has the privilege to do so.

Manager definitions constitute one of the novel features of
the Gutenberg system. All processes in the system are instan-
tiated from manager definitions. Thus, a manager definition
provides information necessary for instantiating the manager
process, as, for example, a capability for the file containing the
executable image (object module) of the process, and the initi-
ation protocol (see section 3.2) for determining the manner in
which ports are connected to manager processes. It also includes
a capability for a subdirectory containing the privileges that all
processes instantiated from the manager definition will initially
possess.

One other component of a manager definition node is a set
of port descriptors. This set corresponds to the set of operations
defined within the manager. Each port description contains a
generic operation name (a name specified by the user at man-
ager creation time), and the type of port through which a user
requests this operation.

Capabilities in cd-nodes inherit all the properties of the ca-
pability directory in that they are stable and sharable but are
not owned by processes. These capabilities are called stable ca-
pabilities and can only reside in the capability directory.

Capabilities in Gutenberg consist of three parts: a specific
kernel primitive, a list of parameters for the primitive, and a
list of primitives that can be used to manipulate the capability
itself, which are called capcaps, for capabilities on a capability.

A capability permits a process which possesses it to invoke
the specific kernel primitive it contains. This primitive is also
called primary kernel primitive in order to distinguish it from

Subdirectory cd-node Contains a set of capabilities, and has
the following attributes:

subdirectory id* system-wide unique identifier of the sub-
directory.

use count’ the number of stable and transient subdirec-
tory capabilities (including those in manager definition
cd-nodes) pointing to this cd-node.

active directory count’ the number of processes having
this cd-node as their active directory.

tianager Definition Node Provides information necessary for
instantiating a manager process. The manager definition
cd-node has nine attributes.

manager id’ system-wide unique identifier of the manager
cd-node.

initial active directory a subdirectory capability point-
ing to the subdirectory cd-node that will become the
active directory of t&e manager process when it is ini-
tiated.

initial process image a privilege (represented by a coop-
eration class capability) for a file containing the object
code to be executed when the process is initiated.

manager dependency indicates whether the existence of
a manager process is dependent on the existence of
ports connected to it.

initiation protocol indicates when a new manager process
is created or an existing One is connected to when a port
to the manager is created.

port descriptors is the list of (port type, generic opera-
tion name) pairs for operation capabilities that may be
linked to this manager cd-node. The port type specifies
whether it is a Send, Receive or Send-Receive port as
well as the format of the arguments that may be passed
over the port as part of a message or request-details.

manager me count* the number of manager capabilibies
pointing to this cd-node.

operation use count’ the number of operation capabili-
ties linked to this cd-node.

port use count’ the number of ports associated with this
cd-node.

Figure 3: Attributes of Capability Directory Node

1162

Operation Capability Provides the privilege to create ports.
Operation capabilities have six attributes:

operation name user-specified name of the operation.
This name becomes the object operation of created
ports. This name also serves to identify the operation
capability.

generic operation name* name of the corresponding op-
eration defined in the manager definition cd-node. This
name can be the same as or different from the opera-
tion name.

port type* specifies the port type for this operation that
may be linked to the corresponding manager definition
cd-node. The port type can either be Send (S), Receive
(R), or Send-Receive (SR).

message format* specifies the arguments that may be
passed over the port as part of the message, and the
request-details in case of Send-Receive port type.

cooperation class(es) restrict how the port will be con-
nected to a manager process.

manager id* a pointer, global name, to the manager to
which this operation capability is linked.

l?he capcaps of the operation capability are: COPY,
TRANSFER, REGISTER, REMOVE, HOLD, MERGE,
MODIFY-CAP, MODIFY-CAPCAP, and VIEW-CAP.

Figure 4: Attributes of an Operation Capability

the other kernel primitives that manipulate the capability itself.
The capcaps determine how the capability may be modi-

fied and used. Capcaps include the privilege to transfer (to
another process), copy, register (make stable), hold (make tran-
sient), merge (with other mergeable capabilities), view, and mod-
$y the capability. Each capcap may be active, in which case the
corresponding kernel primitive may be invoked for the capabil-
ity, or inactive, in which case the corresponding kernel primitive
cannot be invoked on the capability. Not every capcap makes
sense for each type of capability. When we discuss the specific
capabilities next we point out the capcaps that are applicable.

The parameter list may include names of cd-nodes as well as
other capabilities (most notably, the cooperation class capability
which is discussed later).

2.3.2 Types of Capabilities

There are four different types of capabilities that may be stored
in the capability directory: operation, subdirectory, manager defy
in&ion, and cooperation class capabilities.

An operation capability (figure 4) represents the privilege to
create a port for use in requesting a particular operation on a
given user-defined object type. Thus, the primary kernel primi-
tive of the operation capability is Create-port. One parameter
of the operation capability is the operation name, which becomes
the operation requested via ports created from this capability.
This name also serves to identify the operation capability in the
subdirectory in which the capability is contained. Another pa-
rameter of the capability is the name of a manager definition
cd-node in the capability directory that the operation capability
is linked to. This manager definition is used by the kernel to
determine whether a newly created port is to be connected to
a new server process instantiated from the manager definition
or to an already existing one. It is also used by the kernel in

conjunction with a third parameter, the generic operation name,
to determine whether the requested operation is currently sup-
ported by the manager; this is checked by examining whether
the operation generic name is part of the port descriptors in the
manager definition.

The primary kernel primitive in the manager definition ca-
pability (figure 5) is Create-operation, which is used to create
operation capabilities, linked to the manager definition named
in the capability. Since an dperation capability can be used to
create a port to access a protected object, a manager definition
capability signifies the privilege to provide other processes with
specific types of access to their objects. This effectively is the
privilege to control access to the object’s type.

The primary kernel primitive associated with the subdirec-
tory capability (figure 6) is Change-directory. The Change-
directory primitive is used by a process to change its active di-
rectory to the subdirectory named in the subdirectory capability.

The subdirectory capability also contains a set of subdirec-
tory rights. When a subdirectory capability is exercised to make
a subdirectory active, the subdirectory rights override the cap-
caps of each individual capability in the subdirectory, and this
further restricts the use of the capabilities registered in the sub-
directory. This restriction during the changing of the active di-
rectory, referred to as privilege filtering, allows a fine granularity
of control over the use of capabilities within an active directory.
This is vital for supporting an effective mechanism that allows
processes to switch from one protection domain to another dy-
namically. In this situation, when a process wants to switch to
a new protection domain, it has to traverse the capability direc-
tory and change to a new active directory. While traversing the
capability directory, a process may have to visit intermediate
subdirectories which contain capabilities that the process need
not be authorized to exercise or even view. By deactivating all
rights except the CHANGE-DIR along the path between the

danager Definition Capability Provides the privilege to cre-
ate operation capabilities. The manager definition capability
has the following attributes:

manager definition name user-specified name used to
identify the manager definition cd-node to which the
created operation capabilities are linked to. This name
also serves to identify the manager definition capabil-
ity.

cooperation class(es) restrict who may create operation
capabilities linked to the definition manager. Posses-
sion of one of the specified cooperation class capabili-
ties is required when exercising the Create-operation
primitive.

manager id* a pointer, global name, to the manager defi-
nition cd-node corresponding to this capability.

rhe capeaps of the manager definition capability are:
COPY, TRANSFER, HOLD, REGISTER, REMOVE,
DESTROY-NODE, MERGE, MODIFY-CAP, MODIFY-
NODE, MODIFY-CAPCAP, VIEW-CAP, and VIEW-
NODE.

Figure 5: Attributes of a Manager Definition Capability

1163

3ubdirectory Capability Provides the privilege to change the
process’ active directory. The attributes are:

subdirectory name user-specified name of the subdirec-
tory cd-node which becomes the process’ active di-
rectory when the change-directory privilege is ex-
ercised. This name also serves to identify the subdi-
rectory capability.

cooperation class(es) used to restrict who may make the
subdirectory active. When exercising the Change-
directory privilege, a process must possess one of
specified cooperation class capabihties or else the prim-
itive is illegal.

subdirectory right restricts how cd-nodes and capabil-
ities contained in the subdirectory may be used;
each right may be ON (active) or OFF (inactive);
the rights sre: TRANSFER, COPY, REGISTER,
REMOVE, HOLD, MERGE, VIEW-CAP, VIEW-
NODE, MODIFY, DESTROY-MANAGER-NODE,
DESTROY-DIR-NODE, CHANGEDIRECTORY,
CREATE-PORT, and CREATETYPE.

subdirectory id* a pointer, global name, to the subdirec-
tory cd-node corresponding to this capability.

‘he capcaps of the subdirectory capability are:
COPY, TRANSFER, REGISTER, REMOVE, HOLD,
DESTROY-NODE, MERGE MODIFY-CAP, MODIFY-
CAPCAP, VIEW-NODE and VIEW-CAP. ~-__.--__---- ---. --.~..-..-.

Figure 6: Attributes of a Subdirectory Capability

______ __.

Cooperation Class Provides a wild card privilege that may be
merged with any other capability type. It has two attributes:

class name user-specified name used to identify the coop-
eration class in the current protection domain.

class id* system wide unique identifica.tion of cooperation
ClaSS.

The capcaps of the cooperation class capability are:
COPY, TRANSFER, HOLD, REGISTER, REMOVE,
MERGE, VIEW-CAP, MODIFY-CAP, and MODIFY-
CAPCAP

Figure 7: Attributes of Cooperation Class Capability

initial and goal subdirectory, the mechanism for switching to a
new domain becomes simple, and the security of the system is
not compromised.

The fourth type of capability, the cooperation class capa-
bility, represents the privilege of a process to participate in a
cooperative activity identified by a unique identifier, the class
id (figure 7). The cooperation class capability may be associ-
ated with any other capability type, thus providing a wild card
privilege. Hence, the primitive associated with this capability is
ANY denoting its wild card property. When a cooperation class
capability is associated with either a subdirectory or a man-
ager definition capability, it restricts the invocation of the cor-
responding primary primitive to the processes which possess the
cooperation class capability. In effect, such processes become
members of the cooperative activity represented by the capabil-
ity. In this way cooperation class capabilities complement the

role of capcaps by determining how these capabilities may be
exercised. In the case in which a cooperation class capability is
associated with an operation capability, it specifies a coopera-
tive activity, for example a communication with a manager of a
shared object. Here, the cooperation class capability can be used
as a synchronization token or to identify either an instance of a
manager or a particular instance of an object. It could also be
used to identify a transaction, a file, or a process. It can be used
to classify the users in the system into groups and divisions for
administrative reasons. New cooperation class capabilities can
be created, on request, by the kernel.

2.4 Transient Capabilities

Port capabilities and copies of stable capabilities from the ca-
pability directory are the transient capabilities. Two features
distinguish the transient capabilities from the stable capabili-
ties: they are owned by a single process, and therefore cannot
be shared, and their existence is dependent on the existence of
the process that owns them. All the transient capabilities a
process owns exist only for the duration of the existence of the
process and are destroyed when the process terminates. The
transient capabilities possessed by a process, are stored in the
process’ capability list, or c-list. Capabilities in the c-list, as pre-
viously stated, together with the active directory of a process,
form the protection domain of the process. Thus, a process, in
addition to the capabilities in its active directory, may exercise
the capabilities in its c-list.

A transient capability comes into existence when a process
moves or copies a capability from its active directory, into its
c-list (using a primitive called HOLD), when it receives the ca-
pability from another process via a port, when it creates a capa-
bility by invoking the proper create primitive, or when it creates
a port. In the last instance, two port capabilities are generated
to access the created port, one for the client of the port and
the other for t,hn server of the port. A process moves a capa-
bility in its active directory into its c-list in order not to lose
the capability when it changes its active directory to another
subdirectory.

The part of the c-list in which the kernel maintains the port
capabilities of a process is called the p-list. The port capabilities
are ezclusive and as such, port capabilities are inherently tran-
sient, cannot be shared or copied. However, either the client
or the server process may transfer its port capability to an-
other process. The transferring may be either temporary (the
semantics of a lend with the ownership retained) with the SEND-
RECEIVE primitive or permanent with the SEND primitive. In
the latter case, the ownership of the port is transferred along
with the port capability.

The only capcap associated with a port capability is trans-
fer. The transfer capcap in the client’s port capability is set to
the value of the corresponding transfer capcap in the operation
capability used. If the used operation capability is stable, then
the transfer right of the client’s active directory is also taken
into consideration. The transfer capcap in the server’s port ca-
pability is always enabled. A server process may transfer a port
that it serves, to another server as long as the port functionality
is preserved. This is essential for supporting the implementa-
tion of load balancing algorithms and realizing a hierarchy of
object managers, features which can improve the performance,
flexibility and reliability of a distributed system. A common ex-
ample of a hierarchy of managers is a manager structured based
on the master/slave model, in which a process can only create
a port for requesting an operation to the master process. The
master process decides which slave process should service the
request and passes the port capability to it. A process may re-
set the transfer capcap of the port capability when it passes the
capability to another process, to prevent further transferring.

1164

Transient capabilities contribute to the ‘flexible use of capa-
bilities in Gutenberg without compromising the security of the
system because the c-list is saved in the PCB and may only be
manipulated through kernel primitives.

The kernel primitives that manipulate the capabilities both
within a c-list and an active directory, fall into two classes:
generic and special primitives. Generic primitives are further
classified into constructive in that they do not affect the par-
ticipating capabilities, and destructive. Constructive primitives
are designated by the ending -C attached to their names. Re-
call that a number of capcaps and rights correspond to each
primitive, and must be active in the capability on which the
primitive is invoked, and must be allowed by the rights of the
active directory of the invoking process.

The eleven generic kernel primitives are: Create, Register,
Register-C, Remove, Hold, Hold-C, Drop, View, Modify, Merge
and Merge-C. Here is a brief description of their functionality
(Details concerning the primitives may be found in [3]).

Create These primitives create a capability. Create-port, and
Create-operation are instances of this generic primitive.
A Create always creates a transient capability which may
then be registered or transferred with all or part of its priv-
ileges retained. Creating an operation capability requires
a manager capability, and creating a port capability re-
quires an operation capability. Other Create primitives
require no privilege.

Register and Register-C These primitives make a transient
capability, or one derived from transient capabilities, sta-
ble. A process may reset part of the capcaps and/or rights
of a capability, when it registers the capability. The pur-
pose of these primitives is two-fold: to allow a process to
store a capability for future reference in another session;
and, to allow a process to share a capability with other
processes which are not currently instantiated, but share
access to a subdirectory.

Remove These primitives delete a stable capability from the
active directory.

Drop These primitives delete a transient capability from the
c-list.

Hold and Hold-C These primitives make a stable capability,
or one derived from stable capabilities, transient. A pro-
cess may reset part of the capcaps and/or rights of a capa-
bility, when it holds the capability. The purpose of these
primitives is to allow a process to retain a capability from
its active directory when it changes its active directory to
another subdirectory.

View These primitives bring a copy of a transient or stable ca-
pability, or a cd-node into the address space of a process.
Partial views are also facilitated in the case of a subdirec-
tory; it is possible to bring capabilities of a specified type
into the address space of the process. The purpose of these
primitives is to allow a process to examine capabilities it
possesses, and, if desired, use this information to modify
or create new capabilities.

Modify These primitives allow a process to modify an existing
transient or stable capability, or a cd-node.

Merge and Merge-C These primitives allow a process to
merge two compatible capabilities to obtain another. Two
capabilities are compatible if they are of the same type and
have identical non-modifiable attributes (attributes whose
values cannot be changed with the Modify primitive).

As has previously been discussed, the manager definition and
subdirectory capabilit,ies are slightly different from other capa-
bilities. These capabilities contain pointers to manager defini-
tion and subdirectory cd-nodes, respectively. When one of these
capabilities is created with the Create primitive, the cd-node is
created as well. These cd-nodes exist in the system until either
they are explicitly destroyed by using the proper Destroy prim-
itives, ot all of the capabilities that point to them are deleted
using the Remove or Drop primitives.

The kernel uses the c-list and the active directory of a pro-
cess to check whether it has a legitimate privilege for executing a
primitive it has requested. Therefore, the consistency and avail-
ability of the capability directory is fundamental to the correct
operation of the protection mechanism. As is commonly done
with resources in distributed systems, the capability directory is
physically distributed, though still logically unified, across the
distributed system as we discuss below.

3 USER-DEFINED OBJECTS

Recall that the Gutenberg kernel is not involved in the protec-
tion of objects that are purely local to a process. User-defined
objects are those objects managed by one process but accessible
by other processes via operations requested using ports. Here,
we discuss how user-defined objects are created, shared, and
protected.

3.1 Type Creation

User-defined types in Gutenberg are represented by manager
definition cd-nodes (figure 3). A manager definition is created
by a process invoking the Create-manager primitive. Recall
that no special privilege is required to invoke this primitive.

In invoking the primitive, a process must provide five parame-
ters: A cooperat,ion class capability identifying the file cnntain-
ing the executable image for the process; a subdirectory capa-
bility identifying the default directory, the subdirectory which
becomes the active directory of any process instantiated from
this manager definition; the operation list, the specification of
the operations that are implemented by the manager; the man-
ager initiation protocol, indicating how manager processes are
instantiated; and, the manager dependency indicating whether
a manager process will be destroyed when all ports connected
to it are destroyed.

Upon successful execution of the Create-manager primitive,
the kernel places a manager definition capability, pointing at the
new manager definition and containing its name, in the process’s
c-list. After the manager definition and the corresponding man-
ager definition capability are created, the process may use the
manager capability to invoke the Create-operation primitive to
create the operation capabilities for the type. These operation
capabilities can then be stored in the capability directory or
distributed over ports to processes wishing to use the type.

3.2 Manager Initiation Protocols

The manager initiation protocol specified when creating a man-
ager definition determines the manner in which ports ate con-
nected to the manager processes instantiated from the defini-
tion. It specifies whether all the object instances of a type are
managed by one process or each object is managed by different
processes. There are three initiation protocols in Gutenberg:
conservative, creative and class conservative. In the conservative
manager initiation protocol, a manager process is instantiated
from the manager definition only if there is no other manager
process executing in the system which was instantiated using this
manager definition. If such a process already exists, the port be-

1165

ing created is attached to this process. This protocol provides
the means to produce a manager process that manages all the
objects of a type, and to automatically connect port-creating
processes to this manager. Using this protocol, the manager
can be informed of the object being accessed at port-creation
time using a cooperation class capability. Instantiating more
than one conservative manager requires creating more than one
manager definition.

The creative protocol creates a new manager process from
the creative manager definition cd-node for each new port cre-
ated. This protocol allows a process to create a port to a new
process under all situations. This protocol allows a process to
isolate the newly created manager in order to ensure that the
manager cannot leak information. However, it cannot support
multi-port interconnections between a specific client and a spe-
cific server.

The third protocol is the class conservative manager initia-
tion protocol. It allows new managers to be instantiated selec-
tively based on the cooperation class capability supplied at port
creation time. The class conservative manager is typically de-
signed to manage one object of the type, and may serve multipie
ports from any number of processes.

In the class conservative protocol, when a port is created
using an operation capability, the kernel checks to see if a process
associated with the specified class id has been instantiated from
the manager definition pointed to by the operation capability. If
so, the port is connected to this manager. If not, a new manager
is instantiated and associated with the specified class id.

Both conservative protocols allow any two processes to com-
municate indirectly through a conservative process, although
they cannot establish direct, full duplex interconnections. How-
ever, using these protocols and by allowing processes to pass
port use privileges via ports, the one-to-one process intercom-
munication topology adopted by Gutenberg can be expanded to
arbitrary topologies. For a more detailed description of manager
initiation protocols, see [12].

5.3 Object Protection and Sharing

Once a type is created, distributing privileges to allow other
processes to use the object type corresponds, in Gutenberg, to
distributing operation capabilities linked to the manager defini-
tion. As has previously been discussed, for a process to access
a shared resource, a port is needed between itself and the pro-
cess managing the object. Establishing a port involves checking
for an operation capability in the active directory or c-list of
the requesting process. Thereafter the kernel performs access
authorization for a user-defined operation simply by checking
that the requesting process has the privilege to access the port
associated with the operation. Thus, creating and accessing
user-defined objects involves using kernel-defined capabilities to
authorize access to kernel-defined objects, and does not involve
checking user-defined capabilities as in other capability-based
systems.

In Gutenberg, process interconnections can change dynam-
ically through the transfer of capabilities on ports. There are
three ways in which one process can transfer some of its capabil-
ities to another; The transferred capabilities are always placed
on the receiving’s process c-list. Since the kernel is the man-
ager of the capabilities and ports, it monitors the transfer of
capabilities between processes.

The first method of capability transfer is the transfer of a
port capability. The sending process loses the port capability,
and therefore the privilege to execute the object operation asso-
ciated with the transferred port; the receiving process obtains
this privilege.

The second method of capability transfer is the transfer of an
operation capability (which can be associated with a cooperation

class) that can be used to create any number of ports to access
an object (identified by the cooperation class).

The third method of c.apability transfer is by registering the
capability to be transferred in a subdirectory and transferring
the subdirectory capability that points to it. Using this method
a process may transfer a number of capabilities at once with the
minimum communication overhead.

In all three methods, capabilities are transferred either by
SEND as part of the message or by SEND-RECEIVE as part of
the request details. These two mechanisms of capability trans-
fer are distinguished by the semantics of the transferring. The
transfer by SEND is permanent, whereas the transfer by SEND-
RECEIVE is temporary and the transferred capabilities can be
held only while the recipient is processing the request to which
it pertains. When the recipient executes the SEND that satisfies
the request, the kernel automatically returns the outstanding
capabilities to the process which executed the SEND-RECEIVE.
For more detailed discussion of the privilege transferring mech-
anisms as well as their implications see [8].

4 DISTRIBUTED GUTENBERG

KERNEL
An instance of the Gutenberg kernel is running on each site in
the system. From the objects that the kernel maintains only the
capability directory needs to be distributed. The other three
objects, namely processes, ports and transient capabilities, are
n’aturally distributed since processes always execute on a single
site, and ports and transient capabilities can only-be used by
the process which possesses them.

The capability directory is partitioned and replicated to en-
sure availability and reliability. Manager definitions are repli-
cated only at the sites in which manager processes from these
can possibly be instantiated. Subdirectories are replicated in lo-
cations where they are expected to be used and in a number of
other locations in a manner that meet the resiliency requirement
and balance the distribution of local directory storage space.
The site where a cd-node is created has a copy of that cd-node
and also keeps track of which sites have copies of that cd-node.

The set of capabilities and cd-nodes from the capability di-
rectory that resides on a site forms that site’s local directory.
The site’s local directory dynamically expands and contracts to
accommodate the needs of any process executing on the site.
Dynamic adjustments pertain only to the migration of subdirec-
tories; modifications to manager definitions are expected to be
relatively rare to justify their migration. A subdiretcory is mi-
grated only when processes make repetitive use of the capabilties
located there, justifying the move. Even then, only (lockable)
portions of the subdirectory are copied in a lory copy fashion.

Synchronization of access to components of the capability
directory is achieved with the use of two locking-based concur-
rency control schemes with the granularity of locks being on
portions of cd-nodes. For example, a subdirectory is associated
with three locks; one is used for the set of operation and cooper-
ation class capabilities; the second for subdirectory capabilities;
and the third for manager definition capabilities.

Two concurrency control schemes used are the primary two-
phase locking scheme [2] where a single copy is designated as the
site to gain all locks, and the basic two-phase locking scheme [2]
where to lock a cd-node for reading it is necessary to lock only
the local copy whereas a write requires obtaining the write lock
on all replicates of the cd-node. Which scheme is used for a spe-
cific cd-node depends on the likelihood of its predominant access
by processes on one site or on multiple sites, A dynamic recat-
egorization allows the kernel to adapt to the system behaviour
by changing the concurrency control mechanism for a cd-node
in response to the nature of its use.

A two-phase commit protocol is used to achieve a reliable

1166

distributed commitment and ensure atomicity. For a more de-
tailed discussion of issues involved in the distribution and the
approach adopted see [7].

5 A COMPARISON WITH RELATED
SYSTEMS

A large part of the improvement in programming languages has
come from the promotion of data and procedural abstraction
as a major tool for structuring modules. This led to the adop-
tion of abstraction and encapsulation mechanisms in Gutenberg,
as in many other systems, e.g. Argus [S], NIL [13]. While in
these two systems, the mechanism for dynamic module inter-
connection control is built within a programming language, the
approach taken in Gutenberg separates process interconnection
control from programming languages. Gutenberg supports the
dynamic control of process interconnections through the use of
capabilities. However, it is different from the other protection-
oriented operating systems such as Hydra [IS] and iMAX [4], in
that, it adopts a non-uniform object-orientation.

A few systems provide port-based communication facilities
using functional addressing 1121, but none ties protection so
closely to communication as Gutenberg does. The Accent sys-
tem is port-based and supports asynchronous communication
with process transparency [9]. Communication in Gutenberg
is also similar to the mechanisms used in Intel iAPX-432 [4],
DEMOS (I] and NIL (131. In all these systems, apart from NIL,
even though a communication link could be typed, thus restrict-
ing its use, they do not support the concept of restricting access
to shared objects by restricting the creation of communication
channels is not supported directly, as in Gutenberg.

As mentioned earlier, a unique feature of Gutenberg is the
capability directory, which contains stable capabilities in a uni-
fied structure controlled by the kernel. Other systems, such as
Hydra, iAPX 432, and CAL [5] allow capabilities to be stored in
inactive objects (i.e., data structures, as opposed to processes)
that are not kernel objects. The problem of how to allow such
objects to be permanently stored in secondary memory is noted
in (51. Having a unified structure for stable capabilities that is
separate from user-managed data facilitates their management
by the kernel and their use by application processes.

6 CONCLUSION

The Gutenberg system is a novel attempt to facilitate the de-
sign and structuring of distributed computations in an under-
standable and reliable manner that is suitable for validation.
The crux of the Gutenberg approach is the use of port-based
communication, non-uniform object-orientation and decentral-
ized access authorization using ports and the capability direc-
tory. This nonprocedural directory provides an abstract view of
the functional building blocks of a large system of distributed
cooperating modules and should serve the goal of understand-
ability and verifiability.

In this paper we discussed the design of the Gutenberg
kernel. In particular, we presented the kernel primitives, i.e.,
kernel-implemented operations for manipulating the capability
directory and ports. Since process creation and destruction are
byproducts of port operations, there are no explicit primitives to
deal with processes in Gutenberg. Gutenberg does allow users
to construct managers for user defined objects. Such manager
definitions are registered in the capability directory.

A Privilege in Gutenberg is represented by capabilities which
can have two levels of persistence, transient for those capabili-
ties which persist only as long as an owning process exists, and
stable for those capabilities in the capability directory, whose

existence is independent of processes. Gutenberg has mecha-
nisms for achieving transfer of privileges represented by both
transient and stable capabilities. Some of the highlights of these
mechanisms include:

l Using both unidirectional and bidirectional communica-
tion primitives and associating them with permanent
(unidirectional) and temporary (bidirectional) granting of
privileges in order to provide flexibility in privilege grant-
ing while keeping the kernel simple.

. Typing ports with respect to the ability to transfer privi-
leges on them in order to expedite communication in cases
where no privilege transfer can be made.

l Restricting ports to connecting one client process with one
server process in order to simplify interprocess communica-
tion in general and the transfer of privileges in particular.

Design and implementation of a Gutenberg kernel (built on
top of UNIX) is currently nearing completion. Experimentation
with this kernel should provide qualitative evaluation of the ad-
vantages of the Gutenberg approach.

References

[l] Baskett, F., Howard, J., Montague, J., ‘Task Communica-
tion in DEMOS,’ Proceedings of the 6th ACM Symposium
on Operating System Principles, November, 1977.

[Z] Bernstein, P., Goodman, N., ‘Concurrency Control in Dis-
tributed Database Systems,’ !CM Computer Surveys, vol.
13, no. 2, June 1983.

PI

[41

151

161

I’1

PI

PI

PO1

Chrysanthis, P.K., Ramamritham, K., Stemple, D. W., Vin-
ter, S.T., ‘The Gutenberg Operating System Kernel,’ Dept.
of Computer and Information Science Technical Report 86-
06, University of Massachusetts, February, 1986.

Cox, G., Corwin, W., Lai, K., Pollack, F., ‘A Unified Model
and Implementation for Interprocess Communication in a
Multiprocessor Environment,’ Intel Corporation, 1981.

Lampson, B. W., Sturgis, H. E., ‘Reflections on an Operat-
ing System Design,’ Communications of the ACM, vol. 19,
no. 5, May, 1976.

Liskov, B., Scheifler, R., ‘Guardians and Actions: Linguis-
tic Support for Robust, Distributed Programs,’ Proceedings
of the 9th Annual ACM Symposium on Principles of Pro-
gramming Languages, January, 1982.

Ramamritham, Stemple, D., Vinter, S. T., ‘Decentralized
Access Control in a Distributed System,’ Proceedings of the
5th International conference on Distributed Computing Sys-
tems, May 1985.

Ramamritham, K., Briggs, D., Stemple, D., Vinter, S. T.,
‘Privilege Transfer and Revocation in a Port-Based Sys-
tem,’ IEEE Transactions on Software Engineering, vol. SE
12, no. 5, May 1986.

Rashid, R., Robertson, G., ‘Accent: A Communication Ori-
ented Network Operating System Kernel,’ Carnegie-Mellon
University Technical Report, April, 1981.

Ritchie, D. and Thompson, K., ‘The UNIX Time-Sharing
System,’ Communications of the ACM, vol. 17, no. 7, July,
1974.

1167

IllI

PI

I131

1141

[15f

Stemple, D., Ramamritham, K., Vinter, S., ‘Operating Sys-
tem Support for Abstract Database Types,’ Proceedings of
the 2nd International Conference on Databases, September,
1983.

Stemple, D., Vinter, S., Ramamritham, K., ‘Functional Ad-
dressing in Gutenberg: Interprocess Communication With-
out Process Identifiers,’ to appear in IEEE Transactions on
Software Engineering, 1986.

Strom, R., Yemini, S., ‘NIL: An Integrated Language and
System for distributed Programming,’ Proceedings of SIG-
PLAN ‘83, Symposium on Programming Languages, Au-
gust, 1983.

Vinter, S. T., ‘A Protection Oriented Distributed Kernel,’
Ph.D. Thesis, University of Massachusetts, August 1985.

Vinter, S. T., Ramamritham, K., Stemple, D., ‘Recoverable .
C’ommumcating Actions,’ Proceedings of the fifth Interna-
tional Conference on Distributed Computing Systems, May
1986.

[IS] Wulf, W., Cohen, E., Corwin, W., Jones, A., Levin, R.,
Pierson, C., Pollack, F., ‘HYDRA: The Kernel of a Multi-
processor Operating System,’ Communications of the ACM,
vol. 17, no. 6, June 1974.

1168

