
1

CS 2550 / Spring 2006
Principles of Database Systems

Alexandros Labrinidis
University of Pittsburgh

14 – Recovery Algorithms

Alexandros Labrinidis, Univ. of Pittsburgh 2 CS 2550 / Spring 2006

Recovery Techniques and Assumptions

 Undo/Redo Algorithm

 Undo/No-Redo

 No-Undo/Redo (also called logging with deferred updates)

 No-Undo/No-Redo (also called shadowing)

Alexandros Labrinidis, Univ. of Pittsburgh 3 CS 2550 / Spring 2006

Recovery Techniques and Assumptions

All the techniques assume the following:
 Failures are detectable.

 Write operations are atomic(i.e., execute either in its entirety or
not at all).
 If this is not the case, we consider this failure as media failure

 The scheduler sends operations to DM in an order which produces
executions that are correct and strict

 No media failure

 The granularity of Writes that DM processes is the same as the
that of the atomic Write supported by the hardware.

Alexandros Labrinidis, Univ. of Pittsburgh 4 CS 2550 / Spring 2006

Undo/Redo Recovery Algorithm

The following types of log records are used:
Commit, Abort record: [Ti, commit]

[Ti, abort]
Update record, Ui : [Ti, x, b, a, old-LSN(x), prev-LSN(Ti)]

Ti : the id of the transaction that issued the Write
x: the address of the block being modified and the offset and length
b: the before image of the modified portion of the block
a: the after image of the modified portion of the block
old-LSN(x): the LSN of x's buffer before this update
prev-LSN(Ti): the LSN of the preceding log record of this transaction

(null if it's the first)

Checkpoint record: [CPid, Ac]
 Ac: a list of the active transactions at checkpoint time.

2

Alexandros Labrinidis, Univ. of Pittsburgh 5 CS 2550 / Spring 2006

Undo/Redo Operations

 RM-Read(Ti,x)
 return BM-Read(x)

 RM-Commit(Ti)
 Append [Ti, commit] to log and flush all log buffers
 Send ack to the scheduler

 RM-Write(Ti, x, a)
 Fix(x) in buffers
 Append the record Ui to the log buffer:

[Ti, x, b, a, old-LSN(x) = LSN(x), prev-LSN(Ti)]
 Set LSN(x) = Ui

 BM-Write(x, a) and Unfix(x)
 ack(Wi) to the scheduler

Alexandros Labrinidis, Univ. of Pittsburgh 6 CS 2550 / Spring 2006

Undo/redo Operations (cont'd)

 RM-Abort(Ti)
 Let Ui be the LSN of the most recent update record of Ti,

Ui : [Ti, x, b, a, old-LSN), prev-LSN]
 While Ui ≠ null do:

 Fix(x) in buffers
 BM-Write(x, b)
 Set LSN(x) = old-LSN
 Unfix(x)
 Ui = prev-LSN

 Append [Ti, abort] to the log and send ack to the scheduler

Alexandros Labrinidis, Univ. of Pittsburgh 7 CS 2550 / Spring 2006

Fuzzy Checkpointing: Stable-LSN

 We attach the Stable-LSN field to each buffer block.
 Stable-LSN is the LSN of the last record in the log buffer

when the data item presently occupying the buffer was last
fetched or flushed.

 Stable-LSN describes the time at which a block and its
corresponding disk block in stable storage are the same.

page
Id

name

dirty
Bit

fix
count

block
LSN

Stable
LSN

buffer
number

x 0 0 812 805 0

y 1 2 10 7 1

2 0 1 123 123 2

Buffer Table Alexandros Labrinidis, Univ. of Pittsburgh 8 CS 2550 / Spring 2006

Fuzzy Checkpointing Algorithm

 Stop accepting new operations (active transactions are
blocked).

 read CP-LSN (the LSN of the latest checkpoint).
 Scan the buffer pool and for each dirty buffer whose

Stable-LSN is less than CP-LSN do:
 Flush all log records whose LSN is less than the buffer's block-LSN.
 Flush this buffer.
 Set Stable-LSN of this buffer to be the CP-LSN of the new

checkpoint record (that will be written at the end of this process).

3

Alexandros Labrinidis, Univ. of Pittsburgh 9 CS 2550 / Spring 2006

Fuzzy Checkpointing Algorithm

 Starting from [CP-LSN, Ac], scan the log forward.
 For each commit or abort record for Ti, do

Ac = Ac - {Ti}.
 For each update record for T, do Ac = Ac U {Ti}.

 Append a checkpoint record to the log buffer with the
active list Ac, and flush this buffer.

 Write the new CP-LSN to the predefined location.
 Resume normal execution.

Alexandros Labrinidis, Univ. of Pittsburgh 10 CS 2550 / Spring 2006

Restart Algorithm with Fuzzy Checkpoint

 Set CL = ∅ and AL = ∅.
 Read the log backwards, until the penultimate checkpoint

record is reached, and for each record do:
 If [Ti, commit], then CL = CL U {Ti}.
 If [Ti, abort], then AL = AL U {Ti}.
 If [Ti, x, b, a, old-LSN, prev-LSN], then

 If Ti ∈CL then ignore this record else AL = AL U {Ti}
 If Ti ∈ AL then

BM-Write(x, b)
LSN(x) = old-LSN(U)
if prev-LSN = null then AL = AL - {Ti}

 If it is the latest checkpoint record then ignore it.

Alexandros Labrinidis, Univ. of Pittsburgh 11 CS 2550 / Spring 2006

Restart Algorithm with Fuzzy Checkpoint

 Add in AL all Ti 's in Ac of penultimate checkpoint but
not in CL.

 Proceed backwards, until AL = ∅, and for each update
record U
 If Ti in AL then

issue BM-Write(x, b).
if prev-LSN(U) = null then AL = AL - {Ti}.

 Starting from the penultimate checkpoint record
proceed forward
 For each update record such that Ti ∈ CL issue BM-Write(x, a).

 Send ack to the scheduler.

Alexandros Labrinidis, Univ. of Pittsburgh 12 CS 2550 / Spring 2006

How to avoid Unnecessary Writes?

 Store LSN's in the block header. At restart, use the LSN
to find out exactly which updates in the log have
already been moved to disk.

No need to redo these updates!

4

Alexandros Labrinidis, Univ. of Pittsburgh 13 CS 2550 / Spring 2006

Restart: Backward Scanning

 For each update record U: [T, x, operation, old-LSN, prev-LSN] of an
uncommitted transaction (aborted or active at system crash) do:

 Read the block of x in main and examine the LSN(x).
 if LSN(x) < LSN(U) /* the update described in U did not

do nothing make it to stable storage */
 else if LSN(x) = LSN(U) /* U describes the operation on x */

 LSN(x) = old-LSN(U);
undo(operation);

 else /* LSN(x) > LSN(U) */
 do nothing;
 /* x contains an update by a log record U' appearing after U;
 implies that the transaction that produced U' must have committed */

Alexandros Labrinidis, Univ. of Pittsburgh 14 CS 2550 / Spring 2006

Restart: Forward Scanning

 Start from the penultimate checkpoint record and proceed forward.

 For each update record U: [T, x, operation, old-LSN, prev-LSN] of a
committed transaction Ti, examine the LSN(x).

 if LSN(x) < LSN(U) /* the update described in U didn't
 redo(operation); make it to the stable storage. */

 else if LSN(x) = LSN(U) /* the update described in U on x is
 do nothing. already in the stable database. */

 else /* LSN(x) > LSN(U) */ /* there should be another log record
 do nothing; after U that describes the update on x.*/

Alexandros Labrinidis, Univ. of Pittsburgh 15 CS 2550 / Spring 2006

Discussion

 Strong interaction between concurrency and recovery
systems.

 The locking granularity must be at least as coarse as the
recovery granularity.

Example:
 If the recovery granularity is a block/page we can not have record

level locking.
 If the recovery granularity is a record we can not have field level

locking.

Alexandros Labrinidis, Univ. of Pittsburgh 16 CS 2550 / Spring 2006

Undo/No-Redo Recovery Algorithm

 It never requires redoing an update.
 Basically the same as the previous algorithm except the

commit operation.
 Commit(Ti)

 for each x updated by Ti flush x's buffer to stable storage.
 add a commit record to the log.

 Restart
 Restart requires one (backward) scan through the log.
 Update log records need not include the after images.

5

Alexandros Labrinidis, Univ. of Pittsburgh 17 CS 2550 / Spring 2006

Checkpointing

 Updates of committed transactions are in stable storage.

 However, we still need checkpointing to ensure that the
before image of a data item updated by an aborted
transaction is in stable storage.

 Can checkpoints be eliminated by requiring RM-Abort(Ti) to
flush the before images of all data items updated by Ti?

Alexandros Labrinidis, Univ. of Pittsburgh 18 CS 2550 / Spring 2006

Undo/No-Redo and
Multiversion Concurrency

 All versions of a data item x are linked together in the
stable storage. New versions of x created by active
transactions are added at the head of the list.

 Each version created by some Ti is tagged by the ts(Ti).
 No need to store the before image of x in the log. It can be

found in x's list.
 The log consists of three lists: commit, abort, and active.
 On Restart, any version of some x created by an aborted

or active transaction is removed from x's list.

Alexandros Labrinidis, Univ. of Pittsburgh 19 CS 2550 / Spring 2006

A Variation that Eliminates Restart

 Every time a Read on x is performed, x's tag is examined.
 If the transaction that created this version of x is in the commit list,

then this is a committed version of x.
 If it is not, discard this version (here is the undo) and repeat this

step with the next version of x.

 Useful idea when frequent system failures are anticipated.

Alexandros Labrinidis, Univ. of Pittsburgh 20 CS 2550 / Spring 2006

No-Undo/Redo Recovery Algorithm

Updates of active transactions are not applied to the data
items; instead, they are recorded in the log.

 RM-Write(Ti,x,a)
 Write a [Ti,x,a] to the log.

 RM-Read(x)
 If Ti had updated x then return the after image of x from the log.
 Otherwise, return BM-Read(x).

 Commit(Ti)
 Force-Write [Ti , commit] to log (now, Ti commits).
 For each x updated by Ti , issue BM-Write(x, a).

 Abort(Ti)
 Ignore it (Send ack to the scheduler).

6

Alexandros Labrinidis, Univ. of Pittsburgh 21 CS 2550 / Spring 2006

No-Undo/No-Redo Recovery Algorithm
(Shadowing)

 Data items are referred indirectly by symbolic names.
 The actual location of each data item is stored in a

directory.

When a transaction Ti updates a data item x, it creates a
new version of x in stable storage and it records this update in
a directory local to Ti .

Current
Directory Stable Storage

X

Y

value of X

value of Y

value of ZZ

database record

Alexandros Labrinidis, Univ. of Pittsburgh 22 CS 2550 / Spring 2006

Commit

Stable Storage

value of X

value of Y

value of Z

database record

new X

new Y

Current Directory

X

Y

Z

Shadow copy

X

Y

Z

Stable Storage

value of X

value of Y

value of Z

database record

new X

new Y

Current Directory

X

Y

Z

Shadow copy

X

Y

Z

Shadow copy Current directory

Alexandros Labrinidis, Univ. of Pittsburgh 23 CS 2550 / Spring 2006

Discussion

 Very fast Restart operation.
 Indirect addressing is more expensive than direct

addressing (except if directory is small so it can be kept in
main memory).

 Garbage collection of uncommitted transactions becomes
difficult.

 Any physical arrangements of data items on disk is
destroyed.

 Recovery from media failures is not addressed.

Alexandros Labrinidis, Univ. of Pittsburgh 24 CS 2550 / Spring 2006

Force/Steal

 Updated pages cannot be written to disk before Commit
 No steal
 Assume pin/unpin protocol with Buffer Manager
 If allowed to write to disk before commit Steal

 All updated pages are immediately written to disk when
a transaction Commits
 Force
 Otherwise No force

7

Alexandros Labrinidis, Univ. of Pittsburgh 25 CS 2550 / Spring 2006

Summary of Recovery Strategies

 No-force and steal: redo/undo
Best from performance point of view, if done correctly

 Force and steal: no-redo/undo
Increased commit processing overheads, low restart overheads

 No-force and no-steal: redo/no-undo
Intention lists -- higher normal processing overheads

 Force and no-steal
Shadows -- higher space overheads, difficult for semantics-based concurrency

control

Alexandros Labrinidis, Univ. of Pittsburgh 26 CS 2550 / Spring 2006

Overview of Recovery Concepts

