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Abstract

Highly distributed data management platforms (e.g.,
PNUTS, Dynamo, Cassandra, and BigTable) are
rapidly becoming the favorite choice for hosting mod-
ern web applications in the cloud. Among other fea-
tures, these platforms rely on data replication and
relaxed consistency to achieve high levels of perfor-
mance and scalability. However, these design choices
often exhibit a trade-off between performance SLA
and data currency. In this paper, in addition to per-
formance SLAs, we also perceive an application tol-
erance to data staleness as another requirement de-
termining the end-user satisfaction and our goal is
to strike a fine balance between both the quality of
service and quality of data perceived by end-user. To-
wards that, we propose scheduling policies and mech-
anisms for efficiently allocating the recourses at each
replica node so that to meet the conflicting require-
ments of user queries and replica updates. Our exper-
imental results show that employing our scheduling
schemes for resource allocation can provide signifi-
cant improvements in the overall system utility when
compared to existing policies.

Keywords: Web Database, Distributed Database,
Scheduling, SLA, Quality of Data, Quality of Service.

1 Introduction

In modern web applications, user satisfaction or pos-
itive experience determines the applications’ suc-
cess (and keeps the competitors “more than a click
away” [16]). A fundamental requirement in such web
applications is to consistently meet the user’s expec-
tations for page load time as expressed by a Service
Level Agreement (SLA). An example of a simple SLA
is a web application guaranteeing that it will provide
a response within 300ms for 99.9% of its requests for
a peak client load of 500 requests per second [7].
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Clearly, application SLAs place stringent response
time requirements on the data management plat-
form demanding a near realtime performance. To-
wards this, several data management techniques have
been continuously improved in order to maximize the
SLA satisfaction of web database transactions. Ex-
amples of such techniques include data caching[18],
data prefetching [5], adaptive transaction schedul-
ing [8, 16], etc. However, the continuous growth in
database-driven web applications as well as the com-
plexity of user requirements required re-thinking the
traditional database solutions and resulted in a new
generation of highly distributed database platforms
especially designed to meet the ever stringent per-
formance requirements expected by today’s end user.
Examples of such platforms include PNUTS [6], Dy-
namo [7], Cassandra [14], and BigTable [4] which
act as the underlying data management platform for
the internal applications of an enterprise (e.g., Ya-
hoo/PNUTS, Amazon/Dynamo) or provide the ser-
vice of hosting external web application in the cloud.

These platforms are expected to meet strict opera-
tional requirements in terms of performance, reliabil-
ity and efficiency, and to support continuous growth
the platform needs to be highly scalable [7]. However,
the design choices for these platforms often exhibit a
trade-off between query performance and data cur-
rency, which is the focus of this paper. In particular,
most of such modern platforms share the following
key design choices:

• Data Replication: In a large-scale web applica-
tion, users are scattered across the globe which
makes it is critical to have data replicas on mul-
tiple continents for low-latency access [6]. For
instance, Dynamo uses a synthesis of well known
techniques for data partitioning using consistent
hashing as well as data replication between a co-
ordinator node and a set of preference nodes.

• Relaxed Consistency: Achieving serializability
for web transactions over a globally-replicated
and distributed system is very expensive and of-
ten unnecessary [6]. In particular, web applica-
tions expect and tolerate weaker levels of con-
sistency. For instance, Dynamo is designed to
be an eventually consistent data store; that is all
updates reach all replicas eventually. Similarly,
PNUTS provides a consistency model that is be-
tween general serializability and eventual consis-
tency.

• Key-Value Data Model: Presents a simplified
data model to the user based on a key-value data
store motivated by the observation that the big



majority of web transaction only need primary-
key data access manipulating one record at a
time. For example, Dynamo provides simple
get() and put() operations for the read and
write to a data item that is uniquely identified
by a key, while no operation can span multi-
ple data items. Similarly, PNUTS provides a
get() and set() operations in a addition to
multiget() operation which supports retrieving
multiple records by specifying a set of primary
keys.

Clearly, the above features directly contribute to
improving the performance of web applications and
meeting the pre-specified SLA requirements. How-
ever, while weaker levels of consistency allow for high
scalability, this often comes at the expense of data
currency where user queries might access stale data.
This is typically accepted by most web applications
only if the perceived staleness is bounded within some
pre-specified staleness tolerance [9]. Meanwhile, cur-
rent platform cannot guarantee such bounds on data
staleness in the presence of large number of data
replicas that are updates asynchronously and strin-
gent performance SLAs. For instance, in the Dynamo
platform, replica synchronization tasks are executed
in the background at low priority so that to allow
enough resources for running the foreground queries
and meeting their SLAs.

In this paper, in addition to a query SLA, we also
perceive an application tolerance to data staleness as
another requirement determining the satisfaction of
the end user, and in turn the success of a web appli-
cation. Towards this, our goal is to balance the trade-
off between the perceived Quality of Service (QoS) as
expressed by performance SLA and the Quality of
Data (QoD) as expressed by staleness tolerance. Our
approach towards achieving that goal relies on effi-
ciently allocating the recourses at each node so that to
meet the conflicting requirements of user queries and
replica updates. In particular, in this paper we pro-
pose new schemes for the scheduling of user queries
and replica updates in database-driven web applica-
tions.

To this end, several research efforts have addressed
the problem of scheduling queries and updates to bal-
ance the trade-off between QoS and QoD in contexts
such as web databases [15], realtime databases [1, 12],
and realtime data warehouses [2, 19, 11]. They all
share the same underlying mechanism of taking a lazy
asynchronous approach for applying updates. How-
ever, they are fundamentally different in the schedul-
ing policy adopted for the execution of those asyn-
chronous updates.

For instance, the On-Demand (OD) [1] mechanism
couples the execution of updates with query access,
where all the data items accessed by a certain query
are refreshed on demand before the execution of that
query. This strategy has been shown to be benefi-
cial in saving system resources since as it minimizes
the number of installed updates [10]. However, the
OD mechanism employs simple policies for scheduling
queries (and in turn updates) which fall short in meet-
ing the SLA requirements of modern web applica-
tions. On the other hand, the QUTS [15] policy takes
a different approach where it considers both QoS and
QoD requirements under a unified Quality Contracts
[13] model for web databases. However, QUTS de-
couples the execution of queries from that of updates
where it allocates to each a separate time quota of
the system resources. This allows QUTS to target
traditional general database transactions where it is
not possible to determine the data objects accessed

by a query beforehand. But at the same time, this
decoupling might waste significant system resources
by installing updates that are not necessary.

To the contrary, our approach in this work exploits
the characteristics of the key-value data access model
while at the same time addressing the challenges im-
posed by satisfying the QoS and QoD specifications
of web applications. In particular, we propose mecha-
nisms and policies that consider the ”cost” and ”ben-
efit” of replica updates in association with the query
workload so that to improve both query performance
and data freshness. Moreover, between the two ex-
tremes of coupling and decoupling the scheduling of
queries and updates, we propose a new hybrid mech-
anism that integrates the advantages of each and dy-
namically decides the association between queries and
updates to maximize the system gains. Our experi-
mental results show that employing our scheduling
schemes for resource allocation can provide signifi-
cant improvements in the overall system utility when
compared to existing policies.

The rest part of this paper is organized as follows.
Section 2 describes the system model. Our proposed
scheduling policies are presented in section 3. Section
4 describes the evaluation environment. Section 5
presents our experimental results. Section 6 finalizes
this paper with conclusions and future work.

2 System Model

We assume a platform such as PNUTS or Dynamo
where data is partitioned and replicated across mul-
tiple nodes. In such architecture, a load balancer dis-
tributes user queries across the different nodes. Addi-
tionally, each node also receives updates to its stored
replica from the replica owner or coordinator. Our
proposed policies operate at a per-node level where
they are responsible for scheduling the execution of
the arriving queries and updates against the local
replica to maximize both QoS and QoD. Next, we
describe our model for data replica, queries and up-
dates together with our metrics for QoS and QoD.

2.1 Database Replica

Our database replica B consists of M data objects
{O1, O2, ..., OM} which are accessed simultaneously
by both queries and updates. As in [9], we use the
term replica broadly to include saved data derived
from some underlying source tables. As such, it could
be a replica in the ordinary sense as in the distributed
data management platforms described above. But
also a replica could be a web database which rep-
resents a portal updated aperiodically by external
sources. For example, in a stock information applica-
tion, external databases such as the New York Stock
Exchange store the history of updates, whereas web
database corresponds to a snapshot view reflecting
the most recent stock information as propagated by
that external database. Finally, a replica could be
a materialized view internal to the web application
to support efficient query processing. For instance,
to support social networking applications, PNUTS
stores materialized view as regular tables that are
asynchronously maintained by the system [17].

2.2 Updates

In general, data updates could be either periodic or
aperiodic [1]. For the periodic case, a new update ar-
rives once every pre-defined interval of time whether
the value of corresponding data object has changed



or not. For example, a sensor network for monitoring
temperature will continuously generate a new read-
ing update at intervals called epochs. On the other
hand, aperiodic updates occur only when the value
of a certain data object changes, which is clearly the
case for the kind of updates expected under our sys-
tem model. For example, a replica update will be
generated in response to a user posting a new status
or publishing a new picture or video.

Under the key-value data store model, each up-
date Ui is a write-only transaction that changes one
data object performed by an operation such as set()
or put(). Updates to a data replica are queued inter-
nally in the node’s update queue until they are sched-
uled for execution. Each update has a timestamp
representing the time when the updates has been gen-
erated. Finally, in a key-value data store, updates are
blind as they do not require reading the current value
of a data object before updating it. Hence, the arrival
of a new update to a certain data object, will make
any pending update to that object worthless as in the
”last write wins” conflict resolution policy [20].

Finally, each update Ui is characterized by a cost
Ciu, which reflects the time required for processing
the update and installing it onto the replica. This
processing time incorporates both CPU and I/O costs
and is typically determined by monitoring the pro-
cessing of previous updates over a reasonable time
window.

2.3 Queries

In our model, each query Qi represents a get() op-
eration to the key-value data store. Rendering a web
page in modern web applications typically fires a large
number of queries, where such a dynamic web page
is composed by a number of content fragments, each
of which is materialized at every request by running
several queries and executing lengthy code to produce
HTML.

For example, a page request to one of the e-
commerce sites typically requires the rendering engine
to construct its response by sending over 150 get()
operations [7].

Similar to updates, in a key-value data store, each
query Qi will have a timestamp representing its ar-
rival time Ai and will access a single record or data
object Oi. Meanwhile, operations that touch multiple
records require a component that generates multiple
individual requests for single records. Finally, Ciq de-
notes the cost for retrieving and processing that data
object. Like update processing, query processing time
incorporates both CPU and I/O costs and is statically
estimated over time.

2.4 Qos and QoD Metrics

There are several metrics for capturing the user per-
ceived QoS as well as QoD. In this paper, we focus on
QoS in terms of tardiness and QoD in terms of stale-
ness and our goal is to minimize both metrics across
all the user queries submitted to the system.

Ideally, if a query Qi finishes execution at time
Fi, then Fi should be within the QoS tolerance of Qi

and the staleness of the data item Oi accessed by the
query should be within its QoD tolerance. However,
in the presence of multiple queries and updates com-
peting for the system resources, Qi might experience
queuing delays or access stale data that fall beyond
its tolerance. The natural way to capture these devi-
ations is to define for each query Qi two deadlines: 1)
Tardiness Deadline (Di), and 2) Staleness Deadline

(Si). In our model, those two deadlines represent the
Service Level Agreement (SLA) and they determine
the penalty paid by the system when violating either
the QoS or QoD requirements as explained next.

To specify the QoS and QoD requirements (i.e.,
SLA), each query is associated with the following pa-
rameters:

• Weight (Wi): the weight assigned to query Qi,
which represents its importance to the system.

• QoS Factor (αis): the fraction of the weight as-
signed to QoS, which represents the QoS impor-
tance to the application.

• QoD Factor (αid): the fraction of the weight as-
signed to QoD (= 1.0 − αis), which represents
the QoD importance to the application.

• QoS Tolerance (γis): the tolerance of query Qi

to tardiness.

• QoD Tolerance (γid): the tolerance of query Qi

to staleness.

2.4.1 Query Perceived Tardiness

The tardiness Deadline (Di) is defined as:

Di = Ai + γis (1)

This is the traditional definition of query deadline,
where Ai is the arrival time of query Qi and γis is its
tolerance as described above.

if Qi cannot meet its deadline, the system will still
execute it but it will be “penalized” for the delay
beyond the deadline Di. This penalty per query is
known as tardiness which is formally defined as:

Definition 1 Tardiness, Ti, for query Qi is the total
amount of time spent by Qi in the system beyond its
deadline Di. That is, Ti = 0 if Fi ≤ Di, and Ti =
Fi −Di otherwise.

2.4.2 Query Perceived Staleness

The staleness deadline (Si) is defined as:

Si = Ri + γid (2)

This is the definition of data deadline as in [21],
where Ri is the timestamp of the first unapplied up-
date to data object Oi and γid is the tolerance of Qi

to staleness as described above.
In particular, at time Ri, data object Oi is ren-

dered stale because of the arrival of a new update
that has not been installed yet. If that update is still
unapplied until the time Qi is scheduled for execu-
tion, then the system will still execute the query but
it will be penalized for the staleness beyond the dead-
line Si. This penalty per query is known as staleness
(or currency, age [3]) which is formally defined as:

Definition 2 Staleness, Li, for query Qi is the total
amount of staleness accumulated by Oi beyond Qi’s
staleness deadline Si. That is, Li = 0 if Fi ≤ Si, and
Li = Fi − Si otherwise.
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Figure 1: Weighted Tardiness
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Figure 2: Weighted Staleness
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Figure 3: Total Penalty

Table 1: Model Parameters
Parameter Symbol

Database B
Objects in Database {O1, ...,OM}
Write-only Transaction: Update Ui

Timestamp of First Unapplied Updates Ri

Read-only Transaction: Query Qi

Arrive Time of Query Ai

Finish Time of Query Fi

Weight of each query wi

QoS Factor αis

QoD Factor αid

QoS Tolerance γis
QoD Tolerance γid
Tardiness Deadline Di = Ai + γis
Staleness deadline Si = Ri + γid

2.4.3 Problem Definition

Given the above definitions of tardiness and staleness,
our goal is to minimize the total combined penalty
incurred by the system. This combined penalty per
query Qi is simply the sum of weighted staleness and
weighted tardiness (as shown in Figures 1, 2, and 3)
and is computed as follows:

Pi = Wi[(αis × Ti) + (αid × Li)]

Or equivalently,

Pi = Wi[(αi × Ti) + ((1 − αi)× Li)] (3)

where αi = αis and Wi is the weight of query Qi as
defined above.

Hence, the system objective is to minimize the av-
erage penalty which is defined as:

Definition 3 The average penalty for N queries is:
1
N

∑N

i=1 Pi.

In the next section, we will discuss several query
and update scheduling policies for achieving the ob-
jective defined above.

3 Scheduling Policies

In this section, we propose three alternatives for the
scheduling of queries and updates in a replica. In
particular, we first propose scheduling policies that
extend the On-Demand scheduling mechanism [1] by
consider query characteristics (Sections 3.1) as well
as update characteristics (Section 3.2). Finally, we

propose a new mechanism for scheduling queries and
updates that further enables balancing the trade-off
between QoS and QoD (Section 3.3).

3.1 Query-aware On-Demand Scheduling

In this section, we simply extend the scheduling poli-
cies employed under the On-Demand (OD) mecha-
nism [1] to achieve better performance as measured
in term of QoS and QoD. Recall that under the On-
Demand policy, queries are always given precedence
over updates. However, when a query Qi encounters
a stale data object Oi, the update queue will first be
checked if there is a pending update to Oi (i.e., Ui).
If an update is found, it is applied before executing
the query.

The On-Demand mechanism provides an attrac-
tive property which is maximizing the freshness of
data by applying any pending relevant updates first.
This results in almost no penalty for data staleness
in our system. However, in terms of QoS, the On-
Demand mechanism suffers from a major drawback as
it employs a basic First-Come-First-Served (FCFS)
policy where the arrival time of query Qi determines
its priority.

FCFS has been shown to perform very poorly un-
der deadline-based metrics such as tardiness [], which
leads to high QoS penalties for our system that are ex-
pected to overweight the gains from improving QoD.
Hence, in this section we propose exploiting deadline-
aware query scheduling policies to work in conjunc-
tion with the general On-Demand mechanism.

For all of the following policies, for each pending
query Qi we compute a priority Vi based on some of
the properties of Qi. For the query with the highest
priority, we first apply the pending update (if any)
to the data item Oi, then execute the query as in
the On-Demand mechanism. We first start with the
FCFS-Q policy.

FCFS-Q: First-Come-First-Served (FCFS) has been
proposed as the scheduling policy under the OD
mechanism [1]. Under FCFS, each query Qi is as-
signed a priority Vi = 1

Ai
, where Ai is the arrival

time of query Qi as described in Section 2. FCFS is
a fair scheduling policy since it bounds the waiting
time of a query in the system queue. However, this
is often at odds with minimizing system performance
metrics such as response time or tardiness.

EDF-Q: Earliest Deadline First (EDF) is one clear
alternative for replacing FCFS under the OD mech-
anism. Under EDF, each query Qi is assigned a pri-



ority Vi = 1
Di

, where Di is the tardiness deadline
of query Qi as described in Section 2. It has been
shown that EDF provides a close to zero tardiness
under low to medium system utilization which makes
it attractive for web database during periods of light
workload.

WSJF-Q: Weighted Shortest Job First (WSJF) is
another alternative under the OD mechanism as it
considers both the query processing time and its
weight. Here, we only need to consider the fraction of
weight pertaining to QoS (i.e., αiWi) since the QoD
component of weight is already maximized under the
OD mechanism. Hence, under WSJF-Q, each query
Qi is assigned a priority Vi =

αiWi

Ciq
, where αiWi is the

QoS weight component and Ciq is processing of query
Qi as described in Section 2. It has been shown that
WSJF minimizes the weighted tardiness under high
system utilization as opposed to EDF which might
exhibit a ”domino effect” [8]. This makes WSJF es-
pecially attractive for web database during periods of
high workload which is expected to be the norm for
the applications we are considering in this work.

Density-Q: The density policy is very similar to the
WSJF-Q except that it considers the query benefit (or
penalty) at the current time rather than its weight
[11]. As in WSJF-Q, we only need to consider the
fraction of penalty to pertaining QoS since the QoD
component of penalty is already minimized under the
OD mechanism. Hence, under Density-Q, each query

Qi is assigned a priority
−Wiαi×(τ+Ciq−Di)

+

Ciq
where

τ is the current time where a scheduling decision is
to be made and τ + Ciq is the time where the query
finishes execution and (τ +Ciq −Di)

+ is the positive
value of the term, i.e., max(0, τ + Ciq −Di).

If τ+Ciq ≤ Di, then Qi will finish before its dead-
line and the system incurred penalty is 0. However,
if τ + Ciq > Di, then Qi will miss its deadline and
the system incurred penalty is the weighted tardiness
Wiαi × (τ + Ciq − Di) or equivalently, the system
benefit is the negative of that value as reflected in the
priority function. Note that in comparison to WSJF-
Q, as a result of considering current penalty rather
than just weight, Density-Q recognizes the tardiness
deadline as a critical point where a query starts accu-
mulating tardiness leading to system penalty.

Finally, it is worth mentioning that under all the
policies above, the execution order of updates is deter-
mined by the execution order of queries. Hence, there
is no need for an update scheduling policy and the
scheduling decision is solely based on the query char-
acteristics. Hence, we will call such mechanism query-
aware and we denote the policies using ”-Q” such as
FCFS-Q. However, in the times of light load where
queries are more sporadic, updates could be sched-
uled independently. Specifically, if the query queue
is empty, the system starts executing updates until a
new query arrives. To schedule those updates we use
the basic Shortest Job First (SJF) policy where each
update is assigned a priority Vi = 1

Ciu
. In the next

section, we propose policies that further integrates
the characteristics of the pending updates under the
OD mechanism.

3.2 Update-aware On-Demand Scheduling

In the previous section, we have applied two features
of the On-Demand approach, namely:

1. Applied any pending update to a data object be-
fore it is accessed by a query, and

2. Employed scheduling policies that only consider
the properties of pending queries.

The first feature above enforces the On-Demand
mechanism where updates are applied when an ob-
ject is accessed leading to fresh data. Meanwhile, the
second feature simplifies the scheduling decision by
restricting the priority functions to only the query
parameters. However, exploiting only the query pa-
rameters in scheduling might have a serious negative
impact on the system performance.

In particular, all the policies presented above are
oblivious to the properties of updates which might be
in conflict with the properties of the corresponding
query. For instance, under the WSJF-Q, if a query
Qi has the lowest processing cost then it might be
selected for execution first regardless of the cost for
refreshing data object Oi (i.e., Ciu). If that cost of
installing the update happened to be very high, then
all pending queries will be delayed and accumulating
tardiness resulting in a poor overall system perfor-
mance.

To avoid such conflict, we propose an Update-
aware version of the On-Demand mechanism, which
works like the original On-Demand but employs
scheduling policies that consider the characteristics
of updates in addition to those of queries. However,
note that the negative impact of an update on the
system is restricted to the QoS perceived by other
queries but not on the perceived QoD. In particular,
processing a certain update Ui with cost Ciu leads
to delaying the processing of other queries and might
lead to an increase in tardiness if those queries are
close to their deadlines. However, it has no impact
on the QoD under the On-Demand mechanism since
data objects are always refreshed before accessed by
a query leading to maximum freshness.

Hence, under the Update-aware version, we only
need to modify those scheduling policies that con-
sider processing cost, to include the cost of processing
an update in addition to that of processing a query.
Specifically, the EDF and FCFS policies will remain
the same under update-aware, whereas we need new
versions of WSJF and Density to materialize the new
mechanism. For those two policies, for each pending
query Qi we compute a priority Vi based on some of
the properties of Qi and its corresponding Ui (if any).
For the query+update combination with the highest
priority, we first apply the pending update (if any) to
the data item Oi, then execute the query as in the
On-Demand mechanism.

WSJF-QU: Under the update-aware WSJF-QU,
each query Qi is assigned a priority

Vi =
αiWi

Ciq + Ciu

(4)

where αiWi is the QoS weight component, Ciq is the
cost of processing query Qi and Ciu is the cost of
refreshing data object Oi by applying the pending
update Ui.

Density-QU: Under the update-aware Density-QU,
each query Qi is assigned a priority

−Wiαi × (τ + Ciq + Ciu −Di)
+

Ciq + Ciu

(5)

where τ is the current time where a scheduling deci-
sion is to be made.

Intuitively, the two policies above consider the neg-
ative impact of applying an update in terms of de-
laying other queries by an amount of time equal to



the update cost Ciu. Further, the Density-QU policy
also considers the negative impact of an update Ui on
its own query Qi since waiting until an update is in-
stalled might lead to Qi missing it tardiness deadline
resulting in QoS penalty to the system.

3.3 Freshness/Tardiness Scheduling (FIT)

The On-Demand mechanism for scheduling asyn-
chronous updates defers applying an update as much
as possible (i.e., until a query request is about to ac-
cess a stale data object). For ”blind” updates, this al-
lows for saving system resources that otherwise would
have been unnecessarily wasted on installing obsolete
updates. However, it is often the case that apply-
ing the most recent update is not that necessary such
as when the staleness of a data object is within the
query’s tolerance or in the extreme case when a query
actually does not assign any weight to the QoD. Even
when the staleness violates the query requirement, ap-
plying an update might require high processing cost
that will have a negative impact on the tardiness of
that query and the other queries in the system lead-
ing to an overall lower QoS. Towards this, we propose
a new mechanism called Freshness/Tardiness (FIT)
for scheduling updates.

FIT, like OD, defers refreshing an object until it
is requested by a query. However, under FIT, the
scheduling policy reasons about the global impact of
applying the update in terms of the utility of process-
ing that update to the query under consideration as
well as the other queries in the system. This reason-
ing depends on the scheduling policy employed under
this mechanism as it has been the case of with the two
previous mechanisms. Before describing the details of
our scheduling policies under FIT, we first introduce
the general mechanism shared by all those policies.
Specifically, under FIT, for each pending query Qi,
we compute two priorities:

1. v+i : The priority of Qi if it is executed together
with the latest corresponding update Ui (if any),
and

2. v−i : The priority of Qi if it is executed while
”skipping” Ui.

Finally, Q′

is priority Vi is computed as:

Vi = max(v−i , v+i )

For the query with the highest priority Vi, if v
+
i >

v−i , then first apply the pending update (if any) to the
data object Oi, then execute the query. Otherwise,
the query will directly access the stale data object Oi

and the pending update Ui will not be removed from
the updates queue. In order to understand the intu-
ition underlying each of the next scheduling policies,
recall that the priority v+i corresponds to only QoS
penalty as represented in Figure 1, whereas a priority
v−i corresponds to a combined QoS and QoD penalty
as represented in Figure 3. Hence, the v+i priority un-
der all scheduling policies is the same as their counter-
parts under the update-aware mechanisms, whereas
the v−i priority should reflect the impact of skipping
an update in case that skipping an update turned out
to be more beneficial than applying it (i.e., v−i > v+i ).
Finally, note that measuring the impact of skipping
or applying an update pertains only to those schedul-
ing policies with priority functions that can capture
that impact, namely, WSJF and Density, but not the
EDF or FCFS policy.
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Figure 4: General Penalty Function under FIT

In order to compute v−i , we need to consider the
impact of an update on both QoS and QoD. From Fig-
ure 3, we notice that combined penalty is a function
in time with two critical points: 1) tardiness dead-
line, and 2) staleness deadline. In particular, assume
the case in Figure 3 where Di < Si, then the penalty
is zero up to time τ = Di then it increases linearly
with slope αi ×Wi reflecting the penalty incurred by
the system for not meeting the tardiness deadline.
This slope stays the same up until time τ = Si where
the slope increases to be Wi reflecting the combined
penalty for both staleness and tardiness. This re-
mains constant until the query is eventually answered.
In the opposite case where Di > Si, the penalty func-
tion will have the same general shape except that the
first slope will be (1− αi)×Wi.

In general, we can represent the penalty as a func-
tion (Figure 4) with two deadlines: Di1, and Di2 and
three segments with slopes that have the following
values: (a) 0, if τ ≤ Di1, (b) Wim, if Di1 < τ ≤ Di2,
and (c) Wi, if τ > Di2. Wim is the intermediate
weight when the query misses one of its deadline but
not both. As such, if Di < Si, then Wim = αi ×Wi

and if if Di > Si, then Wim = (1−αi)×Wi, whereas
Wi is the weight when a query misses both its dead-
line as described in Section 2.

WSJF-FIT: Under WSJF-FIT, v+i is computed sim-
ilar to the update-aware counterpart, whereas v−i is
computed based on Figure 4 as explained above.

v+i =
αiWi

Ciq + Ciu

, v−i =

{

Wim

Ciq
τ ≤ Di1

Wi

Ciq
τ > Di1

(6)

By considering the query cost Ciq in v−i , WSJF-
FIT, Like WSJF-Q, also captures the negative impact
of running a certain query Qi on the other pending
queries in the system. Similarly, it also captures the
system loss in QoS if Qi were to miss its tardiness
deadline, which is expressed by the QoS portion of its
weight. But in addition to that, it also captures the
the system loss in QoD if Qi were to access a stale
data object, which is expressed by the QoD portion
of its weight.

To reflect the loss in QoS and QoD in v−i , we
simply extended the basic WSJF policy to consider
two deadlines (Figure 4) instead of one deadline (Fig-
ure 1). In general, we can argue that WSJF sets the
weights according to the slope of the next critical



point. Hence, under WSJF-Q and WSJF-QU (Fig-
ure 1), at any time τ the weight will have only one
value because there is only one critical point. How-
ever, under WSJF-FIT (Figure 4), after crossing the
first critical point (i.e., Di1) the weight is updated
to reflect the future penalty incurred by the system
if the query were to be delayed further, where that
penalty is expressed by the slope at the next critical
point (i.e., Di2).

Density-FIT: Under WSJF-FIT, v+i is computed
similar to the update-aware counterpart, whereas v−i
is computed to reflect the impact of having two dead-
lines as defined below:

v+i =
−Wiαi × (τ + Ciq + Ciu −Di)

+

Ciq + Ciu

, (7)

v−
i

=
−Wim(τ + Ciq −Di1)+ − (Wi −Wim)(τ + Ciq −Di2)+

Ciq

By balancing the trade-off between the ”cost” and
”benefit” of applying a replica update, FIT is able
to strike a fine balance between QoS and QoD as we
show in the next sections.

4 Experimental Evaluation

Testbed: We have created a simulator that imple-
ments the different mechanisms and policies discussed
in this paper. The simulator takes as an input the sys-
tem parameters, and generates the queries and up-
dates based on these parameters such as deadlines,
processing cost, etc. We have varied the parameters
settings and conducted several experiments to test the
performance of our proposed mechanisms and policies
and compared them to other existing approaches.

Queries: For each simulated point, we generated
5000 queries where the data object accessed by each
query is generated according to uniform distribution
over the range[1-100]. The processing cost Cqi for
each query Qi depends on the accessed data object
and is generated according to a uniform distribution
over the range [10-50] mSec. Each query Qi is as-
signed a tardiness tolerance γis = ki ∗Ciq, where ki is
generated uniformly over the range [1, kmax]. Hence,
the tardiness deadline Di = Ai + ki ∗ Ciq, where we
set kmax = 5 in our experiments.

Each query Qi is also assigned a staleness dead-
line Si, which is related to the tardiness deadline of
the query (i.e., Di). This enables us to control the
distance between the 2 deadlines for staleness and
tardiness. In our experiments, Si is generated using
uniform distribution in the range [Di + λl, Di + λr].
In the default setting, λl = −50 and λr = +50. Note
that if Si < Ri, then we set Si = Ri. That is, the
staleness deadline has to be at least equal to the ar-
rival time of the last unapplied update but not less so
that to reflect only positive values of tolerance.

To specify the QoS and QoD requirement, each
query is assigned a weight Wi uniformly distributed
over the range [1,10] which represents the importance
of that query. The QoS fraction of the weight (i.e.,
α) is set in the range [0.1-αmax] where in the default
setting αmax = 1.0 and the skewness for α’s zipf dis-
tribution is 0.0 (i.e., uniform). The arrival of queries
is modeled as a poisson process, where we vary the
arrival rate of queries between 10 to 50 queries/sec.
Given our distribution for processing costs, an arrival

Table 2: Simulation Parameters
Parameter value

Number of Data Objects 100
Number of Queries 5000
Data Object Access Cost Uniform over[10–50]
Update Cost Zipf over [10−−Cmax]

Query Arrival Rate 5–50
Update Arrival Rate 50
Query Deadline Parameter kmax = 5
Importance Weight Uniform over [1 – 10]
QoS fraction α Uniform over [0.1–1.0]

Table 3: Mechanisms and Policies

Query-aware Update-aware FIT

FCFS FCFS-Q
EDF EDF-Q
WSJF WSJF-Q WSJF-QU WSJF-FIT
Density Density-Q Density-QU Density-FIT

rate of 50 queries/second is equivalent to ≃ 100% uti-
lization of the replica node.

Updates: The processing cost Cui of each update
Ui is also generated according to a Zipf distribution
over the range [10, Cmax] mSec. Varying the values
of Cmax and the skewness Zipf allows us to control
the impact of updates on the system load. In the
default setting, Cmax is set to 100 with the default
Zipf parameter for skewness θu set to 0.5 and skewed
towards the high-end of the cost range. Arrival of
updates is modeled as a poisson process. The arrival
of updates is modeled as a poisson process, where we
set the arrival rate to 50 updates/sec.

Table 2 summarizes our simulation parameters
and their default values.

Algorithms: Table 3 summarizes the mechanisms
and policies discussed in this paper and simulated in
our experiments. A blank entry in Table 3 entails
that the corresponding policy is not applicable under
the mechanism.

Additionally, we have also included the QUTS pol-
icy [15]. QUTS prioritizes the scheduling of updates
and queries using a two-level scheduling scheme that
dynamically allocates CPU resources to updates and
queries according to user preferences on QoS (tardi-
ness) and QoD (staleness). To implement QUTS un-
der our model, we have changed the hard deadlines
to be soft deadlines and changed the QoS and QoD
functions to our tardiness and staleness metric. We
have also replace the user’s preference on QoS and
QoD by αis and αid. Finally, we have set the the
atom time τ to 0.01 and the adaptation period to 1
time unit.

5 Experimental Results

5.1 Impact of Query Arrival Rate

In this experiment, we set all the parameters to the
default values mentioned in the previous section. We
varied the query arrival rate from 5 queries/second
to 50 queries/second. Under our setting for query
processing costs, an arrival rate of 50 queries/second
will bring the node up to a utilization around 100%.

Figure 5 shows the penalty incurred by the sys-
tem when applying different policies for scheduling
queries and updates. The policies included in this
figure are the query-aware polices presented in Sec-
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Figure 5: Query-aware Policies + QUTS
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Figure 6: Comparison of All Mechanisms

tion 3 in addition to the QUTS policy described in
Section 4. Figure 5 shows that in general, for all poli-
cies the penalty increases with increasing the query
arrival rate (i.e., increasing utilization). However, the
FCFS employed by the OD policy exhibits the highest
penalty. Meanwhile, the performance of EDF policy
came as expected where it provided the lowest penalty
at low utilization but that penalty increased signifi-
cantly at high utilization because of the mentioned
domino effect.

Additionally, Figure 5 also shows that at high
query arrival rate, the performance of the QUTS
policy is very similar to that of the Density policy,
whereas WSJF outperforms them both. Specifically,
at the arrival rate of 50 queries/sec, WSJF-Q re-
duces the system penalty by 35% compared to QUTS,
33% compared to Density-Q, and 57% compared to
FCFS-Q which the default scheduling policy under
the OD mechanism. Compared to QUTS, WSJF-Q
couples the scheduling of queries and updates which
allows for providing near maximum QoD, while sav-
ing the system resources by applying the most nec-
essary updates. Finally, one might be surprised that
WSJF-Q outperforms Density-Q when the latter con-
siders both the query tardiness deadline and pro-
cessing cost. However, the reason for that is that
WSJF-Q considers the slope of the penalty function,
whereas Density-Q considers the instantaneous value
of the penalty function. Hence, Density-Q might fa-
vor a query that seems to currently incur high instan-
taneous penalty over another query that will incur
might higher penalty in the future which is expressed
via a high slope and is recognized by the WSJF-Q
policy.

In Figure 6, we focus on comparing the perfor-
mance of the different mechanisms discussed in this
paper. In particular, we use the same settings for
the results shown in Figure 5, but we include only
the Density-Q and WSJF-Q policies because they
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Figure 7: Average Tardiness of WSJF
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Figure 8: Average Staleness of WSJF

provided the best performance under the query-ware
mechanism (as illustrated in Figure 5). Additionally,
we have also include their update-aware counterparts
(i.e., Density-QU and WSJF-QU) and the FIT coun-
terparts (i.e., Density-FIT and WSJF-FIT).

Figure 6 shows that for either the Density or the
WSJF policy, the update-aware version performs bet-
ter than the only query-aware version and that the
FIT version performs better than both the query-
aware and the update-aware. For instance, at query
arrival rate of 50 queries/sec, WSJF-FIT reduces the
system penalty by 67% compared to WSFJ-Q and by
22% compared to WSFJ-QU. These gains are further
depicted in Figures 7 and 8 where we break down the
penalty incurred by the system into its two compo-
nents: tardiness and staleness.

Figure 7 shows the tardiness penalties (i.e., loss
in QoS) for the WSJF policies. WSJF-FIT exhibits
the lowest loss in tardiness since it might selectively
decide to skip some updates if the benefit of an up-
date does not justify its cost, thus saving resources
that might be needed by other queries and updates.
Figure 7 shows that at 50 queries/sec, WSJF-FIT re-
duces the tardiness penalty by 37% vs. WSJF-Q and
18% vs. WSJF-QU.

As expected, the gains provided by WSJF-FIT in
reducing the tardiness penalty come at the expense
of an increase in the staleness penalty as shown in
Figure 8. The figure shows that by skipping some
updates, WSJF-FIT increased the staleness penalty
compared to both WSJF-Q and WSJF-QU. However,
these losses are countered by higher gains in terms
of reducing the tardiness penalty leading to striking
a fine balance between QoS and QoD as previously
shown in Figure 6.
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Figure 9: Comparison of All Mechanisms
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Figure 10: Average Tardiness of WSJF

5.2 Impact of different QoS and QoD prefer-
ences α

To further illustrate the trade-off between QoS (i.e.,
tardiness) and QoD (i.e., staleness), in this experi-
ment we keep the same default values as in the pre-
vious one except that we increase the skewness of α’s
zipf distribution from 0.0 to 1.7 which is skewed to-
wards high values of α. This leads to more queries
giving higher preference to QoS over QoD, which in
turn results in the system being penalized more for vi-
olating tardiness deadlines than staleness deadlines.
Figure 9 shows our experimental results under that
setting.

Figure 9 clearly highlights the benefits achieved by
the Density and WSJF policies under the FIT mech-
anism vs. their counterpart under both the query-
aware and update-aware mechanisms. For instance,
in Figure 9 at query arrival rate of 50 queries/sec,
WSJF-FIT reduces the system penalty by 59% com-
pared to WSFJ-Q and by 53% compared to WSFJ-
QU (vs. only 37% and 18% under the settings for
Figure 6). This increase in gain (or equivalently re-
ductions in penalty) is due to WSJF-FIT dynamically
skipping updates that correspond to queries with low
weight for QoD and are more interested in QoS as
expressed by the α setting. This trade-off is further
illustrated in Figures 10 and 11, where we break down
the penalty incurred by the system into its two com-
ponents of tardiness and staleness.

5.3 Impact of update cost (θu)

In this experiment, we kept the same default values
as in the first experiment except that we increased
the skewness of the update cost (i.e., Cu,i) zipf distri-
bution from 0.5 to 1.7 which is skewed towards high
values over the range [10, Cmax] where Cmax = 100 .
This leads to more updates being expensive and re-
quiring more system resource to refresh the stale data.
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Figure 11: Average Staleness of WSJF
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Figure 12: Comparison of All Mechanisms

Figure 12 shows our experimental results under that
setting.

Figure 12 illustrates that under this setting,
WSJF-FIT still outperforms all of the other policies.
However, under this setting the reduction in penalty
provided by WSJF-FIT vs. WSJF-QU is only 31%
(in comparison to 53% in Figure 9). The reason for
that closer gap in performance is that under this set-
ting, WSJF-QU being update-aware will also recog-
nize those updates with high processing costs and give
them lower priority to favor queries and updates with
lower costs. Similarly, WSJF-FIT will recognize those
expensive update and with either skip them (if they
have low benefit) or give them low priority (if they
have high benefit to balance the hight cost). This
trade-off is further illustrated in Figures 13 and 14,
where we break down the penalty incurred by the
system into its two components of tardiness and stal-
eness.

6 Conclusions and Future Work

Motivated by the need for providing guarantees
on both query performance and data currency in
highly distributed data management platforms, we
addressed the problem of scheduling queries and up-
dates to strike a fine balance between QoS and QoD.
Towards this, we presented three mechanisms for the
scheduler implementation together with scheduling
policies that work in conjunction with those mech-
anisms. Our experimental results show the the FIT
mechanism introduced in this paper, together with
the WSJF-FIT policy can efficiently allocate the
available resources across queries and updates to max-
imize the system utility.

Our proposed scheduler is designed to operate at
the replica-level in a distributed data management
platform where it intercepts the queries and updates
forwarded to the replica and prioritizes their execu-
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Figure 13: Average Tardiness of WSJF
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Figure 14: Average Staleness of WSJF

tion according to the employed mechanism and policy.
In the future, we plan to investigate global solution
that work at the system-level for achieving further im-
provements in performance. For instance, we are con-
sidering the design of a performance- and staleness-
aware load balancer for the distribution of queries
over the available replicas. We are also planning to in-
vestigate advanced query/update scheduling policies
that dynamically adapt to the workload and provide
the best performance under both low and high utiliza-
tions. Finally, we plan to extend this work to consider
the popularity of data objects as manifested by the
frequency of query accesses where some data might
be of more interest to a high population of users.
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