Data Management in the Cloud: Limitations and Opportunities

Daniel J. Abadi
Yale University
New Haven, CT, USA
dna@cs.yale.edu

Abstract

Recently the cloud computing paradigm has been receivigfgiant excitement and attention in the
media and blogosphere. To some, cloud computing seems ittldoenbre than a marketing umbrella,
encompassing topics such as distributed computing, gndpeding, utility computing, and software-
as-a-service, that have already received significant neseféocus and commercial implementation.
Nonetheless, there exist an increasing number of large eomp that are offering cloud computing
infrastructure products and services that do not entirelgamble the visions of these individual compo-
nent topics.

In this article we discuss the limitations and opportursitief deploying data management issues on
these emerging cloud computing platforms (e.g., AmazonS&ebces). We speculate that large scale
data analysis tasks, decision support systems, and apiplicapecific data marts are more likely to
take advantage of cloud computing platforms than operatidmansactional database systems (at least
initially). We present a list of features that a DBMS destjfer large scale data analysis tasks running
on an Amazon-style offering should contain. We then dissais® currently available open source and
commercial database options that can be used to performaunalysis tasks, and conclude that none of
these options, as presently architected, match the raguisatures. We thus express the need for a new
DBMS, designed specifically for cloud computing envirortsien

1 Introduction

Though not everyone agrees on the exact definition of cloutbabing [32], most agree the vision encompasses
a general shift of computer processing, storage, and sadtdelivery away from the desktop and local servers,
across the network, and into next generation data centestedhdoy large infrastructure companies such as
Amazon, Google, Yahoo, Microsoft, or Sun. Just as the etegtid revolutionized access to electricity one
hundred years ago, freeing corporations from having torgea¢heir own power, and enabling them to focus on
their business differentiators, cloud computing is ha#ledevolutionizing IT, freeing corporations from large IT
capital investments, and enabling them to plug into extigmpewerful computing resources over the network.
Data management applications are potential candidatesefdoyment in the cloud. This is because an on-
premises enterprise database system typically comes vdtige, sometimes prohibitive up-front cost, both in

Copyright 2009 IEEE. Personal use of this material is petedit However, permission to reprint/republish this maikefor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbtl from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee e Data Engineering

hardware and in software. For many companies (especiallstdot-ups and medium-sized businesses), the pay-
as-you-go cloud computing model, along with having somesise worrying about maintaining the hardware,
is very attractive. In this way, cloud computing is remimst of the application service provider (ASP) and
database-as-a-service (DaaS) paradigms. In practiag] clumputing platforms, like those offered by Amazon
Web Services, AT&T’s Synaptic Hosting, AppNexus, GoGridcRspace Cloud Hosting, and to an extent, the
HP/Yahoo!/Intel Cloud Computing Testbed, and the IBM/Geaoglbud initiative, work differently than ASPs
and DaasS. Instead of owning, installing, and maintainirgdéitabase software for you (often in a multi-tenancy
architecture), cloud computing vendors typically maintittle more than the hardware, and give customers a
set of virtual machines in which to install their own soft@arResource availability is typically elastic, with
a seemingly infinite amount compute power and storage &kilzn demand, in a pay-only-for-what-you-use
pricing model.

This article explores the advantages and disadvantagesptdying database systems in the cloud. We look
at how the typical properties of commercially availableuclacomputing platforms affect the choice of data
management applications to deploy in the cloud. Due to tkeeieecreasing need for more analysis over more
data in today’s corporate world, along with an architedtaratch in currently available deployment options, we
conclude that read-mostly analytical data managemenicapiphs are better suited for deployment in the cloud
than transactional data management applications. We tliliseoa research agenda for large scale data analysis
in the cloud, showing why currently available systems atadwally-suited for cloud deployment, and arguing
that there is a need for a newly designed DBMS, architectedifspally for cloud computing platforms.

2 Data Management in the Cloud

Before discussing in Section 3 the features a databasersystest implement for it to run well in the cloud, in
this section we attempt to narrow the scope of potentialbdata applications to consider for cloud deployment.
Our goal in this section is to decide which data managemaeplicagions are best suited for deployment on top
of cloud computing infrastructure. In order to do this, wetfitiscuss three characteristics of a cloud computing
environment that are most pertinent to the ensuing disoussi

2.1 Cloud Characteristics

Compute power is elastic, but only if workload is parallelizable. One of the oft-cited advantages of cloud
computing is its elasticity in the face of changing condiioFor example, during seasonal or unexpected spikes
in demand for a product retailed by an e-commerce comparmyrang an exponential growth phase for a social
networking Website, additional computational resourcas loe allocated on the fly to handle the increased
demand in mere minutes (instead of the many days it can takeoture the space and capital equipment
needed to expand the computational resources in-housejlay, in this environment, one only pays for what
one needs, so increased resources can be obtained to hgikdiein load and then released once the spike has
subsided. However, getting additional computational weses is not as simple as a magic upgrade to a bigger,
more powerful machine on the fly (with commensurate increas€PUs, memory, and local storage); rather,
the additional resources are typically obtained by aliogaadditional server instances to a task. For example,
Amazon'’s Elastic Compute Cloud (EC2) apportions computasgpurces in small, large, and extra large virtual
private server instances, the largest of which contains ox@niman four cores. If an application is unable to take
advantage of the additional server instances by offloadingesof its required work to the new instances which
run in parallel with the old instances, then having the adldl server instances available will not be much help.
In general, applications designed to run on top of a shaothing architecture (where a set of independent
machines accomplish a task with minimal resource overla@ell suited for such an environment. Some
cloud computing products, such as Google’s App Engine,igeowot only a cloud computing infrastructure, but

also a complete software stack with a restricted API so tbiivare developers are forced to write programs
that can run in a shared-nothing environment and thus ti@elelastic scaling.

Data is stored at an untrusted host.Although it may not seem to make business sense for a clougutimgy
host company to violate the privacy of its customers andsscdata without permission, such a possibility nev-
ertheless makes some potential customers nervous. Inajemaving data off premises increases the number
of potential security risks, and appropriate precautionstrbe made. Furthermore, although the name “cloud
computing” gives the impression that the computing andagi@resources are being delivered from a celestial
location, the fact is, of course, that the data is physidalbated in a particular country and is subject to local
rules and regulations. For example, in the United States\Uth Patriot Act allows the government to demand
access to the data stored on any computer; if the data is bestgd by a third party, the data is to be handed
over without the knowledge or permission of the company os@e using the hosting service [1]. Since most
cloud computing vendors give the customer little contrarovhere data is stored (e.g., Amazon S3 only allows
a customer to choose between US and EU data storage optloms)stomer has little choice but to assume the
worst and that unless the data is encrypted using a key natddat the host, the data may be accessed by a
third party without the customer’s knowledge.

Data is replicated, often across large geographic distansd®ata availability and durability is paramount for
cloud storage providers, as data loss or unavailabilityteadamaging both to the bottom line (by failing to hit
targets set in service level agreements [2]) and to busiegagation (outages often make the news [3]). Data
availability and durability are typically achieved thrdugnder-the-covers replication (i.e., data is automayical
replicated without customer interference or requestsjgé.aloud computing providers with data centers spread
throughout the world have the ability to provide high levetdault tolerance by replicating data across large
geographic distances. Amazon’s S3 cloud storage servpiEates data across “regions” and “availability
zones” so that data and applications can persist even irateedf failures of an entire location. The customer
should be careful to understand the details of the reptinascheme however; for example, Amazon’'s EBS
(elastic block store) will only replicate data within thexeavailability zone and is thus more prone to failures.

2.2 Data management applications in the cloud

The above described cloud characteristics have clear goesees on the choice of what data management ap-
plications to move into the cloud. In this section we desetlie suitability of moving the two largest components
of the data management market into the cloud: transactaatalmanagement and analytical data management.

2.2.1 Transactional data management

By “transactional data management”, we refer to the bremibaitter of the database industry, databases that
back banking, airline reservation, online e-commerce,sanply chain management applications. These appli-
cations typically rely on the ACID guarantees that databgsevide, and tend to be fairly write-intensive. We
speculate that transactional data management applisai@not likely to be deployed in the cloud, at least in
the near future, for the following reasons:

Transactional data management systems do not typically use shared-nothing architecture. The transac-
tional database market is dominated by Oracle, IBM DB2, bioft SQL Server, and Sybase [29]. Of these
four products, neither Microsoft SQL Server nor Sybase @ddployed using a shared-nothing architecture.
IBM released a shared-nothing implementation of DB2 in the©990s which is now available as a “Database
Partitioning Feature” (DPF) add-on to their flagship praddd, but is designed to help scale analytical ap-
plications running on data warehouses, not transactiogial thanagement [5]. Oracle had no shared-nothing
implementation until very recently (September 2008 with thlease of the Oracle Database Machine that uses

a shared-nothing architecture at the storage layer), laihathis implementation is designed only to be used for
data warehouses [6].

Implementing a transactional database system using adshatking architecture is non-trivial, since data
is partitioned across sites and, in general, transactiansiot be restricted to accessing data from a single site.
This results in complex distributed locking and commit poatls, and in data being shipped over the network
leading to increased latency and potential network banttwidttlenecks. Furthermore the main benefit of a
shared-nothing architecture is its scalability [24]; hoesethis advantage is less relevant for transactional data
processing for which the overwhelming majority of deployrseare less than 1 TB in size [33].

It is hard to maintain ACID guarantees in the face of data replcation over large geographic distances.
The CAP theorem [19] shows that a shared-data system carchabse at most two out of three properties:
consistency, availability, and tolerance to partitionshefv data is replicated over a wide area, this essentially
leaves just consistency and availability for a system tmskdetween. Thus, the 'C’ (consistency) part of ACID
is typically compromised to yield reasonable system aldity.

In order to get a sense of the inherent issues in building kcedpd database over a wide area network,
it is interesting to note the design approaches of some regstems. Amazon’s SimpleDB [11] and Yahoo's
PNUTS [15] both implement shared-nothing databases ovétearea network, but overcome the difficulties of
distributed replication by relaxing the ACID guaranteethefsystem. In particular, they weaken the consistency
model by implementing various forms of eventual/timelimasistency so that all replicas do not have to agree
on the current value of a stored value (avoiding distributechmit protocols). Similarly, the research done by
Brantner et. al. found that they needed to relax consistandyisolation guarantees in the database they built on
top of Amazon’s S3 storage layer [12]. Google’s Bigtablg] itdplements a replicated shared-nothing database,
but does not offer a complete relational API and weakensAh@tomicity) guarantee from ACID. In particular,
it is a simple read/write store; general purpose transastaye not implemented (the only atomic actions are
read-modify-write sequences on data stored under a siogi&ey). SimpleDB and Microsoft SQL Server Data
Services work similarly. The H-Store project [33] aims taldwide-area shared-nothing transactional database
that adheres to strict ACID guarantees by using carefubdat design to minimize the number of transactions
that access data from multiple partitions; however, thgeptademains in the vision stage, and the feasibility of
the approach on a real-world dataset and query workloadétas Ype demonstrated.

There are enormous risks in storing transactional data on anuntrusted host. Transactional databases
typically contain the complete set of operational data edegd power mission-critical business processes. This
data includes detail at the lowest granularity, and oftefuthes sensitive information such as customer data or
credit card numbers. Any increase in potential securitadines or privacy violations is typically unacceptable.

We thus conclude that transactional data management apptis are not well suited for cloud deployment.

Despite this, there are a couple of companies that will sellgtransactional database that can run in Amazon'’s
cloud: EnterpriseDB’s Postgres Plus Advanced Server aagdl@rHowever, there has yet to be any published
case studies of customers successfully implementing aonisstical transactional database using these cloud
products and, at least in Oracle’s case, the cloud versiemséo be mainly intended for database backup [27].

2.2.2 Analytical data management

By “analytical data management”, we refer to applicatidmet fjuery a data store for use in business planning,
problem solving, and decision support. Historical datanglavith data from multiple operational databases
are all typically involved in the analysis. Consequenthe scale of analytical data management systems is
generally larger than transactional systems (whereas §T&de for transactional systems, analytical systems
are increasingly crossing the petabyte barrier [25, 7]xtHeumore, analytical systems tend to be read-mostly
(or read-only), with occasional batch inserts. Analytidata management consists of $3.98 billion [35] of the
$14.6 billion database market [29] (27%) and is growing ata of 10.3% annually [35]. We speculate that

4

analytical data management systems are well-suited tonrarcloud environment, and will be among the first
data management applications to be deployed in the clouthddollowing reasons:

Shared-nothing architecture is a good match for analyticaldata management. Teradata, Netezza, Green-
plum, DATAllegro (recently acquired by Microsoft), Veréicand Aster Data all use a shared-nothing architecture
(at least in the storage layer) in their analytical DBMS pratd, with IBM DB2 and recently Oracle also adding
shared-nothing analytical products. The ever increasimguat of data involved in data analysis workloads is the
primary driver behind the choice of a shared-nothing aechitre, as the architecture is widely believed to scale
the best [24]. Furthermore, data analysis workloads termdngist of many large scan scans, multidimensional
aggregations, and star schema joins, all of which are faalyy to parallelize across nodes in a shared-nothing
network. Finally, the infrequent writes in the workloadneilnates the need for complex distributed locking and
commit protocols.

ACID guarantees are typically not needed. The infrequent writes in analytical database workloadsngl
with the fact that it is usually sufficient to perform the ars$ on a recent snapshot of the data (rather than on
up-to-the-second most recent data) makes the 'A, 'C’, dh¢htomicity, consistency, and isolation) of ACID
easy to obtain. Hence the consistency tradeoffs that neleel imade as a result of the distributed replication of
data in transactional databases are not problematic ftytarah databases.

Particularly sensitive data can often be left out of the analsis. In many cases, it is possible to identify
the data that would be most damaging should it be accessedttiydgparty, and either leave it out of the
analytical data store, include it only after applying anamoization function, or include it only after encrypting
it. Furthermore, less granular versions of the data can dlyzed instead of the lowest level, most detailed data.

We conclude that the characteristics of the data and wailklod typical analytical data management applica-

tions are well-suited for cloud deployment. The elastic pate and storage resource availability of the cloud

is easily leveraged by a shared-nothing architecture,enthié security risks can be somewhat alleviated. In
particular, we expect the cloud to be a preferred deployraptibn for data warehouses for medium-sized busi-

nesses (especially those that do not currently have datgheases due to the large up-front capital expenditures
needed to get a data warehouse project off the ground), flstesuor short-term business intelligence projects

that arise due to rapidly changing business conditions, (a.getail store analyzing purchasing patterns in the
aftermath of a hurricane), and for customer-facing datatsrthat contain a window of data warehouse data
intended to be viewed by the public (for which data secustgat an issue).

3 Data Analysis in the Cloud

Now that we have settled on analytic database systems adyaddgment of the DBMS market to move into the
cloud, we explore various currently available softwaraigsohs to perform the data analysis. We focus on two
classes of software solutions: MapReduce-like softwane, @mmercially available shared-nothing parallel
databases. Before looking at these classes of solutioretaii,dve first list some desired properties and features
that these solutions should ideally have.

3.1 Cloud DBMS Wish List

Efficiency. Given that cloud computing pricing is structured in a way Isat tyou pay for only what you use,
the price increases linearly with the requisite storagéyork bandwidth, and compute power. Hence, if data
analysis software product A requires an order of magnitudeencompute units than data analysis software
product B to perform the same task, then product A will coppfaximately) an order of magnitude more than
B. Efficient software has a direct effect on the bottom line.

Fault Tolerance. Fault tolerance in the context of analytical data worklosdsieasured differently than fault
tolerance in the context of transactional workloads. Fangactional workloads, a fault tolerant DBMS can
recover from a failure without losing any data or updatesnfn@ecently committed transactions, and in the
context of distributed databases, can successfully cotnamisactions and make progress on a workload even
in the face of worker node failure. For read-only queriesnalgtical workloads, there are no write transactions
to commit, nor updates to lose upon node failure. Hence, & falerant analytical DBMS is simply one
that does not have to restart a query if one of the nodes iedalv query processing fails. Given the large of
amount of data that needs to be accessed for deep analyier@s, combined with the relatively weak compute
capacity of a typical cloud compute server instance (e.default compute unit on Amazon’'s EC2 service is
the equivalent of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeongasmr), complex queries can involve hundreds
(even thousands) of server instances and can take hoursniglete. Furthermore, clouds are typically built
on top of cheap, commodity hardware, for which failure is motommon. Consequently, the probability of
a failure occurring during a long-running data analysi& iagelatively high; Google, for example, reports an
average of 1.2 failures per analysis job [16]. If a query mmastart each time a node fails, then long, complex
gueries are difficult to complete.

Ability to run in a heterogeneous environment. The performance of cloud compute nodes is often not consis-
tent, with some nodes attaining orders of magnitude wordenpeance than other nodes. There are a variety of
reasons why this could occur, ranging from hardware faitaesing degraded performance on a node [31], to
an instance being unable to access the second core on acdeatiachine [8], to contention for non-virtualized
resources. If the amount of work needed to execute a quequallg divided amongst the cloud compute nodes,
then there is a danger that the time to complete the quenbwiipproximately equal to time for the slowest
compute node to complete its assigned task. A node obseateigiaded performance would thus have a dispro-
portionate affect on total query latency. A system desigioedin in a heterogeneous environment would take
appropriate measures to prevent this from occurring.

Ability to operate on encrypted data. As mentioned in Section 2.2.2, sensitive data may be erexlyipéfore
being uploaded to the cloud. In order to prevent unauthdrimeess to the sensitive data, any application running
in the cloud should not have the ability to directly decryp tlata before accessing it. However, shipping entire
tables or columns out of the cloud for decryption is bandiwidtensive. Hence, the ability of the data analysis
system to operate directly on encrypted data (such as in2[1,018, 23, 28]) so that a smaller amount of data
needs to ultimately be shipped elsewhere to be decryptdd sinificantly improve performance.

Ability to interface with business intelligence products. There are a variety of customer-facing business
intelligence tools that work with database software andmithe visualization, query generation, result dash-
boarding, and advanced data analysis. These tools are amtémppart of the analytical data management
picture since business analysts are often not technicdlgreced and do not feel comfortable interfacing with
the database software directly. These tools typicallyriate with the database using ODBC or JDBC, so
database software that want to work these products mugpa8€EH. queries over these connections.

Using these desired properties of our cloud data analy$iwa®, we now examine how close two currently
available solutions come to attaining these propertiespRéaluce-like software, and commercially available
shared-nothing parallel databases.

3.2 MapReduce-like software

MapReduce [16] and related software such as the open sowdeod [21], useful extensions [30], and Mi-

crosoft's Dryad/SCOPE stack [13] are all designed to autertige parallelization of large scale data analysis
workloads. Although DeWitt and Stonebraker took a lot oficism for comparing MapReduce to database sys-
tems in their recent controversial blog posting [17] (magelidve that such a comparison is apples-to-oranges),

a comparison is warranted since MapReduce (and its desgtis in fact a useful tool for performing data
analysis in the cloud [9]. The MapReduce programming moddlfeamework implementation satisfies many
of the previously stated desired properties:

Fault Tolerance. MapReduce is designed with fault tolerance as a high pyiofitdata analysis job is divided
into many small tasks and upon a failure, tasks assigned &ileal fmachine are transparently reassigned to
another machine. Care is taken to make sure that partiaflgueed tasks are not doubly accounted for in the
final query result. In a set of experiments in the original Reduce paper, it was shown that explicitly killing
200 out of 1746 worker processes involved in a MapReducegsblted in only a 5% degradation in query
performance [16].

Ability to run in a heterogeneous environment. MapReduce is also carefully designed to run in a hetero-
geneous environment. Towards the end of a MapReduce jdts that are still in progress get redundantly
executed on other machines, and a task is marked as compkesabn as either the primary or the backup ex-
ecution has completed. This limits the effect that “straggimachines can have on total query time, as backup
executions of the tasks assigned to these machines will lebenfirst. In a set of experiments in the original
MapReduce paper, it was shown that backup task executioruag query performance by 44% by alleviating
the adverse affect caused by slower machines.

Ability to operate on encrypted data. Neither MapReduce, nor its derivatives, come with a nathiétya to
operate on encrypted data. Such an ability would have todédded using user-defined code.

Ability to interface with business intelligence products. Since MapReduce is not intended to be a database
system, it is not SQL compliant and thus it does not easibriate with existing business intelligence products.

Efficiency. The efficiency and raw performance of MapReduce is a matteleb&te. A close inspection of
the experimental results presented in the MapReduce papewpuld seem to indicate that there is room for
performance improvement. Figure 2 of the paper shows tHerpesince of a simple grep query where a rare
string is searched for inside a 1TB dataset. In this quer dfl[data is read off of the 3600 disks in the cluster
(in parallel) and a very simple pattern search is perfornbask should clearly be the bottleneck resource since
the string is rare, so query results do not need to be shippardtioe network, and the query is computationally
trivial. Despite these observations, the entire grep gtegs 150 seconds to complete. If one divides the 1TB
of data by the 3600 disks and 150 seconds to run the queryyvérage throughput with which data is being
read is less than 2 MB/s/disk. At peak performance, MapReduas reading data at 32GB/s which is less
than 10MB/s/disk. Given the long start-up time to get to peakormance, and the fact that peak performance
is four to six times slower than how fast disks in the clustauld actually be read, there indeed is room for
improvement. Other benchmarks [36] (albeit not performedauthe standards of publishable academic rigor)
have also shown MapReduce to be about an order of magnitodersthan alternative systems.

Much of the performance issues of MapReduce and its deré/atistems can be attributed to the fact that
they were not initially designed to be used as complete,tereid data analysis systems over structured data.
Their target use cases include scanning through a largef sktcaments produced from a web crawler and
producing a web index over them [16]. In these applicatiding,input data is often unstructured and a brute
force scan strategy over all of the data is usually optimap®educe then helps automate the parallelization of
the data scanning and application of user defined functistiseadata is being scanned.

For more traditional data analysis workloads of the typewssed in Section 2.2.2 that work with data
produced from business operational data stores, the dé&arnsore structured. Furthermore, the queries tend
to access only a subset of this data (e.g., breakdown thaspodfstoredocated in the Northeakt Using data
structures that help accelerate access to needed engtiels &s indexes) and dimensions (such as column-
stores), and data structures that precalculate commomstxj(such as materialized views) often outperform a
brute-force scan execution strategy.

Many argue that the lack of these “helper” data structuréddapReduce is a feature, not a limitation. These

additional structures generally require the data to beddadto to data analysis system before it can be used.
This means that someone needs to spend time thinking abaitsafrema to use for the data, define the schema
and load the data into it, and decide what helper data stegto create (of course self-managing/self-tuning
systems can somewhat alleviate this burden). In contragpRédduce can immediately read data off of the file
system and answer queries on-the-fly without any kind ofilaadtage.

Nonetheless, at the complexity cost of adding a loadingestaglexes, columns, and materialized views
unquestionably can improve performance of many types ofiggle If these data structures are utilized to
improve the performance of multiple queries, then the ame-tost of their creation is easily outweighed by
the benefit each time they are used.

The absence of a loading phase into MapReduce has additierfatmance implications beyond precluding
the use of helper data structures. During data load, datbe@ompressed on disk. This can improve perfor-
mance, even for brute-force scans, by reducing the 1/0 tonesidbsequent data accesses. Furthermore, since
data is not loaded in advance, MapReduce needs to perfoarpdeding at runtime (using user-defined code)
each time the data is accessed, instead of parsing the datanjee at load time.

The bottom line is that the performance of MapReduce is digreron the applications that it is used for. For
complex analysis of unstructured data (which MapReduceniigally designed for) where brute-force scans is
the right execution strategy, MapReduce is likely a goodBiit for the multi-billion dollar business-oriented
data analysis market, MapReduce can be wildly inefficient.

3.3 Shared-Nothing Parallel Databases

A more obvious fit for data analysis in the cloud are the conecially available shared-nothing parallel databases,
such as Teradata, Netezza, IBM DB2, Greenplum, DATAlleYestica, and Aster Data, that already hold a rea-
sonable market share for on-premises large scale datasenfd$]. DB2, Greenplum, Vertica, and Aster Data
are perhaps the most natural fit since they sell softwarg-prdducts that could theoretically run in the data
centers hosted by cloud computing providers. Vertica direaarkets a version of its product designed to run
in Amazon’s cloud [34].

Parallel databases implement a largely complimentaryfggbperties from our wish list relative to MapReduce-
like software:

Ability to interface with business intelligence products. Given that the business intelligence products are
designed to work on top of databases, this property esigrittanes for free. More mature databases, such as
DB2, tend to have carefully optimized and certified integgwvith a multitude of Bl products.

Efficiency At the cost of the additional complexity in the loading phakscussed in Section 3.2, parallel
databases implement indexes, materialized views, andressipn to improve query performance.

Fault Tolerance. Most parallel database systems restart a query upon adailthiis is because they are gen-
erally designed for environments where queries take no thame a few hours and run on no more than a few
hundred machines. Failures are relatively rare in such amogment, so an occasional query restart is not
problematic. In contrast, in a cloud computing environmeritere machines tend to be cheaper, less reliable,
less powerful, and more numerous, failures are more comrilmt.all parallel databases, however, restart a
guery upon a failure; Aster Data reportedly has a demo shpaiquery continuing to make progress as worker
nodes involved in the query are killed [26].

Ability to run in a heterogeneous environment. Parallel databases are generally designed to run on homo-
geneous equipment and are susceptible to significanthadedrperformance if a small subset of nodes in the
parallel cluster are performing particularly poorly.

Ability to operate on encrypted data. Commercially available parallel databases have not caughd (and
do not implement) the recent research results on operaiiagtly on encrypted data. In some cases simple op-

erations (such as moving or copying encrypted data) areostgu but advanced operations, such as performing
aggregations on encrypted data, is not directly supportedhould be noted, however, that it is possible to
hand-code encryption support using user defined functions.

3.4 A Call For A Hybrid Solution

It is now clear that neither MapReduce-like software, noafpal databases are ideal solutions for data analysis
in the cloud. While neither option satisfactorily meetsfaié of our desired properties, each property (except
the primitive ability to operate on encrypted data) is metabyeast one of the two options. Hence, a hybrid
solution that combines the fault tolerance, heterogenelusser, and ease of use out-of-the-box capabilities of
MapReduce with the efficiency, performance, and tool plilgatof shared-nothing parallel database systems
could have a significant impact on the cloud database market.

There has been some recent work on bringing together ideas flapReduce and database systems,
however, this work focuses mainly on language and interfssges. The Pig project at Yahoo [30] and the
SCOPE project at Microsoft [13] aim to integrate declagtiiuery constructs from the database community
into MapReduce-like software to allow greater data indelpece, code reusability, and automatic query op-
timization. Greenplum and Aster Data have added the ahdityrite MapReduce functions (instead of, or in
addition to, SQL) over data stored in their parallel datel@®ducts [22]. Although these four projects are with-
out question an important step in the direction of a hybridttan, there remains a need for a hybrid solution at
the systems level in addition to at the language level.

One interesting research question that would stem from augfbrid integration project would be how to
combine the ease-of-use out-of-the-box advantages of Edipte-like software with the efficiency and shared-
work advantages that come with loading data and creatirnfgnpeance enhancing data structures. Incremental
algorithms are called for, where data can initially be remeatly off of the file system out-of-the-box, but each
time data is accessed, progress is made towards the manyiestsurrounding a DBMS load (compression,
index and materialized view creation, etc.).

Another interesting research question is how to balancer#ueoffs between fault tolerance and perfor-
mance. Maximizing fault tolerance typically means catgfoheckpointing intermediate results, but this usu-
ally comes at a performance cost (e.g., the rate which datdeaead off disk in the sort benchmark from the
original MapReduce paper is half of full capacity since tame disks are being used to write out intermediate
Map output). A system that can adjust its levels of faultriamhee on the fly given an observed failure rate could
be one way to handle the tradeoff.

The bottom line is that there is both interesting researcheaigineering work to be done in creating a hybrid
MapReduce/parallel database system.

4 Acknowledgments

We thank Andy Pavlo and Samuel Madden for their feedback isratticle. The author is funded by the NSF
under grants 11S-0845643 and 11S-0844480.

References

[1] http:// news. bbc. co. uk/ 1/ hi/technol ogy/ 7421099. st m

[2] http://aws. amazon. com s3-sl a/.

[3] http://w ki.cloudcomunity. org/w ki/C oudConputing: | nci dents_Dat abase.

[4] http://en.w ki pedi a. org/w ki /| BM DB2.

[5] http://ww. i bm com devel operwor ks/ db2/1ibrary/techarticl e/ dm 0608nti ner ney/
i ndex. htm .

[6] http://wwv. oracl e.conl sol utions/business_intelligence/exadata.htn.
[7] http://ww. sybase. com det ai | ?i d=1054047.
[8] http://devel oper.anmazonwebservi ces. conf connect/t hread. j spa?t hreadl D=16912.
[9] http://ww. | exenet ech. com 2008/ 08/ el asti c- hadoop- cl ust ers-w t h-anmazons. htni .
[10] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Order mesng encryption for numeric data. Proc. of SIGMOD
pages 563-574, 2004.
[11] Amazon Web Services. SimpleDB. Web Pabet p: / / aws. amazon. com si npl edb/ .
[12] M. Brantner, D. Florescu, D. Graf, D. Kossmann, and Taska. Building a Database on S3.Rroc. of SIGMOD
pages 251-264, 2008.
[13] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. 8haR. Weaver, and J. Zhou. Scope: Easy and efficient
parallel processing of massive data setsPioc. of VLDB 2008.
[14] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. WallatBurrows, T. Chandra, A. Fikes, and R. E. Gruber.
Bigtable: a distributed storage system for structured.dat®roceedings of OSDR006.
[15] B. Cooper, R. Ramakrishnan, U. Srivastava, A. SilleénstP. Bohannon, H. Jacobsen, N. Puz, D. Weaver, and
R. Yerneni. Pnuts: Yahoo!s hosted data serving platfornPréceedings of VLDB2008.
[16] J. Dean and S. Ghemawat. Mapreduce: Simplified dataegsireg on large clusters. pages 137-150, December 2004.

[17] D. DeWitt and M. Stonebraker. MapReduce: A major stepkipards. DatabaseColumn Blodnt t p: / / vwww.
dat abasecol um. com 2008/ 01/ mapr educe- a- ngj or - st ep- back. htm .

[18] T. Ge and S. Zdonik. Answering aggregation queries ir@ige system model. IRroc. of VLDB pages 519-530,
2007.

[19] S. Gilbert and N. Lynch. Brewer’s conjecture and thesfbiity of consistent, available, partition-tolerant lwe
services.SIGACT News33(2):51-59, 2002.

[20] H. Hacigimis, B. lyer, C. Li, and S. Mehrotra. Exdngtsql over encrypted data in the database-service-peovid
model. InProc. of SIGMOD pages 216—227, 2002.

[21] Hadoop Project. Welcome to Hadoop! Web Pduget p: / / hadoop. apache. or g/ core/ .

[22] J. N. Hoover. Start-Ups Bring Google’s Parallel Prateg To Data Warehousing. InformationWeek, August 29th,
2008.

[23] M. Kantarcoglu and C. Clifton. Security issues in quegyencrypted data. 1@9th Annual IFIP WG 11.3 Working
Conference on Data and Applications Secyra904.

[24] S. Madden, D. DeWitt, and M. Stonebraker. Databasdletisan choices greatly impact scalability. Database@Guiu
Blog. htt p: / / ww. dat abasecol unm. conif 2007/ 10/ dat abase- paral | el i sm choi ces. htnl .

[25] C. Monash. The 1-petabyte barrier is crumblifgt t p: / / www. net wor kwor | d. com’ conmruni t y/ node/
31439.

[26] C. Monash. Introduction to Aster Data and nCluster. D&MBlog.ht t p: / / www. dbns2. com 2008/ 09/ 02/
i ntroducti on-to-aster-data-and-ncluster/.

[27] C. Monash. Oracle Announces an Amazon Cloud OfferingM32 Blog. ht t p: / / www. dbns2. coml 2008/
09/ 22/ or acl e- announces- an- anmazon- cl oud- of fering/.

[28] E. Mykletun and G. Tsudik. Aggregation queries in théati@se-as-a-service model.IFiP WG 11.3 on Data and
Application Security2006.

[29] C. Olofson. Worldwide RDBMS 2005 vendor shares. TecAhReport 201692, IDC, May 2006.

[30] C.Olston, B. Reed, U. Srivastava, R. Kumar, and A. TamakPig latin: a not-so-foreign language for data processin
In SIGMOD Conferencgpages 1099-1110, 2008.

[31] RightScale. Top reasons amazon ec2 instances disagpeap: / / bl og. ri ght scal e. conml 2008/ 02/ 02/
t op- reasons- amazon- ec2- i nst ances- di sappear/ .

[32] Slashdot. Multiple Experts Try Defining Cloud Computinhtt p: // t ech. sl ashdot.org/article.pl ?
si d=08/07/ 17/ 2117221.

[33] M. Stonebraker, S. R. Madden, D. J. Abadi, S. HarizopsuN. Hachem, and P. Helland. The end of an architectural
era (it's time for a complete rewrite). MLDB, Vienna, Austria, 2007.

[34] Vertica. Performance On-Demand with Vertica Analyliatabase for the Cloudht t p: / / www. verti ca. conl
cl oud.

[35] D. Vesset. Worldwide data warehousing tools 2005 vestiares. Technical Report 203229, IDC, August 2006.

[36] E. Yoon. Hadoop Map/Reduce Data Processing Benchmatksloop Wiki. htt p: //wi ki . apache. or g/
hadoop/ Dat aPr ocessi ngBenchmar ks.

10

