
Data Management in the Cloud: Limitations and Opportunities

Daniel J. Abadi
Yale University

New Haven, CT, USA
dna@cs.yale.edu

Abstract

Recently the cloud computing paradigm has been receiving significant excitement and attention in the
media and blogosphere. To some, cloud computing seems to be little more than a marketing umbrella,
encompassing topics such as distributed computing, grid computing, utility computing, and software-
as-a-service, that have already received significant research focus and commercial implementation.
Nonetheless, there exist an increasing number of large companies that are offering cloud computing
infrastructure products and services that do not entirely resemble the visions of these individual compo-
nent topics.

In this article we discuss the limitations and opportunities of deploying data management issues on
these emerging cloud computing platforms (e.g., Amazon WebServices). We speculate that large scale
data analysis tasks, decision support systems, and application specific data marts are more likely to
take advantage of cloud computing platforms than operational, transactional database systems (at least
initially). We present a list of features that a DBMS designed for large scale data analysis tasks running
on an Amazon-style offering should contain. We then discusssome currently available open source and
commercial database options that can be used to perform suchanalysis tasks, and conclude that none of
these options, as presently architected, match the requisite features. We thus express the need for a new
DBMS, designed specifically for cloud computing environments.

1 Introduction

Though not everyone agrees on the exact definition of cloud computing [32], most agree the vision encompasses
a general shift of computer processing, storage, and software delivery away from the desktop and local servers,
across the network, and into next generation data centers hosted by large infrastructure companies such as
Amazon, Google, Yahoo, Microsoft, or Sun. Just as the electric grid revolutionized access to electricity one
hundred years ago, freeing corporations from having to generate their own power, and enabling them to focus on
their business differentiators, cloud computing is hailedas revolutionizing IT, freeing corporations from large IT
capital investments, and enabling them to plug into extremely powerful computing resources over the network.

Data management applications are potential candidates fordeployment in the cloud. This is because an on-
premises enterprise database system typically comes with alarge, sometimes prohibitive up-front cost, both in

Copyright 2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1

hardware and in software. For many companies (especially for start-ups and medium-sized businesses), the pay-
as-you-go cloud computing model, along with having someoneelse worrying about maintaining the hardware,
is very attractive. In this way, cloud computing is reminiscent of the application service provider (ASP) and
database-as-a-service (DaaS) paradigms. In practice, cloud computing platforms, like those offered by Amazon
Web Services, AT&T’s Synaptic Hosting, AppNexus, GoGrid, Rackspace Cloud Hosting, and to an extent, the
HP/Yahoo/Intel Cloud Computing Testbed, and the IBM/Google cloud initiative, work differently than ASPs
and DaaS. Instead of owning, installing, and maintaining the database software for you (often in a multi-tenancy
architecture), cloud computing vendors typically maintain little more than the hardware, and give customers a
set of virtual machines in which to install their own software. Resource availability is typically elastic, with
a seemingly infinite amount compute power and storage available on demand, in a pay-only-for-what-you-use
pricing model.

This article explores the advantages and disadvantages of deploying database systems in the cloud. We look
at how the typical properties of commercially available cloud computing platforms affect the choice of data
management applications to deploy in the cloud. Due to the ever-increasing need for more analysis over more
data in today’s corporate world, along with an architectural match in currently available deployment options, we
conclude that read-mostly analytical data management applications are better suited for deployment in the cloud
than transactional data management applications. We thus outline a research agenda for large scale data analysis
in the cloud, showing why currently available systems are not ideally-suited for cloud deployment, and arguing
that there is a need for a newly designed DBMS, architected specifically for cloud computing platforms.

2 Data Management in the Cloud

Before discussing in Section 3 the features a database system must implement for it to run well in the cloud, in
this section we attempt to narrow the scope of potential database applications to consider for cloud deployment.
Our goal in this section is to decide which data management applications are best suited for deployment on top
of cloud computing infrastructure. In order to do this, we first discuss three characteristics of a cloud computing
environment that are most pertinent to the ensuing discussion.

2.1 Cloud Characteristics

Compute power is elastic, but only if workload is parallelizable. One of the oft-cited advantages of cloud
computing is its elasticity in the face of changing conditions. For example, during seasonal or unexpected spikes
in demand for a product retailed by an e-commerce company, orduring an exponential growth phase for a social
networking Website, additional computational resources can be allocated on the fly to handle the increased
demand in mere minutes (instead of the many days it can take toprocure the space and capital equipment
needed to expand the computational resources in-house). Similarly, in this environment, one only pays for what
one needs, so increased resources can be obtained to handle spikes in load and then released once the spike has
subsided. However, getting additional computational resources is not as simple as a magic upgrade to a bigger,
more powerful machine on the fly (with commensurate increases in CPUs, memory, and local storage); rather,
the additional resources are typically obtained by allocating additional server instances to a task. For example,
Amazon’s Elastic Compute Cloud (EC2) apportions computingresources in small, large, and extra large virtual
private server instances, the largest of which contains no more than four cores. If an application is unable to take
advantage of the additional server instances by offloading some of its required work to the new instances which
run in parallel with the old instances, then having the additional server instances available will not be much help.
In general, applications designed to run on top of a shared-nothing architecture (where a set of independent
machines accomplish a task with minimal resource overlap) are well suited for such an environment. Some
cloud computing products, such as Google’s App Engine, provide not only a cloud computing infrastructure, but

2

also a complete software stack with a restricted API so that software developers are forced to write programs
that can run in a shared-nothing environment and thus facilitate elastic scaling.

Data is stored at an untrusted host.Although it may not seem to make business sense for a cloud computing
host company to violate the privacy of its customers and access data without permission, such a possibility nev-
ertheless makes some potential customers nervous. In general, moving data off premises increases the number
of potential security risks, and appropriate precautions must be made. Furthermore, although the name “cloud
computing” gives the impression that the computing and storage resources are being delivered from a celestial
location, the fact is, of course, that the data is physicallylocated in a particular country and is subject to local
rules and regulations. For example, in the United States, the US Patriot Act allows the government to demand
access to the data stored on any computer; if the data is beinghosted by a third party, the data is to be handed
over without the knowledge or permission of the company or person using the hosting service [1]. Since most
cloud computing vendors give the customer little control over where data is stored (e.g., Amazon S3 only allows
a customer to choose between US and EU data storage options),the customer has little choice but to assume the
worst and that unless the data is encrypted using a key not located at the host, the data may be accessed by a
third party without the customer’s knowledge.

Data is replicated, often across large geographic distances Data availability and durability is paramount for
cloud storage providers, as data loss or unavailability canbe damaging both to the bottom line (by failing to hit
targets set in service level agreements [2]) and to businessreputation (outages often make the news [3]). Data
availability and durability are typically achieved through under-the-covers replication (i.e., data is automatically
replicated without customer interference or requests). Large cloud computing providers with data centers spread
throughout the world have the ability to provide high levelsof fault tolerance by replicating data across large
geographic distances. Amazon’s S3 cloud storage service replicates data across “regions” and “availability
zones” so that data and applications can persist even in the face of failures of an entire location. The customer
should be careful to understand the details of the replication scheme however; for example, Amazon’s EBS
(elastic block store) will only replicate data within the same availability zone and is thus more prone to failures.

2.2 Data management applications in the cloud

The above described cloud characteristics have clear consequences on the choice of what data management ap-
plications to move into the cloud. In this section we describe the suitability of moving the two largest components
of the data management market into the cloud: transactionaldata management and analytical data management.

2.2.1 Transactional data management

By “transactional data management”, we refer to the bread-and-butter of the database industry, databases that
back banking, airline reservation, online e-commerce, andsupply chain management applications. These appli-
cations typically rely on the ACID guarantees that databases provide, and tend to be fairly write-intensive. We
speculate that transactional data management applications arenot likely to be deployed in the cloud, at least in
the near future, for the following reasons:

Transactional data management systems do not typically usea shared-nothing architecture. The transac-
tional database market is dominated by Oracle, IBM DB2, Microsoft SQL Server, and Sybase [29]. Of these
four products, neither Microsoft SQL Server nor Sybase can be deployed using a shared-nothing architecture.
IBM released a shared-nothing implementation of DB2 in the mid-1990s which is now available as a “Database
Partitioning Feature” (DPF) add-on to their flagship product [4], but is designed to help scale analytical ap-
plications running on data warehouses, not transactional data management [5]. Oracle had no shared-nothing
implementation until very recently (September 2008 with the release of the Oracle Database Machine that uses

3

a shared-nothing architecture at the storage layer), but again, this implementation is designed only to be used for
data warehouses [6].

Implementing a transactional database system using a shared-nothing architecture is non-trivial, since data
is partitioned across sites and, in general, transactions can not be restricted to accessing data from a single site.
This results in complex distributed locking and commit protocols, and in data being shipped over the network
leading to increased latency and potential network bandwidth bottlenecks. Furthermore the main benefit of a
shared-nothing architecture is its scalability [24]; however this advantage is less relevant for transactional data
processing for which the overwhelming majority of deployments are less than 1 TB in size [33].

It is hard to maintain ACID guarantees in the face of data replication over large geographic distances.
The CAP theorem [19] shows that a shared-data system can onlychoose at most two out of three properties:
consistency, availability, and tolerance to partitions. When data is replicated over a wide area, this essentially
leaves just consistency and availability for a system to choose between. Thus, the ’C’ (consistency) part of ACID
is typically compromised to yield reasonable system availability.

In order to get a sense of the inherent issues in building a replicated database over a wide area network,
it is interesting to note the design approaches of some recent systems. Amazon’s SimpleDB [11] and Yahoo’s
PNUTS [15] both implement shared-nothing databases over a wide-area network, but overcome the difficulties of
distributed replication by relaxing the ACID guarantees ofthe system. In particular, they weaken the consistency
model by implementing various forms of eventual/timeline consistency so that all replicas do not have to agree
on the current value of a stored value (avoiding distributedcommit protocols). Similarly, the research done by
Brantner et. al. found that they needed to relax consistencyand isolation guarantees in the database they built on
top of Amazon’s S3 storage layer [12]. Google’s Bigtable [14] implements a replicated shared-nothing database,
but does not offer a complete relational API and weakens the ’A’ (atomicity) guarantee from ACID. In particular,
it is a simple read/write store; general purpose transactions are not implemented (the only atomic actions are
read-modify-write sequences on data stored under a single row key). SimpleDB and Microsoft SQL Server Data
Services work similarly. The H-Store project [33] aims to build wide-area shared-nothing transactional database
that adheres to strict ACID guarantees by using careful database design to minimize the number of transactions
that access data from multiple partitions; however, the project remains in the vision stage, and the feasibility of
the approach on a real-world dataset and query workload has yet to be demonstrated.

There are enormous risks in storing transactional data on anuntrusted host. Transactional databases
typically contain the complete set of operational data needed to power mission-critical business processes. This
data includes detail at the lowest granularity, and often includes sensitive information such as customer data or
credit card numbers. Any increase in potential security breaches or privacy violations is typically unacceptable.

We thus conclude that transactional data management applications are not well suited for cloud deployment.
Despite this, there are a couple of companies that will sell you a transactional database that can run in Amazon’s
cloud: EnterpriseDB’s Postgres Plus Advanced Server and Oracle. However, there has yet to be any published
case studies of customers successfully implementing a mission critical transactional database using these cloud
products and, at least in Oracle’s case, the cloud version seems to be mainly intended for database backup [27].

2.2.2 Analytical data management

By “analytical data management”, we refer to applications that query a data store for use in business planning,
problem solving, and decision support. Historical data along with data from multiple operational databases
are all typically involved in the analysis. Consequently, the scale of analytical data management systems is
generally larger than transactional systems (whereas 1TB is large for transactional systems, analytical systems
are increasingly crossing the petabyte barrier [25, 7]). Furthermore, analytical systems tend to be read-mostly
(or read-only), with occasional batch inserts. Analyticaldata management consists of $3.98 billion [35] of the
$14.6 billion database market [29] (27%) and is growing at a rate of 10.3% annually [35]. We speculate that

4

analytical data management systems are well-suited to run in a cloud environment, and will be among the first
data management applications to be deployed in the cloud, for the following reasons:

Shared-nothing architecture is a good match for analyticaldata management.Teradata, Netezza, Green-
plum, DATAllegro (recently acquired by Microsoft), Vertica, and Aster Data all use a shared-nothing architecture
(at least in the storage layer) in their analytical DBMS products, with IBM DB2 and recently Oracle also adding
shared-nothing analytical products. The ever increasing amount of data involved in data analysis workloads is the
primary driver behind the choice of a shared-nothing architecture, as the architecture is widely believed to scale
the best [24]. Furthermore, data analysis workloads tend toconsist of many large scan scans, multidimensional
aggregations, and star schema joins, all of which are fairlyeasy to parallelize across nodes in a shared-nothing
network. Finally, the infrequent writes in the workload eliminates the need for complex distributed locking and
commit protocols.

ACID guarantees are typically not needed.The infrequent writes in analytical database workloads, along
with the fact that it is usually sufficient to perform the analysis on a recent snapshot of the data (rather than on
up-to-the-second most recent data) makes the ’A’, ’C’, and ’I’ (atomicity, consistency, and isolation) of ACID
easy to obtain. Hence the consistency tradeoffs that need tobe made as a result of the distributed replication of
data in transactional databases are not problematic for analytical databases.

Particularly sensitive data can often be left out of the analysis. In many cases, it is possible to identify
the data that would be most damaging should it be accessed by athird party, and either leave it out of the
analytical data store, include it only after applying an anonymization function, or include it only after encrypting
it. Furthermore, less granular versions of the data can be analyzed instead of the lowest level, most detailed data.

We conclude that the characteristics of the data and workloads of typical analytical data management applica-
tions are well-suited for cloud deployment. The elastic compute and storage resource availability of the cloud
is easily leveraged by a shared-nothing architecture, while the security risks can be somewhat alleviated. In
particular, we expect the cloud to be a preferred deploymentoption for data warehouses for medium-sized busi-
nesses (especially those that do not currently have data warehouses due to the large up-front capital expenditures
needed to get a data warehouse project off the ground), for sudden or short-term business intelligence projects
that arise due to rapidly changing business conditions (e.g., a retail store analyzing purchasing patterns in the
aftermath of a hurricane), and for customer-facing data marts that contain a window of data warehouse data
intended to be viewed by the public (for which data security is not an issue).

3 Data Analysis in the Cloud

Now that we have settled on analytic database systems as a likely segment of the DBMS market to move into the
cloud, we explore various currently available software solutions to perform the data analysis. We focus on two
classes of software solutions: MapReduce-like software, and commercially available shared-nothing parallel
databases. Before looking at these classes of solutions in detail, we first list some desired properties and features
that these solutions should ideally have.

3.1 Cloud DBMS Wish List

Efficiency. Given that cloud computing pricing is structured in a way so that you pay for only what you use,
the price increases linearly with the requisite storage, network bandwidth, and compute power. Hence, if data
analysis software product A requires an order of magnitude more compute units than data analysis software
product B to perform the same task, then product A will cost (approximately) an order of magnitude more than
B. Efficient software has a direct effect on the bottom line.

5

Fault Tolerance. Fault tolerance in the context of analytical data workloadsis measured differently than fault
tolerance in the context of transactional workloads. For transactional workloads, a fault tolerant DBMS can
recover from a failure without losing any data or updates from recently committed transactions, and in the
context of distributed databases, can successfully committransactions and make progress on a workload even
in the face of worker node failure. For read-only queries in analytical workloads, there are no write transactions
to commit, nor updates to lose upon node failure. Hence, a fault tolerant analytical DBMS is simply one
that does not have to restart a query if one of the nodes involved in query processing fails. Given the large of
amount of data that needs to be accessed for deep analytical queries, combined with the relatively weak compute
capacity of a typical cloud compute server instance (e.g., adefault compute unit on Amazon’s EC2 service is
the equivalent of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor), complex queries can involve hundreds
(even thousands) of server instances and can take hours to complete. Furthermore, clouds are typically built
on top of cheap, commodity hardware, for which failure is notuncommon. Consequently, the probability of
a failure occurring during a long-running data analysis task is relatively high; Google, for example, reports an
average of 1.2 failures per analysis job [16]. If a query mustrestart each time a node fails, then long, complex
queries are difficult to complete.

Ability to run in a heterogeneous environment.The performance of cloud compute nodes is often not consis-
tent, with some nodes attaining orders of magnitude worse performance than other nodes. There are a variety of
reasons why this could occur, ranging from hardware failurecausing degraded performance on a node [31], to
an instance being unable to access the second core on a dual-core machine [8], to contention for non-virtualized
resources. If the amount of work needed to execute a query is equally divided amongst the cloud compute nodes,
then there is a danger that the time to complete the query willbe approximately equal to time for the slowest
compute node to complete its assigned task. A node observingdegraded performance would thus have a dispro-
portionate affect on total query latency. A system designedto run in a heterogeneous environment would take
appropriate measures to prevent this from occurring.

Ability to operate on encrypted data. As mentioned in Section 2.2.2, sensitive data may be encrypted before
being uploaded to the cloud. In order to prevent unauthorized access to the sensitive data, any application running
in the cloud should not have the ability to directly decrypt the data before accessing it. However, shipping entire
tables or columns out of the cloud for decryption is bandwidth intensive. Hence, the ability of the data analysis
system to operate directly on encrypted data (such as in [10,20, 18, 23, 28]) so that a smaller amount of data
needs to ultimately be shipped elsewhere to be decrypted could significantly improve performance.

Ability to interface with business intelligence products. There are a variety of customer-facing business
intelligence tools that work with database software and aidin the visualization, query generation, result dash-
boarding, and advanced data analysis. These tools are an important part of the analytical data management
picture since business analysts are often not technically advanced and do not feel comfortable interfacing with
the database software directly. These tools typically interface with the database using ODBC or JDBC, so
database software that want to work these products must accept SQL queries over these connections.

Using these desired properties of our cloud data analysis software, we now examine how close two currently
available solutions come to attaining these properties: MapReduce-like software, and commercially available
shared-nothing parallel databases.

3.2 MapReduce-like software

MapReduce [16] and related software such as the open source Hadoop [21], useful extensions [30], and Mi-
crosoft’s Dryad/SCOPE stack [13] are all designed to automate the parallelization of large scale data analysis
workloads. Although DeWitt and Stonebraker took a lot of criticism for comparing MapReduce to database sys-
tems in their recent controversial blog posting [17] (many believe that such a comparison is apples-to-oranges),

6

a comparison is warranted since MapReduce (and its derivatives) is in fact a useful tool for performing data
analysis in the cloud [9]. The MapReduce programming model and framework implementation satisfies many
of the previously stated desired properties:

Fault Tolerance. MapReduce is designed with fault tolerance as a high priority. A data analysis job is divided
into many small tasks and upon a failure, tasks assigned to a failed machine are transparently reassigned to
another machine. Care is taken to make sure that partially executed tasks are not doubly accounted for in the
final query result. In a set of experiments in the original MapReduce paper, it was shown that explicitly killing
200 out of 1746 worker processes involved in a MapReduce job resulted in only a 5% degradation in query
performance [16].

Ability to run in a heterogeneous environment. MapReduce is also carefully designed to run in a hetero-
geneous environment. Towards the end of a MapReduce job, tasks that are still in progress get redundantly
executed on other machines, and a task is marked as completedas soon as either the primary or the backup ex-
ecution has completed. This limits the effect that “straggler” machines can have on total query time, as backup
executions of the tasks assigned to these machines will complete first. In a set of experiments in the original
MapReduce paper, it was shown that backup task execution improves query performance by 44% by alleviating
the adverse affect caused by slower machines.

Ability to operate on encrypted data. Neither MapReduce, nor its derivatives, come with a native ability to
operate on encrypted data. Such an ability would have to be provided using user-defined code.

Ability to interface with business intelligence products. Since MapReduce is not intended to be a database
system, it is not SQL compliant and thus it does not easily interface with existing business intelligence products.

Efficiency. The efficiency and raw performance of MapReduce is a matter ofdebate. A close inspection of
the experimental results presented in the MapReduce paper [16] would seem to indicate that there is room for
performance improvement. Figure 2 of the paper shows the performance of a simple grep query where a rare
string is searched for inside a 1TB dataset. In this query, 1TB of data is read off of the 3600 disks in the cluster
(in parallel) and a very simple pattern search is performed.Disk should clearly be the bottleneck resource since
the string is rare, so query results do not need to be shipped over the network, and the query is computationally
trivial. Despite these observations, the entire grep querytakes 150 seconds to complete. If one divides the 1TB
of data by the 3600 disks and 150 seconds to run the query, the average throughput with which data is being
read is less than 2 MB/s/disk. At peak performance, MapReduce was reading data at 32GB/s which is less
than 10MB/s/disk. Given the long start-up time to get to peakperformance, and the fact that peak performance
is four to six times slower than how fast disks in the cluster could actually be read, there indeed is room for
improvement. Other benchmarks [36] (albeit not performed up to the standards of publishable academic rigor)
have also shown MapReduce to be about an order of magnitude slower than alternative systems.

Much of the performance issues of MapReduce and its derivative systems can be attributed to the fact that
they were not initially designed to be used as complete, end-to-end data analysis systems over structured data.
Their target use cases include scanning through a large set of documents produced from a web crawler and
producing a web index over them [16]. In these applications,the input data is often unstructured and a brute
force scan strategy over all of the data is usually optimal. MapReduce then helps automate the parallelization of
the data scanning and application of user defined functions as the data is being scanned.

For more traditional data analysis workloads of the type discussed in Section 2.2.2 that work with data
produced from business operational data stores, the data isfar more structured. Furthermore, the queries tend
to access only a subset of this data (e.g., breakdown the profits of storeslocated in the Northeast). Using data
structures that help accelerate access to needed entities (such as indexes) and dimensions (such as column-
stores), and data structures that precalculate common requests (such as materialized views) often outperform a
brute-force scan execution strategy.

Many argue that the lack of these “helper” data structures inMapReduce is a feature, not a limitation. These

7

additional structures generally require the data to be loaded into to data analysis system before it can be used.
This means that someone needs to spend time thinking about what schema to use for the data, define the schema
and load the data into it, and decide what helper data structures to create (of course self-managing/self-tuning
systems can somewhat alleviate this burden). In contrast, MapReduce can immediately read data off of the file
system and answer queries on-the-fly without any kind of loading stage.

Nonetheless, at the complexity cost of adding a loading stage, indexes, columns, and materialized views
unquestionably can improve performance of many types of queries. If these data structures are utilized to
improve the performance of multiple queries, then the one-time cost of their creation is easily outweighed by
the benefit each time they are used.

The absence of a loading phase into MapReduce has additionalperformance implications beyond precluding
the use of helper data structures. During data load, data canbe compressed on disk. This can improve perfor-
mance, even for brute-force scans, by reducing the I/O time for subsequent data accesses. Furthermore, since
data is not loaded in advance, MapReduce needs to perform data parsing at runtime (using user-defined code)
each time the data is accessed, instead of parsing the data just once at load time.

The bottom line is that the performance of MapReduce is dependent on the applications that it is used for. For
complex analysis of unstructured data (which MapReduce wasinitially designed for) where brute-force scans is
the right execution strategy, MapReduce is likely a good fit.But for the multi-billion dollar business-oriented
data analysis market, MapReduce can be wildly inefficient.

3.3 Shared-Nothing Parallel Databases

A more obvious fit for data analysis in the cloud are the commercially available shared-nothing parallel databases,
such as Teradata, Netezza, IBM DB2, Greenplum, DATAllegro,Vertica, and Aster Data, that already hold a rea-
sonable market share for on-premises large scale data analysis [35]. DB2, Greenplum, Vertica, and Aster Data
are perhaps the most natural fit since they sell software-only products that could theoretically run in the data
centers hosted by cloud computing providers. Vertica already markets a version of its product designed to run
in Amazon’s cloud [34].

Parallel databases implement a largely complimentary set of properties from our wish list relative to MapReduce-
like software:

Ability to interface with business intelligence products. Given that the business intelligence products are
designed to work on top of databases, this property essentially comes for free. More mature databases, such as
DB2, tend to have carefully optimized and certified interfaces with a multitude of BI products.

Efficiency At the cost of the additional complexity in the loading phasediscussed in Section 3.2, parallel
databases implement indexes, materialized views, and compression to improve query performance.

Fault Tolerance. Most parallel database systems restart a query upon a failure. This is because they are gen-
erally designed for environments where queries take no morethan a few hours and run on no more than a few
hundred machines. Failures are relatively rare in such an environment, so an occasional query restart is not
problematic. In contrast, in a cloud computing environment, where machines tend to be cheaper, less reliable,
less powerful, and more numerous, failures are more common.Not all parallel databases, however, restart a
query upon a failure; Aster Data reportedly has a demo showing a query continuing to make progress as worker
nodes involved in the query are killed [26].

Ability to run in a heterogeneous environment. Parallel databases are generally designed to run on homo-
geneous equipment and are susceptible to significantly degraded performance if a small subset of nodes in the
parallel cluster are performing particularly poorly.

Ability to operate on encrypted data. Commercially available parallel databases have not caughtup to (and
do not implement) the recent research results on operating directly on encrypted data. In some cases simple op-

8

erations (such as moving or copying encrypted data) are supported, but advanced operations, such as performing
aggregations on encrypted data, is not directly supported.It should be noted, however, that it is possible to
hand-code encryption support using user defined functions.

3.4 A Call For A Hybrid Solution

It is now clear that neither MapReduce-like software, nor parallel databases are ideal solutions for data analysis
in the cloud. While neither option satisfactorily meets allfive of our desired properties, each property (except
the primitive ability to operate on encrypted data) is met byat least one of the two options. Hence, a hybrid
solution that combines the fault tolerance, heterogeneouscluster, and ease of use out-of-the-box capabilities of
MapReduce with the efficiency, performance, and tool plugability of shared-nothing parallel database systems
could have a significant impact on the cloud database market.

There has been some recent work on bringing together ideas from MapReduce and database systems,
however, this work focuses mainly on language and interfaceissues. The Pig project at Yahoo [30] and the
SCOPE project at Microsoft [13] aim to integrate declarative query constructs from the database community
into MapReduce-like software to allow greater data independence, code reusability, and automatic query op-
timization. Greenplum and Aster Data have added the abilityto write MapReduce functions (instead of, or in
addition to, SQL) over data stored in their parallel database products [22]. Although these four projects are with-
out question an important step in the direction of a hybrid solution, there remains a need for a hybrid solution at
the systems level in addition to at the language level.

One interesting research question that would stem from sucha hybrid integration project would be how to
combine the ease-of-use out-of-the-box advantages of MapReduce-like software with the efficiency and shared-
work advantages that come with loading data and creating performance enhancing data structures. Incremental
algorithms are called for, where data can initially be read directly off of the file system out-of-the-box, but each
time data is accessed, progress is made towards the many activities surrounding a DBMS load (compression,
index and materialized view creation, etc.).

Another interesting research question is how to balance thetradeoffs between fault tolerance and perfor-
mance. Maximizing fault tolerance typically means carefully checkpointing intermediate results, but this usu-
ally comes at a performance cost (e.g., the rate which data can be read off disk in the sort benchmark from the
original MapReduce paper is half of full capacity since the same disks are being used to write out intermediate
Map output). A system that can adjust its levels of fault tolerance on the fly given an observed failure rate could
be one way to handle the tradeoff.

The bottom line is that there is both interesting research and engineering work to be done in creating a hybrid
MapReduce/parallel database system.

4 Acknowledgments

We thank Andy Pavlo and Samuel Madden for their feedback on this article. The author is funded by the NSF
under grants IIS-0845643 and IIS-0844480.

References

[1] http://news.bbc.co.uk/1/hi/technology/7421099.stm.
[2] http://aws.amazon.com/s3-sla/.
[3] http://wiki.cloudcommunity.org/wiki/CloudComputing:Incidents_Database.
[4] http://en.wikipedia.org/wiki/IBM_DB2.
[5] http://www.ibm.com/developerworks/db2/library/techarticle/dm-0608mcinerney/

index.html.

9

[6] http://www.oracle.com/solutions/business_intelligence/exadata.html.
[7] http://www.sybase.com/detail?id=1054047.
[8] http://developer.amazonwebservices.com/connect/thread.jspa?threadID=16912.
[9] http://www.lexemetech.com/2008/08/elastic-hadoop-clusters-with-amazons.html.

[10] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Order preserving encryption for numeric data. InProc. of SIGMOD,
pages 563–574, 2004.

[11] Amazon Web Services. SimpleDB. Web Page.http://aws.amazon.com/simpledb/.
[12] M. Brantner, D. Florescu, D. Graf, D. Kossmann, and T. Kraska. Building a Database on S3. InProc. of SIGMOD,

pages 251–264, 2008.
[13] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib, S. Weaver, and J. Zhou. Scope: Easy and efficient

parallel processing of massive data sets. InProc. of VLDB, 2008.
[14] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber.

Bigtable: a distributed storage system for structured data. In Proceedings of OSDI, 2006.
[15] B. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon, H. Jacobsen, N. Puz, D. Weaver, and

R. Yerneni. Pnuts: Yahoo!s hosted data serving platform. InProceedings of VLDB, 2008.
[16] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. pages 137–150, December 2004.

[17] D. DeWitt and M. Stonebraker. MapReduce: A major step backwards. DatabaseColumn Blog.http://www.
databasecolumn.com/2008/01/mapreduce-a-major-step-back.html.

[18] T. Ge and S. Zdonik. Answering aggregation queries in a secure system model. InProc. of VLDB, pages 519–530,
2007.

[19] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant web
services.SIGACT News, 33(2):51–59, 2002.

[20] H. Hacigümüş, B. Iyer, C. Li, and S. Mehrotra. Executing sql over encrypted data in the database-service-provider
model. InProc. of SIGMOD, pages 216–227, 2002.

[21] Hadoop Project. Welcome to Hadoop! Web Page.http://hadoop.apache.org/core/.
[22] J. N. Hoover. Start-Ups Bring Google’s Parallel Processing To Data Warehousing. InformationWeek, August 29th,

2008.
[23] M. Kantarcoglu and C. Clifton. Security issues in querying encrypted data. In19th Annual IFIP WG 11.3 Working

Conference on Data and Applications Security, 2004.
[24] S. Madden, D. DeWitt, and M. Stonebraker. Database parallelism choices greatly impact scalability. DatabaseColumn

Blog. http://www.databasecolumn.com/2007/10/database-parallelism-choices.html.
[25] C. Monash. The 1-petabyte barrier is crumbling.http://www.networkworld.com/community/node/

31439.
[26] C. Monash. Introduction to Aster Data and nCluster. DBMS2 Blog.http://www.dbms2.com/2008/09/02/

introduction-to-aster-data-and-ncluster/.
[27] C. Monash. Oracle Announces an Amazon Cloud Offering. DBMS2 Blog. http://www.dbms2.com/2008/

09/22/oracle-announces-an-amazon-cloud-offering/.
[28] E. Mykletun and G. Tsudik. Aggregation queries in the database-as-a-service model. InIFIP WG 11.3 on Data and

Application Security, 2006.
[29] C. Olofson. Worldwide RDBMS 2005 vendor shares. Technical Report 201692, IDC, May 2006.
[30] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig latin: a not-so-foreign language for data processing.

In SIGMOD Conference, pages 1099–1110, 2008.
[31] RightScale. Top reasons amazon ec2 instances disappear. http://blog.rightscale.com/2008/02/02/

top-reasons-amazon-ec2-instances-disappear/.
[32] Slashdot. Multiple Experts Try Defining Cloud Computing. http://tech.slashdot.org/article.pl?

sid=08/07/17/2117221.
[33] M. Stonebraker, S. R. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem, and P. Helland. The end of an architectural

era (it’s time for a complete rewrite). InVLDB, Vienna, Austria, 2007.
[34] Vertica. Performance On-Demand with Vertica AnalyticDatabase for the Cloud.http://www.vertica.com/

cloud.
[35] D. Vesset. Worldwide data warehousing tools 2005 vendor shares. Technical Report 203229, IDC, August 2006.
[36] E. Yoon. Hadoop Map/Reduce Data Processing Benchmarks. Hadoop Wiki. http://wiki.apache.org/

hadoop/DataProcessingBenchmarks.

10

