
1

CS2550, Panos K. Chrysanthis – University of Pittsburgh 1

Recovery Techniques

CS2550, Panos K. Chrysanthis – University of Pittsburgh 2

The System Failure Problem

 It is possible that the stable database: (because of
buffering of blocks in main memory)
 contains values written by uncommitted transactions.
 does not contain values written by committed

transactions.
 Recovery protocols implement two actions:

 Undo action: required for atomicity.
– Undoes all updates on the stable storage by an

uncommitted transaction.
 Redo action: required for durability

– redoes the update (on the stable storage) of
committed transactions.

CS2550, Panos K. Chrysanthis – University of Pittsburgh 3

Recovery Techniques and Assumptions

 Undo/Redo Algorithm
 Undo/No-Redo
 No-Undo/Redo (also called logging with deferred updates)
 No-Undo/No-Redo (also called shadowing)

CS2550, Panos K. Chrysanthis – University of Pittsburgh 4

Failure Types

 Program Failures
 logical errors
 bad input
 unavailable data
 resource limits
 user cancellation

 System Failures
 computer hardware malfunction
 bugs in O.S.
 power failures
 operator error

2

CS2550, Panos K. Chrysanthis – University of Pittsburgh 5

Failure Types

 Media Failures
 disk head crash
 data transfer error
 Disk controller failure

 Unrecoverable errors
 failure to make archive dumps
 destruction of archives

CS2550, Panos K. Chrysanthis – University of Pittsburgh 6

Centralized DBMS
T1 T2 Tn

{Start, Read(x), Write(x), Commit, Abort}

{Start, Read(x), Write(x), Commit, Abort}

Transaction Manager

Scheduler

{Start, Read(x), Write(x), Commit, Abort}
Data ManagerRecovering Manager

{Flush(x), Fetch(x), Fix(x), Unfix(x), Write(x) }
Cache Manager

Database Buffer Log Buffer

Stable Database
and Catalog

Temporary Log
Support: Transaction UNDO
Global UNDO | Partial REDO

Archive Log
Support: Global REDO

DiskRead(x,a,b)
DiskWrite(x,a,b)

Actions of Scheduler:
1. Execution
2. Reject
3. Delay

Archive Database

CS2550, Panos K. Chrysanthis – University of Pittsburgh 7

Recovery Techniques and Assumptions

All the techniques assume the following:
 Failures are detectable.
 Write operations are atomic(i.e., execute either in its

entirety or not at all).
– If this is not the case, we consider this failure as

media failure.
 The scheduler sends operations to DM in an order

which produces executions that are correct and strict
 No media failure
 The granularity of Writes that DM processes is the

same as the one of the atomic Write supported by the
hardware.

CS2550, Panos K. Chrysanthis – University of Pittsburgh 8

Buffer Management

The goal of Cache or Buffer Manager (BM) is to
maximize the likelihood that a block of data needed by a
transaction is in main memory.

 The main memory is partitioned into buffer blocks(or
simply blocks).

 The size of a buffer is equal to the disk block size.

X2 X5 X3

X0 X1 X2 X3 X4 X5

Buffer0 Buffer1 Buffer2 Buffer3 Buffer4

buffer
block main memory

diskdisk
block

3

CS2550, Panos K. Chrysanthis – University of Pittsburgh 9

Buffer Management

 If no more buffers are available the BM must replace one
of the buffer blocks (writing the block back to disk, if it
has been updated).
 Least Recently Used (LRU),
 Least Frequently Used (LFU), etc.

 Concurrency and recovery are two other factors affecting
the replacement algorithm.

CS2550, Panos K. Chrysanthis – University of Pittsburgh 10

Buffer Management Table

 Buffer Management Operations
 Read, Write, Fetch, Flush, Force-Write, Fix, Unfix

page
Id

dirty
bit

fix
count

buffer
number

x 0 0 0
y 1 2 1
z 0 1 2

CS2550, Panos K. Chrysanthis – University of Pittsburgh 11

Buffer Management Operations

 Fix(pid, flags)(Also called Pin)
 A fixed page will not be replaced until the page is

unfixed.
 It may involve up to two I/O's, one to write out a dirty

page and another to read in the requested page.

 Unfix(pid, flags)(Also called Unpin)
 decrements by one the counter that indicates the

number of transactions that have fixed a page.
 If this counter is 0 the page is made available for

swapping, e.g., it is placed at the tail of the LRU queue.

CS2550, Panos K. Chrysanthis – University of Pittsburgh 12

Buffer Mgmt Operations

 Touch(pid, flags)
 sets the flags of the page in the buffer table

without unfixing the pageBuffer Management
Operations

 Possible flags:
 make the page dirty
 flush the page
 fix the page without reading it from disk, etc

4

CS2550, Panos K. Chrysanthis – University of Pittsburgh 13

Stable Database

 The stable database is the state of the database in
stable storage.

 There are two ways to update a data item x in stable
storage(propagation strategies):

 In-Place Updating: Update x in place (i.e., overwrite x)

Di
Pi

Disk read

Disk write

CS2550, Panos K. Chrysanthis – University of Pittsburgh 14

Stable Database

 Shadowing: Write the new value of x in a copy (older
versions are called shadow copy).

In this case, there must be a directory in stable storage to
tell where each item is.

Di

Pi

Disk read

Disk write

Dj

Directory
Copy A Stable Storage

Directory
Copy B

X

Y

value of X

value of Y

new Y

X

Y

CS2550, Panos K. Chrysanthis – University of Pittsburgh 15

Logging

 A Log is a sequence of records which represent all
modifications to the database. Log records may describe
either physical changes or logical database operations.
 A physical log contains information about the actual

values of data items written by transactions.
– state before change, before image
– state after change, after image
– transition causing the change

 A logical log represents higher level operations; e.g.,
insert this key in that index.

CS2550, Panos K. Chrysanthis – University of Pittsburgh 16

Logging

 The order in which updates appear is the same as the
order in which they actually occurred. The precise way
history is represented in the log depends on the technique
followed by the recovery manager.

5

CS2550, Panos K. Chrysanthis – University of Pittsburgh 17

Log Records

 For the moment, we will assume that a log record may be
one of the following types:

 Start Record
– [Ti, start]

 Commit Record
– [Ti, commit]

 Abort Record
– [Ti, abort]

CS2550, Panos K. Chrysanthis – University of Pittsburgh 18

Log Records

 Update Record for physical state logging at page level
– [Ti, x, b, a]

 Ti : the id of the transaction that performed a
Write operation on x

 x: the id of data item x
 b: before image of x
 a: after image of x

– Assuming Strict Executions
[Tj, x, b]: Tj wrote into x before Ti

[Ti, x, a]

CS2550, Panos K. Chrysanthis – University of Pittsburgh 19

Log Records

 Update Record for physical transition logging on page
level
– [Ti,x, b, d]
– d is the difference between the before and after

images
– d = before ⊗ after

CS2550, Panos K. Chrysanthis – University of Pittsburgh 20

Logical Logging on the Record Level

 Simply record the operation and its arguments
 [Ti, Op, Inv-op, Arg]

 Op = {Insert, Delete, Update} [REDO]
 Inv-op = inverse operation [UNDO]
 Arg = arguments

=> It is not possible in all models to automatically
generate the inverse; e.g., the network model.

6

CS2550, Panos K. Chrysanthis – University of Pittsburgh 21

Undoing and Redoing Writes

UNDO Rule (WAL, Write Ahead Logging principle)
T writes x
T aborts or System crash

– If x was transferred to disk, then we need the
before image of x to undo this update.

 Thus, when x is updated by T, the DM should store first
the before image of x in the log on stable storage and
then x itself in the stable database.

CS2550, Panos K. Chrysanthis – University of Pittsburgh 22

Undoing and Redoing Writes

REDO Rule
T writes x
T commits
System crash

– If x was not transferred to disk, at restart time we
need the after image of x to redo T's update.

 Thus, the DM should not commit a transaction T until the
after image of each data item written by T is in stable
storage.

CS2550, Panos K. Chrysanthis – University of Pittsburgh 23

BM Table for Buffered Log

 The Undo rule is:
 Before the BM replaces a block it should flush all log

entries whose LSN is less than or equal to the LSN
recorded on this buffer block.

page
Id

dirty
bit

fix
count

block
LSN

x 0 0 812
y 1 1 10
z 0 1 123

buffer
number

0
1
2

CS2550, Panos K. Chrysanthis – University of Pittsburgh 24

Restarts

 Restart: consult the log and for each transaction Ti do
the following:
 redo the updates of Ti if there is a commit record of

Ti in the log.
 Undo the updates of Ti if there is no such record in

log (i.e., Ti had been aborted or it was active when the
system crashed).

7

CS2550, Panos K. Chrysanthis – University of Pittsburgh 25

What should Restart do?

A3 C2 C5 C7 A6 A8
System crash

log
T1

T2

T3

T4

T5

T6

T7

T8

T9

CS2550, Panos K. Chrysanthis – University of Pittsburgh 26

Idempotence of Restarts

 The restart operation may be interrupted because of a
failure. Incomplete executions of Restart followed by a
completed Restart must have the same effect as just one
completed Restart.

CS2550, Panos K. Chrysanthis – University of Pittsburgh 27

Garbage Collection

 Recycling space in the log occupied by unnecessary
info.

 Garbage Collection Rule:
The entry [Ti ,x,v] can be removed from the log iff
Ti has aborted
Ti has committed but some other committed

transaction wrote into x after Ti did.
Note that the last committed value of a data item x
must be in a log, if undo is possible.

[Ti ,x,v] can be removed from the log if v is the last
committed value of x and v is the value of x in the
stable storage and there are no other entries of x.

CS2550, Panos K. Chrysanthis – University of Pittsburgh 28

Checkpoints

 To Restart, we need to scan the entire log !
 The Restart operation will be prohibitively slow.
 The Log file may become very long and may not fit on

disk.
 Most of the transactions that need to be redone have

already written their updates to stable database (why?).
 Thus, most of the Restart operations are

unnecessarily performed.
 The amount of work Restart has to do after a system

failure can be reduced by check pointing the updates
that have been performed up to a certain time.

8

CS2550, Panos K. Chrysanthis – University of Pittsburgh 29

Restart with Checkpointing

 Restart may proceed as before, i.e.:
 redo updates of transactions that have been

committed,undo updates of transactions that have not
been committed.
Notice: The undo procedure may require reading log
records written before the most recent checkpoint
point (why?).

 In addition, the following scenario for a transaction T is
possible:
 T was active when the system crashed. T, but did not

perform any Write operation since the last checkpoint;
i.e., there is no record for T in the log after the last
checkpoint.

CS2550, Panos K. Chrysanthis – University of Pittsburgh 30

Restart with Checkpointing

=> How can Restart identify such transactions without
reading the entire log?

 Checkpoint Record
 The checkpoint record must include a list of

transactions that were active at checkpoint time.
[checkpoint, Ac]

 A side effect: the start record of a transaction is not
needed anymore.

CS2550, Panos K. Chrysanthis – University of Pittsburgh 31

Example: Restart with Checkpoint

A3 C2 C5 C7 A6 A8
System crash

log
T1

T2

T3

T4

T5

T6

T7

T8

T9

CP

CS2550, Panos K. Chrysanthis – University of Pittsburgh 32

Transaction-Oriented Checkpoint

 Force discipline avoids REDO
– during commit all the updates of the committed

transaction are propagated to the stable database.
 Commit can be seen as a checkpoint

Problem:
 Hot spots need to be propagated every time a

transaction commits
 overhead on normal processing.

9

CS2550, Panos K. Chrysanthis – University of Pittsburgh 33

Transaction Consistent Checkpoint
(Commit Consistent Checkpoint)

 Stop accepting new transactions and wait until all
transactions terminate (commit or abort).

 Flush all dirty buffer blocks to stable storage.
 Force-write a <checkpoint> record to log.
 Resume normal execution.

 On Restart, repeat the same steps as before but now
process updates of those transactions that appear after
the most recent checkpoint record.

Drawback ?

CS2550, Panos K. Chrysanthis – University of Pittsburgh 34

Action Consistent Checkpoint
(Cache Consistent Checkpoint)

 Stop accepting new operations (active transactions are blocked).
 Flush all dirty buffer blocks to disk.
 Force-write a <checkpoint> record to the log file.
 Resume normal operation.

CS2550, Panos K. Chrysanthis – University of Pittsburgh 35

Action Consistent Checkpoint
(Cache Consistent Checkpoint)

Consequences:
 All updates of transactions committed before the

checkpoint are now in the stable database (... good).
 All undo updates of transactions aborted before the

checkpoint are now in the stable database (... good).
 All updates of transactions that were active at the

checkpoint are now in stable database (... bad).

CS2550, Panos K. Chrysanthis – University of Pittsburgh 36

Fuzzy Checkpointing

We can further reduce the delay caused by the
checkpoint procedure by flushing those dirty buffers that
have not been flushed since before the previous
checkpoint.

10

CS2550, Panos K. Chrysanthis – University of Pittsburgh 37

Fuzzy Checkpointing

 The hope is that the BM might have already flushed the
buffers that were dirty before the previous checkpoint. So,
the checkpoint will not have much flushing to do.

 We are sure that, at any time, no committed (or aborted)
updates recorded before the penultimate checkpoint (i.e.,
the next to last) will have to be redone (or undone).

